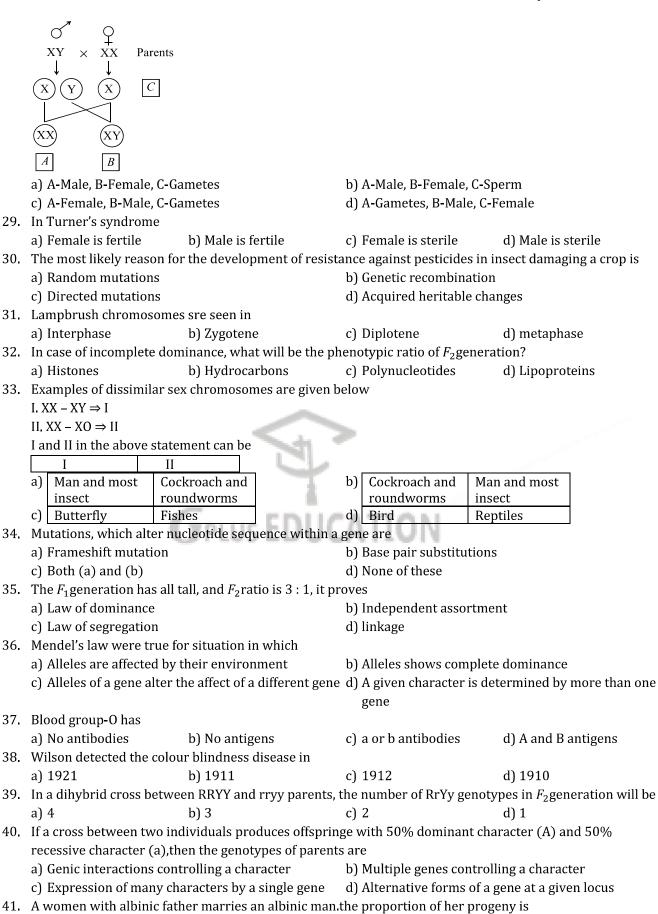
GPLUS EDUCATION

Date :	
Time :	BIOLOGY
Marks:	


PRINCIPLES OF INHERITANCE AND VARIATION

Single Correct Answer Type

1.	A haemophilic woman ma	arries a normal man, then		
	a) All the children will be normalb) All the sons will be haemophilicd) Half girls will be haemophilic		b) All the sons will be haemophilic	
			ophilic	
2.	Disorder inherited as Mendel's law of inheritance called			
	a) Mendelian disorder		b) Chromosomal disorde	r
	c) Maternal inheritance		d) Polygenic inheritance	
3.	The term 'gene' was coine	ed by		
	a) Avery	b) Bateson	c) Johanssen	d) Mendel
4.	The phenotypic ratio in the	he F_2 gereration of dihybri	d cross, is	
	a) 9:3:3:1		b) 1:2:2:4:1:2:1:2	:1
	c) 7:1:1:7		d) 12:8:4	
5.	Chromosome is made up	of		
	a) DNA +pectin	b) RNA +DNA	c) DNA +histone	d) Only histone
6.	Select the incorrect states	mant from the following.		
	a) Linkage is an exception	n to the principle of	b) Galactosemia is an inb	orn error of metabolism
	independent assortme	nt in heredity		
	c) Small population size	result in random genetic	d) Baldness is a sex-limit	ed trait
	drift in a population			
7.	A pure tall and a pure dw	arf plant were crossed to p	oroduced offsprings. Offspr	ings were self crossed, then
	find out the ratio between	n true breeding tall to true	breeding dwarf?	
	a) 1:1	b) 3:1	c) 2:1	d) 1:2:1
8.	Exposure of X-rays enhar	nces the frequency of		
	a) Linkage		b) Crossing over	
	c) Pairing of chromosom	e	d) Segregation	
9.	A self-fertilizing trihybric	_		
	a) 8 different gametes an	d 64 different zygotes	b) 4 different gametes an	d 16 different zygotes
	c) 8 different gametes an	d 16 different zygotes	d) 8 different gametes an	nd 32 different zygotes
10	Genotype is the			
10.	a) Genetic constitution		b) Genetic constitution of	f the nhanotyne
	c) Trait expressed		d) Expressed genes	t the phenotype
11		er A stage of cell divisio		whole set of chromosomes
11.	in an organism calledB		in results in an increase in a	whole set of em omosomes
	a) A-prophase, B-polyplo		b) A-metaphase, B-polyp	loidy
	c) A-anaphase, B-polyplo	-	d) A-telophase, B-polyplo	•
12		out total seeds (plants) ha		nuy
121	a) 12	b) 10	c) 9	d) 11
13.	,	otained from a cross betwe		uj 11
10.	a) RRYY × rryy	b) RRYY × rryy	c) RRYY × Rryy	d) RrYy × rryy
14		rms represent a pair of cor		a, iti i y / i i y y
.	a) Homozygous	b) Heterozygous	c) Allelomorphs	d) Codominant genes
	a, Homozygous	S, Heter of gous	o, inicionioi pilo	a, coaominant genes

15.	Harmful mutation does not get eliminated from the g	ene pool because they are	mainly
	a) Dominant, which have beneficial effect on populat	· ·	
	b) Dominant, which have beneficial effect on populat		
	c) Carried from one generation to another generation		_
	d) They show genetic drift	O	
16.		Choose correct option fo	r A and B
	a) A-common, B-rare	b) A-rare, B-common	
	c) A-impracticle, B-practicle	d) A-practicle, B-impractic	cle
17.	Mendelism was rediscovered by		
	I. Morgan		
	II. De Vries		
	III. Correns		
	IV. Tschermark		
	Choose the correct option		
		c) II, III and IV	d) I, II and III
18.	In gynandromorphs,		
	a) Some cells of body contain XX and some cells with	genotype XY	
	b) All cells have XX genotype		
	c) All cells have XY genotype		
	d) All cells with genotype XXY		
19.	Example of interagenic gene interaction is/are		
	a) Incomplete dominance	b) Codominant	
	c) Multiple alleles	d) All of the above	
20.	If a cross between two individuals produces offspring	ge with 50% dominant cha	racter (A) and 50%
	recessive character (a), then the genotypes of parents	are	
	a) Sex linked genes	b) Pseudoallelic genes	
	c) Intermediate inheritance	d) Dominant and recessive	e genes
21.	Which is correct about traits choosen by Mendel for h	nis experiment on pea plan	t?
	a) Terminal pod was dominant	b) Constricted pod was do	minant
	c) Green coloured pod was dominant	d) Tall plants were recess	ive
22.	Codominance is found in		
	a) Plants b) Animal	c) Both (a) and (b)	d) Prokaryote
23.	During Mendel's investigation, it was first time that	.A andB were applied	l in biology. Here A and B
	refers to		
	a) A-statistical analysis; B-mathematical logic		
	b) A-statistical analysis; B-physical logic		
	c) A-statistical analysis; B-chemistry logic		
	d) A-statistical analysis; B-simple logic		
24.	The chromosomal denotation for heterogametic fema	ale and homogametic male	are
	a) ZW and ZZ b) ZO-ZZ	c) XX-XO	d) Both (a) and (b)
25.	Pure tall plants are crossed with pure dwarf plants. In	n the F_1 -generation, all pla	nts were tall. These tall
	plants of F ₁ -generation were selfed and the ratio of ta	all to dwarf plants obtained	l was 3: 1. This is called
	a) Dominance b) Inheritance	c) Codominance	d) heredity
26.	The best method to determine the homozygosity and	heterozygosity of an indiv	idual is
	a) Self-fertilisation b) Back cross	c) Test cross	d) Inbreeding
27.	A medical technician, while observing a human blood	l smear under the microsco	ppe notes the presence of a
	Barr body close to the nuclear membrane in the WBC		-
	a		
	a) Colourblind b) Haemophilic	c) Normal female	d) Normal male
28.	Find out A , B and C in the diagram given below in		

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 2

b) All normal

a) 2 normal: 1 albinic

	c) All albinic		d) 1 normal : 1 albinic		
42.	When one sex chromos	ome is lacking in female a	nd males are homogametic, ir	n that condition, the sex	
	chromosomal represen	tation is			
	a) ZO-ZZ	b) XY-XX	c) XX-XO	d) ZW-ZZ	
43.	Some individuals with	blood group –A may inher	it the genes for blonde hair, w	while other individuals with	
			is can be best explained by th		
	a) Dominance	O	b) Multiple alleles	•	
	c) Independent assortr	nent	d) Incomplete dominanc	e	
44.	-	es, the sex determination t			
	a) XX and XO chromoso		b) XX and XY chromoson	ies	
	c) ZZ-ZW chromosome		d) ZO-ZZ chromosomes		
45.	•		er nuclei and cells during mit	osis. Similarly, eachB	
	=		ter cell during mitosis. This m	-	
	all the cells.	r passing into each adagn	ter con daring integrit		
	Find out correct option	for A B and C			
	a) A-chromatid, B-allele		h) A-chromatid B-allele	pair, C-genetic composition	
	c) A-organ, B-organ pai		d) A-unlinked gene, B-lin	-	
46.			a) II allillikea gene, B illi	iked gene, a morphology	
10.	a) Centrosome	b) Centromere	c) Chromomere	d) telomere	
47	Mendel was a	b) denti omere	ej dinomomere	uj telomere	
17.	a) Austrian biology tea	cher	b) Austrian monk		
	c) Austrian scientist	chei	d) Austrian mathematici	an	
<i>1</i> .Ω	Who clearly proved and	d define linkage?	d) Austrian mathematics	all	
40.	- - -	b) Castle	c) Bateson	d) Punnett	
40	a) Morgan	race through hereditary		a) rumett	
49.	-		-	d) Euganias	
۲0	a) Euthenics	b) Human heredity	c) Human demography	d) Eugenics	
50.	Test cross involves				
	, ,	a) Crossing between two genotypes with recessive trait			
	b) Crossing between tw				
		rid with a double recessiv	-		
Г1		o genotypes with domina		1 11 - t 41 -	
51.		plant is crossed with a teti	raploid male, the ploidy of en	aosperm cells in the	
	resulting seed is	1-) Dankanla! I.a	3 D'-1-11-	J) material at the	
- 2	a) Tetraploidy	b) Pentaploidy	c) Diploidy	d) Triploidy	
52.	Colour blindness is	1:			
	a) Sex-linked recessive				
	b) Sex-linked dominant				
	c) Autosomal dominan				
- 0	d) Autosomal recessive			11 . 11 1	
53.	A condition, where a ce	rtain gene is present in or	nly a single copy in a diploid c	ell, is called	
	Four different types of gametes produed by the F_1 - b) Homozygous condition of the F_1 -dihybrid				
	dihybrid				
	c) Four different types	of F_1 -dihybrids	d) P_1 -parent	f gametes produed by the	
54.	If the blood group of a d	child is A and of mother is	B, then the genotype of moth	er and father mav he	
	a) $BB \times AA$	b) AB × AB	c) B0 × 00	d) B0 × A0	
55.		· ,	. ,	,	
	symbol in pedigree an	nalysis represents			
	a) Still birth	b) Still death	c) Still carrier	d) Still mating	

56.	Which amino acids are present in histones?		
	a) Lysine and histidine	b) Valine and histidine	
	c) Arginine and lysine	d) Arginine and histidine	
57.	Monosomic trisomy are represented as	, ,	
	a) $2n-1+1$ b) $2n-1-1$	c) $2n-1$	d) $2n + 1 + 1$
58.	Which is a sex-influenced disease?		
	a) Baldness in male	b) Haemophilia	
	c) Xeroderma pigmentosa	d) Down's syndrome	
59.	Thalassaemia is	,	
	a) Autosomal recessive disease	b) Autosomal dominant d	isease
	c) Sex-linked dominant disease	d) Sex-linked recessive di	
60.	Mutation is phenomena which results in alternation	of	
	a) Sequence b) Carbohydrates	c) Proteins	d) Fat
61.	A man with normal vision whose father was colourb	lind marries with women v	vhose father was also
	colourblind. Suppose their first child is daughter the	n what are the chances of t	his child to be colourblind?
	a) 100% b) 25%	c) 50%	d) 0%
62.	Gamete mother cells of the chromosome 44 + XY suf	fers from non-disjunction	at first meiotic division.
	Which of the following set of gametes would result?	•	
	a) 22 + XX, 22 + XY, and 22, 22	b) $22 + XY$, $22 + XY$, and 2	22, 22
	c) 22 + X, 22 + Y, and 22 + Y, 22	d) $22 + X$, $22 + XY$, and 22	
63.	Law of Mendel, which is not completely applicable is	?	
	a) Codominance	b) Law of segregation	
	c) Law of independent assortment	d) Law of dominance	
64.	Low pitched voice, beared and moustaches, belong to	o the	
	a) Sex limited traits b) Sex linked trait	c) Nullisomic traits	d) Sex influenced traits
65.	Multiple allele can be manifested only when there is	the study of	
	a) Individual organism b) Genus	c) Population	d) Phylum
66.	Nicotiana sylvestris flowers only during long days	and N. tabacum flowers or	nly during short days, if
	raised in the laboratory under different photoperiod	s, they can be induced to fl	ower at the same time and
	can be cross fertilized to produce self-fertile offsprin	g. What is the best reason t	for considering <i>N. sylvestris</i>
	and <i>N. tobaccum</i> to be separate species?		
	a) They are physiologically distinct	b) They are morphological	ally distinct
	c) They cannot interbreed in nature	d) They are reproductivel	y distinct
67.	The following diagram shows two types of chromoso	omal mutations	
	Gene 		
	Part of a E F G H I J K L M N O chromosome		
	A B		
	EFGHIJKLMJKLMNO EFGHINO		
	Give the name or type of mutation in respect to A and		
	a) A-Duplication, B-Substitution	b) A-Duplication, B-Deleti	
	c) A-Inversion, B-Deletion	d) A-Inversion, B-Substitu	
68.	How many different kinds of gametes will be produc		
	a) Three b) Four	c) Nine	d) Two
69.	Down's syndrome and Turner's syndrome occur in h	_	
	a) Monosomic and nullisomic conditions respectively	yb) Monosomic and trisom	ic conditions respectively
	c) Trisomic and monosomic conditions respectively	d) Trisomic and tetrasom	ic conditions respectively
70.	What are all the chances of colourblind daughters of	a normal man marrying no	ormal women whose father

	was colourblind? a) All sons are normal and all daughters are	h) Roth the sons and day	ighters are nhenotypically
	colourblind	b) Both the sons and daughters are phenotypically normal	
	c) All the sons are colourblind and all daughters are normal		· ·
71			
/1.	In males, pattern baldness is related to both autoso	=	
72	a) Oestrogen b) Growth hormone	c) Testosterone	d) Inhibits
12.	Which of these is not a Mendelian disorder?	-) C-ll-ll	J) Tr
72	a) Cystic fibrosis b) Sickle-cell anaemia	c) Colourblindness	d) Turner's syndrome
/3.	Which of the following is not true of haemophilia?	1) 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	a) Royal disease	b) Bleeder's disease	
	c) X-linked disorder	d) Y-linked disorder	_
74.	If heterozygous dominant (tT) crossed with homoz	ygous dwarf plant, then the	e percentage of progeny
	having dwarf character is		
	a) 60% b) 40%	c) 50%	d) 70%
75.	Mutations are generally induced by means of		
	a) $\alpha - rays$ b) $\beta - rays$	c) $\gamma - rays$	d) UV radiations
76.	Two crosses between the same pair of genotypes or	r phenotypes, in which the	sources of the gametes are
	reversed in one cross, is known as		
	a) Dihybrid cross b) Reverse cross	c) Test cross	d) Reciprocal cross
77.	A hereditary, disease, which is never passed on from	n father to son is	
	a) X-chromosomal linked disease	b) Autosomal linked dise	ease
	c) Y-chromosomal linked disease	d) None of the above	
78.	Bateson used the term coupling and repulsion for li	nkage and crossing over. C	hoice the correct coupling
	and repulsion combination		
	Coupling Repulsion		
	a) AABB, aabb AAbb, aaBB	b) AABB, aabb AABB,	, AAbb
	c) AAbb, aaBB AaBb, aabb	d) aaBB, aabb AABB,	, aabb
79.	In blood group typing in human, if an allele contribu	uted by one parent is I ^A and	l an allele contributed by the
	other parent is <i>i</i> , the resulting blood group of the of	fspring will be	•
	a) A b) B	c) AB	d) 0
80.	A person having 45 chromosomes and Y-chromoso	me absent. Is suffering fron	n
	a) Down's syndrome	b) Klinefelter's syndrom	
	c) Turner's syndrome	d) gynandromorph	
81.	Linkage and crossing over are	, 00	
	a) Same phenomena	b) Different phenomena	
	c) Opposite phenomena	d) Identical phenomena	
82.		al inches promotion	
02.	a) A segment of DNA, capable of crossing over	b) Functional unit of DN	A
	c) A segment of RNA	d) A segment of chromos	
83	Females in haplodiploidy sex determination are	a) 11 beginnent of our onless	
00.	a) N b) $2n$	a) ¹ n	d) 3 <i>n</i>
	•	c) $\frac{1}{2}$ n	-
84.		· -	-
	streptomycin resistant mutants and prove that such	n mutations do not originat	e as adaptation. These
	imprints need to be used		
	a) Only on plates with streptomycin	b) On plates with minim	
	c) Only on plates without streptomycin	d) On plates with and wi	
85.	Phenylketonuria, Huntington's disease and sickle coassociated with	ell anaemia are caused resp	ectively due to disorders

GPLUS EDUCATION

	a) Chromosome-7, chromosome-11 and chromosom		
	b) Chromosome-11, Chromosome-4 chromosome-12		
	c) Chromosome-7, chromosome-12 and chromosom		
	d) Chromosome-12, chromosome-4 and chromosom	e - 11	
86.	The arrangement of genes on chromosome is		
	a) Linear b) Oviod	c) Diffused	d) Spiral
87.	When two genetic loci produce identical phenotypes	in cis and trans]	position, they are considered to be
	a) Pseudoalleles	b) Multiple allele	es
	c) The part of same gene	d) Different gene	es
88.	Which of the following matches correctly?		
	a) Factor –II - Thromboplastin	b) Factor –III	- Prothrombin
	c) Factor –VIII - Antihaemophilic globulin	d) Factor –XII	- Haemophilic
89.	The longest chromosomes is seen in		
	a) <i>Allium</i> b) <i>Lilium</i>	c) <i>Trillium</i>	d) <i>Zea mays</i>
90.	Mendel observed that generation shows always p	•	
	a) F ₄ b) F ₂	c) F ₁	d) F ₀
91.	A genes are those which occurs on the same chron		
	on different chromosome.		. 8 F
	Choose correct choice for A and B		
	a) A-linked; B-unlinked gene	b) A-unlinked; B	-linked
	c) A-identical; B-non-identical	d) A-non-identic	
92.	Allelic sequence variations where more than one var	-	
,	frequency greater than 0.01 is referred to as	iant (ancie) at a n	seas in a naman population with a
	a) Incomplete dominance	b) Multiple alleli	sm
	c) SNP	d) DNA polymor	
93.	The possibility of a female becoming a haemophilia is		-
73.		SA Tare becau	se mother of such a female has to be
	at leastB and the father should beC	'ATION	
	Choose the correct option for A, B and C a) A-extremely, B-carrier, C-haemophilic	WITOIL	
	-		
	b) A-extremely, B-carrier, C-carrier		
	c) A-extremely, B-haemophilic, C-carrier		
0.4	d) A-extremely, B-haemophilic, C-haemophilic		
94.	If the foetus is Rh ⁺ and mother is Rh ⁻ , then		
	a) Foetus will transmit antigen to mother blood		
	b) Foetus will transmit antibody to mother blood		
	c) Foetus is attacked by antibodies to mother blood		
	d) Foetus is attacked by antigen to mother blood		
95.	The most popularly known blood grouping is the ABO	0 grouping. It is n	amed ABO and not ABC, because 'O'
	in it refers to having		
	a) Other antigens besides A and B on RBCs	-	nce of this type on the genes for A
		and B types	
	One antibody only—either anti-a or anti-b on the	d) No antigens A	and B on RBCs
	RBUS		
96.	Alleles are		
	a) Alternate forms of a gene	b) Homologous o	
	c) Pair of sex chromosome	d) None of the al	
97.	Telomere repetitive DNA sequences control the func		
	a) Act as replicons	•	scription initiator
	c) Help chromosome pairing	d) Prevent chron	nosome loss

98.	Genotypic and phenotyp	ic ratios remains the same	in	
	a) Sex-linked genes		b) Pseudoallelic genes	
	c) Intermediate inheritance		d) Dominance and recess	ive genes
99.	Mendelian disorder may	be of		
	a) Recessive	b) Dominant	c) Both (a) and (b)	d) Can't be determined
100	. Sickle –cell anaemia has	not been eliminated from t	he African population beca	use it
	a) Is controlled by recess		b) Is not a fatal disease	
	c) Provides immunity ag	ainst malaria	d) Is controlled by domin	ant genes
101	. A condition characterize	d by not having an exact nu	mber of chromosomes in a	multiple of haploid set is
	called			
	a) Polyploidy	b) Synploidy	c) aneuploidy	d) None of these
102	. Choose correct option for	rA,B,C and D		
	$TT \times Tt$			
	т∧t			
	$T \nearrow B \searrow t$			
	$\langle A \times C \rangle$			
	$\searrow D \searrow$			
	a) A-tt, B-TT, C-TT, D-TT		ኤ) ለ ጥ⊧	
	c) A-TT, B-TT, C-Tt, D-TT	1	b) A-Tt, B-Tt, C-Tt, D-Tt d) A-Tt, B-Tt, C-Tt, D-TT	
102	-		hen and a white feathered	goals blue feathered fourla
103				
		per of black and white fowls	oreeding, in F ₂ - generation,	there are 20 blue lowis.
		The second secon		d) Black 10, white 20
104	a) Black 20, white 10 . Chromosomes are made	b) Black 20, white 20	c) Black 10, white 10	u) black 10, willte 20
104	a) DNA are protein	b) RNA and DNA	c) DNA and histone	d) Only histones
105	-	square, blackened and hor	-	d) Only histories
103	a) Female, healthy indivi		b) Female, affected indivi	dual naranta
	c) Male, affected individu		d) Male, affected individu	=
106	. Following pedigree chart	•	uj Maie, anecieu murviu	iai, progerry
100		. 5110W5		
	O T O O O			
	\bigcirc \square \square			
	a) Character is carried by	y Y-chromosome	b) Character is sex-linked	l recessive
	c) Character is sex-linked	d dominant	d) Character is recessive	autosomal
107	. Mr. Sidd is suffering fron	n hypertrichosis and pheny	lketonuria. His father is het	erozygous for
	phenylketonuria. The pro	obability of Sidd's sperm ha	aving one recessive autoson	nal allele and holandric
	gene is			
	a) $\frac{1}{2}$	b) $\frac{1}{8}$	c) $\frac{1}{10}$	d) $\frac{1}{4}$
	L	-	10	4
108	. F ₃ -generation is obtained			
	a) Selfing of F ₁	b) Selfing of F ₂	c) Crossing of F_1 and F_2	
109			interaction rato of 9:7 is o	bserved?
	a) Fruit shape in Shephe	=	b) Coat colour in mouse	
	c) Feather colour in fowl		d) Flower colour in pea	
110		pea plant is the example of		
	a) Single gene produce m			
	h) Multiple genes produc	e more than one effects		

c) Two genes produce more than one effectsd) Multiple genes produce less than one effects		
111. In <i>Drosophila</i> , the sex is determined by		
a) The ratio of pairs of X-chromosomes to the pairs of	fautocomos	
b) Whether the egg is fertilized or develops partheno		
c) The ratio of number of X-chromosomes to the set		
d) X and Y-chromosomes	of autosomies	
	ration indicate the phonom	onen of
112. The $1:2:1$ ratio with the pink flower in the F_2 -gene a) Dominance	b) Codominance	lenon or
	,	
c) Incomplete dominance	d) Segregation	
113. Sexual reproducation leads to	h) Dalymlaidy	
a) Genetic recombination	b) Polyploidy	
c) Aneuploidy	d) Euploidy	C -1:11
114. Husband has blood group-A and wife has blood grou	_	_
a) A b) B	c) AB	d) A, B, AB and O
115. Study the following figure and find out the most probability	bable position at which the	crossing over takes place
WXYZ		
WXYZ		
W X Y Z		
w x y z		
a) w and W b) X and y	c) y and Z	d) w and z
116. Given diagram shows certain type of traits in human.	Which one of the followin	g option could be an
example of this pattern?		
Female Male mother father GPLUS EDUC	ATION	
mother father UPLUS EDUL	WITON	
Daughter Son		
a) Haemophilia b) Anaemia	c) Phenylketonuria	d) Thalassaemia
117. In case of incomplete dominance, what will be the ph		
a) 3:1 b) 1:2:1	c) 1:1:1:1	d) 2:2
118. Haemophilia, a X-linked recessive disease is caused of		,
a) Blood plasma and vitamin–K	b) Blood platelets and hae	emoglobin
c) Lack of clotting material and vitamin-K	d) All of the above	8
119. All of this obeys Mendel's laws except	aj im oi uie usove	
a) Codominance	b) Independent assortmen	nt
c) Dominance	d) Purity of gametes	
120. in β-thalassaemia, the affected chromosome is	d) I diffey of gametes	
a) 16th b) 14th	c) 13th	d) 19th
121. In pea plants, yellow seeds are dominant to green. If		
green seeded plant, what ratio of yellow and green se	· - ·	-
a) 50:50 b) 9:1	c) 1:3	
	CJ I. J	d) 3:1
122. Who was fly men of genetics? a) Sutton b) Pasteur	c) Dohort Hooks	d) TH Morgan
123. Mendel's contribution for genetic inheritance was	c) Robert Hooke	d) TH Morgan
123. Mender 3 conditional for generic lilleritative was		

	a) The idea that genes	are found on chromosome	es	
	b) Providing a mechan	ism that explains patterns	of inheritance	
	c) Describing how gen	es are influenced by the e	nvironment	
	d) Determining that th	e information contained in	n DNA codes for proteins	
124.	The genotypic ratio of	a monohybrid cross in F ₂ -	generation is	
	a) 3:1	b) 1:2:1	c) 2:1:1	d) 9:3:3:1
125.	•	non in men than in womai	n. It could be explained on the	basis that
		re located on X-chromoso	=	
	=	located on Y-chromosome		
		re autosomal but influence		
	d) None of the above		, ,	
126.	,	ntrasting characters in pea	pod were chosen by Mendel?	
	a) 3	b) 5	c) 7	d) 9
127.	A mutagen pollutant is		-, ,	, -
	a) Organophosphates		b) Resins	
	c) Chlorinated hydroca	arhons	d) Nitrogen oxides	
128	•		whether dominant or recessive	ve are transmitted from
1201	generation to generation		Whether dominant of recessive	ve are cransmitted from
	a) Changed	b) Unaltered form	c) Altered form	d) Disintegrated
129.	Pedigree analysis is ve	ry important in human be	ings because	
		nselers to avoid disorders	_	
	b) It shows origin of tr			
	c) It shows the flow of	traits in family		
	d) All of the above	1		
130.	Genes when present in	homozygous condition re	esults in non – viable progeny,	the factor responsible for
	such conditions are			
	a) Polygenes	b) Linked genes	c) Lethal genes	d) Epistatic genes
131.		used due to the absence of	T AND AN OWNER AND IN THE	, .
	a) One X-chromosome		b) One Y-chromosome	
	c) One X-and Y-chromo	osome	d) Two X-chromosome	
132.	-	cated on X-chromosome in	_	
	a) Lethal	b) Sub-lethal	c) Expressed in males	d) Expressed in females
133.	Strength of the linkage	between the two genes is	· ·	
	a) Proportionate to the	e distance between them		
	b) Inversely proportion	nate to the distance betwe	en them	
	c) Depend on the chro			
	d) Depend upon the size	ze of chromosomes		
134.	Fruitfly is excellent mo	odel for genetics because o	f	
	I. Small life cycle (two	week)		
	II. Can be feed on simp	le synthesis medium		
		uce large number of proge	eny	
	IV. Clear differentiation		• • • • • • • • • • • • • • • • • • • •	
	-	tion can be seen with low	power microscopes	
	Choose the correct opt a) I, II and III	b) III, IV and V	c) I, IV and V	d) All of these
135	•	•	ant over white long hair (bbss)	•
100,			SS, BbSS, BBSs and BbSs are in	
	a) $9:3:3:1$	b) 4 : 2 : 1 : 2	c) 1:2:1:2	d) 1 : 2 : 2 : 4
	4, 7, 0, 0, 1	U) I 1 4 1 I 1 4	C) 1.2.1.2	w, 1 · 4 · 4 · 1
136	When both parents are	e of blood type AR they ca	n have children with	
136.	When both parents are a) A, B, AB and O blood	e of blood type AB, they ca	n have children with b) A, B, and AB blood typ	es

c) A and B blood types		d) A, B and O blood types		
137. Test cross is	137. Test cross is			
	ses with dominant F ₂ -plar			
	sses with dominant F ₃ -plar			
	sses with recessive parent			
	sses with heterozygous par	-		
138. The phenomenon of a sing	gle gene regulating several			
a) Multiple allelism		b) epistasis		
c) Incomplete dominance		d) Pleiotropism	1 55 0/ C	
139. If two pea plants having re		_		
	-	5% of the flowers are red a	nd 25% are white. The	
- · ·	the parents having red colo		. th h	
a) Both homozygous		b) One homozygous and o	other neterozygous	
c) Both heterozygous 140. A woman has a haemophil	lia aan and three narmal al	d) Both hemizygous	hat of han bughand with	
respect to this gene would		maren. Her genotype and t	That of her husband with	
a) XX and X ^h Y	b) XhXh and XhY	c) X^hX^h and XY	d) X ^h X and XY	
141. The proportion of plants t			experiment	
a) $\frac{1}{4}$ th and $\frac{3}{4}$ th	b) $\frac{3}{4}$ th and $\frac{1}{4}$ th	c) $\frac{2}{3}$ rd and $\frac{1}{3}$ rd	d) $\frac{1}{3}$ rd and $\frac{4}{3}$ rd	
142. Night blindness is				
a) Genetic disease		b) Nutritional deficiency	disease	
c) Generally found in male	e	d) Generally found in fem	ale	
143. Two genes R and Y are loc	ated very close on the chro	omosomal linkage map of n	naize plant. When RRYY	
and rryy genotypes are hy	bridized, then F_2 -segregat	ion wii show		
a) 1:2:1	b) 3:1	c) 9:3:3:1	d) 1:1:1	
144. Who argued that pairing a		omes would lead to the seg	regation of a pair of factor	
they carried?	JPLUS EDUL	ATTON .		
a) Sutton	b) Boveri	c) Both (a) and (b)	d) Morgan	
145. Sex chromosomes of male	are			
a) Homozygous	b) Heterozygous	c) Hemizygous	d) autosomes	
146. Trisomy of which chromos				
a) 15 th	b) 21st	c) 20 th	d) 19 th	
147. Which of the following syr				
a) ZZ-ZW	b) XX-XY	c) XO-XX	d) ZZ-WW	
148. Sudden and heritable char	-			
a) Mutation	b) Heterosis	c) Inbreeding	d) selection	
149. Heterozygous purple flow	er is crossed with recessiv		y has the ratio	
a) All purple		b) All white		
c) 50% purple, 50% white		d) 75% purple, 25% whit		
150. The Mendel crossed true b		_		
		cessive character was appe		
a) F ₁	b) F ₂	c) F ₃	d) F_2 and F_3	
151. Night blindness can be conB disease.	rrected by giving vitamin-	A but colour billianess	can't be cured because it is	
Choose the correct option	for A and B			
a) A-A; B-genetic	b) A-B; B-autosomal	c) A-C; B-non-genetic	d) A-D; B-genetic	
152. Heredity is				
a) Transmission of charac	eters	b) Mixing of characters		

c) Blending of inheritance	d) Deleting of characters	
a) Genetic tests to detect the presence of the allele re		s disease do not exist at this
time		
b) The onset of Huntington's disease is typically betw	ween birth and three years	of age
c) There is currently no effective treatment of Hunti	ngton's disease	
d) Huntington's disease is caused by the expression	of a recessive allele	
154. Centromere is required for		
a) Transcription	b) Crossing over	
c) Cytoplasmic cleavage	d) Movement of chromoso	omes towards poles
155. Which of the following condition in humans is correct abnormality/linkage?	ctly matched with its chron	nosomal
a) Klinefelter's syndrome -44 autosomes + XXY	b) Colour blindness	-Y- linked
c) Erythroblastosis foetalis -X-linked	d) Down' s syndrome	- 44 autosomes+ XO
156. Rrrr progeny: Red (dominant) flowered heterozygo	us crossed with white flow	er
a) $350 \rightarrow \text{red} : 350 \rightarrow \text{white}$	b) $^{450} \rightarrow \text{red} : 250 \rightarrow \text{wh}$	ite
c) $380 \rightarrow \text{red} : 250 \rightarrow \text{white}$	d) None of these	
157. A hereditary disease which is never passed on form	father to son is	
a) X- chromosomal linked disease	b) Autosomal linked disea	ase
c) Y- chromosomal linked disease	d) None of the above	
158. A man with blood group-B marries a woman with blood	ood-A and their first child i	s having blood group-B.
What is the genotype of child?		
a) I ^a I ^b b) ^{Ia} I ^o	c) I _p I _o	d) IbIb
159. Linked gene are present on		
a) Same chromosome	b) Different chromosome	
c) Heterologous chromosome	d) Paired chromosome	
160. The structure that become double in synthesis phase	e of cell division is/are	
a) RNA b) Centriole	c) DNA	d) None of these
161. Genetics is the branch of biology which deals with		
a) Variation b) Inheritance	c) Both (a) and (b)	d) Study of characters
162. Giant chromosomes are found inside		
a) nucleus of man	b) oocytes of frog	
c) salivary glands of silk moth	d) salivary glands of <i>Dros</i>	
163. Who is known as father of physiological genetics or f	_	
a) Slatyer b) Charles Elton	c) Taylor	d) Archibald Garrod
164. The graphical representation to calculate the probab cross, is called	oility of all possible genoty	pes of offspring in a genetic
a) Pedigree analysis b) Karyotype	c) Punnett square	d) Chromosome map
165. Rh factor can produce disease		
a) AIDS	b) Turner's syndrome	
c) Erythroblastosis foetalis	d) Sickle-cell anaemia	
166. To determine heterozygousity of a cross, one has to	perform	
a) Back cross b) Reciproacal cross	c) Test cross	d) Any of these
167. Which of the following type of mutation involves the		a chromosome?
a) Deletion	b) Duplication	
c) Inversion	d) Reciprocal translocation	on
168. The chromosomal number in the meiocytes of house	efly is	

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 12

a) 8	b) 12	c) 21	d) 23
169. The alternate forms of	a gene is called		
a) Recessive character		b) Dominant character	
c) Alleles		d) Alternative gene	
170. Haemophilia is related	to		
a) Albinism	b) Sickle-cell anaemia	c) Colour blindness	d) thalassemia
171. Identify a Mendelian di	sorder from the following.		
a) Down's syndrome		b) Turner's syndrome	
c) Phenylketonuria		d) Klinefelter's syndrom	
172. When a tall plant with	, ,	-	, , -
-	all plants with round seeds.	What would be the propor	tion of dwarf plant with
wrinkled seeds in F_1 -ge		_	4
a) $\frac{1}{4}$	b) $\frac{1}{16}$	c) 0	d) $\frac{1}{2}$
4			2
173. The term 'Genetics' wa		a) Motgan	d) Iohanggan
a) Mendel 174. Sex chromosomes are a	b) Bateson	c) Motgan	d) Johanssen
		a) Canama	d) karryotyma
a) Autosomes	b) Allosomes	c) Genome	d) karyotype
175. Mendel obtained recess		b) A-self-pollinating; B—	
a) A-self-pollinating; B-c) A-cross-pollinating;		d) A-cross-pollinating; B	_
176. In a family father had a	_		-
	nd daughters, through daugh		
	igree chart for the condition		iliai persons.
choose the correct ped	igree chart for the condition		
OTU	_		
a) 🗁 🗸 🗀		_ DD DT DT	, <u> </u>
	Some EDITA		
	Q LEGS ED O		0
0			9.701
		$O_{T}\Box$	
		1) I	
c) OT			
			-
177. If genes of an allelic pai			
a) Homozygous	b) Heterozygous	c) Diallelic	d) Polyallelic
178. Which type of pollination		-	
a) Artificial	b) Cross pollination	c) Natural	d) Both (a) and (b)
179. Select the correct state	_		
	on the same chromosome		e same chromosome show
show higher recomb		very few recombination	
•	on the same chromosome		on the same chromosome
show similar recomb	pinations as the tightly linked	d show very few recom	binations
ones			
180. Grain colour in wheat i			
		generation. What proport	ion of the progeny is likely to
resemble either parent			D.M. C.A.
a) Half	b) Less than 5 per cent	c) One –third	d) None of these

181. Chromosomal abbreviation commonly found in the

a) Cancer cells	b) Normal cells	c) Healthy cells	d) Autosomal cells
182. In short horned cattle, ger			between red (RR) and
white (rr) produced (Rr)	_		
a) Incomplete dominance		b) Codominance	
c) Complementary genes		d) Epistasis	
183. Female is haemophilic def	initely if		
a) Mother is carrier		b) Father is carrier	
c) Father is affected		d) Both mother and fathe	r affected
184. Polyploidy leads to rapid	formation of new species b	ecause of	
a) Isolation		b) Development of multip	ole sets of chromosomes
c) Mutation		d) Genetic recombination	
185. Law of segregation is also	called law of		
a) Probability		b) Purity of gametes	
c) Independence of gamet	ces	d) Punnett hypothesis	
186. Test cross is a cross between	een		
a) Hybrid × Dominant pai	rent	b) Hybrid × Recessive pa	rent
c) Hybrid × Hybrid paren	t	d) Two distantly related s	species
187. XX and XY chromosomal s	ex determination, females	are	
a) Homogametic		b) Heterogametic	
c) Can not determine		d) All of the above	
188. Heterogametic male cond	ition does not occur in		
a) Birds	b) Humans	c) <i>Drosophila</i>	d) Honey bee
189. In a typical Mendelian cro	ss which is a dihybrid cros	s, one parent is homozygou	us for both dominant traits
		e traits. In the F_2 generation	
	The same of the sa	otypic ratio of parental con	
recombinations, is			
a) 10:6	b) 12:4	c) 9:7	d) 15:1
190. The genotype of a plant sh			
a) Test cross	b) Dihybrid cross	c) Pedigree analysis	d) Back cross
191. If a man who is colourblin			•
sons have colour blindnes		1	
	b) 50:50	c) 0%	d) 75 : 25
192. When a tall pea plant (TT)	•	*	
a) All tall plants	,	b) All dwarf plants	,
c) Both tall and dwarf pla	nts in 1 : 1 ratio	d) Both tall and dwarf pla	ints in 3 : 1 ratio
193. Broadly the genetic disorc		-	
	ainly determined byC		
Choose the correct option			
a) A-two, B-chromosomal		b) A-two, B-chromosomal	l C-inversion
c) A-two, B-chromosomal		d) A-three, B-chromosom	
194A individual showB.		•	•
transmission of mutant ge		ine of the disease as th	iere is 50% probability of
Choose the correct option			
a) A-homozygous, B-affec		b) A-homozygous, B-unaf	facted C carrier
c) A-heterozygous, B-unat		d) A-heterozygous, B-affe	
195. If male is TT and female is	= = = = = = = = = = = = = = = = = = = =		
a) T and T gametes	b) tt and TT gametes	c) TT and tt gametes	d) T and t gametes
196. Number of linkage group		a) 7	4) O
a) 2	b) 5	c) 7	d) 9

197	97. In Mendel's experiments with garden pea, round seed shape (RR) was dominant over wrinkled seeds (rr), yellow cotyledon (YY) was dominant over green cotyledon (yy). What are the expected phenotypes in the F_2 -generation of the cross RRYY × rryy?				
	a) Only round seeds with green cotyc) Only wrinkled seeds with green of	rledons	b) Only wrinkled seedsd) Round seeds with yel seeds with yellow cot	low cotyledons and wrinkled	
198	BB = for black colour alleles				
	bb = for brown colour alleles				
	Offspring of a cross between a black	mouse and brow	n mouse allowed to inter	breed than find out the	
	percentage of black coat in them				
	a) 75%				
	b) 50%				
	c) Cross is not possible because blac	ck and brown mo	use are different species		
	d) 100%				
199	. Given pedigree chart indicates				
	a) Autosomal recessive trait		b) Y-linkage trait		
	c) Autosomal dominant trait		d) Sex linkage recessive	trait	
200		ın danga ağ nalımı	_		
200	The mutant haemoglobin molecule u				
	change in the shape of RBC from bic	The same of the sa	= =	-	
201		blindness	c) Phenylketonuria	d) B-thalassaemia	
201	XO type of sex determination is seen		a) Duna au leila	4) D:1-	
202	a) Man b) Grassh		c) Drosophila	d) Birds	
202.	TtRr represents (heterozygous tall, l		ik). Il this plant is sell cro	ssed then	
	(T-dominant, t-recessive, R-dominant	nt, r-recessive)			
	I. 25% plant have red flower				
	II. 25% plant have white flower				
	III. 50% plant have pink flower				
	IV. 50% plant are tall				
	Choose the correct option	1 ***)	N	
	a) I and II b) I, II and	d III	c) II, III and IV	d) I, II, III and IV	
203.	Chimera is produced due to				
	a) Somatic mutations		b) Reverse mutations		
	c) Lethal mutations	_	d) Pleiotropic mutations		
204	. How many pairs of true breeding va	rieties were sele			
	a) 12 b) 13		c) 7	d) 15	
205	. Syndrome stands for				
	a) A group of symptoms		b) Viral disease		
	c) Diseased condition		d) Dwarf organism		
206	Parents with blood group-A and AB	will not produce	offspring with blood gro	ap	
	a) A b) AB		c) B	d) 0	
207	. The genetic deficiency of ADH-recep	otor leads to			
	a) Diabetes mellitus		b) Glycosuria		
	c) Diabetes insipidus		d) Nephrogenic diabetes		
200	Which of the following observation is	mada Mandal in 1	afutation of the blanding	theory of inharitance?	

	a) Red plant crossed with	white-the resulting proger	ny was pink	
	b) Features of offspring ar	e not intermediate		
	c) Gametes carrying differ	ent type of alleles could no	ot fuse successfully	
	d) After meiosis, two copie	es of given gene end up in t	the same gamete	
209.	Mutations are generally			
	a) Recessive	b) Polymorphic	c) Lethal	d) dominant
210.	The 'Cri-du-chat' syndrom	e is caused by the change i	n chromosome structure in	nvolving
	a) Deletion	b) Duplication	c) Inversion	d) translocation
211.	Pedigree analysis indicate	d that Mendel's principal a	re also applicable toA ş	genetics with some
	modifications find out like	B inheritance, sex link	ed inheritance and others.	
	Choose the correct option	for A and B		
	a) A-animal; B-quantitativ		b) A-human; B-qualitative)
	c) A-human; B-quantitativ		d) A-animal; B-qualitative	
212.	Which one of the following		•	
	a) Green pod colour	b) Round seed colour	c) Axial flower position	d) Green seed colour
213.	Genes for cytoplasmic mal	_	•	,
	a) Mitochondrial genome	7 1 0	b) Cytosol	
	c) Chloroplast genome		d) Nuclear genome	
214.	A distinct mechanism that	usually involves a short se	, ,	kable capacity to move
	from one location in a chro		=	,,
	a) DNA replication	b) DNA hybridization	c) DNA recombination	d) DNA transposition
215.	When F ₁ -generation proge			a) Division and position
	a) Condominance	ony resembles both the pu	b) Incomplete dominance	
	c) Both (a) and (b)		d) Complete dominance	
216	The individual from which	n a nedigree analysis initiat		
210	a) Probend	b) Propositus	c) Both (a) and (b)	d) Origin
217	Plant which used by Hugo			u) origin
217	a) Oenothera lamarckiar		b) Solanum tuberosum	
	c) Ficus elastica	ALTO2 FD O C	d) None of the above	
218	A person is suffering from	disease nhenvlketonuria		ssive disease Which of
210.	these is lacking in the pers		willeli is all autosoiliai rece	ssive disease, willen of
	a) Homogentisic acid	5011.	b) Phenylalanine hydroxy	daça
	c) Caeruloplasmin		d) Cystine	iasc
210	. Haemophilia in man is due	n to	u) Gystine	
217	a) Sex-linked inheritance	- 10	b) Sex-limited inheritance	.
	c) Sex-influenced inherita	nco	d) Primary non-disjunction	
220	When a dihybrid cross is f		• •	
220.		it into a Fuimett square wi	ui 16 boxes, tile maximum	number of unferent
	phenotypes available, are	h) 4	a) 2	d) 16
221	a) 8 2 <i>n</i> -2 is known as	b) 4	c) 2	d) 16
221.	a) Monosomic	h) Tricomia	a) Nulliaamu	d) Dolumloidu
222	,	b) Trisomic	c) Nullisomy	d) Polyploidy
<i>LLL</i> .	A man and a woman, who		-	
	•	•	sons suffer from the given d	
	_	nich of the following mode	of inheritance do you sugg	est for this disease?
	a) Autosomal dominant		b) Sex -linked dominant	
222	c) Sex -limited recessive	J	d) Sex –linked recessive	
<i>ZZ</i> 3.	Colourblindness is caused		b) Danis (C. 1. 1.	
	a) Recessive female chron		b) Dominant female chron	nosome
	c) Dominant male chromo	osome	d) linkage	

- 224. Which principle/law has been called the 2nd law of inheritance?
 - a) Law of independent assortment
- b) Law of segregation

c) Law of dominance

- d) Law of paired factor
- 225. Mendel's experiment were based on hybridization between two plants differing in
 - a) A pair of contrasting character
 - b) Three pairs of contrasting character
 - c) Many pairs of contrasting character
 - d) None of the above
- 226. Alleles can be similar as in the case of ...A... like ...B... or can be dissimilar as in the case of ...C... like ...D...

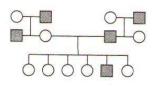
Choose the correct option for A,B,C and D

- a) A-heterozygous, B-T T or T t, C-homozygous, D-T T
- b) A-homozygous, B-T T or t t, C-heterozygous, D-T t
- c) A- homozygous, B-T t, C- heterozygous, D-T T
- d) A- homozygous, B-T t, C- heterozygous, D-t t
- 227. The Barr body is observed in
 - a) Basophils of male

b) Neutrophils of female

c) Basophils of female

- d) Eosinophils
- 228. The phenotypic ratio of a monohybrid cross in F₂-generation is
 - a) 3:1


- b) 1:2:1
- c) 2:1:1
- d) 9:3:3:1

- 229. Total number of wrinkled seed in previous question
 - a) 4

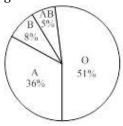
b) 3

c) 2

- d) 1
- 230. This pedigree is of a rare trait, in which children have extra fingers and toes. Which one of the following patterns of inheritance is consistent with this pedigree?

a) Autosomal recessive

b) Autosomal dominant


c) Y-linkage

- d) Sex -linked recessive
- 231. If a colourblind woman marries a normal visioned man, their sons will be
 - a) All normal visioned
 - b) One half colourblind and one half normal
 - c) Three-fourth colourblind and one-fourth normal
 - d) All colourblind
- 232. Barr body is produced due to partial inactivation of one X-chromosome in female. This is called
 - a) Dosage compensation

b) Facultative heterochromatisation

c) Both (a) and (b)

- d) None of the above
- 233. Percentage of blood groups in India is given in the diagram below. Choose the correct option from the given statements

- a) Only 10% of individuals are heterozygous for blood group alleles
- b) Group A is the most common as it is the homozygous recessive group
- c) The alleles for blood group A and O are dominant to the allele for blood group O

d) Any individual, selected at random from the sample population, has a 1 in 20 chance of being blood group AB

234. find out the genotype of father and mother is the given pedigree chart

	\bigcirc	L				
					<u> </u>	
M	lother	F	ath	er		
a)	A A		A	A		
c)	ΔΔ		а	а		

b)	A a	A a
d)	a a	A a

235. Analysis of traits of several generation of a family in the form of diagram is called

a) Gene analysis

b) Chromosome analysis

c) Allele analysis

d) Pedigree analysis

236. Among the following which one is the mutagenic agent?

- a) Visible light
- b) Penicillin
- c) Formalin

d) Water vapour

237. Frameshift mutation and base pair substitution changes the

a) Nucleotide structure

b) Nucleotide sequence

c) Nucleoside sequence

d) Sugar phosphate sequence

238. A women with blood-O has a child with blood group-O. She claims that a man with blood group-A is the father of her child. What would be the genotype of the father, if her claim is right?

a) I⁰I⁰

b) IAIB

c) IAIO

d) $I^B I^O$

239. The terminal end of chromosomes is called

a) Centromere

b) Telomere

c) Chromomere

d) metamere

240. Mendel conducted experiments for

a) 7 years

b) 6 years

c) 5 years

d) 4 years

241. Cross between unrelated group of organisms, is called

a) Hybridization

b) Test cross

c) Back cross

d) heterosis

242. If $AAbb \times aaBB$, then phenotypic ratio of its progeny will be

a) 9:3:3:1

b) 1:2:1

c) 1:1:1:1

d) 4:1

243. I. Short statured with small round head

II. Furrowed tongue and partially opened mouth

III. Palm is broad with characteristic palm crease

IV. Slow physical, psycomotor and mental development

These are the characters of

a) Down's syndrome

b) Turner's syndrome

c) Klinefelter's syndrome

d) Edward syndrome

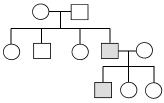
244. Which of the following statements are false?

I. A Dominant allele determines the phenotype when paired with a recessive allele

II. A recessive allele is weaker than a dominant allele

III. A recessive allele do not shows its effects when paired with a dominant allele

IV. A dominant allele is always better for an organism


a) II, I and IV

b) II, III and IV

c) I, II and III

d) I, III and IV

245. Following pedigree chart shows

a) Recessive and autosomal

b) Recessive and sex-linked				
c) Dominant and sex-linked				
d) Dominant and autosomal				
246. Phenotype of an organism is the result of		_		
a) Mutations and linkages	b) Cytoplasmic effects an			
c) Environmental changes and sexual dimorphism	d) Genotype and environ	ment interactions		
247. Which of the following is not a hereditary disease?				
a) Cretinism b) Cystic fibrosis	c) Thalassemia	d) Haemophilia		
248. F ₁ - progeny of a cross between pure tall and dwarf p	lant is always			
a) Tall b) Short	c) Intermediate	d) None of these		
249. Gynaecomastia is a common feature seen in				
a) Down's syndrome	b) Turner's syndrome			
c) PKU	d) Klinefelter's syndrome			
250. Dominant lethal gene is one which				
a) Allows the organism to survive but not reproduce	b) Determines sex of offs	prings		
c) Allows the organism to survive and reproduce	d) Kills the organism			
251. Total number of round seed in a cross between pure	· ·	een wrinkled seeds in F2 is		
(out of total 16 resulted)	, , ,	2		
a) 9 b) 12	c) 11	d) 10		
252. Linked gene is related toA and unlinked gene is r	•	u, 10		
Choose correct option for A and B	clated tob			
a) A-linkage; B-crossing over	b) A-crossing over; B-link	73.00		
c) A-crossing over; B-recombination	d) A-recombination; B-cr	_		
	=			
253. The linkage map of X-chromosomes of fruit fly has 66				
bobbed hair (b) gene at the other end. The recombin	ation frequency between t	nese two genes (y and b)		
should be	2.6604	1) > 500/		
a) $\leq 50\%$ b) 100%	c) 66%	d) >50%		
254. In man, which of the following genotypes and phenot	types may be the correct re	esult of aneuploidy in sex		
chromosomes?	12.00			
a) 22 pairs+XXY males	b) 22 pairs+XX females			
c) 22 pairs+XXXY females	d) 22 pairs+X females			
c) 22 pairs MM1 remaies	a) 22 pairs N females			
255. Experimental evidence of chromosomal theory of inh	neritance was given by			
a) HT Morgan b) TH Morgan	c) H de Vries	d) DH Vries		
256. Theoretically in incomplete dominance one allele fun	nction as normal, while and	other allele may function as		
a) Normal allele	b) Non-functional allele	J		
c) Normal but less efficient allele	d) All of the above			
257. In a family, man have blood group-A and women hav	•	oup of their children will be		
a) Only A b) A or B or AB or O	c) Only 0	d) Only B		
258. Principle or laws of inheritance were enunciated by	cy only o	a) only b		
a) Mendel b) Morgan	c) Bateson	d) Punnett		
259. Mendel's law was explained by	c) batcson	d) i difficti		
a) Meiosis b) Mitosis	c) Both (a) and (b)	d) None of these		
260. Which statement about Mendel is true?	c) both (a) and (b)	d) None of these		
		-: tifi		
a) His discoveries concerning genetic inheritance we	ere generally accepted by s	cientific community at his		
time				
b) He discovered linkage				
c) He believed that genetic traits of parents will usua				

d) His principles about genetics apply usually to plants and animals

261. The loss of chromosoma a) Polyploidy	l segment is due to b) Deletions	c) Duplications	d) Inversions
262. Symbol <i>A</i> , <i>B</i> and <i>C</i> indicates		c) Duplications	u) inversions
	1103		
\odot \otimes \bigcirc			
A B C			
a) Carrier female	b) Effected female	c) Death of female	d) Normal female
263. The chromosomal condi	tion in Turner's syndrome i	is	
a) 21 trisomy with XY		b) 44 autosomes + XXY	
c) 44 autosomes + XYY		d) 18 trisomy with XY	
264. If a child is of O blood gr	oup and his father is of B bl	ood group, the genotype of	
a) I ^o I ^o	p) _{IAIB}	c) _{IoIB}	d) $I^{O}I^{A}$
,			,
265. Work of Beadle and Tati			
a) Complementary gene	S	b) Blending inheritance	
c) Multiple allels		d) psedoalleles	
266. The F ₂ -generation offsp			
a) Variable genotypic ar		b) a genotypic ratio of 1	
c) a phenotypic ratio of		d) Similar genotypic and	phenotypic ratio of 1:2:1
267. Cytoplasmic inheritance	always shows	1334	
a) Paternal characters		b) Maternal characters	
c) Parental characters	10 10	d) Little paternal and mo	
268. Type of gamete participa	The second second		
a) One type	b) Two type	c) Four type	d) Many type
269. In sickle-cell anaemia, G			N. 222
a) GGA	b) GUG	c) AAG	d) GGG
270. Genes, when close toget			
a) Linkage	b) Mutation	c) Translation	d) transscription
271. If a character is always t			om their sons to all their
	osome carries the gene for t		D. V
a) Autosome	b) X-chromosome	c) Y-chromosome	d) None of these
272. Hugo de Vries is famous			
a) Natural selection the	ory	b) Mutation theory	
c) Organic theory		d) Chemical theory	
273. Jumping genes in maize	<u>-</u>		
a) Hugo de Vries	b) Barbara McClintock	c) T H Morgan	d) Mendel
274. A plant of F_1 - generation	i has genotype 'AABbCC'. Oi	n selfing of this plant, the pl	nenotypic ratio in F ₂ -
generation will be			
a) 3:1		b) 1:1	
c) 9:3:3:1		d) 27:9:9:9:3:3:3:3	
275. The character that is exp	pressed in the F ₁ -generation		
a) Recessive character		b) Dominant character	
c) Codominant characte		d) None of these	
276. Chromosomal theory of		·	
a) Gregor Mendel	b) Hugo de Vries	c) Bridges	d) Sutton and Boveri
277. In sex linkage, the specia	ality is		
a) Atavism		b) Criss-cross inheritanc	e
c) Reversion		d) Gene flow	
278. Mother = A blood group			

	Father = AB blood group The shild will not have			
	The child will not have a) A blood group	b) O blood group	c) B blood group	d) A blood group
279	. The chromosome constitu			d) A blood group
<i>L1)</i> .	a) Monosomic	b) Nullisomic	c) Haploid	d) trisomic
280	. Phenylalanine does not ch	-	-	u) trisonne
200.	a) Sickle-cell anaemia	anged to tyrosine. This cor	b) Phenylketonuria	
	c) Thalassaemia		d) Haemophilia	
281		imher of a given organism	has one additional chromo	some in one of the
201.	homologous pairs, the add		nas one additional emonio	some in one of the
	a) Trisomy	b) Monosomy	c) Polyploidy	d) nullisomy
282.	What type of gametes will	form by genotype rr Yy?		
	a) ry, rY	b) RY, Ry	c) Ry, Yy	d) RR, Yy
283.	The term 'genetics' was in	troduced in		
	a) 1906	b) 1905	c) 1904	d) 1903
284.	Mutant genes that give slig	ghtly modified phenotypes	are	
	a) Heteroalleles	b) Recessive alleles	c) Isoalleles	d) Dominant alleles
285.	Which of the following is a	nn example of sex-linked di	sease?	
	a) AIDS	b) Colour blindness	c) Syphilis	d) Gonorrhoea
286.	Mutations can be induced	•		
	a) IAA	b) Ethylene	c) Gamma radiations	d) Infra red radiations
287.	Which of the following is a		,	,
	a) Leprosy	b) Goitre	c) AIDS	d) Albinism
288.			n Natural History Society i	
	a) Laws of inheritance		b) Laws of heredity	
	c) Experiments on pea pla	nts	d) Experiments on plant h	vbridisation
289.	XO chromosomal abnorma			J
	a) Turner's syndrome	TIPLIES EDUC	b) Down's syndrome	
	c) Darwin's syndrome	SI LOS LD G G	d) Klinefelter's syndrome	
290.	Milk secretion and baldne	ss. both the traits belongs t	•	
	a) Sex limited	b) Sex linked	c) Sex influenced	d) Autosomal traits
291.	The daughter born to haer	•	-	,
	a) normal	b) Carrier	c) Haemophilic	d) None of these
292	. Blood grouping is the exar	-	<i>y</i>	.,
	a) Multiple allele	p 0.	b) Condominance	
	c) Both (a) and (b)		d) Independent assortmen	nt
293.		ducing red flowers is cross	ed with a pure plant produ	
2,0	• • •	-	e plants of first filial general	•
		wers in the progeny would	=	cion, the proportion of
	•		4	1
	a) $\frac{3}{4}$	b) $\frac{1}{4}$	c) $\frac{1}{3}$	d) $\frac{1}{2}$
294.	A is sex linked recessiv	ve disease. Which shows its	s transmission fromB fe	emale toC progeny.
	Choose the correct option			
	a) A-haemophilia, B-carrie		b) A-cystic fibrosis, B-carr	rier, C-male
	c) A-sickle-cell anaemia, E		d) A-phenylketonuria, B-c	
295.	. Crossing over is advantage			
	a) Variation	b) Linkage	c) Inbreeding	d) Stability
296.	Father of 'genetics' is	,	. 0	· •
	a) De Vries	b) Mendel	c) Bateson	d) Robert Hooke

GPLUS EDUCATION

297. The recessive gene that always produces its effect	ct, is			
a) Pleiotropic gene	b) Complementary ger	ne		
c) Holandric gene	d) Supplementary gen	e		
298. When different alleles of the same gene are present	ent on an individual, the inc	lividual is a		
a) Heterozygous b) Diploid	c) Homozygous	d) mosaic		
299. Sex linked traits are the traits determined by				
a) Sex chromosome b) Autosomes	c) Allosomes	d) All of these		
300. Number of Barr body in XXXY is	-	-		
a) 1 b) 2	c) 3	d) 4		
301. 21 trisomy in humans causes	•	•		
a) Klinefelter's syndrome	b) Down's syndrome			
c) Tumer's syndrome	d) Patau's syndrome			
302. Paternal baldness, moustaches and beard in hum	•			
a) Sex differentiating traits	b) Sex determining tra	its		
c) Sex-linked traits	d) Sex-influenced trait			
303. Polytene chromosomes in salivary glands of <i>Dro.</i>	•			
a) Endoduplication	b) Duplication withou			
c) Replication of DNA without cell division	d) All of the above	esopuration		
304. A normal women whose father was colourblind,	•	. The sons would be		
a) 75% colourblind b) 50% colourblind	c) All normal	d) All colourblind		
305. Match the symbols with statement	cj mi normar	aj mi coloui billia		
1.				
2. 0 6. 🖊	1			
3. D-O 7. D-O				
	CATION			
A. Diseased (death)				
B. Carrier (female) of X-linked recessive gene				
C. Marriage in blood relatives				
D. Unknown sex				
Codes				
A B C D				
a) 1 2 3 4	b) 6 5 7 4			
c) 2 1 3 4	d) 6 2 3 4			
306. The female children of haemophilic father and ca	rrier mother are			
a) All haemophilic	b) Half haemophilic, h	alf carrier		
c) All normal	d) All carrier			
307. Genetic counsellors can identify heterozygous in	dividuals by			
a) Height of individuals	b) Colour of individua	ls		
c) Screening procedures	d) All of these			
308. How many conditions exhibit in dissimilar sex chromosomes?				
308. How many conditions exhibit in dissimilar sex ch	romosomes?			
a) 2 b) 3	c) 4	d) 5		
-	c) 4	d) 5		
a) 2 b) 3	c) 4	d) 5 d) 49		
a) 2 b) 3 309. Number of chromosomes in Down's syndrome an	c) 4 re	•		
a) 2 b) 3 309. Number of chromosomes in Down's syndrome ar a) 46 b) 47	c) 4 re	•		

	a) Genotype	b) Phenotype	c) Both (a) and (b)	d) None of these
312.		there is no defect in the sex		
	a) Turner's syndrome		b) Down's syndrome	
	c) Colour blindness		d) Klinefelter's syndrome	
313.	The traits which are not e	expressed due to a particula	r gene but are expressed by	y products of sex hormones
	are			
	a) Sex influenced traits	b) Autosomal traits	c) Allosomic traits	d) Sex linked traits
314.	_	for the chromosomal diso	rders	
	I. Colour blindness			
	II. Down's syndrome			
	III. Phenylketoria			
	IV. Turner's syndrome			
	V. Thalassaemia			
	a) I, II and III	b) II, IV and V	c) III, IV and V	d) II and IV
315.	First time who used the to	erm frequency of recombina	ation?	
	a) Alfred Sturtevant	b) Alfred Nobel	c) Pasteur	d) Mendel
316.	Who postulated the muta	tion theory?		
	a) Mendel	b) Darwin	c) Lamarck	d) Hugo de Vries
317.	Choose the chemical used	in artificial polyploidy		
	a) Polyethylene glycol		b) Sodium alginate	
	c) Acenaphthene		d) Sodium hypochlorite	
318.	Linkage groups are alway	rs present on the		
	a) Homologous chromoso	omes		
	b) Analogous chromosom	ies		
	c) Sex chromosomes			
	d) Heterologous chromos	omes		
319.	Sex determination in an o	rganism is given by $\frac{X}{A} = 1.5$, then organism will be	
	a) Male	b) Female	c) Super female	d) Intersex
320.	Emasculation is the remo	•	e y super remare	aj meeroon
J _ J.	a) Flower buds		b) Anthers before dehisce	nce
	c) Carpels before dehisce	nce	d) Mature flowers	
321.	•	confined to differential reg	•	
J_1.	a) Autosomal genes	b) Holandric genes	c) Sex-linked genes	d) Mutant genes
322	Study the pedigree chart		e, sen minea genes	a) Fracanc genes
022		5		
	What does it show?			
	a) Inheritance of a sex-lin	nked inborn error of	b) Inheritance of a conditi	on like phenylketonuria as
	metabolism like pheny	lketonuria	an autosomal recessive	trait
	c) The pedigree chart is v	vrong as this is not possible	e d) Inheritance of a recessi haemophilia	ve sex – linked disease like
323.	Mutation cannot change		-	
	a) RNA	b) Environment	c) Enzyme	d) DNA
324.	•	oss has mutation in its mito		
	-	progenies that mutation is		
	a) One -third of the prog		b) None of the progenies	

	c) All of the progenies	d) Fifty per cent of the pro	ogenies
325.	Mendel does not get linkage due to		
	a) Dominance	b) Independent assortme	
	c) Segregation	d) Genes on same chromo	osome
326.	Frameshift mutation arises due to		
	a) Deletion of base pair of DNA	b) Insertion of base pair of	of DNA
	c) Both (a) and (b)	d) Change in single base p	pair of DNA
327.	Genes A, B and C are linked. Genes A and B are more	close than A and C. Find ou	it the correct option for the
	given statements		
	I. A might be before B and C		
	II. B might be between A and C		
	III. C might be between A and B		
	IV. More crosses has occurred between A and C than	A and B	
	a) I and II b) II and III	c) III and IV	d) I, II and IV
328.	In previous question find out the ratio between roun	d and wrinkled seed textu	re
	a) 3:1 b) 2:2	c) 1:1	d) 9:6:1
329.	Which of the following blood groups' person can not	donate blood to other?	•
	a) AB blood group b) O blood group	c) A blood group	d) B blood group
330.	Which of the following is not related to sex chromoso		, , ,
	a) Turner's syndrome	b) Klinefelter's syndrome	
	c) Down's syndrome	d) Haemophilia and color	
331.	Inheritance of characters not located in the gene but		
	to		
	a) Cytoplasmic inheritance	b) Chromosomal inherita	nce
	c) Plastid inheritance	d) epigenesis	
332.	Mendel found the phenotype of the F ₁ heterozygote		eA parent in
	appearance, he proposed that in a pair of dissimilar f		——————————————————————————————————————
	hence is called theB factor, while the other factor		(1)
	Choose the correct option for A, B and C	15.4.1.Y-05.1.4	
	a) A-T T, B-dominant, C-recessive	b) A-T t, B-dominant, C-re	ecessive
	c) A-t t, B-dominant, C-recessive	d) A-T t, B-Recessive, C-d	
333	Which of the following pairs of features is a good exa		
0001	a) Human height and skin colour	APO blood groups in h	umans and flower colour of
	ay Tranian neight and shin colour	b) Mirabilis jalapa	amans and nower corour or
	c) Hair pigment of mouse and tongue rolling in	d) Humans eye colour and	d sickle cell anaemia
	humans	aj mamano oj e corour am	
334	Find the phenotype of A, B, C, D from given cross (R-	Red and r = white)	
001		ned and i winte)	
	$\begin{pmatrix} & & \downarrow \\ R & r & \times & R & r \end{pmatrix}$		
	\widehat{A} \widehat{B} \widehat{C} \widehat{D}		
	a) A-Red, B-Red, C-Red, D-White	b) A-Red, B-Red, C-White	D - White
	c) A-Pink, B-Red, C-White, D-White	d) A-Pink, B-Red, C-Red, I	
335	Incomplete dominance is shown by	aj II I IIIK, D Rea, a Rea, L	v winec
	a) Primrose b) <i>Mirabilis</i>	c) Helianthus	d) China rose
336	Which of the following genes show the hetertozygou		a, diffication
	a) Rr b) RR	c) Rr	d) None of these
337	Rrrr (progeny): Red (dominant) flowers (heterozygo	•	•

be

a)
$$350 \rightarrow \text{Red} : 350 \rightarrow \text{white}$$

c)
$$380 \rightarrow \text{Red} : 320 \rightarrow \text{white}$$

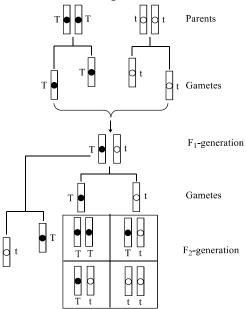
b) $450 \rightarrow \text{Red}: 250 \rightarrow \text{white}$

338. A common test to find the genotype of a hybrid is by

- a) Crossing of one F_2 -progeny with male parent
- b) Crossing of one F_2 -progeny with female parent
- c) Studying the sexual behaviour of F_1 -progenies d) Crossing of one F_1 -progeny with male parent
- 339. Which of the following has the least number of chromosomes?
 - a) Amoeba

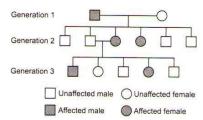
b) Drosophila

c) *Pheretima*


- d) Ascaris megalocephala
- 340. In given genetic basis of human blood group table find out which belongs to blood group A, B, AB and O

S.no.	Allele	Allele	Genotype
	from	from	of
	Parent	Parent	Offspring
	1	2	S
I.	Ι ^Α	IA	I _A I _A
II.	Ι ^Α	IB	$I_{A}I_{B}$
III.	Ι ^Α	i	I ^A i
IV.	I_{B}	IA	$I_{\mathbf{A}}I_{\mathbf{B}}$
V.	I^{B}	IB	I_BI_B
VI.	I^{B}	i	I ^B i
VII.	i	i	i i

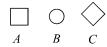
Α		В		Α	В	0		
a)	[,]	II	V,V	/I	II,I	V	V)	I
c)	V	II	II,I	V	V,V	7I	I,I	I
							I	


b)	I,IV	VI,II	II,III	V
d)	I,III	II,IV	V,VI	VII

- 341. The chemical nature of chromatin is as follows
 - a) Nucleic acids
 - b) Nucleic acid and histone proteins
 - c) Nucleic acids, histone and non-histone proteins
 - d) Nucleic acids and non-histone proteins
- 342. What does this diagram indicate?

- a) Law of dominance interpretated on basis of genes
- b) Law of segregation interpretated on basis of genes

- c) Law of independent assortment interpretated on basis of genes
- d) Simply gamete genes
- 343. Given below is a pedigree chart showing the inheritance of a certain sex-linked trait in humans.


The trait traced in the above pedigree chart is

- a) Dominant X-linked
- b) Recessive X-linked
- c) Dominant Y-linked
- d) Recessive Y-linked
- 344. Mendel observed that certain character did not assort independently. Later, scientist found that this is due
 - a) Linkage in traits

b) Crossing over

c) Both (a) and (b)

- d) Dominance of one trait over the other
- 345. Identify the symbols given below and the correct option with respect to A, B and C

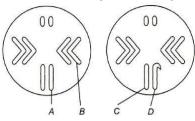
- a) A-Male, B-Female, C-Sex unspecified
- b) A-Male, B-Female, C-Sterile

c) A-Male, B-Female, C-Fertile

- d) A-Female, B-Male, C-Sex unspecified
- 346. Mendel investigated characters in garden pea plant that were manifested in two trait
 - a) Similar
- b) Non-zygote
- c) Identical
- d) Opposite

- 347. Phenylketonuria disease is a
 - a) Autosomal dominant

b) Autosomal recessive


c) Sex linked recessive

- d) Sex linked dominant
- 348. The literal meaning of chromosome is
 - a) Painted body
- b) Coloured body
- c) Doubling body
- d) Thread like body

- 349. The F_2 genotypic ratio of monohybride cross is
 - a) 1:1

- b) 1:2:1
- c) 2:1:2
- d) 9:3:3:1
- 350. The offspring produced from a marriage have only O or A blood groups. Which of the following genotypes would be, the possible genotypes of the parents?
 - a) IAIA and IAIO
- b) IOIO and IOIO
- $_{\rm Cl}$ $I^{\rm A}I^{\rm A}$ and $I^{\rm A}I^{\rm O}$
- d) IAIO and IAIO
- 351. In order to find out the different types of gametes produced by a pea plant having the genotype AaBb, it should be crossed to a plant with the genotype
 - a) aaBB
- b) AaBb

- c) AABB
- d) aabb
- 352. The lowest number of chromosomes is found, in which of the following?
 - a) Haplopappus gracilis b) Poa litorosa
- c) Salix tetrasperma
- d) Ageratum coigzoides
- 353. The genes for seven characters of pea plant that were considered in Mendel hybridisation experiment are present on
 - a) 4 chromosome
- b) 5 chromosome
- c) 7 chromosome
- d) 8 chromosome
- 354. Chromosome diagram of the given fruitfly tick the correct choice for autosome labelled

	a) A	b) C	c) D	d) B		
355	. Identify the wrong state	ement.				
	a) In male grasshoppers, 50% of the sperms have no sex chromosome					
	b) Usually , female birds produce two types of gametes based on sex chromosome					
	c) The human males ha	ve one of their sex chromos	omes much shorter than oth	ner		
	d) In domesticated fow	ls, the sex of the progeny de	pends on the type of sperm	rather than the egg		
356		n in the diagram below is br		= =		
		these points became inverte	=	•		
		Chromosome				
	PQRSTUVW	consisting of eight genes				
	∫ ↑ Break Break	of eight genes				
		h				
	The resulting order of the	=	a) DOTHDOMA	J) MANITCODO		
257	a) PQUTSRVW	b) WVUTSRQP	c) PQTURSVW	d) VWUTSRPQ		
35/	'. Which of these is a dom		a) Allainiana	d) Calaumblindnaga		
250	a) Rh factor	b) Haemophilia	c) Albinism	d) Colour blindness		
330	-	n blood group under ABO sy				
		transfusion. His one friend				
		out delay. What would have	c) Type A			
250	a) Type AB	b) Type 0 traits using a plant of 12 ch	, , ,	d) Type B		
335	Choose the correct opti		Tomosomes mstead of 14			
	a) He would have disco					
	b) He would have disco		~			
		iscovered independent asso	rtment			
	d) All of the above	iscovered independent asso	i dilient			
360	=	ected chain of a haemoglobin	n is			
500	a) α -globin chain	b) β-globin chain	c) Both (a) and (b)	d) None of these		
361	. Sex chromosomes in ma		c) Both (a) and (b)	a) None of these		
501	a) X	b) Y	c) XX	d) No X no Y		
362		hich is never passed on fron		aj ito it no i		
002	a) Autosomal linked dis	=	b) X-chromosomal linked	disease		
	c) Y-chromosomal linke		d) None of the above			
363	•	located very close on the chi	,	naize plant. When RRYY		
		hybridized, then F_2 -segrega		F		
	a) Higher number of the		b) Segregation in the exp	ected 9 : 3 : 3 : 1 ratio		
	c) Segregation in 3:1 r		d) Higher number of the			
364		bers of chromosome pair as	, ,	• •		
	Choose the correct opti		1	Ü		
	a) A-mitosis; B-allele pa		b) A-meiosis; B-allele pai	r		
	c) A-allele pair; B-meio		d) A-allele pair; B-mitosis			
365	Genetic map is one that					
	a) Shows the stages dur					
	·	on of various species in a reg	gion			
		he genes on a chromosome				
	=	us stages in gene evolution				
366	_	simplified representation of	the human sex chromosom	es from a karyotype. The		
	gene 'a' and 'b' could be					

GPLUS EDUCATION

11	10(
	118	
UU		

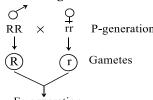
- a) Colour blindness and body height
- b) Attached ear lobe and rhesus blood group
- c) Haemophilia and red-green colourblindness
- d) Phenylketonuria and haemophilia

- 367. Human females have
 - a) 22 pairs of autosomes and one pair of sex chromosome
 - b) 21 pairs of autosomes and two pairs of sex chromosome
 - c) 23 pairs of autosomes and one pair of sex chromosome
 - d) 20 pairs of autosomes and one pair of sex chromosome
- 368. The progenies are found to be male sterile after crossing two plants. This is due to some genes, which are present in
 - a) Mitochondria
- b) Cytoplasm
- c) Nucleus
- d) chloroplast

- 369. Mutation may results in the
 - a) Change in genotype

b) Change in phenotype

c) Change in metabolism


- d) All of these
- 370. In cross between yellow round (YYRR) and pure breeding pea plants having green wrinkled (yyrr) find out the total seeds (plants) having yellow colour in F₂-generation
 - a) 12

b) 10

c) 14

- d) 11
- 371. A cross in which parents differ in a single pair of contrasting character is callled
 - a) Monohybrid cross
- b) Dihybrid cross
- c) Trihybrid cross
- d) Tetrahybrid cross
- 372. Calvin bridges demonstrated sex determining factor is the ratio of number of
 - a) X-chromosome to autosome

- b) Autosome to X-chromosome
- c) Y-chromosome to X-chromosome
- d) Y-chromosome to autosome
- 373. Find out the genotype and phenotype of F_1 -generation (R = dominant and red, r = recessive and white) from the given cross

F₁-generation

- a) Rr and white
- b) Rr and red
- c) Rr and pink
- d) Can not predict
- 374. Which one of the following conditions correctly describes the manner of determining the sex in the given
 - a) XO type of sex chromosomes determine male sex in grasshopper
 - b) XO condition in humans as found in Turner's syndrome, determines female sex
 - c) Homozygous sex chromosomes (XX) produce male in Drosophila
 - d) Homozygous sex chromosomes, (ZZ) determine female sex in birds.
- 375. Ratio observed in dihybrid cross (phenotypically)
 - a) 3:1

- b) 1:2:1
- c) 9:7

d) 9:3:3:1

- 376. Trisomy stands for
 - a) 2n 1
- b) 2n + 2
- c) 2n + 3
- d) 2n + 1

- 377. Klinefelter's syndrome results from
 - a) XX egg of Y sperm

b) XX egg and XY sperm

c) X egg and YY sperm

- d) XY egg and X sperm
- 378. A couple whose sons are colourblind with AB blood group, identify the parents from the following.

PHONE NO: 8583042324 Page | 29

a) Mother colourblind with A blood group, and fat	a) Mother colourblind with A blood group, and father normal with blood group-B				
b) Mother normal with blood group-A, and father	b) Mother normal with blood group-A, and father colourblind with blood group-B				
c) Mother colourblind with blood group-B, and fat	mother colourblind with blood group-B, and father normal with blood group-B				
d) Mother normal with blood group-A, and father	-	-			
379. Which of the following chromosomal mutation are	_	-			
chromosomes are undergoing synapsis?		G			
a) Inversion and translocation	b) Deletion and duplicat	tion			
c) Inversion and deletion	d) Translocation and du				
380. What percentage of homozygous Rh ⁻ will be born	-	_			
heterozygous for Rh ⁺ and wife is homozygous for	_	1			
a) 25% b) 50%	c) 75%	d) 100%			
381. Mendel could not find out linkage because	-, , 0	, = / 0			
I. some genes are linked but they are too far apart	for crossing over to be dist	inguished from independent			
assortment	tor or obbing over to be und	mgalonea n om maeponaem			
II. linked genes, were never tested for the same tin	ne in same cross				
III. all seven genes, were present on the same chro					
IV. all seven genes were present on 4 chromosome		anart			
Find out the correct option	but they were present fur	apart			
a) I and II b) II and III	c) III and IV	d) IV only			
382. Haemophilia is also called	cj ili uliu iv	a) IV only			
a) Bleeders disease b) Blood disease	c) RBC disease	d) All of these			
383. The genes located in the same chromosome do not	•				
generations due to the phenomenon of	. separate and are innerited	together over its			
a) Complete linkage	b) Incomplete linkage				
c) Incomplete recombination	d) Complete recombina	tion			
384. Universal donor is	d) complete recombina	Clon			
	ΔR Rh ⁺	ΔR Rh-			
a) O Rh ⁺ b) ^{O Rh⁻}	c) AB Rh ⁺	d) AB Rh ⁻			
385. Persons with Klinefelter's syndrome have chromos	somes				
a) XX b) XY	c) XXY	d) XYY			
386. Mendel crossed tall and dwarf plant. In F ₂ -generat	ion both the tall and dwarf	plants were produced. This			
shows					
a) Blending of characters	b) Atavism				
c) Non-blending of characters	d) Intermediate charact	ters			
387. Sex- limited and sex- linked genes are located on					
a) Autosomes b) X-chromosome	c) Y-chromosome	d) Both (b) and (c)			
388. How many different types of gametes can be formed	ed by F ₁ progeny, resulting	from the following cross?			
AA BB CC \times aa bb cc					
a) 3 b) 8	c) 27	d) 64			
389. Point mutation involves					
a) Insertion	b) Change in single base	e pair			
c) Duplication	d) deletion				
390. A person with type A blood group may safely recei	ve a transfusion of				
a) Type-AB	b) Type-A and type -O				
c) Type-A and type –AB	d) Type-AB and type –0)			
391. In which cross will you get most pink flowers?					
a) Red \times red b) Red \times pink	c) Pink × pink	d) Red × white			
392. <i>Triticale</i> has been produced by the intergenic hyb		-			
a) Wheat and rice b) Wheat and rye	c) Wheat and aegilops	d) Rice and maize			
393. Which one of the following characters studied by M	,				

WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

GPLUS EDUCATION

PHONE NO: 8583042324 Page | 30

a) Green seed colour	b) Terminal flower positi	on
c) Green pod colour	d) Wrinkled seed	
394. Mendel's experimental material was		
a) <i>Pisum sativum</i> b) <i>Lathyrus odoratus</i>	c) <i>Oryza sativa</i>	d) <i>Mirabilis jalappa</i>
395. Which of the following is not considered as mutagen	?	
a) Lower temperature	b) X-rays	
c) Higher temperature	d) UV rays	
396. The physical expression or appearance of a characte	r is called as	
a) Morphology b) Genotype	c) Phenotype	d) Ecotype
397. Carrier organism refers to an individual, which carri	· · · · · · · · · · · · · · · · · · ·	<i>y v</i> 1
a) Dominant gene, that is not expressed	b) Recessive gene, that is	not expressed
c) Recessive gene, that is expressed	d) Dominant gene, that is	•
398. In previous question, find out which alphabete (A-D)		=
X Y	, labolica for it and it office	
a) A D	b) A,C D	
c) C D	d) B D	
399. In amniocentesis of a pregnant woman, it is found th	,	th Barr body and E-body
The syndrome likely to be associated with the embry	-	in, barr body and r-body.
a) Edward' syndrome		
	b) Down's syndrome	
c) Klinefelter's syndrome	d) Patau's syndrome	
400. In the previous question, find out the chances of fifth		D 4 to F
a) 1 in 2 b) 1 in 4	c) 1 in 3	d) 1 in 5
401. Three children in a family have blood types O, AB an	d B respectively. What are	the genotypes of their
parents?	-D -D A - A	-A - A D
a) I^A i and I^B i b) I^AI^B and i i	c) $I^B I^B$ and $I^A I^A$	d) ^{IA} I ^A and I ^B i
402. The chromosomal arrangement results in		
a) Euploidy b) Aneuploidy	c) Duplication	d) polyploidy
403.	c) Duplication	u) polypiolay
403.		
Normal — — Female		
☐ — Male		
Diseased — — Female		
— Male		
In the above pedigree, assume that no outsider marr	ying in, carry a disease. Wi	rite the genotypes of C and
D.		
a) $X^{C}Y$ and $X^{C}X^{C}$ b) XX^{C} and XY	$c)$ XY and X^CX^C	d) X ^C X ^C and X ^C X
a) x y and x x y b)	c)	a)
404. The specific pair of chromosomes which determine t	he sex of the individual cal	led
a) Sex chromosomes b) Allosomes	c) Heterosomes	d) All of these
405. The 'Cri-du-chat' syndrome is caused by change in cl	nromosome structure invol	lving
a) Deletion b) Duplication	c) Inversion	d) translocation
406. During his experiments, Mendel used the term factor		
a) Genes b) Traits	c) Characters	d) Qualities
407. In a monohybrid cross involving incomplete domina		

WEB: WWW.GPLUSEDUCATION.ORG

GPLUS EDUCATION

F₂- generation. The ratio is d) 9:7 a) 3:1 b) 1:2:1 c) 1:1:1:1 408. The genome of Caenorhabditis elegans consists of a) 3 million base pairs and 30,000 genes b) 180 million base pairs and 13,000 genes c) 4.7 million base pairs and 4,000 genes d) 97 million base pairs and 18,000 genes 409. Albinism is caused by the deficiency of a) Amylase b) Tyrosinase c) Phenylalanine d) Xanthene oxidase 410. The ABO blood grouping in human beings is an example for I Dominance II.Incomplete dominance III.Codominance IV.Multiple alleles a) I and II b) II, III and IV c) I, III and IV d) III and II 411. Sickle-cell anaemia is an autosomal linked recessive trait can be transmitted from parents to the offspring when both the partners are carrier for all the genes or heterozygous. The disease is controlled by a single pair of allele, Hb^A and Hb^S. Identify X, Y and Z Normal Hb (A) Gene $mRNA \cdots GAG \cdots$ Hb^A Peptide Sickle-cell Hb (B) Gene Hb^S Peptide a) GTG GAC Val (GUG) b) CAC CTC val (GUG) c) GTA GAG val (GUG) d) GTC GAC val (GUG) 412. Diploid cells have a) Two chromosomes b) One set of chromosomes c) Two pairs of homologous chromosomes d) Two sets of chromosomes 413. Single gene can produce more than one effect. Like starch synthesis in pea plant. It has two alleles (B and b) for starch synthesis the phenotypes of which are also given below BB, bb, Bb I. BB – round seed, large starch synthesis II. bb - wrinkle seed, less starch synthesis III. Bb – intermediate size seed, intermediate less starch synthesis Choose the correct option a) I and II b) II and III c) III and I d) I, II and III 414. After examining the blood groups of husband and wife, the doctor advised them not to have more than one

CATION.ORG PHONE NO: 8583042324 Page | 31

b) Female Rh⁻and male Rh⁺

a) male Rh-and female Rh+

child, the blood group of the couple are likely to be

c) Male and female Rh ⁺	d) Male and female Rh ⁻	
415. A person with blood group-A has		
a) Antigen-A and antibody-b	b) Antigen-B and antibod	y-a
c) Both antibodies	d) No antibody and no an	tigen
416. Which of the following is not a correct match?		
a) Sex determination	– A chromosomal phenome	enon
b) Y-chromosome –	Autosomal	
c) Red-green colour blindness in human —	A sex-linked character	
d) An abnormal chromosome number in each cell -	- A case of polyploidy	
417. In law of independent assortment. How many facto	rs are involved? (for a dihyl	orid cross)
a) 2 b) 3	c) 4	d) 1
418. Mother B homozygous, father A unknown, therefor	e, possible blood group in p	rogeny is
a) AB and B possible b) AB and A possible	c) A and B possible	d) 0 possible
419. Consider the following four statements I, II, III and	IV and select the correct sta	tements
I. Mendelian experiments has a large sampling size,		
collected		•
II. Recessive allele influences the appearance of the	phenotype even in the pres	ence of a dominant allele
III. Multiple alleles can be found only when populat		
IV. In F ₂ -generation of a Mendelian monohybrid cro		were identical to their
parental types and shows blending inheritance		
The correct statements are		
a) I and III b) III and IV	c) II and IV	d) II and III
420. When released from ovary, human egg contain	>	,
a) One Y-chromosome b) Two X-chromosome	c) One X-chromosome	d) XY-chromosome
421. The tendency of offsprings to differ from their pare		
a) Variation b) Heredity	c) Inheritance	d) Resemblance
422. The gene, which controls many characters, is called	•	•
a) Codominant gene b) Polygene	c) Pleiotropic gene	d) Multiple gene
423. The given diagram <i>A</i> and <i>B</i> indicates	27112014	, ,
\wedge		
\bigcup_{A} \bigcup_{A} \bigcup_{A}		
\wedge		
or O		
B	L) A Di	J.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
a) A-Zygotic twins; B-Dizygotic twins	b) A-Dizygotic twins; B-Io	
c) A-Zygotic twins; B-Identical twins	d) A-Identical twins; B-Di	zygotic twins
424. Which of the following statement is/are correct reg		
a) Alleles separate with each other during gametog		
b) The segregation of factors is due to the segregation	_	meiosis
c) Law of segregation is called as law of purity of ga	imetes	
d) All of the above	L.Ind.o	
425. Which of the following discoveries resulted in a Nol		
a) Recombination of linked genes	b) Genetic engineering	
c) X-rays induce sex-linked recessive lethal	d) Cytoplasmic inheritan	ce .
mutations	cont to goth on Ctl- 1	wo ahow oversup g !+16
426. When alleles of two contrasting characters are pres		racter expresses itself
during the cross while the other remains hidden. The		
a) Law of purity of gametes	b) Law of segregation	

	I. It is phenomenon in which more recombinants are produced in F_2 -generation						
	II. More parental combination are produced in F_2 -generation III. Genotype which are present in F_1 hybrid. Reappear in high frequency in F_2 -generation						
	IV. It is a phenomenon in which two chromosome are linked						
	a) Only I	b) Only II	c) I and III	d) III and IV			
439.	The total number of proge	ny obtained through di	hybrid cross of Mendel is 12	80 in F ₂ -generation. How			
	many are recombinants?						
	a) 240	b) 360	c) 480	d) 720			
440.	A child of blood group-0 c	annot have parents of b	lood groups				
	a) A and A	b) AB and O	c) A and B	d) B and B			
441.	Rh factor is present in						
	a) All vertebrates		b) All mammals				
	c) All reptiles		d) Man and rhesus monl	key only			
442.	Which of the following cor	ndition is called monoso	omic?				
	a) 2 <i>n</i> +1	b) 2 <i>n</i> +2	c) <i>n</i> +1	d) 2 <i>n</i> -1			
443.	A man of blood group-A m	narries woman of blood	group-AB, which type of pro	ogeny would indicate that			
	man is heterozygous?						
	a) 0	b) B	c) A	d) AB			
444.	The children of a haemoph	nilic man and a normal v	women are				
	a) All haemophilic						
	b) Only daughters are hae	mophilic					
	c) Only sons are haemophilic						
	d) Neither sons nor daugh	d) Neither sons nor daughter are haemophilic					
445.	In man, four phenotypes o	f blood groups are due	to the presence of antigen-A	and antigen-B on the RBC.			
	The chromosome that has						
	a) X-chromosome	b) 21 st chromosome	c) 9 th chromosome	d) ^{7th} chromosome			
446.	More men suffer from colo						
	a) Women are more resist	ant to disease than mer	1				
	b) The male sex hormone	testosterone causes the	disease				
	c) The colourblind gene is	carried on the 'Y' chron	nosome				
	d) Men are hemizygous an	d one defective gene is	enough to make them colou	rblind			
447.	'Cri-du-chat' syndrome in	humans is caused by th	e				
	a) Fertilization of an XX egg by a normal Y-bearing sperm						
	b) Loss of half of the short	arm of chromosome 5					
	c) Loss of half of the long arm of chromosome 5						
	d) Trisomy of 21st chromosome						
448.	Given below is representa	tion of a kind of chromo	somal mutation. What is the	e kind of mutation			
	represented?						
	A B C D E F G H	-					
	D C B						
	a) Deletion		b) Duplication				
	c) Inversion		d) Reciprocal translocat				
449.	Which of the following syr	nbols and its representa	ation, used in human pedigre	ee analysis is correct?			
	a) = Mating b	etween relatives	b) = Unaffected	l male			

c) = Unaffected female	d) = Affected ma	le		
450. Ischihara chart is used to detect				
a) Tuberculosis b) Eye sight	c) Colour blindness	d) Diabetes		
451. Genes exibiting multiple effects are known as				
a) Complementary genes	b) Pleiotropic genes			
c) Cistrons	d) Pseudogenes			
452. A person with blood group -AB has				
a) AB antigen b) a and b antibodies	c) no antigen	d) antibody-a		
453. Excessive growth of hair on the pinna is a feature for	•			
a) The female sex hormone oestrogen suppresses t		_		
character in females	on the Y-chromosome	•		
c) The gene responsible for the character is recessi	-	ced in males as males		
in females and dominant only in males	produce testosterone			
454. 3:1 ratio in F_2 -generation is explained by	13.1 (1)			
a) Law of partial dominant	b) Law of dominant			
c) Law of incomplete dominant	d) Law of purity of game	tes		
455. Incomplete dominance is different from complete d	_	J) NI C.II		
a) Phenotypic ratio b) Genotypic ratio	c) Both (a) or (b)	d) None of these		
456. A true breeding plant producing red flowers is cros		_		
for red colour of flower is dominant. After selfing the	-	ation, the proportion of		
plants producing white flowers in the progeny wou		D 0 6 1		
a) 9:3:3:1 b) 12:3:1	c) 9:3:4	d) 9:6:1		
457. Studies of human sex-linked trait shows that	1) P	.1		
a) Male are affected mostly	b) Female are carrier mo	ostiy		
c) Both (a) and (b)	d) Neither (a) or (b)			
458. If a cross between two individuals produces offspri recessive character (a), then the genotypes of paren	77. 1 17. 15.	aracter (A) and 50%		
a) $Aa \times Aa$ b) $Aa \times aa$	c) $AA \times aa$	d) $AA \times Aa$		
459. Mendel choose the garden pea plant for his experim	nent and his findings were l	pased on		
a) Artificial pollination	b) Cross-pollination			
c) Self and artificial pollination	d) None of the above			
460. Lack of independent assortment of two genes 'A' an	d 'B' in fruit fly-Drosophile	a is a due to		
a) Repulsion b) Recombination	c) Linkage	d) Crossing over		
461. One of the following is not the type of blood groups	or blood factors.			
a) Lewis and Duffy b) Buffs and Kips	or brook relectors.			
462. Is it possible that same genotype have different phenotype?				
462. Is it possible that same genotype have different phe	c) ABO and Rh	d) Rh and MN		
462. Is it possible that same genotype have different phe a) No – because identical genotype give identical ph	c) ABO and Rh notype?	d) Rh and MN		
	c) ABO and Rh notype?	d) Rh and MN		
a) No – because identical genotype give identical pl	c) ABO and Rh notype? nenotype			
a) No – because identical genotype give identical plb) No – because of mutation	c) ABO and Rh notype? nenotype			
 a) No - because identical genotype give identical ph b) No - because of mutation c) Yes - because different environment can produce 	c) ABO and Rh enotype? nenotype re different phenotype of th	e same genotype		
 a) No – because identical genotype give identical ph b) No – because of mutation c) Yes – because different environment can produced) Yes – because phenotype decides the genotype 	c) ABO and Rh enotype enotype se different phenotype of the ene I. It has three alleles – I	e same genotype ^A , I ^B and i. since there are		
 a) No – because identical genotype give identical ph b) No – because of mutation c) Yes – because different environment can produced) Yes – because phenotype decides the genotype 463. ABO blood groups in human are controlled by the genotype 	c) ABO and Rh enotype enotype se different phenotype of the ene I. It has three alleles – I	e same genotype ^A , I ^B and i. since there are		
 a) No – because identical genotype give identical ph b) No – because of mutation c) Yes – because different environment can produce d) Yes – because phenotype decides the genotype 463. ABO blood groups in human are controlled by the genotype different alleles, six different genotypes are per 	c) ABO and Rh enotype? ee different phenotype of the ene I. It has three alleles – l ossible. How many phenoty c) Four	e same genotype A, I ^B and i. since there are pes can occur?		
 a) No – because identical genotype give identical ph b) No – because of mutation c) Yes – because different environment can produce d) Yes – because phenotype decides the genotype 463. ABO blood groups in human are controlled by the genotype defiferent alleles, six different genotypes are pe a) Three b) One 464. Probability of genotype TTrr in F₂-generation of a controlled 	c) ABO and Rh enotype? enotype se different phenotype of the ene I. It has three alleles – le essible. How many phenoty c) Four lihybrid cross is	e same genotype A , I ^B and i. since there are ypes can occur? d) Two		
 a) No – because identical genotype give identical ph b) No – because of mutation c) Yes – because different environment can produce d) Yes – because phenotype decides the genotype 463. ABO blood groups in human are controlled by the genotype three different alleles, six different genotypes are per a) Three b) One 	c) ABO and Rh enotype? The different phenotype of the ene I. It has three alleles – lessible. How many phenoty c) Four lihybrid cross is $c) \frac{9}{16}$	The same genotype I^{A} , I^{B} and i. since there are expess can occur? d) Two d) $\frac{6}{16}$		

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 35

identify the number of genotypes with TtRr and TtRR amongst them.

a) 1 and 2 b) 2 and 3	c) 3 and 1 d) 4 and 2
466. Which of the following genotypes does not produce	any sugar polymer on the surface of the RBC?
a) I ^A I ^A b) I ^B i	c) I ^A I ^B d) i i
467. The diagrammatic representation of the chromoson	nes of an individual is called
a) Idiogram b) Karyotype	c) Phenotype d) diploidy
468. In <i>Mirabilis</i> , a hybrid for red (RR) and white (rr) flo	
flower is crossed with white flower, the expected pl	· -
a) Red : pink : white(1 : 2 : 1)	b) Pink: white(1:1)
c) Red: pink (1:1)	d) Red: white (3:1)
469. A marriage between normal visioned man and color	arblind woman will produce, which of the following
types of offsprings?	
a) Normal sons and carrier daughters	b) Colourblind sons and carrier daughters
c) Colourblind sons and 50%carrier daughters	d) 50% colourblind sons and 50%carrier daughters
470. Given below is a pedigree chart of a family with five	
lobes as opposed to the free ones. The squares repr	
individuals. Which of the following conclusions draw	wn is correct?
0	
Free Attached	
Ear lobes Ear lobes	
a) The parents are homozygous recessive	b) The trait is Y-linked
c) The parents are homozygous dominant	d) The parents are heterozygous
471. I. Myotonic dystrophy is an autosomal dominant tra	
II. Sickle-cell anaemia is an autosomal recessive trai	
III. Failure of segregation of alleles results in chrom	osomal loss
IV. Failure of segregation of allele result in chromos	omal gain
V. Cystic fibrosis is a Mendelian disorder	CATION
Correct statements are	27112011
a) I, II, III and IV b) I, III, IV and V	c) I, II, IV and V d) All of these
472. Haemophilia is more commonly seen in human male	es than in human females because
a) This disease is due to a X-linked dominant	b) A greater proportion of girls die in infancy
mutation	
c) This disease is due to a X-linked recessive	d) This disease is due to a Y- linked recessive
mutation	mutation
473. Which one of the following was the rediscoverer of	
a) Muller b) Morgan	c) Correns d) Bridge
474. $\frac{1}{4}$: $\frac{1}{2}$: $\frac{1}{4}$ ratio of TT : Tt : tt can be depicted mathemati	cally binomial expression as (ideally)
a) $(ax + by)^2$ b) $(ax + by)^3$	c) $(Ax + By)^4$ d) $ax + by$
475. Pure red flowers was crossed with pure white flower	ers. Red is dominant. After selfing of F_1 -generation, the
proportions of plants producing white flowers in pr	ogeny would be
a) ¾ b) ¼	c) 1/3 d) ½
476. Which of the following abnormalities, results from a	an unnatural presence of a Barr body?
a) Turner's syndrome	b) Down's syndrome
c) Klinefelter's syndrome	d) All of these
477. When normal and mutant alleles are present on opp	posite chromosomes of homologous pair, the
heterozygotes are called as	
a) <i>cis</i> heterozygotes	b) Homologous heterozygotes
c) trans heterozygotes	d) None of the above

478. When two unrelated individuals or lines are crossed both its parents. This phenomenon, is called	, the performance of ${\sf F_1}$ hyb	orid is often superior to
a) Transformation b) Splicing	c) Metamorphosis	d) heterosis
479. The types of gametes produced by a heterozygous al	•	.,
a) 1 b) 2	c) 3	d) Many
480. Prokaryotic genetic system has	c) 3	u) Many
	b) DNIA and na historia	
a) DNA and histone	b) DNA and no histone	
c) No DNA and histone	d) No DNA and no histone	
481. A chromosome in which the centromere is situated of	lose to its end so that one a	irm is very short and the
other very long is		
a) Acrocentric b) Metacentric	c) Sub- metacentric	d) telocentric
482. Write the genotype of the previous questions		
aa × Aa	AA × AA	
a) Aa aa Aa aa	b) 🔥 🙀	3
aa × aa	aa × Aa	
1	1	
c) aa aa aa aa	d) aa Aa aa Aa	—(\la)
483. Sickle cell anaemia is		
a) An autosomal linked dominant trait	b) Caused by substitution in the β -globin chain of	of valine by glutamic acid
c) Caused by a change in base pair of DNA	· -	ated sickle like RBCs with a
ej daasea by a change in base pair of Bivi	nucleus	acea sieme me noas wien a
484. Improvement of human race through hereditary qua		
a) Disruptive b) Directional	c) Stabilizing	d) Coevolution
, ,	,	•
485A gene produces all gametes that are similar, whi	ie ab produces two kii	ius of gametes each having
Choose the correct option for A and B		
a) A-homozygous; B-heterozygous	b) A-homozygous; B-dom	
c) A-homozygous; B-recessive	d) A-heterozygous; B-hom	
486. In which one of the following combinations (a-d) of the	the number of the chromos	omes is the present day
hexaploid wheat correctly represented?		
Combi Mono Hap Nullis Tris		
nation somic loid omic omi		
C		
a) 27-28-42-43 b) 7-82-40-42	c) 21-7-42-43	d) 41-21-40-43
487. When the number of recombinant progeny is usually	γ less than the number expe	ected in independent
assortment it is called		
a) Complete linkage		
b) Incomplete linkage		
c) Complete recombination		
d) Complete independent assortment		
488. The enzyme missing in phenylketonuria is		
a) Phenylalanine hydroxylase	b) Phenylalanine reductas	se
c) Phenylalanine oxidase	d) Phenylalanine oxidored	
489. Gene is	,,	
a) One pair of allele		
Jan 18 Britain Control of the Contro		

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 37

490. The telomeres of eukaryotic chromosomes consist of	short sequences of	
a) Thymine rich repeats	b) Cytosine rich repeats	
c) Adenine rich repeats	d) Guanine rich repeats	
491. In Mendelian dihybrid cross when heterozygous Rou	nd Yellow are self crossed.	Round Green offsprings
are represented by the genotype		
a) RrYy,RrYY and RRYy b) Rryy,RRyy, and rryy	c) rrYy andrrYY	d) Rryy and RRyy
492. Study the given test cross and choose the correct opt	ion for F ₂ -generation	
(Homozygous Parents dominant) recessive) (AB) (AB) × (ab) (ab) Gametes		
AB/ab F_1 -generation		
Dihybrid AB AB ab ab Gametes AB/AB AB/ab AB/ab ab/ab F ₂ -generation		
a) Hybrid cross (9 : 3 : 3 : 1)	b) Hybrid cross (3:1)	
c) Dihybrid cross (12 : 4)	d) Dihybrid linked gene ci	ross (3 : 1)
493. Mendel's principle of segregation means that the ger	m cells always receive	
a) One pair of alleles	b) One quarter of the gene	es
c) One of the paired alleles	d) Any pair of alleles	
494. Law based on fact that the characters don't show any	blending and both the cha	racters are recovered as
such in F_2 -generation although one character was ab	sent in F ₁ -progeny, is	
a) Law of purity of gametes	b) Law of independent ass	sortment
c) Law of incomplete dominance	d) Law of dominance	
495. In <i>Melandrium</i> , the sex determination type is		
a) XX-XY b) XX-XO	c) ZZ-ZW	d) XY-XO
496. The effect of todays radioactive fall out will probably	be more harmful to childr	en of future generation
than to children now living because		
a) Infants are more susceptible to radiations		
b) Susceptibility to radiation increase with age		
c) Mutated genes are frequently recessive		
d) Contamination of milk supply is not cummulative		
497. Select the statement which is not correct.		
 a) Polygenic character is controlled by multiple alleles 	b) In case of polygenic inh intermediate phenotyp extreme ones	neritance, thousands of nes are found between two
c) Height, weight, skin colour are polygenic		m is an example of multiple
498. Linkage was first suggested by		
a) Sutton and Boveri b) Morgan	c) De Vries	d) Pasteur
499. X-linked recessive gene is		
a) Always expressed in male	b) Always expressed in fe	male
c) Lethal	d) Sub-lethal	
500. Gene for colour blindness is located on		
a) Y-chromosome b) 13 th chromosome	c) X-chromosome	d) 21 st chromosome
GDITIS EDITICATION WER: WWW. GDITISEDITICATIO	IN ORG DHONE NO	

b) Alternative form of a gene

d) Both (a) and (c) are correct

c) Present in allelic form on homologous

				Opius Luucu
501.	A. $\frac{X}{A} = 1$			
	B. $\frac{X}{A}$ > more than 1			
	$C.\frac{X}{4} = 0.5$			
	А			
	Here, $X = \text{number of } X\text{-ch}$	romosome		
	A = set of autosomal pair	C A D 10 1		
	Choose the correct option			
	a) A-female B-meta femal		b) A-female B-meta femal	
500	c) A-female B-female C-m		d) A-meta female B-femal	e C-male
502.	The ABO blood group are	controlled by	1.)	
	a) I-gene		b) c-gene	
=00	c) B-gene		d) n-gene	
503.	Which of the following is			1) 0 1
504	a) Round seed	b) Wrinkled seed	c) Axial flower	d) Green pod
504.	When an animal has both			
	a) Intersex	b) Superfemale	c) Supermale	d) gynadromorph
505.	Point mutation arises due	to change in		
	a) Single base DNA		b) Single base pair of DNA	
-	c) Segment of DNA		d) Double base pair of DN	A
506.	colour blindness is more		2 7 4	
	a) Male	b) Female	c) Infent	d) In old age
507.		arf plant. In F ₂ -generation	the observed ratio was 3:1	(tall: short). From this
	result, he deduced	. 1		
	I. law of dominance			
	II. law of independent ass	ortment		
	III. law of segregation			
	IV. incomplete dominance		CATION	
	Choose the correct option		PW11011	15 7 7 1 777
= 00	a) I, II, III and IV	b) I and III	c) II, III and IV	d) I, II and III
508.		=	n who is having sickle-cell a	
= 0.0	a) Hb ^s Hb ^s	b) Hb ^a Hb ^a	c) Hb ^g Hb ^g	d) Hb ^m Hb ^m
509.	Which of the following is		ietics?	
	a) Most characters are co			
	b) Same characters are co	<u>-</u>	-	
	c) Same characters are no	ot inherited according to N	Aendel's law	
5 40	d) All of the above			
510.	Foetal sex is determined l	-	_	D.M. C.1
- 44	a) Chiasmata	b) Barr bodies	c) Sex chromosomes	d) None of these
511.	Sex-linked allele or diseas	-		
	a) Women to her daughte	r		
	b) Man to daughter			
	c) Women to grand daugl	iter		
E40	d) Man to his son	111 1 1 1 2		
512.	What is genotypic ratio in		1) 0 4 0 4 0 4 4 5	4
	a) 1:2:1:2:4:2:1:2:	: 1	b) 2:4:2:1:2:1:1:2:	
	c) 1:4:2:1:1:1:2:1		d) 4:2:1:1:1:1:2:1:	: 1

513. The law of segregation of characters is also called the law of purity of gametes because
a) Gametes have only one of the two alleles for each b) Gametes cannot be contaminated

characters

514.	c) Gametes are very differ Four children belonging to	• •	d) It was just another nam e following blood groups A,	-
	genotypes of the parents a	re		
	a) Both parents are homoz	zygous for 'A' group		
	b) One parent is homozygo	ous for 'A' and another par	ent is homozygous for 'B'	
	c) One parent is heterozyg	gous for 'A' and another pa	rent is heterozygous for 'B'	
	d) Both parents are homoz	zygous for'B' group		
515.	Mendel work later formula			
	I. Linkage			
	II. Segregation			
	III. Incomplete dominance			
	IV. Independent assortmen	nt		
	Choose the correct option	15 ** 1 ***)	15 7 77 1 777
	a) I, III and IV	b) II and IV	c) II, III and IV	d) I, II and III
516.	Barr body is associated wi			
	a) Sex chromosome of fem	iale	b) Sex chromosome of ma	le
	c) Autosome of female		d) Autosome of male	
517.	A man can inherit his X-ch			
	a) Maternal grandmother	or maternal grandfather	b) Father	
	c) Maternal grandfather		d) Paternal grandfather	
518.	The types of gametes form			
	a) RY, Ry, rY, ry	b) RY, Ry, ry, ry	c) Ry, Ry, Yy, ry	d) Rr, RR, Yy, YY
519.	Mating of an organism to a			homozygous or
	heterozygous for a charact			
	a) Reciprocal cross	b) Test cross	c) Dihybrid cross	d) Back cross
520.	Polyploidy means occurre			
	a) Haploid sets of chromos		b) Diploid sets of chromos	somes
	c) More than diploid sets of		d) All of the above	
521.	Both husband and wife ha	•		
		lindness. The probability o	of their daughter becoming	colourblind is
	a) 50%	b) 75%	c) 25%	d) None of these
522.	L –shaped chromosomes a			
	a) Acrocentric	b) Telocentric	c) Sub-metacentric	d) None of these
523.	A homozygous sweet pea p	•		
				int F_1 hybrid is test crossed.
	Which of the following ger	otype does not appear in i	ts progeny?	
	a) <i>Rrrr</i> ₀	b) $RrRr_0$	c) Rrr_0r_0	d) rrR_0r_0
524.	A diseased man marries a	normal woman and they g	et three daughters and five	sons. All the daughters
	were diseased and sons we	ere normal. The gene of th	is disease is	
	a) Sex-linked dominant		b) Sex-linked recessive	
	c) Sex-limited character		d) Autosomal dominant	
525.	A polygenic trait is control	lled by 3 genes A, B and C. I	In a cross AaBbCc× AaBbCo	c, the phenotypic ratio of
	the offsprings was observe	ed as 1:6: x:20: x:6:1.		
	What is the possible value	of <i>x</i> ?		
	a) 3	b) 9	c) 15	d) 25
526.	Chromosomal mutations o	occurs due to		
	I. Deletion II. Dupl	ication		
	III. Translocation IV. Inve	rsion		
	Choose the correct option			
	a) I, II and III	b) II, III and IV	c) I, III and IV	d) All of these

527. The allele which expresses	itself in both homozygous	and heterozygous condition	on is called	
a) Dominant allele b) Recessive allele				
c) Incomplete dominant all				
528. Equatorial division and red	luctional division takes pla	ace in which types of cell di	vision	
a) Meiosis, mitosis	b) Mitosis, meiosis	c) Both (a) and (b)	d) Amitosis, meiosis	
529. Monohybrid test cross ratio	o is			
	b) 2:1	c) 1:1	d) 9:3:3:1	
530. Who gave the term 'genetic	cs'?			
a) Mendel	b) Robert Hooke	c) Bateson	d) Purkinje	
531. In which of the following d	lisorders, blood has a defe	ctive haemoglobin?		
a) Haemophilia	b) Haematuria	c) Haematoma	d) Sickle cell anaemia	
532. In sickle cell anaemia, the g	dutamic acid is replaced b	y		
_	b) Alanine	c) Serine	d) Valine	
533. Which of the following can	•	sis of Mendel's Law of Don	ninance?	
a) The discrete unit contro				
is called a factor	5 .	other is recessive		
Alleles do not show any	blending and both the	d) Factors occur in pairs		
c) characters recover as su		,		
534. Find out the percentage of	- -	oss between Pp and Pp. P-	dominant, p-recessive	
	b) 50%	c) 75%	d) 100%	
535. Gametes produced by a hor		e of types	,	
	b) 2	c) 3	d) Many	
536. What will be the gametic ch		No.		
	b) 20	c) 30	d) 40	
537. Human female possesses 4	The state of the s			
_	b) 22 + X	c) 22	d) 44	
538. Select the correct statemen	*		•	
	b) Pisum	c) Solanum	d) Hibiscus	
539. Test cross is when	21103100		,	
a) F ₁ crossed with heterozy	ygous parent	b) F ₁ crossed with homoz	ygous dominant parent	
c) F ₁ crossed with homozy		d) F ₁ crossed with homoz		
540. Sex chromosomes are also		, ,	, 0 1	
a) Autosomes	b) Allosomes	c) Genome	d) karyotype	
541. Euploidy is best explained	-	,	<i>y</i>	
a) Exact multiple of a haplo				
b) One chromosome less th		mosomes		
c) One chromosome more				
d) One chromosome more	-			
542. In which year Mendel's wo	-			
	b) 1901	c) 1902	d) 1903	
543. Which of the following dise			,	
	b) Haemophilia	c) Colour blindness	d) None of these	
544. Inheritance of skin colour i	*	,	,	
a) Chromosomal aberration	=	b) Codominance		
c) Point mutation		d) Polygenic inheritance		
545. Heterochromatin remains	condensed in which part o	• • •		
a) Secondary construction–I b) Secondary construction–II				
c) Telomeres		d) Both (a) and (b)		
546. A plant of F ₁ - generation ha	as genotype 'AABbCC'. On		enotypic ratio in F ₂ -	
			~ · · · · · · · · · · · · · · · · · · ·	

	generation will be			
	a) Polyploidy		b) Incomplete dominance	
	c) Multiple allelism		d) polygeny	
547	Which have great importa	nce in genetics?		
	a) Penicillium	b) Claviceps	c) Neurospora	d) None of these
548	Number of Barr bodies in	XXXXY is		
	a) 1	b) 2	c) 3	d) 4
549	Dihybrid ratio of the linke	d gene is	,	,
	a) 1:1	b) 1:1:1:1	c) 9:3:3:1	d) 3:1
550	Polyploidy can be induced	-	,	,
	a) Auxin	b) Kinetin	c) Colchicine	d) ethylene
551.			with another plant having g	-
001	then F ₁ -progeny are in the		,,,,,,, a, b.a, b.a,, 6	,, , , , , , , , , , , , , , , , , , ,
	a) 15:1		b) 1:15	
	c) 1:13		d) All yellow and round se	ahac
552	Which of the following, ca	n he used to describe the 2		cus
332	a) Alternative form of a ge		b) Dominant form of gene	
	c) Recessive form of a gen		d) One gene pair	
EE 2	Which of the following an		, ,	
555	_		•	d) Duagan fly
664	a) Butterfly	b) Fruit fly	c) Housefly	d) Dragon fly
554		The state of the s	etic inability to synthesize	
	a) Colour blindness	b) Down's syndrome	c) Phenyiketonuria	d) Diabetes
555	Balbiani rings are the stru	ctural features of		
	a) Allosomes			
	b) Polytene chromosomes			
	c) Autosomes			
	d) Lampbrush chromoson		'ATION	
556		e than two alleles for a give	en chromosome locus. In th	iis case, a trait is controlled
	by		13.00	
	a) Codominance		b) Pseudodominance	
	c) Incomplete dominance		d) Multiple alleles	
557			Of the 183 plants produced	_
	-	ill and 89 plants were foun	d to be dwarf. The genotyp	es of the two parental
	plants are likely to be			
	a) TT and tt	b) Tt and Tt	c) Tt and tt	d) TT and TT
558	In haplodiploidy determin			
	a) Haploid	b) Diploid	c) Haplodiploid	d) Diplohaploid
559			nt (Tt \times tT) gives the phen	
	a) 1:1	b) 3:1	c) 2:1	d) 4:1
560	When mutation is confine		it is called	
	a) Translocation	b) Point mutation	c) Base inversion	d) Frame shift
561	Letter symbol refers to the	e dominant factors give a	.A or upper case latter of	the alphabet. A
	correspondingB or lov	wer case letter is used for r	ecessive factor. Here A and	d B refers to
	a) A-capital; B-small		b) A-small; B-capital	
	c) A-capital; B-capital		d) A-small; B-small	
562	In a gene pool, along with	beneficial mutations those	mutations also exists whic	h are damaging to an
	individual. It has been fou	nd that these mutations ar	e irreversible because	
	I. they have survival value			
	II. they are acquired			

GPLUS EDUCATION

III. they are recessive and carried by heterozygous individuals only

IV. they show genetic drift

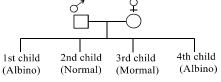
Choose the incorrect option for given statement

- a) I and III
- b) I and II
- c) II and IV
- d) Only III

563. In a medicolegal case of accidental interchange between two babies in a hospital, the baby of the blood group-A could not be rightly given to a couple with

- a) Husband of O group and wife of AB group
- b) Husband of A group and wife of O group
- c) Husband of B group and wife of O group
- d) Husband of AB group and wife of A group
- 564. The plasma membrane of the red blood cells has ...A... polymers that protrude from its surface and the kind of sugar is controlled by the gene. The gene I has three alleles ...B... The alleles I^A and I^B produce a slightly different form of the sugars, while allele i doesn't produce any ... C...

Choose the correct option for A, B and C


- a) A-protein, $B I^A I^B I^O$, C-protein
- b) A-protein, $B I^A I^B I^O$, C-sugar

c) A-sugar, $B - I^A I^B I^O$, C-protein

- d) A-sugar, $B I^A I^B I$, C-sugar
- 565. The person famous for experimental genetics
 - a) TH Morgan
- b) Sutton
- c) Boveri
- d) Robert Hooke

- 566. Morgan worked with tiny fruit fly names as
 - a) Drosophila melanogaster
 - c) Mirabilis jalapa
- b) Mangifera indica
 - d) Drosophila indica

567.

A=Normal allele, a = Albino allele. Find out genotype of \(\subseteq \sigma'' \) and (father and mother)

F	ather	Mother	GPL	us EDUC	A	ΓIO	N
a)	A a	A A			b) [A A	I
c)	A A	A A			d) [l a	P

b)	A A	A a
d)	Аа	A a

- 568. Linkage group is
 - a) Linearly arranged group of linked gene
- b) Non-linearly arranged group of linked gene
- c) Non-linearly arranged group of unlinked gene
- d) Non-linearly arranged group of single gene
- 569. Some individuals with blood group -A may inherit the genes for blonde hair, while other individuals with blood group - A may the gene for brown hair. This can be best explained by the principle of
 - a) 3:1

- b) 9:3:3:1
- c) 1:1

d) 1:1:1:1

- 570. I. 100% parental combinations are found in F₂-generation
 - II. F₂ phenotypic ratio is 3:1 in dihybrid cross
 - III. Dihybrid test cross ratio is 1:1 in F₂-generation
 - IV. Linked genes tends to separate frequently

Choose the correct options from the above given statements

- a) I, II and IV
- b) I, III and IV
- c) II, III and IV
- d) I, II and III

571. The following diagram shows two chromosomes and the lettered number represents the genes

Chromosome 1 Chromosome 2 PQRSTUVW E F G H

Which of the following would result if a translocation occurred between chromosome 1 and 2?

- a) PQRSWVUT EFGH

b) PQRS TUVWEFGH

c) PQRSTUVW EFH

d) PQRSTUVW EFGHGH

572. Experimental verification	n of the chromosomal th	neory of inheritance was gi	ven by
a) Gregor Johann Mende	l	b) Hugo de Vries	
c) Langdon Down		d) Thomas Hunt Mor	gan
573. A gene that masks anoth	er gane's expression, is	called	
a) Dominant	b) Recessive	c) Epistatic	d) Assorted
574. Transposons are			
a) House- keeping genes		b) Jumping genes	
c) Transporting genes		d) Stationary genes	
575. Which of the following la	w was discovered first	by Mendel?	
a) Law of dominance		b) Law of segregation	1
c) Law of independent a	ssortment	d) Law of sex determ	ination
576. Unit of inheritance that r	equired to express a pa	rticular trait of organism is	called
a) Factors	b) Genes	c) Phenotype	d) Genotype
577. Sex limited traits are the			
a) Traits appeard in part	icular sex		
b) Traits which governed		oth sexes	
c) Traits which influence			
d) All of the above	·		
578. Variation stands for diffe	rences in traits of proge	enies from	
a) Each other	, 0	b) Parents	
c) Both (a) and (b)		d) From mother only	
579. In which mode of inherit	ance, do you expect mo		ng the offsprings?
a) Autosomal	b) Cytoplasmic	c) Y-linked	d) X-linked
580. Mutagens are			,
a) Chemical agents which	h cause change in DNA		
b) Physical agents which			
c) Cancer producing age		10000000	
d) Both (a) and (b)	PLUS ED	JCATION	
581. Which is incorrect for Me	endelism?		
a) Works on garden pea		b) Law of segregation	proved by monohybrid cross
c) Discovered linkage		d) All of the above	
,	n, the individual expres	•	the phenotype is exemplified by
a) Colourblindness	b) AB blood group	c) Rh factor	d) A and B blood group
583. Polyploid derived from t	, ,		ý .
a) Autopolyploid	b) Triploid	c) Allopolyploid	d) monoploid
584. Walter Sutton is famous	for his contribution to	, , ,	, .
a) Genetic engineering		b) Totipotency	
c) Quantitative genetics		d) Chromosomal theo	ory of inheritance
585. Humans knew from as ea	arly asA BC that one		-
reproduction. They explo	oidedC that were na	turally present in wild pop	oulation, A , B and C here refer to
a) A-8000-1000 BC, B-se			
b) A-8000-15000 BC, B-s	sexual, C-similarity		
c) A-8000-15000 BC, B-s			
d) A-20000-25000 BC, B	-		
586. Punnett square was deve	•		
a) RC Punnett	b) RB Punnett	c) RD Punnett	d) RE Punnett
587. Female is heteromorphic			
a) Fishes and bird	1	b) Reptiles	
c) Butterflies and moth		d) All of these	

588. Absence of one sex chromosome causes		
a) Turner's syndrome	b) Klinefelter's syndrome	
c) Down's syndrome	d) Tay-Sach's syndrome	
589. Mendelian recombinations are due to		
a) Linkage	b) Mutations	
c) Dominant characters	d) Independent assortme	
590. The important things to remember are that chromos	-	ır inA The two alleles
of a gene pair are located on homologous sites onI	3 chromosomes	
Choose the correct choice for A and B		
a) A-single, B-analogous	b) A-pair, B-analogous	
c) A-pair, B-homozygous	d) A-single, B-heterozygo	us
591. The type of chromosomal aberration indicated in the	e diagram shows	
ABC DEFG		
(ABD)CEFG		
a) Interstitial translocation	b) Reciprocal translocation	on
c) Pericentric inversion	d) Paracentric inversion	
592. Who proposed chromosomal theory of linkage?	,	
a) Morgan b) Castle	c) Both (a) and (b)	d) Bateson
593. Which factor expresses itself in homozygous and eve		-
a) Dominant factor b) Weak factor	c) Recessive factor	d) Incomplete factor
594. Number of autosomes in human are		, ,
a) 23 pairs	b) 22 pairs	
c) 46 chromosomes	d) 33 pairs of chromosom	nes
595. A tall plant was grown in nutrient deficient soil and	· •	
then		1
a) All hybrid plants are dwarf	b) All hybrid plants are ta	ıll
c) 50% tall and 50% dwarf	d) 75% tall and 25% dwa	
596. A man of blood group-A, marries a woman of blood g	-	
group, chances of their first child having blood group	-	, ,
a) 25% b) 50%	c) 75%	d) 100%
597. Mendel's laws of inheritance are applicable only for		
a) Protista b) Monera	c) Diploid organism	d) Both (a) and (b)
598. The factors which expresses only in homozygous con	ndition is	
a) Dominant b) Recessive	c) Hidden	d) Cryptic
599. Human skin colour is the example of		· · ·
I. multiple gene inheritance		
II. three separate genes controlling this trait		
III. single gene controlling this trait		
IV. two gene controlling this trait		
V. environment plays a significant role in this trait		
Choose the correct option		
a) I, II and III b) II, III and IV	c) III, IV and V	d) I, II and V
600. In haemophilia, a single protein that is a part of casc	ade of protein involved in .	A ofB is affected.
Single cut will result inC bleeding.		
Choose the correct option for A, B and C		
a) A-coagulation, B-RBC, C-continuous	b) A-coagulation, B-WBC,	C-continuous
c) A-clotting, B-blood, C-continuous	d) A-coagulation, B-blood	l, C-continuous

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 45

 $601.\ In\ Drosophila$, the allele for a normal grey body colour G is dominant to ebony body g. The following table

summarises the results of several crosses

S.No	Cross	Result
I.	Strain 1 ×	All wild
	gg	type
II.	Strain 2 ×	1 wild type
	gg	: 1 ebony
III.	Strain 3 ×	All ebony
	gg	
IV.	Strain 4 ×	3 wild type
	gg	: 1 ebony

Which strains both have the genotype Gg?

a٦	I	and	Ш
u,		anu	111

c) II and III

d) II and IV

602. An Rh⁻individual receives Rh⁺blood. The recipient becomes

a) Sterile

b) Dead

c) No reaction

d) isoimmunized

603. In a mutational event, when adenine is replaced by guanine, it is the case of

a) Frameshift mutation

b) Transcription

c) transition

d) transversion

604. Recessive characters are expressed

a) On any autosome

b) On both the chromosomes of female

c) When they are present on X-chromosomes of maled) When they are present on X-chromosomes of female

605. The crossing of F₁ to any one of the parents is called

a) Back cross

b) Test cross

c) F₁ cross

d) All of these

606. In cross between yellow round (YYRR) and green wrinkled (yyrr) find out the ratio between seeds having yellow and green seed colour

a) 3:2

b) 3:1

c) 9:7

d) 7:9

607. Genes for colour blindness is carried by

I. Abnormal development II. Father

III. Mother

IV. Autosomes

a) I and II

b) II and III

c) III and I

d) I and IV

608. Monosomy and trisomy are respectively

a) n - 1, n + 2

b) 2n + 2, 2n + 1

c) 2n-1, 2n+1

d) n - 2, 2n + 1

609. I. Haemophilia

II. Cystic fibrosis

III. Sickle-cell anaemia

IV. Colour blindness

V. Cancer

VI. Plague

VII. Phenylketonuria

VIII. Thalassaemia

Choose the correct options for Mendelian disorders

a) I, II, III, IV, VI, VIII

b) I, II, III, IV, VII, VIII

c) I, II, III, IV, V, VI

d) I, II, III, IV, V, VIII

610. in $\alpha\text{-thalassaemia},$ the affected chromosomes is

a) 16th

b) 17th

c) 18th

d) 19th

611. The first hybrid progenies obtained by Mendel were called

a) F₁- progeny

b) F₀- progeny

c) F₂- progeny

d) F₃- progeny

612. What type of gametes will form by genotype RrYy?

a) RY, Ry, rY, ry

b) RY, Ry, ry, ry

c) Ry, Ry, Yy, ry

d) Rr, RR, Yy, YY

613. A condition, where a certain gene is present in only a single copy in a diploid cell, is called

a) Heterozygous

b) Monogamous

c) Homozygous

d) hemizygous

614. Frequency of crossing	ng over isA in linked gene	eB in unlinked gene.				
Choose correct comb	oination for A and B					
a) A-more; B-less						
b) A-less; B-more						
c) A-same; B-same						
d) A-same; B-happei	ned					
615. Find out the phenoty	ypic and genotypic ratios in p	revious question				
a) 1:2:1,1:3	b) 1:2:1,3:1	c) 1:2:1,1:2:1	d) 1:3:1,1:2:1			
616. Which one of the following	lowing is necessary to start cl	lotting of blood?				
a) Heparin		b) Serotonin				
c) Thromboplastin a	ınd Ca ²⁺	d) Fibrinogen and proth	d) Fibrinogen and prothrombin			
617. The organism chose	n by Mendel to explain the la	w of inheritance is				
a) Drosophila mela	nogaster	b) Antirrhinum majus				
c) Pisum sativum		d) Homo sapiens				
618. A woman is married	for the second time. Her first	t husband was ABO blood ty	pe A, and her child by that			
marriage was type C). Her new husband is type B	and their child is type AB.				
	's ABO genotype and blood ty					
a) I ^A I ^O ; Blood type A	A b) I ^A I ^B ; Blood type AB	c) I ^B I ^O ; Blood type B	d) I ^O I ^O ; Blood type O			
619. A couple has 6 child	ren-5 are girls and 1 is boy. T	he percentage of having a gi	rl on next time is			
a) 10%	b) 20%	c) 50%	d) 100%			
620. On selfing RrTt, we բ	produce 400 plants, find out r	number of plants with genot	ype RrTt.			
a) 100	b) 225	c) 50	d) 300			
	f blood groups, if both antige	ns are present but no antibo	dy, the blood group of the			
individual would be	No La	e .				
a) B	b) 0	c) AB	d) A			
622. Barr body in mamm	_					
	omatin in female cells	LCATION				
	chromosomes in somatic cell					
•	omatin in male and female ce	lls				
•	ne in somatic cells of male					
	a chromosome breaks and lat	•	n,it is known as			
a) Deletion		b) Duplication				
c) Inversion		d) Interstitial transloca				
	s controlled by several gene p		-			
-		-	n incompletely dominant one			
	elanin deposition and an inco					
•	-	s a very light skinned womer	n, what will be the chance that			
their offspring will h) = 40	2006			
a) 0	b) 1/4	c) 5/8	d) 9/64			
	tween AA and aa, the nature					
a) Genotypically AA,		b) Genotypically Aa, ph				
c) Genotypically Aa,		d) Genotypically aa, phe	enotypically A			
	romatin) of a normal female					
	mosome of paternal side become	omes inactive to form Barr b	oody			
b) Y-chromosomes f	_					
<u>-</u>	condense near centre of nucl	_	1 1 1			
membrane	mosome of maternal side bec					
627 In cartain plant space	ies red flower colour is incor	mpletely dominant to white	flower colour (the			

heterozygote is pink) and tall stems are completely dominant to dwarf stem. If a tall pink plant (TtRr) is crossed with a tall white plant (TTrr), which one of the following type of plants would be produced in the offsprings?

a) Tall pink and tall white

b) Dwarf pink and tall red

c) Dwarf red and tall pink

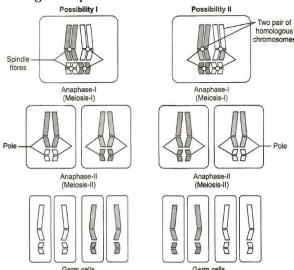
- d) Tall pink and dwarf white
- 628. Which is true about meiotic cell division?
 - I. Meosis only occurs in diploid organism without any exception
 - II. RNA is replicated during S-phase
 - III. Chromatids of a chromosome separate during anaphase-I
 - IV. Only sperms are produce by this process
 - a) I and III
- b) I and II
- c) Only I
- d) III and IV
- 629. Work of Beadle and Tatum on Neurospora crassa proved that
 - a) Replication of DNA is semi-conservative
- b) Viruses have genetic material
- c) Every gene is responsible for specific enzymes
- d) Plant cells are totipotent
- 630. Which of the following pairs of chromosomal mutation are most likely to occur when homologous chromosomes are under going synapsis?
 - a) Deletion and inversion

b) Duplication and translocation

c) Deletion and duplication

d) Inversion and translocation

- 631. Down's syndrome is an example of
 - a) Anueploidy
- b) Polyteny
- c) Polyploidy
- d) Monoploidy


- 632. Mendel's works were read out the
 - a) Natural History Society in Russia
 - c) Natural History Society in Brunn
- b) Natural History Society in America
- d) Natural History Society in Germany
- 633. Genes of which of the following disorder are present exclusively on the X-chromosome in humans or concerned with
 - a) Baldness

- b) Red-green colour blindness
- c) Facial hair/moustaches in males
- d) Night blindness
- 634. In a given plant, red colour (R) of fruit is dominant over white fruit (r); and tallness (T) is dominant over dwarfness (t). If a plant with genotype RRTt is crossed with a plant of genotype rrtt, what will be the percentage of tall plants with red fruits in the next generation?
 - a) 100%
- b) 25%

c) 50%

d) 75%

635. The figure depicits

- a) Linkage
- c) Law of dominance

- b) Independent assortment
- d) Equational division

636. Pick out the correct statements.					
I.Haemophilia is a sex-linked recessive disease					
II.Down's syndrome is due to aneuploidy III.Phenylketonuria is an autosomal dominant gene o	dicardar				
IV.Phenylketonuria is an autosomal recessive gene d					
V.Sickle cell anaemia is an X-linked recessive gene di					
a) I, III and V are correct	b) I and III are correct				
c) II and V are correct	d) I, II and IV are correct	l			
637. Allelic sequence variations, where more than one variations	riant (allele) at a locus in a	numan population with a			
frequency greater than 0.01, is referred to as	12.84 1.1 1. 11. 11				
a) Incomplete dominance	b) Multiple allelism				
c) SNP	d) DNA polymorphism				
638. Sex chromosomes of a female bird are represented b		15			
a) XO b) XX	c) XY	d) ZW			
639. How many types of gametes may be produced by gen					
a) 27 b) 8	c) 3	d) 6			
640. If a colourblind women marries a normal visioned n					
a) All normal visioned	b) One half normal and or	ne half colourblind			
c) Three fourth colourblind and one fourth normal	d) All colourblind				
641. Genic balance theory of sex determination, stated by	C B Bridges, is related to				
a) Drosophila melanogaster	b) rumex				
c) Snapdragon	d) None of the above				
642. In human beings, 45 chromosomes/single X/XO abn	ormality causes				
a) Down's syndrome b) Klinefelter syndrome	c) Turner's syndrome	d) Edward's syndrome			
643. When a cluster of genes show linkage behaviour the	y				
a) Do not show independent assortment	b) Induce cell division				
c) Do not show a chromosome map	d) Show recombination d	uring meiosis			
644. Colour blindness is a failure to discriminate between	AHON				
a) Red and blue b) Red and green	c) Red and black	d) Red and white			
645. Linkage group in <i>E.coli</i> is/are					
a) 4 b) 2	c) 1	d) 5			
646. Linked Cross Over					
Gene pair Value (COV)					
T and U 25					
T and V 5					
V and U 30					
U and W 10					
V and W 20					
COV are given for linked gene pair. Find out their sec	=	12 1 11 1 11 11			
a) VTWU b) TVWU	c) BTWVU	d) VWTU			
647. The tendency of offsprings to resemble their parents		12.75			
a) Variation b) Heredity	c) Inheritance	d) Resemblance			
648. In case of incomplete dominance, what will be the ph					
a) 1:2:1 b) 3:1	c) 1:1:1:1	d) 9:3:3:1			
649. The major reason for the success of Mendelian exper					
a) Garden pea was true breeding	b) Garden pea was cross breeding				
c) Garden pea was heterozygous	d) Garden pea was not eas	sily available			
650. Which of the following is best suited for codominance	e?	·			
a) Both of recessiveb) Both of dominantABO blood group system is given by		d) One is dominant			

a) Landatainar l	o) Wallace	c) de Vries	d) Lamarck			
•						
652. Which of the following is ge	enerally used for induced		S:			
a) Alpha particles		b) X-rays				
c) UV (260nm)		d) Gamma rays (from cob	balt 60)			
653. Genetic recombination is du						
a) Fertilization and meiosis		b) Mitosis and meiosis				
c) Fertilization and mitosis		d) None of the above				
654. Identify the type of inherita	nce in the given diagram					
上						
		12.5				
a) Dominant X-linked		b) Recessive X-linked				
c) Dominant Y-linked		d) Cytoplasmic or mitoch	ondrial inheritance			
655. Linkage gene do not shows						
a) Independent assortment	-	b) 9:3:3:1				
c) Segregation		d) All of the above				
656. Haploids are more suitable	for mutation studies than	n the diploids. This is becau	ıse			
a) Haploids are reproductive	vely more stable than dip	loids				
b) Mutagens penetrate in h	aploids more effectively t	han in diploids				
c) Haploids are more abund	dant in nature than diploi	ds				
d) All mutations whether d						
657. Mendel's work remain unre		-				
I. Communication was not e						
II. Concept of factors which		cepted				
III. Use of mathematics to e	III. Use of mathematics to explain biological problem was unacceptable					
IV. He could not provide an		xistence of factors				
Choose the right combinati						
-	o) II and III	c) III and IV	d) All of these			
658. Ratio of progeny, when a re		is crossed with a white col	oured plant in which red			
colour is dominant to white						
•	o) 1 : 1	c) 1:2:1	d) 9:3:3:1			
$659. \ Mendel \ self-pollinated \ the \ F_2-plant \ and \ found \ that \ A \ plants \ continued \ to \ generate \ dwarf \ plant \ in \ B$						
andC generations. He c	oncluded that the genoty	pe of the dwarfs isD				
Choose the correct option for	or A, B, C and D					
a) A-dwarf, B-F ₃ , C-F ₄ , D-ho	omozygous	b) A-dwarf, B-F ₃ , C-F ₄ , D-	heterogygous			
c) A-tall, B-F ₅ , C-F ₆ , D-hom	ozygous	d) A-tall, B-F ₅ , C-F ₆ , D- he	eterogygous			
660. The possibility of erythrobl	astosis foetalis occurring	during the second pregnar	ncy is when			
a) The baby is Rh ⁺ and mot	her Rh ⁻	b) The baby and mother a	are Rh ⁺			
c) The baby and mother are	e Rh-	d) The baby is Rh ⁻ and m	other Rh ⁺			
661. I. Enborn error of metabolis	sm					
II. Homozygous recessive a		nosomes 12 causes absenc	e of the specific enzyme			
III. A specific amino acid do			2 22 and opeomic enzyme			
-	-		l retardation			
IV. Accumulation of phenylpyruvic acid and other derivatives leading to mental retardation The above facts refer to						
a) Muscular dystrophy		b) Phenylketonuria				
c) Turner's syndrome		d) Down's syndrome				
cjiainer a aynurunie		a, bown a synulunc				

662.1	How many phenotype and	d genotypes are possible in	ABO blood group systems	?	
á	a) Four, five	b) Four, six	c) Four, seven	d) Three, four	
663. l	Lack of independent asso	rtment of two genes-A and	B in fruit fly-Drosophila is	due to	
á	a) Repulsion	b) Recombination	c) Linkage	d) Crossing over	
664. l	Mendel was successful in	discovering the principles	of inheritance as		
ä	a) He took pea plants for	his experiments	b) He did not encounter l	inkage between the genes	
			for the characters he c	onsidered	
(c) He had an in-depth kno	owledge on hybridization	d) He was a famous math	ematician	
665.7	The common point of atta	achment of all the arms of p	olytene chromosome, is kı	nown as	
á	a) Centromere	b) Chromomere	c) Chromocentre	d) centrosomes	
666.0	Choose the correct option	ı for allotetraploid			
ä	a) AABB	b) AAAA	c) AAABB	d) BBBB	
667.1	Mutation is more commo	n when it is present in			
á	a) Recessive condition		b) Dominant condition		
(c) Constant in population	l	d) None of these		
668.	Allelism refers to				
á	a) genic interactions cont	rolling a character	b) Multiple genes control	lling a character	
(c) Expression of many ch	aracters by a single gene	d) Alternative forms of a gene at a given locus		
669.	Which one pair of parents	s is most likely get a child, v	-	_	
1	born?			•	
	a) Rh ⁺ mother and Rh [–] fa	ather	b) Rh ⁻ mother and Rh ⁻ f	ather	
			,		
($_{ m c)}$ Rh $^+$ mother and Rh $^+$ fa	ather	d) Rh ⁻ mother and Rh ⁺ f	ather	
670 I	Mendel performed test cr	oss to know the			
	a) Genotype of F ₁	b) Genotype of F ₂	c) Genotype of F ₃	d) Genotype of F ₄	
	Change in single base pair		ej denotype or r 3	a) denotype of 14	
	a) May not change the ph		b) Quickly changed the p	henotyne	
	c) Change the natural pro		d) None of the above	пеносуре	
	Find out the correct state		a) None of the above		
		my are the two types of eu	nloidy		
	-	nmon in animals than in pla			
		o the failure in complete se		somes	
	d) 2 <i>n</i> -1 condition results		paradion of sets of emonio	somes	
	•	m crisomy henylalanine gets converte	d to		
	a) Acetic acid	b) Phenyl acetic acid	c) Phenyl pyruvic acid	d) Pyruvic acid	
		g is a genetically transmitte		aj i yi avie acia	
	a) Colourblindness	b) Hydrocephalus	c) Haemophilia	d) All of these	
	•	e for given symbols (A and	•	a) In or these	
	\square A \square B	e for given symbols (fruita	2)		
á	a) A-consenguineous mat	ing; B-mating	b) A-mating; B-mating be	etween relatives	
	c) A-mating; B-consengui		d) Both (b) and (c)		
	, ,	between the two parents.			
	a) Codominance	F	b) Dominance		
	c) Blending inheritance		d) Incomplete dominance	e	
	Multiple phenotype seen	in	,	-	
	a) Pleiotropy		b) Incomplete dominance	۵	
	c) Multiple allelism		d) Polygenic inheritance	-	
	-	otic locus character of an or	ganism changes due to the	chango in	

a) Protein structure b) DNA replication c) Protein synthesis pattern d) RNA transcription pattern 679. In XX and XY type of sex determination, the males are b) Heterogametic a) Homogametic c) Both (a) and (b) d) Isogametic 680. Dihybrid ratio of test cross 1:1:1:1 proves that a) F₁hybrid produces four different progenies b) F₁ hybrid produces two different progenies c) Parents produce two different progenies d) None of the above 681. A homozygous sweet pea plant with blue flowers (RR) and long pollen (R_0, R_0) is crossed with a homozygous plant having red flowers (rr) and round pollen (r_0, r_0) . The resultant F_1 hybrid is test crossed. Which of the following genotype does not appear in its progeny? d) $\frac{3}{16}$ a) $\frac{1}{4}$ c) $\frac{1}{16}$ 682. Mendel's findings were rediscovered by a) De Vries b) Correns c) Tschermark d) All of these 683. The salivary gland chromosomes in the dipteran larvae are useful in gene mapping because a) These are much longer in size b) These are easy to stain c) These are fused d) They have endoreduplicated chromosomes 684. Percentage of recessive phenotype in a cross between PP and Pp, when P is dominant, p recessive b) 50% a) 25% c) 35% d) 100% 685. Genes are made up of a) Histones b) Hybrocarbons c) Polynucleotides d) Lipoproteins 686. The diagram indicates yR (1/4) YR (1/4) yy Rr (1/4) -Parental Recombinant a) Test cross of monohybrid b) Test cross of dihybrid c) Back cross of dihybird d) Back cross of monohybrid 687. Type of substitution takes place in sickle-cell anaemia is a) Acidic amino acid to an neutral amino acid b) Glutamic acid by valine c) GUG to GAG d) All of the above 688. In the hexaploid wheat, the haploid (*n*) and basic (*x*) numbers of chromosomes are a) n=7 and x=21b) n=21 and x=21c) n=21 and x=14d) n=21 and x=7689. Persons who are colourblind can not distinguish a) Red and green colour b) Yellow and white colour d) Yellow and blue colour c) Black and white colour

691. Sickle-cell anaemia happens due to ...A... mutation in which ...B... of haemoglobin is affected. Fill the correct option for A and B

c) Ants

690. Haploid-diploid mechanism of sex determination (haplodiploidy) takes place in

b) Wasps

d) All of these

a) Bees

	a) A-point; B-β-chain		b) A-chromosomal; B-α-chain		
	c) A-allele; B-α-chain		d) A-non-allele; B-chain		
692	. The gene of sickle cell ana	nemia is inherited by			
	a) Blood cells	b) Bone cells	c) Sex chromosomes	d) autosomes	
693	. A character, which is expi	essed in a hybrid is called			
	a) Dominant	b) Recessive	c) Codominant	d) epistatic	
694	. The first definite proof of	mutagenic action of X-rays	was given by		
	a) Muller	b) Hooker	c) Lister	d) Leeuwenhoek	
695	. If the genotype of an indiv	ridual consists of only one	type of genes at same locus	. It is called	
	a) Homozygous	b) Heterozygous	c) Monoallelic	d) Uniallelic	
696	. The nucleoprotein structi	ires that occur at the ends	of the chromosomes are		
	a) Centrosomes	b) Telomeres	c) Centromeres	d) Satellites	
697	. In polytene chromosomes	s dark bands are visible. Th	ese bands are formed by th	ne position of	
	a) Protein particles		b) Chromomeres on chron	monemata	
	c) Nucleosomes		d) None of the above		
698	. Chances of segregation of	alleles in gametes are			
	a) 25%	b) 35%	c) 50%	d) 75%	
699	. In <i>Drosophila</i> , gene for w	hite eye mutation is also re	esponsible for depigmentat	tion of body parts. Thus , a	
	gene that controls severa	l phenotypes is called			
	a) Oncogene	b) Epistatic gene	c) Hypostatic gene	d) Pleiotropic gene	
700	. Hypertrichosis is an exam	ple of which inheritance?			
	a) Holandric		b) Incomplete sex-linked		
	c) Sex -influenced	Sale 1	d) Sex –limited		
701	. The mutagenic agent amo	ong following is			
	a) Ethyl methane	b) Ethylene	c) 2, 4-D	d) IAA	
702	. The most important exam	iple of point mutation is for	und in a disease called		
	a) Thalassemia	b) Night blindness	c) Down's syndrome	d) Sickle-cell anaemia	
703			cross 1 : 1 ratio is obtained		
	a) Tt and tt	b) tt and tt	c) Tt and Tt	d) TT and Tt	
704		chromatid during cell divisi	on cycle results in the gain	or loss of chromosome	
	which as called				
	a) Aneuploidy	b) Hypopolyploidy	c) Hyperpolyploidy	d) Polyploidy	
705	. Genes are present on				
	a) Chromosomes	b) Lamellae	c) Plasma membrane	d) mesosomes	
706		·	ow many traits were domir		
	a) 7 and 7	b) 8 and 6	c) 6 and 8	d) 5 and 9	
707		ll determination of sex is/a			
	a) Alligators	b) Turtles	c) <i>Bonelia</i>	d) All of these	
708	. Dominant allele are expre	essed in			
a) Second generation		b) Homozygous condition			
	c) Heterozygous conditio		d) Both (b) and (c)		
709			et of autosome is 0.5. Then		
	a) Female	b) Superfemale	c) Male	d) Supermale	
710	=			h wrinkled seeds (ttrr), the	
		tall plants with rounded se	eds. How many types of ga	metes, an F ₁ -plant would	
	produce?		_		
_	a) One	b) Three	c) Four	d)	
711			gene. For that gene, the all		
	green. You have a plant w	ith orange leaves, but do no	ot know whether that plant	t's genotype is GG or Gg	

	•	vn plant with one of the plan		d below, you will be able to				
		n's genotype. With which pl b) Gg	c) Gg	d) Either of parents				
712	a) GG Which of the following d	, ,	, 0	d) Either of parents				
/14.	712. Which of the following discoveries resulted in a Nobel Prize? a) Recombination of linked genes							
		teu genes						
	b) Genetic engineering	rod rogogojivo lothal mutation	20					
	c) X-rays induce sex-linked recessive lethal mutationsd) Cytoplasmic inheritance							
712	, , .		TATIL at in terms of a set lain as an					
/13.		ner and a colourblind sister.						
	•		•	lind but mother was carrier				
	c) Both father and mother		d) Both father and mothe					
714.		and F ₂ -generation Mendel p		as stably passed down				
	_	ive generation and called thi	-					
	a) Alleles	b) Genes	c) Chromosomes	d) Factors				
715.		e is a consequence of presen	-					
	a) Mitochondria and chlo	=	b) Endoplasmic recticului					
	c) Ribosomes and chloro	_	d) Lysosomes and riboso	mes				
716.	The F_2 genotypic ratio of							
	a) 0%	b) 25%	c) 50%	d) 100%				
717.	Colour blindness is due t							
	a) Cones	b) Rods	c) Rods and cones	d) Rhodopsin				
718.	In F ₂ -generation, quantit	tative inheritance 1 : 4 : 6 : 4	: 1 is obtained instead of					
	a) 9:3:3:1	b) 8:6:4:1	c) 7:4:1:4	d) 6:6:4:7				
719.	Leaf colour in Mirabilis,	<i>ialapa</i> is an example of						
	a) Non-Mendelian inheri	tance	b) Mendelian inheritance					
	c) Chemical inheritance		d) Both (b) and (c)					
720.	I. Trisomy of sex (X) chro	omosome	LACITAL					
	II. XXY+44	Corplus EDUC	AHUN .					
	III. 21st trisomy							
	IV. Sterile male							
	V. Gynaecomastia							
	Choose the correct optio	n for Klinefelter's syndrome						
	a) I, II, III and IV b) I, II, IV and V c) II, III, IV and V d) I, III, IV and V							
721.	721. Consider the following statement regarding ABO blood group in human							
	I. It is controlled by mult	iple allele						
	II. It shows codominance							
	III. Codominance can be	manifested phenotypically i	n human					
	IV. It follows the Mendel	law of inheritance						
	Which of the following st	tatements (s) are correct?						
	a) Only I is correct		b) I and II are correct					
	c) II and III are correct		d) IV and II are correct					
722.	Brachydactyly is due to							
	a) Dominant gene on the	autosome	b) Recessive gene on the autosome					
	c) Dominant gene on the sex chromosome		d) None of the above					
723.	· -		•	sion of meta-male character				
	in Drosophila?		•					
	a) 2A+3X	b) 3A+3X	c) 4A+3X	d) 3A+XY				
724.		an two allele controlling the						
	a) Many alleles	b) Polyalleles	c) Multiple alleles	d) All of these				

725. Mon	ohybrid c	ross dea	ls with				
a) 01	ne charac	ter	b) Two character	c) Three char	acters	d) Four characters	
726. X-ch	romosom	es of fen	nale, in a case of sex-linked	inheritance, can b	e passec	d on to	
a) Only female progeny			b) Only male ր	orogeny			
c) O	c) Only in grand daughter			d) Male and fe	male pr	ogeny	
727. Iden	tify the ty	pe of mi	ıtation in given diagram				
		*********	DNA				
••••	AACTG	ATCC	A				
		e mutation					
<u>.</u>	TTTTT AACTG	TATC	C A				
a) In	version		b) Insertion	c) Deletion		d) Substitution	
728. The	recessive	parenta	l trait is expressed without	any blending in th	e F ₂ -ger	neration, we can infer. That F	' ₁
plan	ts produc	e gamet	e by the process ofA an	d allele of parental	pair se	parateB from each other	
and	only one g	gamete i	s transmitted a gamete. He	re A and B are			
			b) A-meiosis;	b) A-meiosis; B-segregate			
c) A-meiosis; B-aggregate			d) A-mitosis; l	3-segreg	gate		
729. If a c	ross betw	een two	individuals produces offs	pringe with 50% do	ominant	character (A) and 50%	
rece	ssive char	acter (a),then the genotypes of par	ents are			
a) Sex linked alleles		b) Asexually r	b) Asexually reproducing forms				
c) Se	exually int	erbreed	ing forms	d) Diploid hor	nozygou	ıs forms	
730. The	similar an	d dissin	nilar sex chromosomes of f	emales and males a	re desc	ribed as	
a) H	ormomor	phic	b) Heteromorphic	c) Both (a) an	d (b)	d) Isomorphic	
731. Star	ch synthes	sis gene	in pea plant in heterozygo	us condition produ	ces star	ch grain of intermediate size	
This	shows						
a) Co	omplete d	ominan	ce	b) Incomplete	b) Incomplete dominance		
c) Co	odominan	t	CIPLUS EDL	d) Dominant	V		
732. Seled	ct the corr	ect base	es of DNA, RNA and amino a	acid of beta chain r	esulting	in sickle cell anaemia.	
DNA	RI	ıA Al	nino Acid				
a) C	ΓC/GAG	GUG	Glutamic acid	b) CAC/GAG	GUG	Valine	
c) CA	AC/GTC	GAG	Valine	d) CTC/GAG	GUG	Valine	