ANSWERS

Chapter 9

9.1 1.8 (a) From the given graph for a stress of 150×10^6 N m⁻² the strain is 0.0029.2 (b) Approximate yield strength of the material is $3\times 10^8~\mbox{N}\ \mbox{m}^{-2}$ 9.3 (a) Material A (b) Strength of a material is determined by the amount of stress required to cause fracture: material A is stronger than material B. (a) False (b) True 9.4 1.5×10^{-4} m (steel); 1.3×10^{-4} m (brass) 9.5 Deflection = 4×10^{-6} m 9.6 2.8×10^{-6} 9.7 9.8 0.127 $7.07 \times 10^4 \,\mathrm{N}$ 9.9 9.10 $D_{copper}/D_{iron} = 1.25$ 9.11 $1.539 \times 10^{-4} \,\mathrm{m}$ 9.12 $2.026 \times 10^9 \, \text{Pa}$ 9.13 $1.034 \times 10^3 \, \text{kg/m}^3$ 9.14 0.0027 9.15 $0.058\,\mathrm{cm^3}$

 $2.2 \times 10^6 \, \text{N/m}^2$

9.16

396 PHYSICS

- **9.17** Pressure at the tip of anvil is 2.5×10^{11} Pa
- **9.18** (a) 0.7 m (b) 0.43 m from steel wire
- 9.19 Approximately 0.01 m
- 9.20 260 kN
- **9.21** $2.51 \times 10^{-4} \,\mathrm{m}^3$

Chapter 10

- 10.3 (a) decreases (b) η of gases increases, η of liquid decreases with temperature (c) shear strain, rate of shear strain (d) conservation of mass, Bernoulli's equation (e) greater.
- **10.5** $6.2 \times 10^6 \, \text{Pa}$
- **10.6** 10.5 m
- 10.7 Pressure at that depth in the sea is about 3×10^7 Pa. The structure is suitable since it can withstand far greater pressure or stress.
- **10.8** $6.92 \times 10^5 \,\mathrm{Pa}$
- 10.9 0.800
- **10.10** Mercury will rise in the arm containing spirit; the difference in levels of mercury will be 0.221 cm.
- **10.11** No, Bernoulli's principle applies to streamline flow only.
- **10.12** No, unless the atmospheric pressures at the two points where Bernoulli's equation is applied are significantly different.
- **10.13** 9.8×10^2 Pa (The Reynolds number is about 0.3 so the flow is laminar).
- 10.14 1.5 × 10³ N
- 10.15 Fig (a) is incorrect [Reason: at a constriction (i.e. where the area of cross-section of the tube is smaller), flow speed is larger due to mass conservation. Consequently pressure there is smaller according to Bernoulli's equation. We assume the fluid to be incompressible].
- 10.16 0.64 m s⁻¹
- **10.17** $2.5 \times 10^{-2} \text{ N m}^{-1}$
- **10.18** 4.5×10^{-2} N for (b) and (c), the same as in (a).
- **10.19** Excess pressure = 310 Pa, total pressure = 1.0131×10^5 Pa. However, since data are correct to three significant figures, we should write total pressure inside the drop as 1.01×10^5 Pa.