
Answers to Some Guestions in Exercises

UNIT 11
11.1 (i) 2.2.4-Trimethylpenan -3-ol
(ii) 5-Ethylheptane -2.4-diol
(iv) 2-Methylphenol
(vi) 2.5 - Dimethylphenol
(vii) 2.6 - Dimethylphenol
(viii)
$$\int_{CH_{a}} - CH_{a} - CH_{a}$$

11.4 Hydrogen bonding in propanol.

Chemistry 456

- 11.5 Hydrogen bonding between alcohol and water molecules.
- 11.8 o-Nitrophenol is steam volatile because of intramolecular hydrogen bonding.
- 11.12 Hint: Carryout sulphonation followed by nucleophilic substitution.

(iii) $CH_3(CH_2)_4Cl + NaOH \longrightarrow CH_3(CH_2)_4OH + NaCl$

- 11.14 Reaction with (i) sodium and (ii) sodium hydroxide
- **11.15** Due to electron withdrawing effect of nitro group and electron releasing effect of methoxy group.
- **11.20** (i) Hydration of Propene.

(ii) By nucleophilic substitution of -Cl in benzyl chloride using dilute NaOH.

(iii) $C_2H_5MgBr + HCHO \rightarrow C_2H_5CH_2OMgBr \xrightarrow{H_2O} C_2H_5CH_2OH$

(iv)
$$CH_3MgBr + CH_3COCH_3 \longrightarrow CH_3 - CH_3 -$$

11.23 (i) 1-Ethoxy-2-methylpropane.

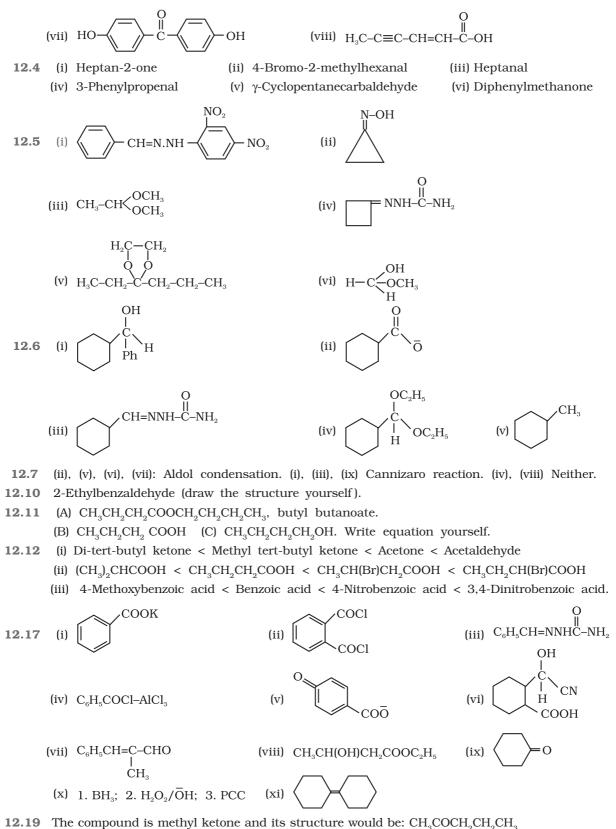
- (ii) 2-Chloro-1-methoxyethane.
- (iii) 4-Nitroanisole.
- (iv) 1-Methoxypropane.
- (v) 1-Ethoxy-4,4-dimethylcyclohexane.
- (vi) Ethoxybenzene.

UNIT 12

- 12.2 (i) 4-Methylpentanal
 - (iii) But-2-enal
 - (v) 3,3,5-Trimethylhexan-2-one
 - (vii) Benzene -1,4-dicarbaldehyde

12.3 (i)
$$\begin{array}{c} CH_3 & O\\ I & \parallel\\ H_3C-CH-CH_2-C-H \end{array}$$

- (ii) 6-Chloro-4-ethylhexan-3-one
- (iv) Pentane-2,4-dione
- (vi) 3,3-Dimethylbutanoic acid


(ii)
$$O_2N \rightarrow O = C - CH_2 - CH_3$$

CU

(iv)
$$H_3C-C-CH=C-CH_3$$

 $\parallel O$

(vi)
$$H_3C-CH-CH-CH_2-C-OH$$

 I
 C_6H_5

457 Answers...

Chemistry 458

UNIT 13

- **13.1** (i) 1-methylethanamine
 - (iii) N-methyl-2-methylethanamine
 - (v) N-methylbenzamine or N-methylaniline
 - (vii) 3-Bromoaniline or 3-Bromobenzenamine
- **13.4** (i) $C_6H_5NH_2 < C_6H_5NHCH_3 < C_2H_5NH_2 < (C_2H_5)_2NH$
 - (ii) $C_6H_5NH_2 < C_6H_5N(CH_3)_2 < CH_3NH_2 < (C_2H_5)_2NH$
 - (iii) (a) p-nitroaniline < aniline < p-toluidine (b) $C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5CH_2NH_2$

(iv) $(C_2H_5)_3N > (C_2H_5)_2NH > C_2H_5NH_2 > NH_3$ (v) $(CH_3)_2NH < C_2H_5NH_2 < C_2H_5OH_3$

(vi) $C_6H_5NH_2 < (C_2H_5)_2NH < C_2H_5NH_2$

UNIT 15

15.1 Polymer is a high molecular mass macromolecule consisting of repeating structural units derived from monomers.

Monomer is a simple molecule capable of undergoing polymerisation and leading to the formation of the corresponding polymer.

15.2 Natural polymers are high molecular mass macromolecules and are found in plants and animals. The examples are proteins and nucleic acids.Synthetic polymers are man-made high molecular mass macromolecules. These include synthetic

plastics, fibres and rubbers. The two specific examples are polythene and dacron.

- 15.4 Functionality is the number of bonding sites in a monomer.
- **15.5** Polymerisation is a process of formation of a high molecular mass polymer from one or more monomers by linking together of repeating structural units with covalent bonds.
- **15.6** Since the unit $(NH-CHR-CO)_n$ is obtained from a single monomer unit, it is a homopolymer.
- **15.7** On the basis of molecular forces present between the chains of various polymers, the classification of polymers is given as follows.

(a) Elastomers (b) Fibres (c) Thermoplastics and (d) Thermosetting plastics.

- **15.8** In addition polymerisation, the molecules of the same or different monomers add together to form a large polymer molecule. Condensation polymerisation is a process in which two or more bi-functional molecules undergo a series of condensation reactions with the elimination of some simple molecules and leading to the formation of polymers.
- **15.9** Copolymerisation is a process in which a mixture of more than one monomeric species is allowed to polymerise. The copolymer contains multiple units of each monomer in the chain. The examples are copolymers of 1,3-butadiene and styrene and 1, 3-butadiene and acrylonitrile.

15.10

 $C_{6}H_{5}-C-\dot{O}-\dot{O}-\dot{O}-C_{6}H_{5} \longrightarrow 2C_{6}H_{5}-C-\dot{O} \longrightarrow 2C_{6}\dot{H}_{5}$ $C_{6}\dot{H}_{5}+CH_{2}=CH_{2} \longrightarrow C_{6}H_{5}-CH_{2}-C\dot{H}_{2}$ phenyl radical

$$C_{6}H_{5}-CH_{2}-\dot{C}H_{2}+CH_{2}=CH_{2} \longrightarrow C_{6}H_{5}-CH_{2}-CH_{2}-CH_{2}-CH_{2}$$

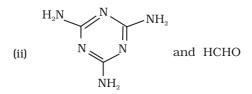
$$\downarrow chain termination$$

$$C_{6}H_{5}+CH_{2}-CH_{2}+CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}+CH_{2}+C$$

Polythene

- **15.11** A thermoplastic polymer can be repeatedly softened on heating and hardened on cooling, hence it can be used again and again. The examples are polythene, polypropylene, etc.
 - A thermosetting polymer is a permanent setting polymer as it gets hardened and sets during

459 Answers...


- (ii) Propan-1-amine
- (iv) 2-methylpropan-2-amine
- (vi) N-Ethyl-N-methylethanamine

moulding process and cannot be softened again. The examples are bakelite and melamine-formaldehyde polymers.

- **15.12** (i) The monomer of polyvinyl chloride is CH_2 =CHCl (vinyl chloride).
 - (ii) The monomer of teflon is $CF_2=CF_2$ (tetrafluoroethylene).
 - (iii) The monomers involved in the formation of bakelite are HCHO (formaldehyde) and C_6H_5OH (phenol).
- **15.14** From the structural point of view, the natural rubber is a linear cis-1,4- polyisoprene. In this polymer the double bonds are located between C_2 and C_3 of isoprene units. This cis-configuration about double bonds do not allow the chains to come closer for effective attraction due to weak intermolecular attractions. Hence, the natural rubber has a coiled structure and shows elasticity.
- **15.16** The monomeric repeat unit of Nylon-6 polymer is: [NH–(CH₂)₅–CO] The monomeric repeat unit of Nylon-6,6 polymer is derived from the two monomers, hexamethylene diamine and adipic acid. [NH–(CH₂)₆–NH-CO–(CH₂)₄–CO]

15.17 The names and structures of monomers are:

- **Monomer Names Monomer Structures Polymers** (i) Buna-S 1,3-Butadiene CH₂=CH-CH=CH₂ Styrene C₆H₅CH=CH₂ (ii) Buna-N 1,3- Butadiene CH₂=CH-CH=CH₂ Acrylonitrile CH₂=CH CN C1CH_=CH=CH_ (iii) Neoprene Chloroprene (iv) Dacron Ethylene glycol OHCH2-CH2OH Terephthalic acid -соон COOH-
- **15.18** The monomers forming the polymer are: (i) Decanoic acid HOOC – $(CH_2)_8$ – COOH and Hexamethylene diamine $H_2N(CH_2)_6$ NH_2

15.19 The following are the equations for the formation of Dacron.

Chemistry 460