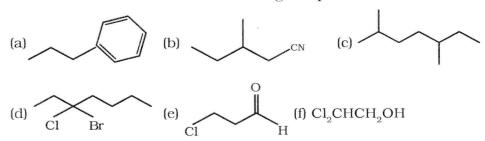
CHAPTER 12: ORGANIC CHEMISTRY- SOME BASIC PRINCIPLES AND TECHNIQUES

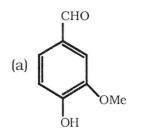
NCERT EXERCISES

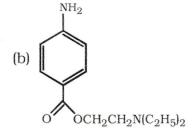
GPLUS EDUCATION

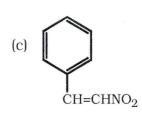
12.1 What are hybridisation states of each carbon atom in the following compounds?


* CH₂=C=O, CH₃CH=CH₂, (CH₃)₂CO, CH₂=CHCN, C₆H₆

12.2 Indicate the σ and π bonds in the following molecules :


 \leftarrow C₆H₆, C₆H₁₂, CH₂Cl₂, CH₂=C=CH₂, CH₃NO₂, HCONHCH₃


- Write bond line formulas for : Isopropyl alcohol, 2,3-Dimethylbutanal, Heptan-4-one.
- 12.4 Give the IUPAC names of the following compounds:


*

- Which of the following represents the correct IUPAC name for the compounds concerned? (a) 2,2-Dimethylpentane or 2-Dimethylpentane (b) 2,4,7-Trimethyloctane or 2,5,7-Trimethyloctane (c) 2-Chloro-4-methylpentane or 4-Chloro-2-methylpentane (d) But-3-yn-1-ol or But-4-ol-1-yne.
- Draw formulas for the first five members of each homologous series beginning with the following compounds. (a) H-COOH (b) CH_3COCH_3 (c) H-CH= CH_2
- Give condensed and bond line structural formulas and identify the functional group(s) present, if any, for :
 - (a) 2,2,4-Trimethylpentane
 - (b) 2-Hydroxy-1,2,3-propanetricarboxylic acid
 - (c) Hexanedial
- 12.8 Identify the functional groups in the following compounds

- Which of the two: $O_2NCH_2CH_2O^-$ or $CH_3CH_2O^-$ is expected to be more stable and why ?
- 12.10 Explain why alkyl groups act as electron donors when attached to a $\boldsymbol{\pi}$ system.
- 12.11 Draw the resonance structures for the following compounds. Show the electron shift using curved-arrow notation.
 - (a) C_6H_5OH (b) $C_6H_5NO_2$ (c) $CH_3CH=CHCHO$ (d) C_6H_5-CHO (e) $C_6H_5-CH_2$ (f) $CH_3CH=CHCH_2$
- What are electrophiles and nucleophiles? Explain with examples.


- 12.13 Identify the reagents shown in bold in the following equations as nucleophiles or electrophiles: *
 - (a) $CH_3COOH + HO^- \rightarrow CH_3COO^- + H_9O$
 - (b) $CH_3COCH_3 + CN \rightarrow (CH_3)_9 C(CN)(OH)$
 - (c) $C_eH_e + CH_aCO \rightarrow C_eH_5COCH_3$
- 12.14 Classify the following reactions in one of the reaction type studied in this unit.
 - (a) $CH_3CH_2Br + HS^- \rightarrow CH_3CH_2SH + Br^-$
 - (b) $(CH_3)_2 C = CH_2 + HCl \rightarrow (CH_3)_2 ClC CH_3$
 - (c) $CH_3CH_2Br + HO^- \rightarrow CH_2 = CH_2 + H_2O + Br^-$
 - (d) CH_{3 3} C CH₂OH HBr CH_{3 2} CBrCH₂CH₂CH₃ H₂O
- What is the relationship between the members of following pairs of structures? 12.15 Are they structural or geometrical isomers or resonance contributors?
 - (a)
 - EDUCATION (b)
 - (c) -OH
- 12.16 For the following bond cleavages, use curved-arrows to show the electron flow and classify each as homolysis or heterolysis. Identify reactive intermediate produced as free radical, carbocation and carbanion.
 - (a) $CH_3O OCH_3 \rightarrow CH_3O + OCH_3$
 - (b) $\geq 0 + OH \longrightarrow > 0 + H_2O$
- Explain the terms Inductive and Electromeric effects. Which electron displacement 12.17 effect explains the following correct orders of acidity of the carboxylic acids?
 - (a) Cl_oCCOOH > Cl_oCHCOOH > ClCH_oCOOH
 - (b) CH₃CH₂COOH > (CH₃)₂CHCOOH > (CH₃)₃C.COOH

- 12.18 Give a brief description of the principles of the following techniques taking an example in each case.
 - (a) Crystallisation (b) Distillation (c) Chromatography
- 12.19 Describe the method, which can be used to separate two compounds with different solubilities in a solvent S.
- 12.20 What is the difference between distillation, distillation under reduced pressure and steam distillation?
- 12.21 Discuss the chemistry of Lassaigne's test.
- Differentiate between the principle of estimation of nitrogen in an organic compound by (i) Dumas method and (ii) Kjeldahl's method.
- 12.23 Discuss the principle of estimation of halogens, sulphur and phosphorus present in an organic compound.
- 12.24 Explain the principle of paper chromatography.
- 12.25 Why is nitric acid added to sodium extract before adding silver nitrate for testing halogens?
- 12.26 Explain the reason for the fusion of an organic compound with metallic sodium for testing nitrogen, sulphur and halogens.
- 12.27 Name a suitable technique of separation of the components from a mixture of calcium sulphate and camphor.
- 12.28 Explain, why an organic liquid vaporises at a temperature below its boiling point in its steam distillation?
- 12.29 Will ${\rm CCl_4}$ give white precipitate of AgCl on heating it with silver nitrate? Give reason for your answer.
- 12.30 Why is a solution of potassium hydroxide used to absorb carbon dioxide evolved during the estimation of carbon present in an organic compound?
- 12.31 Why is it necessary to use acetic acid and not sulphuric acid for acidification of sodium extract for testing sulphur by lead acetate test?
- 12.32 An organic compound contains 69% carbon and 4.8% hydrogen, the remainder being oxygen. Calculate the masses of carbon dioxide and water produced when 0.20 g of this substance is subjected to complete combustion.
- 12.33 A sample of 0.50 g of an organic compound was treated according to Kjeldahl's method. The ammonia evolved was absorbed in 50 ml of 0.5 M $\rm H_2SO_4$. The residual acid required 60 mL of 0.5 M solution of NaOH for neutralisation. Find the percentage composition of nitrogen in the compound.
- 12.34 0.3780 g of an organic chloro compound gave 0.5740 g of silver chloride in Carius estimation. Calculate the percentage of chlorine present in the compound.
- 12.35 In the estimation of sulphur by Carius method, 0.468 g of an organic sulphur compound afforded 0.668 g of barium sulphate. Find out the percentage of sulphur in the given compound.
- In the organic compound $CH_2 = CH CH_2 CH_2 C = CH$, the pair of hydridised orbitals involved in the formation of: $C_2 C_3$ bond is:

 (a) $sp sp^2$ (b) $sp sp^3$ (c) $sp^2 sp^3$ (d) $sp^3 sp^3$

GPLUS EDUCATION

- 12.37 In the Lassaigne's test for nitrogen in an organic compound, the Prussian blue
 - colour is obtained due to the formation of:
 - (a) $Na_4[Fe(CN)_6]$ (b) $Fe_4[Fe(CN)_6]_3$ (c) $Fe_2[Fe(CN)_6]$ (d) $Fe_3[Fe(CN)_6]_4$
- 12.38 Which of the following carbocation is most stable?
 - * (a) $(CH_3)_3C.\overset{\circ}{C}H_2$ (b) $(CH_3)_3\overset{\circ}{C}$ (c) $CH_3CH_2\overset{\circ}{C}H_2$ (d) $CH_3\overset{\circ}{C}H$ CH_2CH_3
- 12.39 The best and latest technique for isolation, purification and separation of organic
 - * compounds is:
 - (a) Crystallisation (b) Distillation (c) Sublimation (d) Chromatography
- 12.40 The reaction:
 - * $CH_3CH_2I + KOH(aq) \rightarrow CH_3CH_2OH + KI$ is classified as :
 - (a) electrophilic substitution (b) nucleophilic substitution
 - (c) elimination (d) addition

