GPLUS Education

CHAPTERI: SOME BASIC CONCEPTS OF CHEMISTRY

NCERT EXERCISES

1.1 Calculate the molecular mass of the following :
(i) $\mathrm{H}_{2} \mathrm{O}$ (ii) CO_{2} (iii) CH_{4}
1.2 Calculate the mass per cent of different elements present in sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.
1.3 Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.
1.4 Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
1.5 Calculate the mass of sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ required 10 make 500 mL of 0.375 molar aqueous solution. Molar mass of sodium acetate is $82.0245 \mathrm{~g} \mathrm{~mol}^{-1}$.
1.6 Calculate the concentration of nitric acid in moles per litre in a sample which

* has a density. $1.41 \mathrm{~g} \mathrm{~mL}^{-1}$ and the mass per cent of nitric acid in it being 69%.
1.7 How much copper can be obtained from 100 g of copper sulphate (CuSO_{4}) ?
1.8 Determine the molecular formula of an oxide of iron in which the mass per cent * of iron and oxygen are 69.9 and 30.1 respectively.
1.9 Calculate the atomic mass (average) of chlorine using the following data:
* \% Natural Abundanc

Molar Mass
${ }^{35} \mathrm{Cl}$
75.77
34.9689
${ }^{37} \mathrm{Cl}$
24.23
1.10 In three moles of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, calculate the following :
(i) Number of moles of carbon atoms.
(ii) Number of moles of hydrogen atorms.
(iii) Number of molecules of ethane.
1.11 What is the concentration of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in mol L^{-1} if its 20 g are dissolved in * enough water to make a final volume up to 2L?
1.12 If the density of methanol is $0.793 \mathrm{~kg} \mathrm{~L}^{-1}$, what is its volume needed for making 2.5 L of its 0.25 M solution?
1.13 Pressure is determined as force per unit area of the surface. The SI unit of pressure, pascal is as shown below :
$1 \mathrm{~Pa}=1 \mathrm{~N} \mathrm{~m}^{-2}$
If mass of air at sea level is $1034 \mathrm{~g} \mathrm{~cm}^{-2}$, calculate the pressure in pascal.
1.14 What is the SI unit of mass? How is it defined?
1.15 Match the following prefixes with their multiples:

Prefixes Multiples
(i) micro 10^{6}
(ii) deca 10^{4}
(iii) mega 10^{-13}
(iv) giga 10^{-15}
(v) femto 10
1.16 What do you mean' gnificant figures?
1.17 A sample of drinking water was found to be severely contaminated with chloroform, CHCl_{3}, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass).
(i) Express this in percent by mass.
(ii) Determine the molality of chloroform in the water sample.
1.18 Express the following in the scientific notation:
(i) 0.0048
(ii) 234,000
(iii) 8008
(iv) 500.0
(v) 6.0012
1.19 How many sighificant figures are present in the following?
f (i) 0.0025
(ii) 208
(iii) 5005
(iv) 126,000
(v) 500.0
(vi) 2.0034
1.20 Round up the following upto three significant figures:

* (i) 34.216
(ii) 10.4107
(iii) 0.04597
(iv) 2808
1.21 The following data are obtained when dinitrogen and dioxygen react together to form different compounds :

	Mass of dinitrogen	Mass of dioxygen
(i)	14 g	16 g
(ii)	14 g	32 g
(iii)	28 g	32 g
(iv)	28 g	80 g

(a) Which law of chemical combination is obeyed by the above experimental data? Give its statement.
(b) Fill in the blanks in the following conversions: .,
(i) $1 \mathrm{~km}=$ \qquad mm = \qquad pm
(ii) $1 \mathrm{mg}=$ $\mathrm{kg}=$ \qquad
(iii) $1 \mathrm{~mL}=\ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{L}=\ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{dm}^{3}$
(iii) $1 \mathrm{~mL}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{L}=\ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{dm}^{3}$
\qquad ng
1.22 If the speed of light is $3.0 \quad 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$. calculate the distance covered by light in
1.23 In a reaction
$\mathrm{A}+\mathrm{B}_{2} \rightarrow \mathrm{AB}_{2}$
Identify the limiting reagent, if any, in the following reaction mixtures.
(i) 300 aloms of $\mathrm{A}+200$ molecules of B
(ii) $2 \mathrm{~mol} \mathrm{~A}+3 \mathrm{~mol} \mathrm{~B}$
(iii) 100 atoms of $A+100$ molecules of B
(iv) $5 \mathrm{~mol} \Lambda+2.5 \mathrm{~mol} \mathrm{~B}$
(v) $2.5 \mathrm{~mol} \Lambda+5 \mathrm{~mol} \mathrm{~B}$
1.24 Dinitrogen and dihydrogen react with each other 10 produce ammonia according \& to the following chemical equation:

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(i) Calculate the mass of ammonia produced if $2.00 \times 10^{3} \mathrm{~g}$ dinitrogen reacts with $1.00 \times 10^{3} \mathrm{~g}$ of dihydrogen.
(ii) Will any of the two reactants remain unreacted'?
(iii) If yes, which one and what would be its mass?
1.25 How are $0.50 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $0.50 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ different?
1.26 If ten volumes of dihydrogen gasreacts with five volumes of dioxygen gas, how many volumes of water vapour would be produced?
1.27 Convert the following into basic units:
(i) 28.7 pm
(ii) 15.15 pm
(iii) 25365 mg
1.28 Which one of the following will have largest number of atoms?
(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) 1 g Li (s)
(iv) 1 g of $\mathrm{Cl}_{2}(\mathrm{~g})$
1.29 Calculate the molarity of a solution of ethanol in water in which the mole fraction of ethanol is 0.040 .
1.30 What will be the mass of one ${ }^{12} \mathrm{C}$ atom in g ?
1.31 How many significant figures should be present in the answer of the following calculations?
$\begin{array}{ll}\text { (i) } \frac{0.02856 \times 2!}{0.5} \\ \text { (iii) } 0.0125+0.7864+0.0215 & \text { (ii) } 5 \times 5.364\end{array}$
1.32 Use the data given in the following table to calculate the molar mass of naturally occuring argon isotopes:

Isotope	Isotopic molar mass	Abundance
${ }^{36} \mathrm{Ar}$	$35.96755 \mathrm{~g} \mathrm{~mol}^{-1}$	0.337%
${ }^{38} \mathrm{Ar}$	$37.96272 \mathrm{~g} \mathrm{~mol}^{-1}$	0.063%
${ }^{40} \mathrm{Ar}$	$39.9624 \mathrm{~g} \mathrm{~mol}^{-1}$	99.600%

1.33 Calculate the number of atoms in each of the following (i) 52 moles of Ar (ii) 52 u of He (iii) 52 g of He .
1.34 A welding fuel gas contains carbon and hydrogen only. Burning a small sample

* of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g . Calculate (i) empirical formula, (ii) molar mass of the gas, and (iii) molecular formula.
1.35 Calcium carbonate reacts with aqueous HCl to give CaCl_{2} and CO_{2} according to
** the reaction, $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ What mass of CaCO_{3} is required to react completely with 25 mL of 0.75 M HCl ?
1.36 Chlorine is prepared in the laboratory by treating manganese dioxide $\left(\mathrm{MnO}_{2}\right)$ with
* aqueous hydrochloric acid according to the reaction
$4 \mathrm{HCl}(\mathrm{aq})+\mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})$
How many grams of HCl react with 5.0 g of manganese dioxide?

