GPLUS EDUCATION

_	di Los Location	
Dat Tim	ne : CHEMISTRY	
Mai	rks:	
	REDOX REACTIONS	
	Single Correct Answer Type	
1.	Which among the following shows maximum oxidation state?	
-	a) V b) Fe c) Mn d) Cr	
2.	A substance, that by its sharp colour change indicates the completion of reaction is known as :	
	a) Acid b) Base c) Indicator d) None of these	
3.	In the reaction, $CH_3OH \rightarrow HCOOH$, the number of electrons that must be added to the right is:	
	a) 4 b) 3 c) 2 d) 1	
4.	A solution of $KMnO_4$ is reduced to MnO_2 . The normality of solution is 0.6. The molarity is:	
	a) 1.8 <i>M</i> b) 0.6 <i>M</i> c) 0.1 <i>M</i> d) 0.2 <i>M</i>	
5.	In the reaction of O_3 and H_2O_2 , the later acts as :	
	a) Oxidising agent	
	b) Reducing agent	
	c) Bleaching agent	
	d) Both oxidising and bleaching agent	
6.	Of the following reactions, only one is a redox reaction. Identify this reaction.	
	a) $Ca(OH)_2 + 2HCI \rightarrow CaCl_2 + 2H_2O$ b) $2S_2O_7^{2-} + 2H_2O \rightarrow 2SO_4^{2-} + 4H^+$	
_	c) $BaCl_2 + MgSO_4 \rightarrow BaSO_4 + MgCl_2$ d) $Cu_2S + 2FeO \rightarrow 2Cu + 2Fe + SO_2$	
7.	Reductants are substances which:	
	a) Show an increase in their oxidation number during a change	
	b) Lose electrons during a changec) Reduce others and oxidise themselves	
	d) All of the above	
8.	In the equation, $SnCl_2 + 2HgCl_2 \rightarrow Hg_2Cl_2 + SnCl_4$. The equivalent weight of stannous chlor	ide
0.	(molecular weight = 190) will be:	iuc
	a) 190 b) 95 c) 47.5 d) 154.5	
9.	The oxoacid which acts both as oxidising and reducing agent is :	
	a) H_2SO_4 b) H_3PO_4 c) HNO_2 d) $HCIO_4$	
10.	Oxidation state of oxygen is -1 in the compound :	
	a) NO_2 b) MnO_2 c) PbO_2 d) Na_2O_2	
11.	When sulphur dioxide is passed in an acidified K ₂ Cr ₂ O ₇ solution, the oxidation state of sulphur is change	ed
	from	
	a) 4 to 0 b) 4 to 2 c) 4 to 6 d) 6 to 4	
12.	Reduction is a process which involves:	
	a) Electronation	
	b) Addition of hydrogen or removal of oxygen	
	c) Addition of metal or removal of non-metal	
	d) All of the above	
13.	The number of electrons lost or gained during the change $Fe + H_2O \rightarrow Fe_3O_4 + H_2$ is	
	a) 2 b) 4 c) 6 d) 8	
14.	A group of methods of quantitative chemical analysis involving the measurement of volume of react	ing
	substance is known as:	
	a) Gravimetric analysis b) Volumetric analysis c) Both (a) and (b) d) None of the above	

15.	which one of the following	g reaction is possible at ano			
	a) $F_2 + 2e^- \rightarrow 2F^-$		b) $2H^+ + \frac{1}{2}O_2 + 2e^- \rightarrow H$	H_2O	
	c) $2Cr^{3+} + 7H_2O \rightarrow Cr_2O_7^{2-} + 14H^+ + 6e^-$		4		
16.				nitrate ion in the reaction	
	would be:				
	a) 6.20	b) 7.75	c) 10.5	d) 21.0	
17.	WI ich acts as a reducing a	gent?			
	a) HNO ₃	b) KMnO ₄	c) H ₂ SO ₄	d) $(COOH)_2$	
18.	What weight of HNO ₃ is no	eeded to convert 5 g I_2 into	$HIO_3, HNO_3 \rightarrow NO?$		
		b) 24.8 g	c) 6.2 g	d) 10.2 g	
19.	When SO ₂ is passed in acid				
	=	b) $+4$ to $+2$	c) +4 to +6	d) +6 to +4	
20.	Among the properties give		ties shown by CN ⁻ ion tow	ards metal species is :	
	1. Reducing; 2. Oxidising;		3.4.0	N 0 0	
0.4	•	b) 1, 2, 3	c) 1, 2	d) 2, 3	
21.	Solution of sodium metal i				
22	•	b) Solvated electrons	c) NaOH	d) Sodium amide	
22.	Oxidation numbers of Fe in		a) 11 and 12	d) None of these	
22	•	-	c) +1 and +3	d) None of these	
23.	compound is:	double sait isomorphous	with Moni S Sait. The oxi	dation number of V in this	
	-	b) + 2	c) + 4	d) -4	
24	MnO_4^- is a good oxidising a			uj 1	
21.	$MnO_4^- \rightarrow Mn^{2+}$	gent in amerent meatain	changing to		
	$\rightarrow MnO_4^{2-}$				
	$\rightarrow MnO_2$				
	$\rightarrow Mn_2O_3$	Estus EDITO	ATION		
	Changes in oxidation numl	ber respectively are	ATION		
	-	b) 5,4,3,2	c) 5,1,3,4	d) 2,6,4,3	
25.	The oxidation number of B	Ba in barium peroxide is :			
	a) +2	b) -1	c) +4	d) +6	
26.	Strongest reducing agent a	among the following is :			
	a) K	b) Mg	c) Al	d) Ba	
27.	The eq. wt. of $Na_2S_2O_3$ as a		$Na_2S_2O_3 + 5H_2O + 4Cl_2 -$	\rightarrow 2NaHSO ₄ + 8HCl :	
		b) (Mol. wt.)/2	c) (Mol. wt.)/6	d) (Mol. wt.)/8	
28.	When Fe metal is rusted th				
	_	b) Reduced	c) Hydrolysed	d) Precipitated	
29.	The value of n in $MnO_4^- + 8$				
		b) 4	c) 2	d) 3	
30.	In nitric oxide (NO), the ox	•		12 0	
24	,	b) +1	c) -1	d) +2	
31.	Reaction of acidified KMn(
22		b) CO ₂	c) Both (a) and (b)	d) None of these	
3Z.		lution of an oxidising agen	t are reduced by 2 litre of	2.0 <i>N</i> solution of a reducing	
	agent?	h) 4 litro	a) 6 litro	d) 7 litro	
33	a) 8 litreIn which of the following of	b) 4 litre	c) 6 litre	d) 7 litre	
JJ.		b) CO ₂	c) H ₂ O	d) OF ₂	
34.		-	-	+ H ₂ O in the balanced form	
~ 11	1111111111111111111111111111111111	, III die redon rede	103 111 12		

	rocnoctivoly are		
	respectively are	a) 6 1 E	d) E 6 1
25	a) 5, 1, 6 b) 1, 5, 6	c) 6, 1, 5	d) 5, 6, 1
35.	Which compound shows highest oxidation number for		4) NCIO
26	a) HCl b) KClO	c) KClO ₃	d) KClO ₄
36.	The number of Fe^{2+} ion oxidised by one mole of MnO		1) 0 /0
27	a) 1/5 b) 2/3	c) 5	d) 3/2
3/.	The oxidation number and covalency of sulphur in the		
20	a) 0 and 2 b) + 6 and 8	c) 0 and 8	d) +6 and 2
38.	The equivalent weight of iron in Fe_2O_3 would be:) = 4	D 44
0.0	a) 18.6 b) 28	c) 56	d) 11
39.	Oxidation number of carbon in carbon suboxide is:	2 1 4	1
	a) $+\frac{2}{3}$ b) $+\frac{4}{3}$	c) +4	d) $-\frac{4}{3}$
40	Volumetric estimation of CuSO ₄ using hypo as inter	mediate solution along wit	3
101	indicator is an example of:	mediate solution diong wit	in iti solution and staren as
	a) Redox titration b) Acid-base titration	c) Precipitation titration	d) None of these
41	Oxidation state of oxygen in H_2O_2 is	c) Treespitation titration	uj None of these
11.	h) ±2	1	
	a) -1	c) $+\frac{1}{2}$	d) -2
42.	Which reaction indicates the oxidising behavior of H	2SO ₄ ?	
	a) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCl + SO_2Cl_2$		
	b) $2\text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$		
	c) $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$		
	d) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$		
43.	HCO ₃ contains carbon in the oxidation state:		
	a) +5 b) +1	c) +4	d) zero
44.	Oxidation state of oxygen atom in potassium superox	kide (KO ₂) is :	
	a) -1/2 b) Zero	c) +1/2	d) -2
45.	Which of the following reaction involves oxidation as	nd reduction?	
	a) NaBr + HCl \rightarrow NaCl + HBr	b) $HBr + AgNO_3 \rightarrow AgBr \rightarrow$	+ HNO ₃
	c) $H_2 + Br_2 \rightarrow 2HBr$	d) $Na_2O + H_2SO_4 \rightarrow Na_2SO_4$	$50_4 + H_2O$
46.	The number of mole of oxalate ions oxidized by one	mole of MnO_4^- ion is:	
	a) 1/5 b) 2/5	c) 5/2	d) 5
47.	The number of mole of KMnO ₄ that will be needed t	o react completely with on	e mole of ferrous oxalate in
	acidic solution is:		
	a) 3/5 b) 2/5	c) 4/5	d) 1
48.	Equivalent mass of IO_4^- when it is converted to I_2 in a	acid medium :	
	a) <i>M</i> /6 b) <i>M</i> /7	c) M/5	d) <i>M</i> /4
49.	The eq. wt. of Fe_3O_4 in , $Fe_3O_4 + KMnO_4 \rightarrow Fe_2O_3$	$+ MnO_2$ is:	
	a) <i>M</i> /6 b) <i>M</i>	c) 2 <i>M</i>	d) <i>M</i> /3
50.	What volume of 3 molar HNO_3 is needed to oxidise 8	g of Fe ²⁺ to Fe ³⁺ ? HNO ₃ , g	
	a) 8 mL b) 16 mL	c) 32 mL	d) 64 mL
51.	Which ordering of compounds is according to the de		tion state of nitrogen?
	a) HNO ₃ , NO, NH ₄ Cl, N ₂ b) HNO ₃ , NO, N ₂ , NH ₄ Cl		d) NO, HNO ₃ , NH ₄ Cl, N ₂
52.	The oxidation states of iodine in HIO_4 , H_3IO_5 and H_5IO_5		
	a) +1,+3,+7 b) +7,+7,+3	c) +7,+7,+7	d) +7,+5,+3
53.	In which reaction H_2O_2 acts as a reducing agent?		
	a) $Ag_2O + H_2O_2 \rightarrow 2Ag + H_2O + O_2$		
	b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$		
	c) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$		

				Gplus Education			
	d) $H_2O_2 + SO_2 \rightarrow H_2S$	SO_4		•			
54.	In the reaction; 2Ag +	$2H_2SO_4 \rightarrow Ag_2SO_4 + 2I_4$	$H_2O + SO_2$, H_2SO_4 act as:				
	a) Oxidising agent	b) Reducing agent	c) Dehydrating agent	d) None of these			
55.	Oxidants are substance	es which :		-			
		their oxidation number d	uring a change				
	b) Gain electrons duri						
	c) Oxidise others and	_					
	d) All of the above						
56.	•	olour of the flowers by re	duction while the other by ox	idation. The gases are :			
	a) CO, Cl ₂	b) H ₂ S, Br ₂	c) SO ₂ , Cl ₂	d) NH ₃ , SO ₃			
57.	· -	,		KI solution. The liberated I_2			
0			of available chlorine in the san				
	a) 3.55	b) 7.0	c) 35.5	d) 28.2% Cl ₂			
58	The oxidation number		c) 5515	u) 2012/0 012			
501	a) +5	b) -5	c) -1	d) +1			
59		in, $FeC_2O_4 \rightarrow Fe^{3+} + 2C$		u) i i			
57.	a) its mol. wt.	b) mol. wt./3	c) mol. wt./4	d) None of these			
60	-	d for decolorizing 1 mole	•	d) None of these			
00.		b) 3/2	c) 5/2	d) 7/2			
61	a) 1/2Oxidation number of s	, ,	C) 3/2	u) //2			
01.		-	a) 10	J) 17			
62	a) +6	b) +4	c) +8	d) +7			
02.		The equivalent weight of a reductant or an oxidant is given by:					
	Eq. wt. = $\frac{1001. \text{ Weights}}{\text{no. of else}}$	ht of reductatn or oxidant ectrons lost or gained by	-				
		ule of reductant or oxidan					
		are of reductant of oxidar					
	b) Eq. wt. = $\frac{\text{mol. wt.}}{\text{valence}}$						
	a) Fa rut —	mol.wt.	ICATION				
	total charge	ge on cation or anion	JCAHON				
	d) All of the above						
63.	In presence of dil. H ₂ S	O_4 . The equivalent weight	t of KMnO ₄ is :				
	a) 1/5 of its molecular	weight					
	b) 1/6 of its molecular	weight					
	c) 1/10 of its molecula	ar weight					
	d) 1/2 of its molecular	· weight					
64.	Respiration is:						
	a) Oxidation	b) Reduction	c) Both (a) and (b)	d) None of these			
65.	$aK_2Cr_2O_7 + bKCl + cH$	$H_2SO_4 \rightarrow xCrO_2Cl_2 + yKH_2$	$HSO_4 + zH_2O$.				
	The above equation ba	alances when					
	a) $a = 2$, $b = 4$, $c = 6$	and $x = 2, y = 6, z = 3$					
	b) $a = 4, b = 2, c = 6$	and $x = 6, y = 2, z = 3$					
	c) $a = 6, b = 4, c = 2$	and $x = 6, y = 3, z = 2$					
	d) $a = 1, b = 4, c = 6$	and $x = 2, y = 6, z = 3$					
66.		shows highest ox, no. in	combined state?				
	a) Os	b) Ru	c) Both (a) and (b)	d) None of these			
67.	•	of sulphur in H ₂ S ₂ O ₈ is:		-			
	a) +2	b) +6	c) +7	d) +14			
68.	In the following reaction	on					
	=	4					

 $M^{x+} + \text{MnO}_4$ $M\text{O}_3 + \text{Mn}^{2+} + \frac{1}{2}\text{O}_2$, If one mole of MnO₄ oxidises 2.5 moles of M^{x+} then the value of x is

_				
Gn	IIIC	Fdu	catio	•
UUI	us	Luu	LULIU	ı

			Gpius Education
	a) 5 b) 3	c) 4	d) 2
69.	What volume of N K ₂ Cr ₂ O ₇ solution is required to C	oxidise (in acid solution) a	solution containing 10 g of
	$FeSO_4$? (mol.wt.of $FeSO_4 = 152$)		
	a) 65.78 mL b) 134 mL	c) 35 mL	d) 33.5 mL
70.	Bleaching action of chlorine in presence of moisture	is:	
	a) Reduction b) Oxidation	c) Hydrolysis	d) substitution
71.	A mixture of potassium chlorate, oxalic acid and su	lphuric acid and sulphurio	c acid is heated. During the
	reaction which element undergoes maximum change	in the oxidation number?	
	a) Cl		
	b) C		
	c) S		
	d) H		
72.	Stannous chloride gives a white precipitate with a s	olution of mercuric chloric	de. In this process mercuric
	chloride is:		
	a) Oxidized		
	b) Reduced		
	c) Converted into a complex compound containing St	n and Hg	
	d) Converted into a chloro complex of Hg		
73.	In the titration of CuSO ₄ vs. Hypo in presence of KI, v	which statement is wrong?	
	a) It is iodometric titration		
	b) I ₂ with starch gives blue colour		
	c) CuSO_4 is reduced to white Cu_2I_2 during redox charges	nge	
	d) The solution before titration, on addition of KI app		
74.	Manganese acts as strongest oxidising agent in the ox	kidation state	
	a) +7 b) +2	c) +4	d) +5
75.	The value of n' in the reaction		
	$Cr_2O_7^{2-} + 14H^+ + nFe^{2+} \rightarrow 2Cr^{3+} + nFe^{3+} + 7H^2O$		
	will be a) 2 b) 3	ATION	
	-	•	d) 7
76.	In a reaction 4 mole of electrons are transferred to	o one mole of HNO ₃ wher	n it acts as an oxidant. The
	possible reduction product is:		
	a) $(1/2)$ mole N_2 b) $(1/2)$ mole N_2 0	_	d) 1 mole NH ₃
77.	The oxidation number of phosphorus in PO_4^{3-} , P_4O_{10}	= '	
	a) +3 b) +2	c) -3	d) +5
78.	In the equation,		
	$CrO_4^2 + SO_3^2 Cr(OH)_4 + SO_4^2$		
	the oxidation number of Cr changes from		13.4
	a) 6 to 4 b) 6 to 3	c) 8 to 4	d) 4 to 3
79.	Oxidation numbers of P in PO_4^{3-} of S in SO_4^{2-} and that		
	a) -3, +6 and +6 b) +5, +6 and +6	c) +3, +6 and +5	d) +5, +3 and +6
80.	In alkaline condition KMnO ₄ reacts as follows,		
	$2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$		
	Therefore, its equivalent weight will be:	. 70.0	D 450 0
04	a) 31.6 b) 52.7	c) 79.0	d) 158.0
81.	Oxidation number of S in SO_4^{2-}		1) 0
02	a) +6 b) +3	c) +2	d) -2
82.	Which of the following is redox reaction?		
	a) $N_2O_5 + H_2O \rightarrow 2HNO_3$		
	b) $AgNO_3 + KI \rightarrow AgI + KNO_3$		
	c) $BaO_2 + H_2SO_4 \longrightarrow BaSO_4 + H_2O_2$		

			opius zudedeisii
00	d) $SnCl_2 + HgCl_2 \rightarrow SnCl_4 + Hg$		lo.
83.	In which of the following compounds, the oxidation		
	a) IF ₃ b) IF ₅	c) I ₃	d) IF ₇
84.	The oxidation number of Cl in KClO ₃ is :		
	a) +5 b) -5	c) +3	d) -3
85.	The oxidation number of oxygen in KO_3 , Na_2O_2 is		
	a) 3,2 b) 1,0	c) 0,1	d) -0.33,-1
86.	In the reaction, $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$, Equiva	llent weight of iodine will b	e equal to:
	a) Its molecular weight		
	b) 1/2 of its molecular weight		
	c) 1/4 of its molecular weight		
	d) Twice the molecular weight		
87.	The maximum oxidation number of transition metals	s may be:	
	a) +4 b) +6	c) +8	d) +10
88.	The ratio of amounts of H ₂ S needed to precipitate a	ll the metal ions from 100	$mL 1M AgNO_3$ and 100 mL
	of 1M CuSO ₄ is:		
	a) 1:2 b) 2:1	c) Zero	d) infinite
89.	Oxidation state of sulphur in Na ₂ S ₂ O ₃ and Na ₂ S ₄ O ₆		
	a) 4 and 6 b) 3 and 5	c) 2 and 2.5	d) 6 and 6
90.	Number of K^+ ions and mole of K^+ ions present in 1	litre of $\frac{N}{}$ KMnO ₄ acidified s	solution respectively are :
	a) 0.04 and 2.4 \times 10 ²²	5 4	
	b) 2.4×10^{22} and 0.04		
	c) 200 and 6.023×10^{23}		
	d) 6.023×10^{23} and 200		
01	Conversion of PbSO ₄ to PbS is :		
711	a) Reduction of S b) Oxidation of S	c) Dissociation	d) None of these
92	Which change requires a reducing agent?	c) Dissociation	a) None of these
74.	a) $CrO_4^{2-} \rightarrow CrO_7^{2-}$ b) $BrO_3^- \rightarrow BrO^-$	c) $H_2O_2 \rightarrow O_2$	d) $Al(OH)_3 \rightarrow Al(OH)_4^-$
93	In the reaction, $N_2 \rightarrow NH_3$. The eq.wt. of N_2 and NH		
75.			
	a) $\frac{28}{3}$, $\frac{17}{3}$ b) $\frac{28}{6}$, $\frac{17}{3}$	c) $\frac{28}{2}$, $\frac{17}{2}$	d) $\frac{28}{5}$, $\frac{17}{5}$
94.	Which acts as reducing agent as well as oxidising age	ent?	5 5
	a) O_3 b) ClO_4^-	c) F ₂	d) MnO ₄
95.	When Cl ₂ gas reacts with hot and concentrated s	, <u>-</u>	•
	chlorine changes from :	v	,
	a) Zero to -1 and zero to +3		
	b) Zero to +1 and zero to -3		
	c) Zero to +1 and zero to -5		
	d) Zero to -1 and zero to $+5$		
96.	Which of the following is not a redox reaction?		
	a) $2Na + Cl_2 \rightarrow 2NaCl$	b) $C + O_2 \rightarrow CO_2$	
	c) $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$	d) $Zn + H_2SO_4 \rightarrow ZnSO_4 +$	- H ₂
97.	The difference in the oxidation numbers of the two t		
	a) 4 b) 5	c) 6	d) 7
98.	A compound contains atoms X, Y, Z . The oxidation is	=	•
	formula of the compound is:	•	•
	a) XY_1Z_2 b) $Y_2(XZ_3)_2$	c) $X_3(YZ_4)_2$	d) $X_3(Y_4Z)_2$
99.	The equivalent weight of SnCl ₂ in the reaction, SnCl ₂		<u> </u>
	a) 49 b) 95	c) 45	d) 59
	. What is the ox. no. of Mn in K ₂ MnO ₄ ?		

_					
Gp	liic	$-\alpha$	111	atı	nη
UU	ıus	Lu	\boldsymbol{u}	ull	u

			Gpius Eaucation
a) +4	b) +6	c) +2	d) +8
101. The stable oxidation	n states of Mn are:		
a) +2, +3	b) +3, +7	c) +2, +7	d) +3, +5
		50 mL of 0.20 <i>M</i> KMnO ₄ i	in acidic solution. Which of the
following statement	ts is true?		
a) 0.010 mole of oxy	-		
b) 0.005 mole of KM			
	xygen gas is evolved		
	₂ does not react with KMn	O_4	
103. Oxidation number of	of carbon in KCN is :		
a) +2	b) -2	c) +1	d) +3
104. The oxidation state	of Ni in Ni(CO) ₄ is:		
a) Zero	b) +4	c) +8	d) +2
105. <i>M</i> is the molecular v	weight of KMnO ₄ . The equi	valent weight of KMnO $_4$ who	en it is converted into K_2MnO_4 is
:			
a) <i>M</i>	b) <i>M</i> /3	c) M/5	d) <i>M/</i> 7
106. Oxidation number of	of Mn in K_2MnO_4 and MnSO) ₄ are respectively:	
a) $+ 7$ and $+ 2$	b) +6 and +2	c) +5 and +2	d) $+2$ and $+6$
107. Which is the best de	escription of behaviour of b	promine in the reaction giver	ı below?
$H_2O + Br_2 \longrightarrow HBr$	+ HOBr		
a) Proton accepted	only	b) Both oxidised and	reduced
c) Oxidised only		d) Reduced only	
108. The oxidation numb	oer of P in KH ₂ PO ₂ is:		
a) +1	b) +3	c) -3	d) +5
109. LiAIH ₄ is used as :			
a) Oxidising agent	b) Reducing agent	c) A mordant	d) Water softner
110. The brown ring com	$_{1}$ plex [Fe(H ₂ O) ₅ NO ⁺]SO ₄ h	as ox.no. of Fe :	
a) +1	b) +2	c) +3	d) +4
a) +1 111. The oxidation state	of Fe in Fe ₃ O ₄ is	OCMITOR	
a) +3	b) 8/3	c) +6	d) +2
112. In the reactions; As ₂	$_{2}S_{3} + HNO_{3} \rightarrow H_{3}AsO_{4} +$	$H_2SO_4 + NO$, the element ox	xidized is/ are :
a) As only	b) S only	c) N only	d) As and S both
113. The eq. wt. of KMnO	O_4 in the reaction, MnO_4^- +	$Mn^{2+} + H_2O \rightarrow MnO_2 + H$	⁺ (unbalanced) is :
a) 52.7	b) 158	c) 31.6	d) None of these
114. NO_3^- ions are conver	rted to NH ⁺ ions by a suita	ble reactant. The equivalent	mass of NO_3^- and NH_4^+ are :
a) 7.75, 2.25	b) 7.75, 7.75	c) 2.25, 7.75	d) 2.25, 2.25
115. Oxidation number of	of chlorine in HClO ₄ is :		
a) +1	b) −1	c) -7	d) +7
116. Iodine has +7 oxida	ition state in :		-
a) HIO ₄	b) H ₃ IO ₅	c) H ₅ IO ₆	d) all of these
	n between sodium and wate		,
a) Reduction		•	
b) Oxidation			
c) Redox reaction			
d) neutralisation rea	action		
118. Oxidation number of			
a) +2	b) $+3$	c) +4	d) +1
-		th excess KI will liberate	
a) 6	b) 1	c) 7	d) 3
=	of chlorine from HCl. MnO ₂	•	u, 5
vi iii uile di edalatidii U	,, canorano n om albia MIIIO,	ucid ud i	

			Gpius Education		
a) Reducing agent	b) oxidising agent	c) Catalytic agent	d) Dehydrating agent		
121. What volume of O ₂ mea	asured at standard conditi	ions will be formed by th	ne action of 100 mL of 0.5		
N KMnO ₄ on hydrogen po	N KMnO ₄ on hydrogen peroxide in an acidic solution? The skeleton equation for the reaction is,				
$KMnO_4 + H_2SO_4 + H_2O_2$	\rightarrow KHSO ₄ + MnSO ₄ + H ₂ O	$0 + 0_2$:			
a) 0.12 litre	b) 0.28 litre	c) 0.56 litre	d) 1.12 litre		
122. Which quantities are con	•	iction reactions?			
a) Charge only		b) Mass only			
c) Both charge and mass		d) Neither charge nor ma	SS		
123. Which substance serves a	as a reducing agent in the fo				
	$\rightarrow 2Cr^{3+} + 7H_2O + 3Ni^{2+}$?	,			
a) H ₂ O	b) Ni	c) H ⁺	d) $Cr_2O_7^{2-}$		
124. Which of the following ch	,	,	, = ,		
a) $2HI + H_2SO_4 \rightarrow I_2 + S$		b) $Ca(OH)_2 + H_2SO_4 \rightarrow O$			
c) NaCl + $H_2SO_4 \rightarrow H_2 + SO_4$		d) $2PCl_5 + H_2SO_4 \rightarrow 2PC$			
125. In the aluminothermic pr		$u_1 \ge 1 \le 15 + 11_2 \le 04 \longrightarrow 21 \le$	$C_{13} + 2\Pi C_1 + 3O_2 C_2$		
		a) A reducing agent	d) A coldon		
a) An oxidising agent	b) A flux	c) A reducing agent	d) A solder		
126. In the reaction, $SO_2 + 2F$			D.H. O		
a) H ₂ S	b) SO ₂	c) S	d) H ₂ O		
127. The oxidation number of			D 2 14 1 2		
a) 0, +1 and -2	b) +2, +1 and -2	c) 0, +1 and +2	d) -2 , $+1$ and -2		
128. Maximum oxidation state	e is present in :				
a) CrO_2Cl_2 and MnO_4^-					
b) MnO ₂	12	>			
c) $[Fe(CN)_6]^{3-}$ and $[Co(CC)_6]^{3-}$	$(N)_6]^{3-}$				
d) MnO					
129. With which element oxyg					
a) Na	b) Cl	c) N	d) F		
130. What is the oxidation nur		:ATION			
a) +5	b) +3	c) +4	d) +2		
131. NaClO solution reacts wit					
A solution of NaClO used	d in the above reaction co	ntained 15 g of NaClO per	litre. The normality of the		
solution would be:					
a) 0.40	b) 0.20	c) 0.60	d) 0.80		
132. In sodium hydride, oxida	tion state of sodium is :				
a) Zero	b) +1	c) -1	d) +2		
133. The oxidation number of	xenon in XeOF ₂ is				
a) Zero	b) 2	c) 4	d) 3		
134. Which is not a redox reac	tion?				
a) $H_2 + Br_2 \rightarrow 2HBr$					
b) $NH_4Cl \rightarrow NH_3 + HCl$					
c) $NH_4NO_3 \rightarrow N_2O + 2H_3$	I_20				
d) Fe + S \rightarrow FeS					
135. In C + $H_2O \rightarrow CO + H_2$;	H ₂ O acts as:				
a) Oxidant	b) Reductant	c) Both (a) and (b)	d) None of these		
136. Millimole of a solute in a	solution can be given by :				
		wt. × 1000	d) Both (b) and (c)		
a) $M \times V_{\text{in litre}}$	b) $M \times V_{\text{in mL}}$	c) $\frac{\text{wt.}}{\text{mol.wt.}} \times 1000$			
137. The oxidation number of					
a) +2	b) +3	c) +4	d) +1		
138. What is the oxidation state	te of P in Ba $(H_2PO_2)_2$?				

	Gplus Education d) -1
	d) H ₄ P ₂ O ₇
	d) +3
	d) None of these
1	10 124-15
	d) +2 to +5
	d) 0
	by 1 mole of CrO ₅ in this
	d) 1.75
<u>:</u>	
	d) +6
	d) None of these
ged in i	ncreasing order?

a)	+1	b) +2	c) +3	d) -1
139. Ox	idation state of +1 for	phosphorus is found in :		
a) :	H_3PO_3	b) H ₃ PO ₄	c) H ₃ PO ₂	d) $H_4P_2O_7$
140. Ox	idation number of S in	$(CH_3)_2SO$ is:		
a) :	Zero	b) +1	c) +2	d) +3
-		lerlined substance has been	•	
		opper oxide \rightarrow carbon dioxi		
=		chloric acid → water + cop	= =	
	$\frac{\text{Steam} + \text{iron} \rightarrow \text{hydro}}{\text{Steam}}$		1	
-	<u>Hydrogen</u> + iron oxide	9		
-	•	${\rm IO_3}$ to KCl and ${\rm O_2}$ on heatin	g is an example of :	
	Intermolecular redox o		9	
	Intramolecular redox o	-		
_	Disproportionation or	=		
-	None of the above	8-		
-		in presence of acidized	l KMnO4.	
	Fe ²⁺	b) Fe ³⁺	c) Fe	d) None of these
,	iorine is a strong oxidis	•	0) 10	a) None of these
	It has several isotopes	agent because .		
-	-	7 electrons in valency shel	1	
-	Its valency is one	7 cleeti ons in valency she	11	
-	It is the first member of	of the halogen series		
		o Br 0_3^- , the oxidation number	per of Rr changes from	
	Zero to $+5$	b) $+1$ to $+5$	c) Zero to -3	d) +2 to +5
-	e oxidation number of		cj Zero to 3	u) +2 to +3
	+3	b) +5	c) +6	d) 0
-	indicator used for red		c) +0	u) o
	Either an oxidant or a		LACTTAL	
	Neither an oxidant nor		AHUN.	
		a reductant		
	Acid or base			
=	None of the above	to aire Cu (CO) II O and	d O Malaa af O libawata	d has 1 ample of CarO in this
		to give $Cr_2(SO_4)_3$, H_2O and	10_2 . Moles of 0_2 liberated	d by 1 mole of CrO ₅ in this
	action are :	1) 4 25) 4 F	1) 4.75
-	2.5	b) 1.25	c) 4.5	d) 1.75
		$4P + 3KOH + 3H_2O \rightarrow 3KI$	= = =	
_	P is only oxidized	11 1 1	b) P is only reduced	
	P is both oxidized as w		d) None of the above	
	idation number of P in		> . -	D 6
-	+3	b) +4	c) +5	d) +6
		${}_{2}O_{7}$ to ${\rm K}_{2}{\rm CrO}_{4}$ the oxidatio		
-	Increases	b) Remains the same	c) Decreases	d) None of these
	-	the oxidation number of ox		-
=	$OF_2 < KO_2 < BaO_2 <$	-	b) $BaO_2 < KO_2 < O_3 < O$	F_2
-	$BaO_2 < O_3 < OF_2 < K$	-	d) None of these	
		um in sodium amalgam is :		
-	+2	b) +1	c) -2	d) zero
	= =	tandard solution is prepare	ed is known as :	
-	Measuring flask	b) Round bottom flask	c) Burette	d) None of these
155. K ₃	Fe(CN) ₆ is used as	. Indicator for FeSO $_4$ vs . K $_2$	Cr ₂ O ₇ titrations.	
a) :	Self	b) External	c) Internal	d) Not an

1	.56. The oxidation number o	of N in N H + ic .		
1	a) -2	b) $+3$	c) +2	d) -3
1	.57. Which can act as oxidar	,	C) 12	uj 3
_	a) H_2O_2	b) H ₂ S	c) NH ₃	d) None of these
1		is needed to convert 5 g or	-	_
	$HNO_3 \rightarrow HIO_3 + NO_2$, , ,
	a) 12.4 g	b) 24.8 g	c) 0.248 g	d) 49.6 g
1	.59. In which SO ₂ acts as oxi	dant, while reacting with :	, ,	, ,
	a) Acidified KMnO ₄	b) Acidified K ₂ Cr ₂ O ₇	c) H ₂ S	d) Acidified C ₂ H ₅ OH
1	60. HBr and HI reduce H ₂ S0	O ₄ , HCl can reduce KMnO ₄ a	nd HF can reduce:	
	a) H ₂ SO ₄	b) K ₂ Cr ₂ O ₇	c) KMnO ₄	d) None of these
1	61. Equivalent mass of Na ₂	$ m S_2O_3$ in its reaction with $ m I_2$ is	s equal to :	
	a) Molar mass	b) Molar mass / 2	0) 1101011 1110100 / 0	d) Molar mass / 4
1	_	change represents a disprop	ortionation reaction(s)?	
	a) $Cl_2 + 2OH^- \rightarrow ClO^-$			
	b) $Cu_2O + 2H^+ \rightarrow Cu -$			
	c) 2HCuCl ₂ Dilution with	ightharpoonup Cu + Cu ²⁺ + 4Cl ⁻ + 2H ⁺		
	d) All of the above			
1	.63. Oxidation number of 'N	'in NaH(hydrazoic acid) is		
•			c) 0	
	a) $-\frac{1}{3}$	b) +3	5, 5	d) -3
1	.64. Cerric ammonium sulpl	nate and potassium permanş	ganate are used as oxidising	agents in acidic medium
		ammonium sulphate to ferr	=	
		quired per mole of ferrous a		number of moles of KMnO ₄
		rrous ammonium sulphate, i		
	a) 5.0	b) 0.2	c) 0.6	d) 2.0
1	.65. Eq.wt. of NH_3 in, NH_3 +	$0_2 \rightarrow NO + H_2O$ is: b) 17	CATION	D.M. C.1
			c) 8.5	d) None of these
1	66. Carbon is in the lowest		a) CO	d) CE
1	a) CH_4	b) CCl_4 ets as an oxidant in acidic ac	c) CO_2	d) CF_4
_		ed to Sn^{4+} by one of $Cr_2O_7^{2-}$		is formed. How many more
	a) 2/3	b) 3/2	c) 2	d) 3
1		n of a reductant is diluted to		
_	a) Molarity	b) Millimole	c) Milliequivalent	d) None of these
1		an acidified K ₂ Cr ₂ O ₇ soluti	-	
	a) Will remain unchang		·	
	b) Will change to deep i	ed		
	c) Will change to dark g	reen		
	d) Will change to dark b	prown		
1	70. Ozone tails mercury. Th	e reaction isof Hg.		
	a) Reduction	b) Oxidation	c) Substitution	d) None of these
1				
	71. The oxidation number o			
	a) +3	b) +2	c) +1	d) zero
1	a) +3 72. In the reaction, VO + Fe	b) +2 $v_2O_3 \rightarrow \text{FeO} + V_2O_5$. The ed	q.wt. of V_2O_5 is equal to its :	•
	a) +3 72. In the reaction, VO + Fe a) mol. wt.	b) +2 $e_2O_3 \rightarrow \text{FeO} + V_2O_5$. The ed b) mol. wt./8	q.wt. of V_2O_5 is equal to its : c) mol. wt./6	-
	 a) +3 72. In the reaction, VO + Fe a) mol. wt. 73. The eq. wt. of K₂CrO₄ as 	b) +2 $s_2O_3 \rightarrow \text{FeO} + V_2O_5$. The education b) mol. wt./8 as an oxidising agent in acid response	q.wt. of V_2O_5 is equal to its : c) mol. wt./6 nedium is :	d) None of these
1	 a) +3 72. In the reaction, VO + Fe a) mol. wt. 73. The eq. wt. of K₂CrO₄ as a) (mol. wt.)/2 	b) +2 $e_2O_3 \rightarrow \text{FeO} + V_2O_5$. The ed b) mol. wt./8	q.wt. of V_2O_5 is equal to its : c) mol. wt./6 nedium is : c) (mol. wt.)/3	•

_					
Gpi	liic	Fai	ICO	ITIN	n
UD	ıus	Lui	auu	$\iota\iota\iota\iota\upsilon$	

		opius Luacation
a) $CrO_4^{2-} \rightarrow Cr_2O_7^{2-}$ b) $Cr \rightarrow CrCl_3$	c) Na \rightarrow Na ⁺	d) $2S_2O_3^{2-} \rightarrow S_4O_6^{2-}$
175. The number of equivalent per mole of H ₂ S used in	its oxidation to SO ₂ is :	
a) 3 b) 6	c) 4	d) 2
176. Oxidation number of sulphur in Na_2SO_4 is:		
a) +2 b) +4	c) +6	d) -2
177. Which can have both +ve and -ve oxidation states	3?	,
a) F b) I	c) Na	d) He
178. Milliequivalent of a solute in a solution can be give		,
a) $Mz_{eq} = M \times V_{in mL}$		
b) M_{eq} . = $N \times V_{\text{in mL}}$		
c) $Mz_{eq} = \frac{\text{wt}}{\text{Eq.wt.}} \times 1000$		
d) Both (b) and (c)		
179. H ₂ S is passed through an acidified solution of co	pper sulphate and a black	precipitate is formed. This is
due to :		
a) Oxidation of Cu ²⁺		
b) Reduction of Cu ²⁺		
c) Double decomposition		
d) Reduction and oxidation		
180. Iodine has highest oxidation number in the compo	und :	
a) KIO ₄ b) IF ₅	c) KI ₂	d) KI
181 Oxidation number of S in $S_{-}\Omega^{2-}$ is:	_	-
a) +2 b) -2	c) 4	d) zero
a) +2 b) -2 182. In the reaction, $Cr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 14H^{-1}$	$-3H_2O + 3I_2$. The eq.wt. of	Cr ³⁺ is:
mol. wt. at. wt.	at.wt.	
a) $\frac{\text{mol.wt.}}{3}$ b) $\frac{\text{at.wt.}}{6}$	c) —	d) $\frac{\text{mol. wt.}}{6}$
183. In the reaction, $H_2O_2 + Na_2CO_3 \rightarrow Na_2O_2 + CO_2 +$	H ₂ O the substance underg	oing oxidation is
	c) Na ₂ O ₂	d) None of these
184. The least count of burette used normally in labora		,
a) 0.1 mL b) 0.01 mL	c) 0.2 mL	d) 0.02 mL
185. Among NH ₃ , HNO ₃ , NaN ₃ and Mg ₃ N ₂ ; the number		en in negative oxidation state
is	0 0	5
a) 1 b) 2	c) 3	d) 4
186. In which iron has the lowest oxidation state?	<i>c</i> , <i>c</i>	, .
a) Fe(CO) ₅		
b) Fe ₂ O		
c) K_4 Fe(CN) ₆		
d) FeSO ₄ . (NH ₄)2SO ₄ . 6H ₂ O		
187. A chemical balance used normally for weighing in	lahoratory can weigh unto:	a least count of :
a) 0.0001 g b) 0.001 g	c) 0.0002 g	d) 0.002 g
188. When NaCl is dissolved in water, the sodium ion be		u) 0.002 g
a) Oxidized b) Reduced	c) Hydrolysed	d) hydrated
189. Which is not a redox reaction?	c) Hydrolyscu	d) nydrated
a) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$		
b) $2BaO + O_2 \rightarrow 2BaO_2$		
c) $4KCIO_3 \rightarrow 4KCIO_2 + 2O_2$		
d) $SO_2 + 2H_2S \rightarrow 2H_2O + 3S$	on Dr. ia liberated The	ivalent weight of UD-O :-
190. When BrO_3^- ion reacts with Br^- ion in acidic soluti		
a) M/8 b) M/3	c) <i>M</i> /5	d) <i>M</i> /6
191. Corrosion of iron is :		

				Gplus Education
	a) Redox process			
	b) Neutralization process			
	c) Precipitation process			
	d) None of these			
				$\frac{1}{4}$ in the presence of excess
		electrons that gets transfe	rred is	
	a) 6	b) 5	c) 4	d) 2
193.	In which of the following	oxidation number of chlori	ne is +5?	
	a) HClO	b) HClO ₂	c) HClO ₃	d) HClO ₄
		$+ 2Cl^- \rightarrow Zn^{2+} 2Cl^- + H$		
	a) Cl ⁻	b) Zn ²⁺	c) H ⁺	d) All of these
	Turn bull's blue is:			
		b) K_4 Fe(CN) ₆	c) K_3 Fe(CN) ₆	d) Na ₄ Fe(CN) ₆
		n by silicon when it combin		
	a) -2	b) -4	c) +4	d) +2
	-	ork both as an oxidising ar		
	a) KMnO ₄	b) H ₂ O ₂	c) $\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3}$	d) $K_2Cr_2O_7$
				$Cr_2O_7^{2-}$ in acidic medium. In
			used for 3.26 \times 10 ⁻³ mol	e of ABD. The new oxidation
	number of A after oxidation	on is :		
	a) 3	b) $3 - n$	c) $n - 3$	d) + n
	The burning of hydrogen			
	a) Hydrogenation	b) Hydration	c) Oxidation	d) reduction
		rine in chlorine heptaoxide		
	a) +1	b) +4	c) +6	d) +7
		cing power of halide ions is	S:	
	a) $Cl^- > Br^- > I^- > F^-$	FRIII	ATTONI	
	b) $Cl^- > l^- > Br^- > F^-$	PLUS EDUC	.AHON	
	d) $I^- > Br^- > Cl^- > F^-$			
202.	· · · · · · · · · · · · · · · · · · ·	\rightarrow ClO ₃ ⁻ (aq) + 2Cl ⁻ (aq) is	s an example of :	
	a) Oxidation reaction			
	b) Reduction reaction			
	c) Disproportionation rea			
202	d) Decomposition reaction			
	The ox.no. of S in $Na_2S_4O_6$	5 IS:		
	a) + 2.5	. 12 and athor true have 1	2)	
	•	e + 2 and other two have $+3$	5)	
	c) $+2$ and $+3$ (three S have	•	a (1)	
204		F5 and the other two S have	e u)	
	Oxidation is a process wh		a) Addition of hydrogen	d) Addition of motal
	a) de-electronation	b) Electronation	c) Addition of hydrogen	
		ting. Which one is correct?	iation process, the reason	he gives that an oxide of the
	a) The statement and reas	_		
	b) The statement and reasc) The statement is true b	-		
	d) None of the above	at the reason is idist		
		ries that cannot be an oxidi	sing agent is ·	
	a) H ₂ SO ₄	b) H ₂ S	c) SO ₂	d) H ₂ SO ₃

207. KMnO ₄ acts as	. indicator in its redox titrati	ons.	
a) Self	b) External	c) Internal	d) Not an
208. In a reaction betwe	een zinc and iodine in which	$zinc\ iodide\ is\ formed,\ which\ i$	s oxidised?
a) Zinc ions	b) Iodide ions	c) Zinc atom	d) Iodine
209. The best oxidising	agent of the oxygen family is		
a) Tellurium	b) Selenium	c) Sulphur	d) Oxygen
210. The oxidation state	e of iron in sodium nitroprus	sside is :	
a) +2	b) +1	c) Zero	d) +3
211. A compound of Xe		% Xe. Oxidation number of Xe i	_
a) – 4	b) Zero	c) +4	d) +6
	_	ation numbers of S, Cr, N and I	H respectively:
a) H_2SO_5 , $H_2S_2O_8$,			
b) K ₂ Cr ₂ O ₇ , K ₂ CrO			
c) NH_3 , NH_4^+ , N_3H ,	_		
d) CaH ₂ , NaH, LiH,	- -		
	of H ₂ O ₂ required 10 mL of	$N \text{ KMnO}_4$ in a titration in the	e presence of H ₂ SO ₄ . Purity of
H_2O_2 is:			
a) 25%	b) 85%	c) 65%	d) 95%
			Mn ²⁺ , the number of electrons
	ole of KMnO ₄ each case response		
a) 4, 3, 1, 5	b) 1, 5, 3, 7	c) 1, 3, 4, 5	d) 1, 3, 8, 5
	$_{1}^{1}$ $_{2}^{1}$ $_{2}^{2}$ in presence of acid is		D 411 C.1
a) Clock reaction	b) Redox reaction	c) Intermolecular redo	x d) All of these
	nitrogen is incorrectly given	for:	
Compound	Oxidation state	+	
a) [Co(NH ₃) ₅ Cl]Cl ₂			
b) NH ₂ OH	-1 F2D	LICATION	
c) $(N_2H_5)_2SO_4$	GPLUS +2	UCATION	
d) Mg ₃ N ₂	· ·		otog of 1 1 12 E and 7
This is due to:	miy –1 oxidation state, wiiii	e fourifie exhibits oxidation sta	ates of -1 , $+1$, $+3$, $+5$ and $+7$.
a) Fluorine being a	, g25		
b) Available <i>d</i> -orbi			
•	of <i>d</i> -orbitals in iodine		
d) None of the abo			
		lation states and whose ions a	re coloured are known as :
a) Metalloid	b) Non-metals	c) Metals	d) Transition metals
•	e of sulphur in sodium tetrat	•	w) 11 unione 10 11 11 10 unio
a) 2	b) 0	c) 2.5	d) 3.5
220. Which is strongest	•	,	,
a) 0 ₃	b) 0 ₂	c) Cl ₂	d) F ₂
, ,	ghest oxidation state in :	, 2	, ,
a) SO_2	b) SO ₃	c) H ₂ SO ₃	d) H ₂ S
	ional oxidation number in :	, <u>,</u>	, <u>-</u>
a) N_2H_4	b) NH ₄	c) HN ₃	d) N_2F_2
223. As the oxidation st	ate for any metal increases,	the tendency to show ionic na	
a) Decreases	b) Increases	c) Remains same	d) None of these
		ion according to the reaction	
$Zn + NO_3$ Zn	$m^{2+} + NH_4^+ + H_2O$ (unbalar	nced)	
How many moles of	of HCl are required to teduce	half a mole of NaNO- complet	tely? Assume the availability

			Opius Luucution
of sufficient Zn.	12.4		1) 0
a) 5	b) 4	c) 3	d) 2
225. Weight of $FeSO_4$ (mol. v			
a) 30.4 g	b) 15.2 g	c) 60.8 g	d) 158 g
226. In the ionic equation, $BiO_3^- + 6H^+ + xe^- \rightarrow$	D;3+ + 2U O		
The values of x is	DI + 3Π ₂ U		
a) 6	b) 2	c) 4	d) 3
227. The reaction, $5H_2O_2 + 2$,	•	-
a) $X = 5, Y = 2$			d) $X = 5, Y = 5$
_			ted by adding excess of KI to
50 mL of 0.20 <i>M</i> CuSO ₄			
a) 12.5 mL	b) 25 mL	c) 50 mL	d) 2.5 mL
	-		(mol.wt. = 189.7) solution
		diluting with H ₂ O to a total	
a) 0.222 <i>N</i>	b) 0.111 <i>N</i>	c) 0.333 <i>N</i>	d) 0.444 <i>N</i>
230. The eq.wt. of $Fe_2(SO_4)_3$, the salt to be used as an ox	xidant in an acidic solution i	S:
a) (Mol. wt.)/1	b) (Mol. wt.)/2	c) (Mol. wt.)/3	d) (Mol. wt.)/5
231. Oxalic acid on reacting	with acidified KMnO ₄ is oxi	dised to :	
a) CO and ${ m H_2}$	b) CO ₂ and H ₂	c) CO ₂ and H ₂ O	d) CO and H ₂ O
232. The oxidation number of	of N and Cl in NOClO ₄ respe	ctively are	
a) $+2$ and $+7$	b) +3 and +7	c) -3 and +5	d) $+2$ and -7
233. Sulphur in +3 oxidation		>	
a) Sulphurous acid		c) Dithionous acid	
		and (c) complexing the set	of properties shown by CN-
ion towards metal speci			
a) a, b, c	b) b, c	c) c, a	d) a, b
		and corresponding magne	sium salts. In such reactions
magnesium undergoes	0.100100		
a) Oxidation			
b) Reduction	1		
c) Neither oxidation no	r reduction		
d) Simple dissolution	analia asid aslution ass la	dd h 250 c) was acut his waight I/MicO
solution?	oxalic acid solution can be	e reduced by 250 g of an 8	B per cent by weight KMnO ₄
a) 6.3 litre	b) 12.6 litre	c) 25.2 litre	d) 0.63 litre
237. The oxidation state of +		c) 23.2 nue	uj v.os iide
a) Hypophosphorous ac			
b) Meta-phosphoric acid			
c) Ortho-phosphoric ac			
d) Phosphorous acid			
	hrough acidified solution	of potassium dichromate,	then chromium sulphate is
	oxidation number of chromi	-	1
a) +4 to +2	b) +5 to +3	c) +6 to +3	d) $+7$ to $+2$
239. Oxidation no. of P in H ₄			,
a) +3, +5, +4	b) +4, +3, +5	c) +3, +4, +5	d) +5, +3, +4
240. Oxidation of thiosulpha	-	-	
a) SO -	b) SO ₄ ²⁻	c) $S_4 O_6^{2-}$	d) $S_2O_8^{2-}$
	- ·		ed 90 mL of $N/20$ KMnO ₄ for
	e % of oxalate ion in salt is:	-	•

_			. •	
Cn	liic	Ldi	ucatio	n
UU	ıus	LUL	ILULIU	••

				Opius Luucution
	a) 33%	b) 66%	c) 70%	d) 40%
2	42. How many litre of Cl_2 at	STP will be liberated by the	oxidation of NaCl with 10 g	g KMnO ₄ ?
	a) 3.54 litre	b) 7.08 litre	c) 1.77 litre	d) None of these
2	43. What is the normality of	a KMnO ₄ solution to be us	ed as an oxidant in acid me	edium, which contain 15.8 g
		mL of solution? Mol. wt. of F		
	a) 2 <i>N</i>	b) 3 <i>N</i>	c) 4 N	d) 5 <i>N</i>
2	44. KMnO ₄ in acid medium i	s always reduced to :		
	a) Mn ⁴⁺	b) Mn ²⁺	c) Mn ⁶⁺	d) Mn
2	45. In balancing the half read	-	mber of electrons that mus	
	a) 2 on the right	b) 2 on the left	c) 3 on the right	d) 4 on the left
2	46. What volume of 0.1 <i>M</i> KI	-		-
	a) 4.1 mL	b) 8.2 mL	c) 10.2 mL	d) 4.6 mL
2	47. Which one is not a redox	•	,	
		b) CuSO ₄ vs. hypo	c) I ₂ vs. hvpo	d) AgNO ₃ vs. KCl
2	48. A 0.518 g sample of lim			
				olution acidified with H ₂ SO ₄
		$H^+ + C_2O_4^{2-} \rightarrow Mn^{2+} + CO$		
	a) 54.0 %	b) 27.1 %	c) 42%	d) 84%
2.	49. The missing term in follo	,	•	
_	a) Sn ⁴⁺	b) Sn ²⁺	c) Sn	d) None of these
2	50. Reaction of Br ₂ with Na ₂			
_		e number of sodium bromid		
	equation is	chamber of sourain bronna	e morecules involved in the	balancea enemical
	a) 1	b) 3	c) 5	d) 7
2	51. Oxidation number of car		•	u) /
_	a) $-4/3$, $+4/3$	b) $+ 4/3, -4/3$	c) $-2/3$, $+2/3$	d) $-2/3$, $+4/3$
2	52. The reaction; KI + $I_2 \rightarrow$		c) 2/3, + 2/3	u) 2/3, + 4/3
4	a) Oxidation $A + I_2 \rightarrow A$	b) Reduction	c) Complex formation	d) All of these
2	53. The oxidation state of Cr		c) complex formation	u) All of these
4			م) الآ	d) 16
ว	a) +3 54. Oxidation number of S in	b) +4	c) +5	d) +6
۷		- I. T	a) 7ama	a) 1
2	a) +1	•	c) Zero	d) -1
7	55. In which of the following			J) NI O
2	a) NO	b) NO ₂	c) N ₂ 0	d) N_2O_5
Z			, whereas 2 mole of FeL ₂ U,	$_4$ are oxidized by 'Y'mole of
	KMnO ₄ . The ration f $'X'$ a		3.4.4	D 4 . F
_	a) 1:3	b) 1:2	c) 1:4	d) 1:5
2	57. H ₂ S reacts with halogens	g .	> = 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
_	a) Are oxidised	b) Are reduced	c) Form sulphur halides	-
2	58. In an experiment 50 mL			solution of sodium sulphite.
		oxidation of sulphite ion is	:	
		$O_4^{2-}(aq) + 2H^+(aq) + 2e^-$		
	If the oxidation number of	of metal in the salt was 3, w		
	a) Zero	b) 1	c) 2	d) 4
2	59. The most stable oxidatio	n state of copper is :		
	a) +2	b) +1	c) +3	d) +4
2	60. White phosphorus reacts	s with caustic soda, the proc	lucts are PH_3 and NaH_2PO_2	. This reaction is an
	example of			
	a) Oxidation	b) Reduction	c) Disproportionation	d) Neutralisation
2	61. When a sulphur atom he	comes a sulphide ion :		

	a) It gains two electrons			
	b) The mass number char	=		
	c) There is no change in t	he composition of atom		
	d) None of the above			
262			e amount of unknown reage	
0.40	a) Equivalence point	b) End point	c) Neutralization point	d) All of these
263	-	are $+2$, $+5$ and -2 respect	tively. Formula of the comp	ound formed by these wii
	be	13 =	` ····	D
	a) X_2YZ_6	b) XY_2Z_6	c) XY ₅	d) X_3YZ_4
264		en has an oxidation state o		N 99
-	a) H_2O_2	b) H ₂ O	c) OF ₂	d) CO
265				exidise F^{2+} to F^{3+} in acidic
		nt required for one mole of	F ²⁺ will be :	
	a) $V_{KMnO_4} > V_{K_2Cr_2O_7}$			
	b) $V_{KMnO_4} < V_{K_2Cr_2O_7}$			
	c) $V_{KMnO_4} = V_{K_2Cr_2O_7}$			
	d) Nothing can be predict	ed		
266	. How many gram of KMn($ m D_4$ should be taken to make	up 250 mL of a solution of	f such strength that 1 mL is
	equivalent to 5.0 mg of Fe	e in FeSO ₄ ?		
	a) 1.414 g	b) 0.70 g	c) 3.16 g	d) 1.58 g
267	. The oxidation number of	Cr in K ₂ CrO ₄ is		
	a) +3	b) -6	c) +6	d) -3
268	. In the reaction, $2Na_2S_2O_3$	$+ I_2 \rightarrow Na_2S_4O_6 + 2NaI_6$	the oxidation state of sulph	ur is :
	a) Decreased	b) Increased	c) Unchanged	d) None of these
269	. The equivalent weight of	KMnO ₄ (acidic medium) is	(at. wt. of $K = 39$; $Mn = 55$):
	a) 158	b) 15.8	c) 31.6	d) 3.16
270	. The oxidation number of	chromium in potassium di	chromate is	
	a) +2	b) +4	c) +6	d) +8
271	. The equivalent weight of		lar weight when it is conve	rted to :
	a) Mn_2O_3	b) MnO ₂	c) MnO ₄	d) Mn ₄ ²⁻
272		· -	nte sulphur. Here SO ₂ acts a	*
			c) Oxidizing agent	
273	. Saline hydrides are :	, 0 0	, 0 0	,
	a) Strong oxidants			
	b) Strong reductants			
	c) Strong dehydrating age	ents		
	d) Strong bleaching agent			
274			ethanal and methanoic acid	respectively
	a) 0 and 0	b) 0 and +2	c) +1 and +2	d) +1 and +3
275	. The eq. wt. of I_2 in the cha	•		,
	a) 12.7	b) 63.5	c) 25.4	d) 2.54
276	-	ing agent in the reaction is.	-	,
	$SO_2 + 2H_2S \rightarrow 3S + 2H_2$			
	a) 32	b) 64	c) 16	d) 8
277	•	uctant and oxidant, the red	•	.,
•	a) Lower ox.no.	b) Higher ox.no.	c) Same ox.no.	d) Either of these
278	•	reactions, hydrogen is acti	•	, -
. 3	a) With Li to form LiH	b) With I ₂ to give HI	c) With S to give H ₂ S	d) None of the above
279	=	Iohr's salt required per mo	· -	,
	a) 3	b) 4	c) 5	d) 6
	•	•	-	-

300 E 1 : 1	CE 2+: . E .I		
280. For reducing one mole		•	
a) 2 281. $Co(s) + Cu^{2+}(aq) \rightarrow 0$	b) 1 $C_0^{2+}(aa) + C_0(a)$ This room	c) 1.5	d) 4
a) Oxidation reaction	b) Reduction reaction	c) Redox reaction	d) None of these
282. The oxidation state of I		c) Redox reaction	d) None of these
a) +7	b) -1	c) +5	d) +1
283. The oxidation number	•	c) 13	u) 11
a) -3	b) +3	c) Zero	d) 5
284. Mn ²⁺ can be converted	,		u) 5
a) SO ₂	b) Cl ₂	c) PbO ₂	d) SnCl ₂
285. The oxidation number	_	0) 1202	u) 51131 ₂
a) +1	b) +2	c) -1	d) 0
286. Which change occur w	*	,	,
a) Oxidation			
b) Reduction			
c) Neither oxidation no	or reduction		
d) Both oxidation and i	reduction		
287. How many mole of ele	ctron are involved in the re	duction of one mole of Mn	O_4^- ion in alkaline medium to
MnO_3^- ?			
a) 2	b) 1	c) 3	d) 4
288. The oxidation number	of Fe in K_4 Fe(CN) ₆ is :		
a) +2	b) +3	c) +4	d) +6
289. For the reaction, NH_3 +	The state of the s	>	
	ium, the coefficient of N ₂ H ₄		
a) 1	b) 2	c) 3	d) 4
290. In the reaction $H_2O + H_2O + H_3O + $			
a) H ₂ S is an acid and H	and the second s	CATTONI	
b) H ₂ S is a base and H ₂		CAHON	
	gent and H ₂ O ₂ is a reducing	-	
	ent and H_2O_2 is an oxidising	_	laura in Granus
291. When H_2SO_3 is convert			
a) 0 to $+2$	b) +2 to +4	c) +4 to +2	d) +4 to +6
292. The oxidation number a) +1	b) –1	c) -3	d) -2
•	,	,	alent weight of $CuSO_4$ to its
molecular weight is:	54 41ti	4 1 12 THE TAGO OF EQUIVE	dent weight of duso4 to its
a) 1/8	b) 1/4	c) 1/2	d) 1
294. In the reaction between	, ,		
	$(1) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$		
	ution changes from green to		
b) The iron (II) ions are			
c) The dichromate ions			
d) Hydrogen ions are r			
295. Which is the reducing a	agent in the reaction, $8H^+ +$	$4NO_3^- + 6Cl^- + Sn(s) \rightarrow S$	$SnCl_6^{2-} + 4NO_2 + 4H_2O$?
a) Sn(s)	b) Cl ⁻	c) NO ₃	d) $NO_2(g)$
296. Which is a redox reacti	on?		
a) $H_2SO_4 + 2NaOH \rightarrow$	$-Na_2SO_4 + 2H_2O$		
b) $BaCl_2 + H_2SO_4 \rightarrow H_2SO_4$	$BaSO_4 + 2HCl$		
	$H \rightarrow CH_3COOC_2H_5 + H_2O$		
d) $2FeCl_3 + SnCl_2 \rightarrow 2$	$2FeCl_2 + SnCl_4$		

				Gplus Education
297.		ng reactions involves dispro	_	
		$CuSO_4 + 2H_2O + SO_2$		$As_2S_3 + 3H_2O$
	c) $2KOH + Cl_2$	_	d) $Ca_3P_2 + 6H_2O$	$3Ca(OH)_2 + 2PH_3$
298.		omium in the final product	formed by the reaction bet	ween KI and acidified
	potassium dichromate so			
	a) +3	b) +2	c) +6	d) +4
299.	-	ts as an oxidising as well as	= =	
	a) Na ₂ 0	b) Na ₂ O ₂	c) NaNO ₃	d) NaNO ₂
300.	Oxidation state of carbon	in graphite is:		
	a) Zero	b) +1	c) +4	d) +2
301.	Which compound has oxi	dation number of carbon ed	=	
	a) C_6H_6	b) CH ₃	c) C_2H_4	d) $C_6H_{12}O_6$
302.	In the reaction, 2KMnO ₄	$+ 16$ HCl $\rightarrow 2$ KCl $+ 2$ MnCl ₂	$_2 + 8H_2O + 5Cl_2$, the reduct	tion product is :
	a) Cl ₂	b) MnCl ₂	c) KCl	d) H ₂ O
303.	The oxidation number of	phosphorus in $Mg_2P_2O_7$ is:	:	
	a) + 5	b) -5	c) +6	d) -7
304.	1 mole of chlorine comb	oines with a certain weigh	t of a metal giving 111 g	of its chloride. The atomic
	weight of the metal (assu	ming its valency to be 2) is	:	
	a) 40	b) 20	c) 80	d) None of these
305.	Oxidation state of chromi	um		
	Cr	(d)	>	
	a) +10	b) +6	c) +3	d) +2
306.	Oxidation states of the mo	etal in the minerals haemat	ite and magnetite, respectiv	vely, are
	a) II, III in haematite and	III in magnetite	b) II, III in haematite and I	I in magnetite
	c) II in haematite and II, I	II in magnetite	d) III in haematite and II, I	II in magnetite
307.	The colour of K ₂ Cr ₂ O ₇ ch	anges from red-orange to le	emon-yellow on treatment	with $KOH(aq)$ because of :
	a) Reduction of Cr(VI) to	Cr(III)		
	b) Formation of chromium	m hydroxide		
	c) Conversion of dichrom	ate into chromate ion		
	d) Oxidation of potassium	n hydroxide to potassium po	eroxide	
308.	How many electrons are i	involved in oxidation of KM	nO ₄ in basic medium?	
	a) 1	b) 2	c) 5	d) 3
309.	The oxidation state of nit	rogen in NH ₄ NO ₃ is :		
	a) -3 and $+5$	b) +3 and +5	c) +5	d) +3
310.	When Sn(IV) chloride is	treated with excess HCl, th	ne complex $[SnCl_6]^{2-}$ is form	ned. The oxidation state of
	Sn in this complex is:			
	a) +6	b) -2	c) +4	d) -5
311.	Oxidation number of chlo	rine in HOCl is :		
	a) Zero	b) -1	c) +1	d) +2
312.	In the reaction, $C + 4HNC$	$O_3 \rightarrow CO_2 + 2H_2O + 4NO_2$, HNO ₃ acts as :	
	a) An oxidising agent	- -	-	
	b) An acid			
	c) An acid as well as oxid	ising agent		

d) A reducing agent

313. Change of hydrogen into proton is :
a) Oxidation of hydrogen

				- 1
	b) Acid-base reaction			
	c) Reduction of hydrogen			
	d) Displacement reaction			
314	= = =		lised by Cl ₂ water. The so	lution is treated with BaCl ₂
	solution. The amount of E			
	a) 1.0 mole	b) 0.5 mole	c) 0.24 mole	d) 0.25 mole
315	The number of mole of fe			
	a) 1/5	b) 3/5	c) 2/3	d) 5/3
316	. Reactants react in the equ			
	a) Mole	b) Weights	c) Equivalent	d) All of these
317	. Mole and millimole of rea			
	a) Molar ratio	b) Equal amount	c) Both (a) and (b)	d) None of these
318	-	=		g with another phosphorus
	= -		tion states of phosphorus	in phosphine and the other
	product are respectively:			
	a) Redox reaction; -3 and			
	b) Redox reaction; +3 and			
	c) Disproportionation rea			
	d) Disproportionation rea	action; -3 and $+3$		
319	. Which can act only as oxi	dising agent?		
	a) Oxygen	b) Fluorine	c) Iodine	d) H_2O_2
320	For the reaction: $N_2 + 3H$	$H_2 \rightarrow 2NH_3$; if E_1 and E_2 a	are equivalent masses of N	H_3 and N_2 respectively, then
	$E_1 - E_2$ is:			
	a) 1	b) 2	c) 3	d) 4
321	. Bleaching action of SO_2 is	due to :		
	a) Reduction	b) Oxidation	c) Hydrolysis	d) Acidic nature
322	$I. In N_2 + 2H_2O \longrightarrow NH_4^+ +$	NO_2^- ; N is:		
	a) Oxidised	b) Reduced	c) Both (a) and (b)	d) None of these
323	. If three electrons are lost	by a metal ion M^{3+} , its fina	ıl oxidation number will be	:
	a) Zero	b) +6	c) +2	d) +4
324	. In the reaction, NaH + ${ m H_2}$	$0 \rightarrow \text{NaOH} + \text{H}_2$:		
	a) H ⁻ is oxidised			
	b) Na ⁺ is reduced			
	c) Both NaH and H ₂ O are	reduced		
	d) None of the above			
325	. Which of the following ac	ts as an oxidizing agent?		
	a) HNO ₃	b) Cl ₂	c) FeCl ₃	d) All of these
326			ch requires 40 mL, of 0.11	$N \text{ Na}_2\text{S}_2\text{O}_3$ to react with it,
	$S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2$	I ⁻ ?		
	a) 12.7 g	b) 0.558 g	c) 25.4 g	d) 11.4 g
327	. The number of mole of K	$\mathrm{MnO_4}$ that will be needed t	o react with one mole of s	ulphite ion in acidic solution
	is:			
	a) 2/5	b) 3/5	c) 4/5	d) 1
328	8. What weight of HNO_3 is	required to make 1 litre of	f 2 N solution to be used a	s an oxidising agent in the
	reaction? 3Cu + 8HNO ₃ -	$\rightarrow 3Cu(NO_3)_2 + 2NO + 4H$	20	
	a) 63 g	b) 21 g	c) 42 g	d) 84 g
329	. The oxidation state of two	o sulphur atoms in H ₂ S ₂ O ₈		
	a) -6	b) -2	c) +6	d) -4
330	. In a conjugate pair of red	uctant and oxidant, the oxi	dant has :	
	a) Higher ox no.	b) Lower ox.no.	c) Same ox.no.	d) Either of these

224 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1	0 + 2NO + C ml	Ch h h h h h h h
331. In the equation, $H_2S + 2HNO_3 \rightarrow 2H$		
a) 17 b) 34	c) 68	d) 18
332. In which transfer of five electrons tak	-	
a) $MnO_4^- \rightarrow Mn^{2+}$ b) CrO_4^{2-}		d) $Cr_2O_7^{2-} \to 2Cr^{3+}$
333. Oxidation number of nitrogen is higher	est in	
a) N_3H b) N_2O_4	c) NH ₂ OH	d) NH ₃
334. Starch gives blue colour with:		
a) KI b) I ₂	c) Cl ₂	d) None of these
335. The number of mole of potassium sal	t, $i.e$, KHC ₂ O ₄ . H ₂ C ₂ O ₄ .2H ₂ O oxidised	by one mole of permanganate
ion is:		
a) 2/5 b) 4/5	c) 1	d) 5/4
336. When an acidified solution of ferrous	ammonium sulphate is treated with KM	InO ₄ solution, the ion which is
oxidised is :	•	•
a) Fe^{2+} b) SO_4^{2-}	c) NH ₄ ⁺	d) MnO ₄
337. Oxidation number of N in N_3 H is:	7 4	3 4
a) -3 b) +3	c) Zero	d) -1/3
338. Hydrogen peroxide in aqueous solution	•	,
	er conditions where one mole of gas oc	
solution of H_2O_2 produces 3 dm ³ of O	_	cupies 24 um , 100 cm Oi xim
	c) 0.5	d) 0.2E
a) 2.5 b) 1	c) 0.5	d) 0.25
339. CuSO ₄ and KI on mixing gives:	V CO	D C-1 + K CO + I
	K_2SO_4 c) $Cu_2I_2 + K_2SO_4 + I_2$	a) $CuI_2 + K_2SU_4 + I_2$
340. Which metal exhibits more than one of	The state of the s	D. 19
a) Na b) Mg	c) Al	d) Fe
341. Which of the following oxidation state		
a) 4 b) 2	c) 5	d) 3
342. 13.5 g aluminium changes to Al^{3+} in s		
a) 18×10^{23} electrons	EDUCATION	
b) 6.023×10^{23} electrons	LDOGRIIOIT	
c) 3.01×10^{23} electrons		
d) 9 \times 10 ²³ electrons		
343. In CH ₂ Cl ₂ , the oxidation number of Ci	is:	
a) -4 b) $+2$	c) Zero	d) +4
344. In the compounds KMnO ₄ and K ₂ Cr ₂ C	-	
a) Mn b) K	c) 0	d) Cr
345. The oxidation state of nitrogen varies	_	,
a) -3 to +5 b) 0 to +5	c) -3 to 1	d) +3 to +5
346. The oxidation state of hydrogen in Ca		u, 1000 10
a) +1 b) -1	c) Zero	d) +2
347. The most common oxidation state of	•	
shell is:	an element is 2. The number of elec	trons present in its outermost
a) 2 b) 4	a) 6	4) o
	c) 6	d) 8
348. A good indicator must possess the following	_	
a) The colour change should be sharp		
b) The colour change should be clear		
c) It must be sensitive to the equivale	nt point	
d) All of the above		
349. The oxidation number of Xe in XeF_4 a		
a) +6 b) +4	c) +1	d) +3
350. The oxidation number of arsenic in ar	canata ic :	

351. The reaction, $Ag^{+2}(aq) + Ag(s) \rightleftharpoons 2Ag^{+}(aq)$ is an example of	
is an example of	
a) Reduction b) Oxidation c) Disproportionation d) None of these	
352. During the presence of SO_3^{2-} and S^{2-} in a mixture, on addition of dil. H_2SO_4 , one notice that:	
a) SO ₂ and H ₂ S are not formed	
SO_2 and H_2S formed during change undergoes a redox change forming colloidal sulphur and thus,	no
b) smell	
c) A smell of burning sulphur	
d) A smell of rotten egg	
353. Which is not an oxidising agent?	
a) $KClO_3$ b) O_2 c) $C_6H_{12}O_6$ d) $K_2Cr_2O_7$	
354. The charge on cobalt in $[Co(CN)_6]^{3-}$ is:	
a) -6 b) $+3$ c) -3 d) $+6$	
355. The most stable oxidation state of chromium is :	
a) $+ 5$ b) $+ 3$ c) $+ 2$ d) $+ 4$	
356. Arrange the following as increase in oxidation number	
$(i)Mn^{2+}$ $(ii)MnO_2$	
(iii) $KMnO_4$ (iv) K_2MnO_4	
a) (i)>(ii)>(iii)>(iv) b) (i)<(ii)<(iv)<(iii) c) (ii)<(ii)<(iv) d) (iii)>(iv)>(iv)>(iv)>(iv)>(iv)>(iv)>(iv)	i)
357. What mass of MnO ₂ is reduced by 35 mL of 0.16 <i>N</i> oxalic acid in acidic solution? The skeleton equa	
$MnO_2 + H^+ + H_2C_2O_4 \rightarrow CO_2 + H_2O + Mn^{2+}$:	,
a) 8.7 g b) 0.24 g c) 0.84 g d) 43.5 g	
358. Stronger is oxidising agent, more is;	
a) Standard reduction potential of that species	
b) The tendency to get itself oxidised	
b) The tendency to get usen exhaused	
c) The tendency to lose electrons by that species	
c) The tendency to lose electrons by that species d) Standard oxidation potential of that species	
d) Standard oxidation potential of that species	ed as
d) Standard oxidation potential of that species 359. How many g of $KMnO_4$ are needed to prepare 3.75 litre of 0.850 N solution if $KMnO_4$ is reduced to prepare 3.75 litre of 0.850 N solution if $KMnO_4$ is reduced to prepare 3.75 litre of 0.850 N solution if $KMnO_4$ is reduced to prepare 3.75 litre of 0.850 N solution if $KMnO_4$ is reduced to prepare 3.75 litre of 0.850 N solution if $KMnO_4$ is reduced to prepare 3.75 litre of 0.850 N solution if $KMnO_4$ is reduced to prepare 3.75 litre of 0.850 N solution if $KMnO_4$ is reduced to prepare 3.75 litre of 0.850 N solution if $KMnO_4$ is reduced to prepare 3.75 litre of 0.850 N solution if $KMnO_4$ is reduced to $KMnO_4$ is r	ed as,
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$?	ed as,
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄	
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from:	
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduced MnO $_4^-$ + 8H $^+$ + 5e \rightarrow Mn ²⁺ + 4H ₂ O? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2	
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO ₄ solution precipitates copper due to :	
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO ₄ solution precipitates copper due to : a) Reduction of Cu ²⁺ b) Reduction of SO ₄ ²⁻ c) Reduction of Zn d) Hydrolysis of CuSO ₄	04
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduced MnO ₄ ⁻ + 8H ⁺ + 5e \rightarrow Mn ²⁺ + 4H ₂ O? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO ₄ solution precipitates copper due to: a) Reduction of Cu ²⁺ b) Reduction of SO ₄ ²⁻ c) Reduction of Zn d) Hydrolysis of CuSO ₄ 362. Titrations in which liberated I ₂ is estimated to carry out the volumetric estimations are known as the standard or control of the standard or carry out the volumetric estimations are known as the standard or carry out the volumetric estimations are known as the standard or carry out the volumetric estimations are known as the standard or carry out the volumetric estimations are known as the standard or carry out the volumetric estimations are known as the standard or carry out the volumetric estimations are known as the standard or carry out the volumetric estimations are known as the standard or carry out the volumetric estimations are known as the standard or carry out the volumetric estimations are known as the standard or carry out the volumetric estimations are known as the standard or carry out the volumetric estimations are known as the standard or carry out the volumetric estimation are known as the standard or carry out the volumetric estimation are known as the standard or carry out the volumetric estimation are known as the standard or carry o	04
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce MnO ₄ ⁻ + 8H ⁺ + 5e \rightarrow Mn ²⁺ + 4H ₂ O? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO ₄ solution precipitates copper due to: a) Reduction of Cu ²⁺ b) Reduction of SO ₄ ²⁻ c) Reduction of Zn d) Hydrolysis of CuS 362. Titrations in which liberated I ₂ is estimated to carry out the volumetric estimations are known in the control of t	04
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO ₄ solution precipitates copper due to : a) Reduction of Cu ²⁺ b) Reduction of SO ₄ ²⁻ c) Reduction of Zn d) Hydrolysis of CuS 362. Titrations in which liberated I_2 is estimated to carry out the volumetric estimations are known in the control of th	04
d) Standard oxidation potential of that species 359. How many g of KMnO₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO₄ is reduced MnO₄ + 8H+ + 5e → Mn²+ + 4H₂ 0? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO₄ 360. When KMnO₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO₄ solution precipitates copper due to: a) Reduction of Cu²+ b) Reduction of SO₄²- c) Reduction of Zn d) Hydrolysis of CuS 362. Titrations in which liberated I₂ is estimated to carry out the volumetric estimations are known titrations. a) Iodometric b) Iodimetric c) Acidimetric d) Alkalimetric 363. In the course of chemical reaction, an oxidant:	04
d) Standard oxidation potential of that species 359. How many g of KMnO₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO₄ is reduced MnO₄ + 8H + + 5e → Mn² + + 4H₂ 0? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO₄ 360. When KMnO₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO₄ solution precipitates copper due to: a) Reduction of Cu² + b) Reduction of SO₄² c) Reduction of Zn d) Hydrolysis of CuSO₃ 362. Titrations in which liberated I₂ is estimated to carry out the volumetric estimations are known in the course of chemical reaction, an oxidant: a) Loses electron b) Gains electron c) Either of these d) None of these	04
d) Standard oxidation potential of that species 359. How many g of KMnO₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO₄ is reduced MnO₄ + 8H + 5e → Mn² + 4H₂O? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO₄ 360. When KMnO₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO₄ solution precipitates copper due to: a) Reduction of Cu² + b) Reduction of SO₄² - c) Reduction of Zn d) Hydrolysis of CuSO₃ Caso Caso Caso Caso Caso Caso Caso Caso	04
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce MnO ₄ + 8H ⁺ + 5e \rightarrow Mn ²⁺ + 4H ₂ O? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO ₄ solution precipitates copper due to: a) Reduction of Cu ²⁺ b) Reduction of SO ₄ ²⁻ c) Reduction of Zn d) Hydrolysis of CuSO ₄ 362. Titrations in which liberated I ₂ is estimated to carry out the volumetric estimations are known titrations. a) Iodometric b) Iodimetric c) Acidimetric d) Alkalimetric 363. In the course of chemical reaction, an oxidant: a) Loses electron b) Gains electron c) Either of these d) None of these 364. In alkaline condition KMnO ₄ reacts as follows: $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O. The eq. wt. of KMnO4 is:$	04
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce MnO ₄ ⁻ + 8H ⁺ + 5e \rightarrow Mn ²⁺ + 4H ₂ O? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO ₄ solution precipitates copper due to: a) Reduction of Cu ²⁺ b) Reduction of SO ₄ ²⁻ c) Reduction of Zn d) Hydrolysis of CuS 362. Titrations in which liberated I ₂ is estimated to carry out the volumetric estimations are known titrations. a) Iodometric b) Iodimetric c) Acidimetric d) Alkalimetric 363. In the course of chemical reaction, an oxidant: a) Loses electron b) Gains electron c) Either of these d) None of these 364. In alkaline condition KMnO ₄ reacts as follows: $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$. The eq. wt. of KMnO ₄ is: a) 52.7 b) 158 c) 31.6 d) 79	04
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to $CuSO_4$ solution precipitates copper due to: a) Reduction of Cu^{2+} b) Reduction of SO_4^{2-} c) Reduction of Zn d) Hydrolysis of $CuSO_4$ solutions in which liberated I_2 is estimated to carry out the volumetric estimations are known that it is a) Loses electron b) Indimetric c) Acidimetric d) Alkalimetric 363. In the course of chemical reaction, an oxidant: a) Loses electron b) Gains electron c) Either of these d) None of these 364. In alkaline condition KMnO ₄ reacts as follows: $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$. The eq. wt. of KMnO ₄ is: a) 52.7 b) 158 c) 31.6 d) 79 365. Oxidation number of nitrogen in AgNO ₃ is:	04
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce MnO ₄ + 8H ⁺ + 5e \rightarrow Mn ²⁺ + 4H ₂ O? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO ₄ solution precipitates copper due to: a) Reduction of Cu ²⁺ b) Reduction of SO ₄ ²⁻ c) Reduction of Zn d) Hydrolysis of CuS 362. Titrations in which liberated I ₂ is estimated to carry out the volumetric estimations are known titrations. a) Iodometric b) Iodimetric c) Acidimetric d) Alkalimetric 363. In the course of chemical reaction, an oxidant: a) Loses electron b) Gains electron c) Either of these d) None of these 364. In alkaline condition KMnO ₄ reacts as follows: $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$. The eq. wt. of KMnO ₄ is: a) 52.7 b) 158 c) 31.6 d) 79 365. Oxidation number of nitrogen in AgNO ₃ is: a) +5 b) -3 c) +3 d) -2	04
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce MnO ₄ + 8H ⁺ + 5e \rightarrow Mn ²⁺ + 4H ₂ O? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO ₄ solution precipitates copper due to: a) Reduction of Cu ²⁺ b) Reduction of SO ₄ ²⁻ c) Reduction of Zn d) Hydrolysis of CuS 362. Titrations in which liberated I ₂ is estimated to carry out the volumetric estimations are known titrations. a) Iodometric b) Iodimetric c) Acidimetric d) Alkalimetric 363. In the course of chemical reaction, an oxidant: a) Loses electron b) Gains electron c) Either of these d) None of these 364. In alkaline condition KMnO ₄ reacts as follows: 2KMnO ₄ + 2KOH \rightarrow 2K ₂ MnO ₄ + H ₂ O + O. The eq. wt. of KMnO ₄ is: a) 52.7 b) 158 c) 31.6 d) 79 365. Oxidation number of nitrogen in AgNO ₃ is: a) +5 b) -3 c) +3 d) -2 366. Total number of AlF ₃ molecules in a sample of AlF ₃ containing 3.01 × 10 ²³ ions of F ⁻ is:	04
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce MnO ₄ + 8H ⁺ + 5e \rightarrow Mn ²⁺ + 4H ₂ O? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO ₄ solution precipitates copper due to: a) Reduction of Cu ²⁺ b) Reduction of SO ₄ ²⁻ c) Reduction of Zn d) Hydrolysis of CuSO ₄ 362. Titrations in which liberated I ₂ is estimated to carry out the volumetric estimations are known in the course of chemical reaction, an oxidant: a) Iodometric b) Iodimetric c) Acidimetric d) Alkalimetric 363. In the course of chemical reaction, an oxidant: a) Loses electron b) Gains electron c) Either of these d) None of these 364. In alkaline condition KMnO ₄ reacts as follows: 2KMnO ₄ + 2KOH \rightarrow 2K ₂ MnO ₄ + H ₂ O + O. The eq. wt. of KMnO ₄ is: a) 52.7 b) 158 c) 31.6 d) 79 365. Oxidation number of nitrogen in AgNO ₃ is: a) +5 b) -3 c) +3 d) -2 366. Total number of AlF ₃ molecules in a sample of AlF ₃ containing 3.01 × 10 ²³ ions of F ⁻ is: a) 9 × 10 ²⁴ b) 3 × 10 ²⁴ c) 7 × 10 ²³ d) 10 ²³	04
d) Standard oxidation potential of that species 359. How many g of KMnO ₄ are needed to prepare 3.75 litre of 0.850 N solution if KMnO ₄ is reduce MnO ₄ + 8H ⁺ + 5e \rightarrow Mn ²⁺ + 4H ₂ O? a) 101 g b) 202 g c) 50.5 g d) 303.0 g KMnO ₄ 360. When KMnO ₄ is reduced with oxalic acid in acid medium, the oxidation number of Mn changes from: a) +7 to +4 b) +6 to +4 c) +7 to +2 d) +4 to +2 361. Addition of zinc powder to CuSO ₄ solution precipitates copper due to: a) Reduction of Cu ²⁺ b) Reduction of SO ₄ ²⁻ c) Reduction of Zn d) Hydrolysis of CuS 362. Titrations in which liberated I ₂ is estimated to carry out the volumetric estimations are known titrations. a) Iodometric b) Iodimetric c) Acidimetric d) Alkalimetric 363. In the course of chemical reaction, an oxidant: a) Loses electron b) Gains electron c) Either of these d) None of these 364. In alkaline condition KMnO ₄ reacts as follows: 2KMnO ₄ + 2KOH \rightarrow 2K ₂ MnO ₄ + H ₂ O + O. The eq. wt. of KMnO ₄ is: a) 52.7 b) 158 c) 31.6 d) 79 365. Oxidation number of nitrogen in AgNO ₃ is: a) +5 b) -3 c) +3 d) -2 366. Total number of AlF ₃ molecules in a sample of AlF ₃ containing 3.01 × 10 ²³ ions of F ⁻ is:	04

						Opius Luucution
	ion state	e of chlorine is highest in the	=			1) (1 0
a) Cl ₂		b) HCl	c) Cl ₂ O	1	2 173	d) Cl ₂ O ₇
oxidant in			4 litre of 0.05 N	solutio	n? In	e KMnO ₄ is to be used as an
a) 1.58 g		b) 15.8 g	c) 6.32 g			d) 31.6 g
	on: H ₂ S -	$+ H_2O_2 \rightarrow 2H_2O + S \text{ shows}$, 3
a) Acidic n						
b) Alkaline						
c) Oxidisir						
d) Reducir	_					
371. For redox	_					
		$H^+ \rightarrow Mn^{2+} + CO_2 + H_2O$				
		ants in balanced states are				
	$C_2O_4^{2-}$ I					
a) 2			b) 16	5	2	
c) 5		2	d) 2	16	5	
,		ridation state in :	, –			
a) HCl		b) HClO ₃	c) Cl ₂ O			d) ICl ₃
373. Which stat	ement is	_	, 2			, 3
		ubstance is followed by redu	ction of another			
•		ubstance is followed by oxid				
		eduction are complementary				
=		ry that both oxidation and re		ake pla	ce in tl	ne same reaction
		tion of $Na_2S_2O_3$ using K_2Cr_2				
a) (molecı			" الله	•		2 2 ,
b) (molecu	_		1			
c) (molecu	_					
	_	ılar weight	HCATIC	3 N		
		d in a solution of potassium	iodate, the oxidat	tion stat	e of io	dine changes from:
a) +5 to 0	-	b) +5 to −1	c) -5 to 0			d) −7 to −1
=	en that s	hows same oxidation state in			other	elements is:
a) I ₂						d) Br ₂
377. The reaction	on,	, <u>-</u>	, <u>-</u>			· -
$P_4 + 3NaO$	$H + 3H_2$	$0 \rightarrow 3NaH_2PO_2 + PH_3$				
is an exam	ple of					
a) Disprop	ortionat	tion reaction	b) Neutral	isation	reactio	on
c) Double-	decomp	osition reaction	d) Pyrolyt	ic react	ion	
378. Titrations	in which	I ₂ solution is used as intern	nediate are know	n ast	itratio	ns.
a) Iodome	tric	b) Iodimetric	c) Acidime	etric		d) alkalimetric
379. In the read	tion,Cr ₂	$0_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^3$	$^{+} + 7H_{2}O + 3I_{2}$, v	which el	lement	t is reduced?
a) I		b) 0	c) H			d) Cr
380. Carbon rea	acts with	oxygen to form two oxides,	CO and CO ₂ . This	is beca	use:	
a) Carbon	has two	crystalline forms				
b) Carbon	has two	oxidation states				
c) Oxygen	donates	as well as accept electrons				
d) Oxygen	has a stı	ong affinity for carbon				
381. How many	millilite	er of 0.5 N SnCl ₂ solution wil	ll reduce 600 mL	of 0.1 <i>N</i>	HgCl ₂	to Hg_2Cl_2 ?
a) 120 mL		b) 60 mL	c) 30 mL			d) 240 mL
382. What weig	ght of Fe	eSO_4 (mol. wt. =152) will b	e oxidised by 20	00 mL o	f norn	nal KMn $\mathrm{O_4}$ solution in acidic
solution?						

_		_ ,			
Gpl	เมร	Fdi	uca	tioi	n

			Opius Luacution
a) 30.4 g	b) 60.8 g	c) 121.6 g	d) 15.8 g
383. How many milligram of i	ron (Fe^{2+}) are equal to 1 m		
a) 5.9 mg	b) 0.59 mg	c) 59 mg	d) $59 \times 10^{-3} \text{ mg}$
384. Number of moles of Mno	0_4^- required to oxidise one	e mole of ferrous oxalate c	ompletely in acidic medium
will be :			
a) 0.4 mole	b) 7.5 mole	c) 0.2 mole	d) 0.6 mole
385. A, B and C are three e	lements forming a part o	of compound in oxidation	states of $+2$, $+5$ and -2
respectively. What could	be the compound?		
a) $A_2(BC)_2$	b) $A_2(BC_4)_3$	c) $A_3(BC_4)_2$	d) <i>ABC</i>
386. In an oxidation process	s for a cell $M_1 \longrightarrow M_1^{n+} +$	- ne , the other metal (M_2) being univalent showing
	electrons to complete red	ox reaction.	
a) $(n-1)$	b) 1	c) <i>n</i>	d) 2
387. In which of the following		an oxidising agent?	
(i) $CH_3CH_2OH + Cl_2$			
(ii) $CH_3CHO + Cl_2$			
(iii) $CH_4 + Cl_2$	$CH_3Cl + HCl$		
The correct answer is			
a) (i) only			
b) (ii) only			
c) (i) and (iii)			
d) (i),(ii) and (iii)	11 +17 C O 1 1	1 1.	
388. During a redox change, th	ne oxidant K ₂ Cr ₂ O ₇ is alwa b) Cr ⁴⁺		d) Cr ²⁺
a) Cr ⁵⁺		c) Cr ³⁺	,
389. When potassium perman		ierrous ammonium suipna	ite, the equivalent weight of
potassium permanganate		c) Molecular weight/2	d) Mologular weight
390. Which conversion is an o		c) Moleculal Weight/2	uj Moleculai Weight
a) $SO^{2-} \rightarrow SO^{2-}$	h) $Cu^{2+} \rightarrow Cu$	O H+ → H	d) $H^- \rightarrow H$
391. In which case $+1$ oxidation	b) $Cu^{2+} \rightarrow Cu$ on state is stable than ± 3 ?	C) II I I II	uj ii / ii
a) Ga	b) Al	c) Tl	d) B
392. In the reduction of dichro	•	•	•
		c) 2	
393. When K ₂ Cr ₂ O ₇ is conver	,	•	•
a) 0	b) 5	c) 7	d) 9
394. Which of the following ac	•	•	.,
a) HNO ₃	b) HNO ₂	c) HI	d) H_2SO_4
395. In which of the following			
a) N ₃ H	b) NH ₂ OH	c) N_2H_4	d) NH ₃
396. 1 mole of MnO_4^{2-} in neutr	ral aqueous medium dispro	pportionates to :	
a) $\frac{2}{3}$ mole of MnO $\frac{1}{4}$ and $\frac{1}{3}$ r	nole of MnO ₂		
5			
b) $\frac{1}{3}$ mole of MnO $\frac{1}{4}$ and $\frac{2}{3}$ r			
c) $\frac{1}{3}$ mole of Mn ₂ O ₇ and $\frac{1}{3}$			
d) $\frac{2}{3}$ mole of Mn ₂ O ₇ and $\frac{1}{3}$	mole of MnO ₂		
397. Which one of the compou	and does not decolourised a	an acidified solution of KMr	nO ₄ ?
a) SO ₂	b) FeCl ₃	c) H_2O_2	d) FeSO ₄
398. When one mole of KMnO			
a) 11.2 litre	b) 22.4 litre	c) 44.8 litre	d) 56.0 litre
399. What would happen whe	n a small quantity of H_2O_2	is added to a solution of Fe	SO ₄ ?

			Gplus Education
	a) Colour disappears		
	b) H ₂ is evolved		
	c) An electron is added to Fe ²⁺		
	d) An electron is lost by Fe ²⁺		
400	. The oxidation state of I in IPO ₄ is		
	a) +1 b) +3	c) +5	d) +7
401	The number of moles of KMnO ₄ reduced by one	mole of KI in alkalin	-
	a) 1 b) 5	c) ½	d) 1/5
402	. A $0.50~M$ solution of KI reacts with excess of ${ m H_2}$	•	ions according to the equation, $6H^+$ +
	$5I^- + IO_3^- \rightarrow 3I_2 + 3H_2O$. Which of the followi		
	a) 200 mL of the KI solution reacts with 0.10 mo		
	b) 100 mL of the KI solution reacts with 0.060 M		
	c) 0.5 litre of the KI solution produces 0.15 mole		
	d) None of the above	2	
403	Oxidation number of chromium in $K_2Cr_2O_7$ is:		
100	a) +2 b) +3	c) +6	d) —4
404	A standard solution is one whose :	0) 10	u, .
101	a) Concentration is 1 <i>M</i>		
	b) Concentration is unknown		
	c) Concentration is known		
	d) None of the above		
405	In the reaction, $SO_2 + 2H_2S \rightarrow 3S + 2H_2O$, the s	uhetanca ovidisad is	
103	a) H_2S b) SO_2	c) S	d) H ₂ O
406	Oxidation number of P in $HP_2O_7^-$ ion is	c) 3	u) 11 ₂ 0
400	a) +5 b) +6	c) +7	d) +3
407	. The oxidation number that iron does not exhibit	•	-
407			
400		c) +2	d) +3
400	Oxidation number of Cl in NOClO ₄ is: a) $+7$ b) -7	JCALIUN	a) E
	-	c) +5	d) –5
409	In which reaction is hydrogen acting as an oxidis	ang agent?	
	a) With iodine to give hydrogen iodide		
	b) With lithium to give lithium hydride		
	c) With nitrogen to give ammonia		
410	d) With sulphur to give hydrogen sulphide		
410	In presence of moisture SO ₂ can:		
	a) Gain electrons		
	b) Lose electrons		
	c) Act as oxidising agent		
444	d) Does not act as reducing agent		
411	The oxidation number of Mn in MnO_2 is:	2 0	12 4
440	a) +4 b) +6	c) +2	d) -4
412	Which is not correct in case of Mohr's salt?		
	a) It decolourises KMnO ₄		
	b) It is primary standard		
	c) It is a double salt		
	d) Oxidation state of Fe is +3 in the salt		
413	In the reduction of dichromate by Fe (II), the number of the control of the contr		
	a) 3 b) 1	c) 2	d) 4
414	Which of the following is a redox reaction?		
	a) $NaCl + KNO_3 \rightarrow NaNO_3 + KCl$	b) CaC ₂ O ₄ + 21	$HCl \rightarrow CaCl_2 + H_2C_2O_4$

c) $Ca(OH)_2 + 2NH_4Cl \rightarrow CaCl_2 + 2NH_3 + 2H_2O$

d) $2K[Ag(CN)_2] + Zn \rightarrow 2Ag + K_2[Zn(CN)_4]$

415. What volume of 2N K₂Cr₂O₇ solution is required to oxidise 0.81 g of H₂S in acidic medium?

a) 47.8 mL

b) 23.8 mL

c) 40 mL

d) 72 mL

416. Oxidation number of As atom in H₃AsO₄ is:

a) +5

b) + 6

c) + 4

d) -3

417. In the following change, $3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$. If the atomic weight of iron is 56, then its equivalent weight will be:

a) 42

b) 21

c) 63

d) 84

418. In permonosulphuric acid (H₂SO₅), the oxidation number of sulphur is

a) +8

b) + 4

c) + 5

d) + 6

419. The reaction,

$$Ag^{2+}(aq) + Ag(s) \rightleftharpoons 2Ag^{+}(aq)$$

is an example of

a) Reduction

b) Oxidation

c) Comproportionation

d) Disproportionation

420. Amount of oxalic acid present in a solution can be determined by its titration with $KMnO_4$ solution in the presence of H_2SO_4 . The titration gives unsatisfactory result when carried out in the presence of HCl, because HCl:

- a) Oxidises oxalic acid to carbon dioxide and water
- b) Gets oxidized by oxalic acid to chlorine
- c) Furnishes H⁺ ions in addition to those from oxalic acid
- d) Reduces permanganate to Mn²⁺

421. Which is not a redox change?

a)
$$CaCO_3 \rightarrow CaO + CO_2$$

b)
$$2H_2 + O_2 \rightarrow 2H_2O$$

c) Na + H₂O
$$\rightarrow$$
 NaOH + $\frac{1}{2}$ H₂

d)
$$MnCl_3 \rightarrow MnCl_2 + \frac{1}{2}Cl_2$$

422. Sulphurous acid can be used as:

a) Oxidising agent

b) Reducing agent

c) Bloaching agent

d) All of these