GPLUS EDUCATION

Dat Tin			CHEMISTRY
Mai	coordination	N COMPOUNDS	
	Single Correct	Answer Type	
1.	The IUPAC name of $Na_3[Co(ONO)_6]$ is:		
	a) Sodium cobaltinitrite		
	b) Sodium hexanitritocobaltate(III)c) Sodium hexanitrocobalt(III)		
	d) Sodium hexanitritocobaltate(II)		
2.	CuSO ₄ decolourises on addition of KCN, the product	t is:	
	a) $Cu(CN)_4^{2-}$ b) $[Cu(CN)_4]^{3-}$	c) Cu(CN) ₂	d) CuCN
3.	Exchange of coordination group by a water molecul	e in complex molecule resu	ılts in:
	a) Ionization isomerism		
	b) Ligand isomerism		
	c) Hydration isomerism d) Geometrical isomerism		
4.	The type of isomerism found in urea molecule is		
	a) Chain	>	
	b) Position		
	c) Tautomerism		
_	d) None of these		
5.	The IUPAC name of the compound is	ΓΔΤΙΩΝ	
	a) Butane-2-aldehyde b) 2-methyl butanal	c) 2-ethyl propanal	d) None of the above
6.	Anisol is a product obtained from phenol by the rea		
_	a) Coupling b) Etherification	c) Oxidation	d) Esterification
7.	Which of the following is diamagnetic in nature?) [N:(CO)]	D IM OL 12-
8.	a) [Fe(CN) ₆] ³⁻ b) [NiCl ₄] ²⁻ Which is the strongest field ligand?	c) [Ni(CO) ₄]	d) [MnCl ₄] ^{2–}
0.	Which is the strongest field ligand? a) CN ⁻ b) NO ₂	c) NH ₃	d) en
9.	Nitrobenzene on reduction with Zn and aq . NH ₄ Cl g	, ,	uj on
	a) Aniline	•	
	b) Nitrosobenzene		
	c) N-phenyl hydroxylamine		
4.0	d) Hydrazobenzene		
10.	The IUPAC name of $[Co(NH_3)_5 ONO]^{2+}$ ion is	1.) Dente mente este este este este este este este	11. (III) !
	a) Pentaammine nitrito cobalt (IV) ionc) Pentaammine nitrito cobalt (III) ion	b) Pentaammine nitro co d) Pentaammine nitro co	
11	The compound which does not show paramagnetisi	•	boatt (IV) Ioli
11.	a) NO ₂ b) NO	c) $[Ag(NH_3)_2]Cl$	d) [Cu(NH ₃) ₄ Cl ₂]
12.			
	corresponding nitro derivatives employing the usua	_	
	a) C_6H_6 b) $C_6H_5NO_2$	c) $C_6H_5CH_3$	d) $C_6H_5 \cdot CCl_3$
13.	The number of unpaired electrons calculated in [Co		
	a) 4 and 4 b) 0 and 2	c) 2 and 4	d) 0 and 4

14. The IUPAC name of

- a) 4-hydroxy amino benzene carboxylic acid
- c) 4-hydroxy imino cyclohexanoic acid
- b) 4-(N-hydroxy) imino benzene carboxylic acid
- d) 4-(N-hydroxy) imino cyclohexane-1

-carboxylic acid

- 15. The IUPAC name of the coordination compound $K_2[Zn(OH)_4]$ is
 - a) Potassium tetrahydroxozine (II)
- b) Dipotassium tetrahydroxo(II)
- c) Potassium tetrahydroxozincate (II)
- d) Potassium tetrahydroxozincate (III)
- 16. Arrange in order of decreasing trend towards S_E reactions,

Chlorobenzene, Benzene, Anilium chloride, Toluene:

- I. (II)
- (III)
- (IV)
- a) II > I > III > IV
- b) III > I > II > IV
- c) IV > II < I > III
- d) I > II > III > IV
- 17. Toluene is nitrated and the resulting product is reduced with tin and hydrochloric acid. The product so obtained is diazotised and then heated with cuprous bromide. The reaction mixture so formed contains:
 - a) Mixture of o- and m-bromotoluenes
 - b) Mixture of o- and p-bromotoluenes
 - c) Mixture of *o* and *p*-dibromobenzenes
 - d) Mixture of o- and p-bromoanilines
- 18. A positive carbylamine test is given by:
 - a) N, N-dimethylaniline
 - b) 2,4-dimethylaniline
 - c) N-methyl-o-methylaniline
 - d) p-methyl benzylamine
- 19. CN⁻ is strong field ligand. This is due to the fact that
 - a) It carries negative charge
 - b) It is a pseudohalide
 - c) It can accept electrons from metal species
 - d) It forms high spin complexes with metal species.
- 20. Which of the following is not true for ligand metal complex?
 - a) Highly charged ligand forms strong bond
 - b) Greater the ionization potential of central metal, the stronger is the bond
 - c) Larger the permanent dipole moment of ligand, the more stable is the bond
 - d) Larger the ligand, the more stable is the metal-ligand bond
- 21. The nitration of nitrobenzene with fuming HNO₃ will give:
 - a) TNB

- b) 1,3-dinitrobenzene
- c) Picric acid
- d) 1,4-dinitrobenzene

- 22. A ligand can also be regarded as
 - a) Lewis acid
- b) Bronsted base
- c) Lewis base
- d) Bronsted acid
- 23. The correct statement with respect to the complexes $Ni(CO)_4$ and $[Ni(CN)_4]^{2-}$ is
 - a) Nickel is in the same oxidation state in both
 - b) Both have terahedral geometry
 - c) Both have square planar geometry
 - d) Have tetrahedral and square planar geometry respectively
- 24. Which one of the following has lowest value of paramagnetic behaviour?
 - a) $[Cr(CN_6)_4]^{3-}$
- b) $[Mn(CN)_6]^{3-}$
- c) [Fe(CN)₆]³⁻
- d) $[Co(CN)_6]^{3-}$

25. In the reaction;

the products are:

- d) OH and CH₃Br
- 26. An octahedral complex is formed when central metal atom undergoes hybridization amongst the....orbitals.
 - a) sp^3

b) dsp^2

c) sp^3d

d) sp^3d^2

; the product X in the reaction is: COOH

- 28. Biological oxidation of C₆H₆ taking place in body of dog, gives:
 - a) Benzoic acid
- b) Toluic acid
- c) Maleic acid
- d) Muconic acid
- 29. Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in the alkaline solutions but not in acidic solutions .What is the reason for it?
 - a) In acidic solutions hydration protects copper ions
 - In acidic solutions protons coordinate with ammonia molecules forming NH₄⁺ ions and NH₃ molecules b) one not available. are not available
 - c) In alkaline solutions insoluble $Cu(OH)_2$ is precipitated which is soluble in excess of any alkali
 - d) Copper hydroxide is an amphoteric substance
- 30. Which of the following has the highest molar conductivity in solution?
 - a) $[Pt(NH_3)_6]Cl_4$
- b) $[Pt(NH_3)_5Cl]Cl_3$
- c) $[Pt(NH_3)_4Cl_2]Cl_2$
- d) $[Pt(NH_3)_3Cl_3]Cl$

- 31. Which of the following is not *meta* directing group?
 - a) $-SO_3H$
- b) $-NO_2$
- c) —CN

d) - NH₂

- 32. Which of the following is an organometallic compound?
 - a) Lithium methoxide

b) Lithium acetate

c) Lithium dimethylamine

- d) Methyl lithium
- 33. Which among the following is very strong *o*-, *p*-directing group?

- b) -0R
- c) $-NH_2$
- d) —NH*R*
- 34. The type of hybridisation in tetrahedral complexes of metal atom is

a) dsp^2

b) d^2sp

c) sp^3

- d) sp^2
- 35. Chlorobenzene on heating with NaOH at 300°C under pressure gives:
 - a) Phenol
- b) Benzaldehyde
- c) Chlorophenol
- d) None of these
- 36. The coordination number of Fe in $[Fe(CN)_6]^{4-}$ $[Fe(CN)_6]^{3-}$ and $[FeCl_4]^{-}$ are respectively.
 - a) 2, 3, 3
- b) 6, 6, 4
- c) 6, 3, 3
- d) 6, 4, 6

- 37. Consider the following statements
 - I. Chain and position isomerism are not possible together between two isomers
 - II. Tautomerism is a chemical phenomenon which is catalysed by acid as well as base
 - III. Tautomers are always metamers
 - IV. Tautomers are always functional isomers

Select the correct answer by using the codes given below

a) Only III is correct

b) III and IV are correct

c) I, II and III are correct

- d) I, II and IV are correct
- 38. What is the EAN of nickel in $[Ni(CN)_4]^{2-}$?
 - a) 32

b) 35

c) 34

- d) 36
- 39. Which of the following alcohols is dehydrated most readily with conc. H₂SO₄?
 - a) p-O₂NC₆H₄CH(OH)CH₃
 - b) p-ClC₆H₄CH(OH)CH₃
 - c) p-CH₃OC₆H₄CH(OH)CH₃
 - d) $C_6H_5CH(OH)CH_3$
- 40. The compound having tetrahedral geometry is
 - a) $[Ni(CN)_4]^{2-}$
- b) [Pd(CN₄)]²
- c) [PdCl₄]²⁻
- d) [NiCl₄]²⁻

41. Identify 'Z' in the change;

$$C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} X \xrightarrow{CuBr/HBr} Z$$

- 42. Which of the following is most acidic?
 - a) p-cresol
- b) *p*-chlorophenol
- c) *p*-nitrophenol
- d) p-aminophenol

- 43. Benzoylacetonato beryllium exhibit isomerism of the type
 - a) Structural
- b) Geometrical
- c) Optical
- d) Conformational

44. Which one of the following has a square planar geometry?

(At. No. Fe=26, Co=27, Ni=28, Pt=78)

- a) $[CoCl_4]^{2-}$
- b) [FeCl₄]²⁻
- c) $[NiCl_4]^{2-}$
- d) $[PtCl_4]^{2-}$
- 45. The number of ions formed on dissolving one molecule of $FeSO_4(NH_4)_2SO_4 \cdot 6H_2O$ in water is:
 - a) 4

b) 5

c) 3

d) 6

- 46. A solution of potassium ferrocyanide would contains-ions
 - a) 2

b) 3

c) 4

- d) 5
- 47. Which of the following is not considerd as an organometallic compound?
 - a) Grignard reagent
- b) *cis*-platin
- c) Zeise's salt
- d) Ferrocene
- 48. When phenol is reacted with CHCl₃ and NaOH followed by acidification, salicylaldehyde is obtained. Which of the following species are involved in the above mentioned reaction as intermediates?

d) Both (a) and (b)

49. Number of geometrical isomers for the molecule

$$R$$
 $C = C$ H $C = C$ H are

a) 2

b) 3

d) 5

- 50. Which statement about coordination number of a cation is true?
 - a) Most metal ions exhibit only a single characteristic coordination number
 - b) The coordination number is equal to the number of ligands bonded to the metal atom
 - c) The coordination number is determined solely by the tendency to surround the metal atom with the same number of electrons as one of the rare gases
 - d) For most cations, the coordination number depends on the size, structure and charge of the ligands
- 51. Among the following, the strongest base is:

a) $C_6H_5NH_2$

b) $p-NO_2-C_6H_4NH_2$ c) $m-NO_2-C_6H_4NH_2$

d) $C_6H_5CH_2NH_2$

52. General formula for arenes is:

a) C_nH_{2n+6}

b) $C_n H_{2n+6\nu}$

53. Which of the following doesn't have a metal-carbon bond?

a) Al $(OC_2H_5)_3$

b) C₂H₅MgBr

c) $K[Pt(C_2H_4)Cl_3]$

d) Ni(CO)₄

54. How many isomers are possible in $[Co(en)_2Cl_2]$?

b) 4

55. How many carbon atoms in the molecule $HOOC - (CHOH)_2 - COOH$ are asymmetric?

b) 2

d) None of these

56. In benzene, there is a delocalisation of π -electrons. Hence, each π -electron is attached by....carbon nuclei.

b) 3

c) 6

d) 4

- 57. Which can be used to distinguish $C_6H_5NH_2$ and $C_6H_5CH_2NH_2$?
 - a) Diazotisation followed with coupling with phenol
 - b) Carbylamine reaction
 - c) Reimer-Tiemann reaction
 - d) None of the above
- 58. When RCOCl and AlCl₃ are used in Friedel-Craft's reaction, the electrophile is:

a) Cl+

b) RCOCl

c) $_{R}\stackrel{+}{\text{CO}}$

d) R^+

- 59. Thiophene is separated from benzene by:
 - a) Chlorination of thiophene
 - b) Sulphonation of thiophene
 - c) Nitration of thiophene
 - d) Oxidation of thiophene
- 60. A complex compound of CO^{3+} with molecular formula $COCl_x$. yNH_3 gives a total of 3 ions when dissolved in water. How many Cl⁻ions satisfy both primary and secondary valencies in this complex?

a) 3

b) 1

c) 4

d) Zero

- 61. The correct IUPAC name of alcohol [(CH₃)₂CH]₃COH is
 - a) Tri isopropyl carbinol

- b) 2, 4-dimethyl-3-isopropyl pentan-3-ol
- c) 2,4-dimethyl-3-(1-methyl) ethyl pentan-3-ol
- d) None of the above
- 62. Colour of transition metal complexes can be explained by:
 - a) Completely filled *d*-orbitals
 - b) Vacant *d*-orbitals
 - c) d d transition

- d) None of the above
- 63. Which is most reactive towards electrophilic reagents:

- 64. Pick a poor electrolytic conductor complex in solution:
 - a) $K_2[PtCl_6]$
- b) $[Co(NH_3)_3](NO_2)_3$
- c) $K_4[Fe(CN)_6]$
- d) $[Co(NH_3)_4]SO_4$

- 65. Benzene reacts with sulphuric acid only when the acid is:
 - a) Dilute and cold
- b) Dilute and hot
- c) Hot and concentrated d) Mixed with HNO₃

66. In the following reaction the catalyst used is:

$$H_2C$$
 CH_2
 CH_2

- c) Zn dust
- d) Cr_2O_3 and Al_2O_3

- 67. The alkane which has only primary hydrogen atom is
 - a) Pentane

b) isopentane

c) neopentane

- d) 2, 2-dimethyl butane
- 68. The correct IUPAC name of the complex;

- a) Dichlorodimethylglyoximato cobalt(II)
- b) Bis(dimethylglyoxime) dichloro cobalt(II)
- c) Dimethylglyoxime cobalt(II) chloride
- d) Dichlorodimethylglyoxime-N,N-cobalt(II)
- 69. Which of the following nitroalkane will not show tautomerism?

$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 \operatorname{NO}_2 \\ \operatorname{b)} & | \\ \operatorname{CH}_3 \end{array}$$

$$\begin{array}{ccc} \mathrm{CH_{3}CH} - \mathrm{CH_{2}CH_{3}} \\ \mathrm{c)} & | \\ \mathrm{NO_{2}} \end{array}$$

- 70. Which is low spin complex?
 - a) $[Fe(CN)_6]^{3-}$
- b) $[Co(NO_2)_6]^{3-}$
- c) $[Mn(CN)_6]^{3-}$
- d) All of these

- 71. The probable formula for Prussian blue is:
 - a) $Fe_3[Fe(CN)_6]_2$
- b) $Fe_2[Fe(CN)_6]_3$
- c) $Fe_4[Fe(CN)_6]_3$
- d) $Fe_3[Fe(CN)_6]_4$

72. Which represents Reimer-Tiemann reaction?

- 73. The complex ion which has no 'd'-electron in the central metal atom is :
 - a) $[MnO_4]^-$
- b) $[Co(NH_3)_6]^{3+}$
- c) $[Fe(CN)_6]^{3-}$
- d) $[Cr(H_2O)_6]^{3+}$
- 74. The shape of cobalt hexaammine cation, which has its central cobalt atom surrounded by six ammonia molecules is:
 - a) Tetrahedral
- b) Octahedral
- c) Square planar
- d) Trigonal
- 75. Which ligand is capable of forming low spin as well as high spin complexes?
 - a) CO

b) NO_{2}

c) CN-

d) NH₃

76.

The IUPAC name of a) 7-ethyl-2, 4, 5, 6-tetramethyl-deca-1, 9-diene

- b) 7-ethyl-2, 4, 5, 6-tetramethyl-deca-1, 8-diene
- c) 4-ethyl-4, 5, 6, 7-tetramethyl-deca-1, 9-diene
- d) 7-(1-propenyl)-2, 3, 4, 5-tetramethyl-non-1-ene
- 77. IUPAC name of [Pt(NH₃)₃Br(NO₂)Cl]Cl is
 - a) Triamminechlorobromonitro platinum (IV) chloride
 - b) Triamminebromonitrochloro platinum (IV) chloride
 - c) Triamminebromochloronitro platinum (IV) chloride
 - d) Triamminenitrochlorobromo platinum (IV) chloride
- 78. An aromatic ether is not cleaved by HI even at 525 K. The compound is:

c)
$$C_6H_5OC_3H_7$$

$$\begin{array}{c|c} CH_2 - CH_2 \\ \hline \\ d) CH_2 CH_2 \\ \hline O \end{array}$$

- 79. Phenol does not react with:
 - a) Na₂CO₃
- b) NaOH
- c) NaHCO₃
- d) KOH

- 80. $[EDTA]^{4-}$ is a
 - a) Monodentate ligand

b) Bidentate ligand

c) Quadridentate ligand

- d) Hexadentate ligand
- 81. $[Pt(NH_3)_4Cl_2]Br_2$ and $[Pt(NH_3)_4Br_2]Cl_2$ are related to
 - a) Optical isomer
- b) Linkage isomers
- c) Coordinate isomers
- d) Ionization isomers

- 82. Ferrocene is an example of
 - a) Sand-wiched complex
 - b) Pi-bonded complex
 - c) A complex in which all the five carbon atoms of cyclopentadiene anion are bonded to the metal
 - d) All of the above
- 83. Which compound is zero valent metal complex?
 - a) $[Cu(NH_3)_4]SO_4$
- b) $[Pt(NH_3)_2Cl_2]$
- c) $[Ni(CO)_4]$
- d) $K_3[Fe(CN)_6]$
- 84. Which of the following compounds is 2, 2, 3-trimethyl hexane?
 - a) $(CH_3)_3CCH(CH_3)CH_2CH_3$

b) $(CH_3)_3CCH_2(CH_3)_2$

c) $(CH_3)_2CHCH_2CH_2C(CH_3)_3$

- d) $(CH_3)_3CCH(CH_3)CH_2CH_2CH_3$
- 85. The formula of phenoxy benzene is:
 - a) $C_6H_5C_6H_5$
- b) $C_6H_5-0-C_6H_5$
- c) $C_6H_5-0-C_6H_6$
- d) None of these

- 86. Ziegler-Natta catalyst is an organometallic compound containing
 - a) Iron

- b) Titanium
- c) Rhodium
- d) Zirconium

- 87. Ziegler-Natta catalyst is
 - a) (Ph₃P)₃RhCl
- b) $K[PtCl_3(C_2H_4)]$
- c) $[Al_2(C_2H_6)_6 + TiCl_4]$
- d) $[Fe(C_2H_5)_2]$
- 88. The tendency to show complex formation is maximum inelements.
 - a) s-block
- b) p-block
- c) d-block
- d) f-block

- 89. EDTA has coordination number
 - a) 3

b) 4

c) 5

- d) 6
- 90. Which of the following is used in Friedel-Craft's acylation reaction?

CH₃CO₅

- a) CH₂CO
- b) CH₃CH₂Cl
- c) CH₃COOCH₃
- d) CH₃Cl

- 91. The correct IUPAC name of $Mn_3(CO)_{12}$ is
 - a) Dodacacarbonyl maganate (0)

- b) Dodacacarbonyl maganate (II)
- c) Didacacarbonyl trimaganese (0)
- d) Manganic dodecacarbanyl (0)
- 92. The π -bonded organometallic compound which has ethene as one of its component is
 - a) Zeise's salt
- b) Ferrocene
- c) Dibenzene chromium d) Tetraethyl tin

93. IUPAC name of the compound

$$CH_3$$
 CH_3
 $C-COOC_2H_5$ is
 NO_2

- a) Ethyl-2-methyl-2-(*m*-nitro) phenyl propanoate
- b) Ethyl-2-methyl-2-(o-nitro) phenyl propanoate
- c) Ethyl-2-methyl-2-(3-nitro) phenyl propanoate
- d) Ethyl-2-methyl-2-(3-nitro) phenyl propanoic acid
- 94. What is the product obtained in the following reaction:

- 95. $[Co(NH_3)_6]Cl_3$ is called:
 - a) Hexaammine cobalt (III) chloride
 - b) Amino cobalt chloride (III)
 - c) Cobalt chloride hexaammine
 - d) Hexaammine tricobalt chloride
- 96. The complexes [PtCl₂(NH₃)₄]Br₂ and [PtBr₂(NH₃)₄]Cl₂ are example for isomerism

NHOH

- a) Geometrical
- b) Optical
- c) Ionization
- d) Linkage
- 97. Geometrical shapes of the complexes formed by the reaction of Ni²⁺ with Cl⁻, CN⁻ and H₂O, respectively,
 - a) Octahedral, tetrahedral and square planar
- b) Tetrahedral, square planar and octahedral
- c) Square planar ,tetrahedral and octahedral
- d) Octahedral, square planar and octahedral
- 98. Identify the correct order of reactivity in electrophilic substitution reactions of the following compounds:

- a) 1 > 2 > 3 > 4
- b) 4 > 3 > 2 > 1
- c) 2 > 1 > 3 > 4
- d) 2 > 3 > 1 > 4

		Gplus Education
99. The centric formula for benzene was propose	ed by:	
a) Dewar		
b) Armstrong and Baeyer		
c) Ladenberg		
d) Kekule		
100. Which is the correct statement?		
a) Benzyl alcohol is more acidic than phenol		
b) Ethanol is a powerful oxidizing agent		
c) Phenol is more acidic than propanol		
d) Ethane has high boiling point than ethanol		
101. Phenol on sulphonation gives:		
a) o-phenol sulphonic acid		
b) p -phenol sulphonic acid		
c) <i>m</i> -phenol sulphonic acid		
d) Mixture of o -and p -phenol sulphonic acids		
102. Which of the following organometallic compo	ound is σ and π bonded?	
a) $Fe(CH_3)_3$ b) $[Co(CO)_5NH_3]^{2-}$	+ c) $[Fe(\eta^5 - C_5H_5)_2]$	d) K[PtCl ₃ ($\eta^2 - C_2H_4$)]
103. The number of double bonds in BHC (gamme		
a) 1 b) 2	c) 3	d) Zero
104. Given the molecular formula of the hexa coor	-	
(C) $CoCl_3 \cdot 4NH_3$. If the number of coordinate		
primary valency in (A) , (B) and (C) are		
a) 0, 1, 2 b) 3, 2, 1	c) 6, 5, 4	d) 3, 3, 3
105. Type of isomerism shown by $[Cr(NH_3)_5 NO_2]$	Annual Control of the	, , ,
a) Optical b) Ionisation	c) Geometrical	d) Linkage
106. $[Sc(H_2O)_6]^{3+}$ ion is	1	, 0
a) Colourless and diamagnetic	b) Coloured and octah	edral
c) Colourless and paramagnetic	d) Coloured and paran	
107. Which one of the following octahedral comple		•
monodentate ligands)	· · · · · · · · · · · · · · · · ·	(
a) $[MA_4B_2]$ b) $[MA_5B]$	c) $[MA_2B_4]$	d) $[MA_3B_3]$
108. The IUPAC name of the following compound i		a) [· · · · · 2 ~ 3]
O=C-CH-CH ₂		
$O = C - CH - CH_2$ $\begin{vmatrix} & & & \\ & & \\ & & \\ & & \\ & & OH & NH_2 & OH \\ \end{vmatrix}$		
a) 3-amino-2-hydroxy propanoic acid	b) 2-aminopropan-3-o	
c) 2-amion-3-hydroxy propanoic acid	d) Aminohydroxy prop	oanoic acid
109. Which of the following complex ion is not exp	ected to absorb visible light?	
a) $[Ni(CN)_4]^{2-}$		
b) $[Cr(NH_3)_6]^{3+}$		
c) $[Fe(H_2O)_6]^{2+}$		
d) $[Ni(H_2O)_6]^{2+}$		
110. The correct sequence of activating power of a	group in benzene is:	
a) $-NH_2 > -NHCOCH_3 > -CH_3$		
b) $-NH_2 < -NHCOCH_3 < -CH_3$		
c) $-NH_2 > -NHCOCH_3 < -CH_3$		
d) $-NH_2 < -NHCOCH_3 > -CH_3$		
111. The pair of compounds having metals in their	highest oxidation state is	
a) MnO ₂ ,FeCl ₃	b) $[MnO_4]^-$, CrO_2Cl_2	
c) $[Fe(CN)_6]^{3-}$, $[Co(CN)_3]$	d) $[NiCl_4]^{2-}$, $[CoCl_4]^-$	

112. Total number of geometrical isomers for the complex $[{\rm RhCl}({\rm CO})({\rm PPh}_3)({\rm NH}_2)]$ is

a) 1

b) 2

c) 3

- 113. The reaction of chloroform with alc. KOH and *p*-toluidine forms:
- 114. Which order is correct in spectrochemical series of ligands?
 - a) $Cl^- < F^- < [C_2O_4]^{2-} < NO_2^- < CN^-$
 - b) $CN^- < [C_2O_4]^{2-} < Cl^- > NO_2^- < F^-$
 - c) $[C_2O_4]^{2-} < F^- < Cl^- > NO_2^- < CN^-$
 - d) $F^- < Cl^- < NO_2^- < CN^- < [C_2O_4]^{2-}$
- 115. The IUPAC name of compound $K_3[Fe(CN)_5NO]$ is

 - a) Pentacyano nitrosyl potassium ferrate(II)
- b) Potassium cyano pentanitrosyl ferrate(II)
- c) Potassium pentacyanonitrosyl ferrate (III)
- d) Potassium pentacyanonitrosyl ferrate (II)
- 116. The colour of $[Ti(H_2O)_6]^{3+}$ is due to:
 - a) Transfer of an electron from one Ti to another
 - b) Presence of water molecule
 - c) Excitation of electrons from d d
 - d) Intramolecular vibration
- 117. The oxidation number of Fe in $K_4[Fe(CN)_6]$ is
 - a) +3

b) +4

c) + 2

- d) -2
- 118. Correct structures of [E][S]-5-bromo-2,7-dimetyl, non-4-ene is

$$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{a)} \\ \text{H}_{3}\text{C} \end{array} \text{CH--CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{C} \\ \text$$

c)
$$H_3C$$
 CH CH_2 CH CH_2 CH_3 CH_2 CH_3 C

- 119. Name the metal *M* which is extracted on the basis of following reactions,
 - $4M + 8CN^{-} + 2H_{2}O + O_{2} \rightarrow 4[M(CN)_{2}]^{-} + 4OH^{-}$
 - $2[M(CN)_2]^- + Zn \rightarrow [Zn(CN)_4]^{2-} + 2M$:
 - a) Nickel
- b) Silver
- c) Copper
- d) Mercury

- 120. EAN of Cr in $[Cr(NH_3)_6]Cl_3$ is:

c) 34

d) 35

- 121. The complex $[Pt(NH_3)_6]Cl_4$ furnishes:
 - a) 5 ions
- b) 6 ions
- c) 4 ions
- d) 2 ions
- 122. Ammoniacal solution of Ni(CN)₂ reacts with C₆H₆ to produce a light violet coloured crystalline compound of the formula:
 - a) Ni(CN)₂ \cdot C₆H₅
- b) $C_6H_5CH_3$
- c) $Ni(CN)_2C_6H_6$
- d) $Ni(CN)_2NH_3 \cdot C_6H_6$
- 123. Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in alkaline solution but not in acidic solution. What is the reason for it?
 - a) In acidic solutions, hydration protects copper ions

- b) In alkaline solution, insoluble Ci(OH)₂ is precipited which in excess of any alkali
- c) Copper hydroxide is an amphoteric substance
- d) In acidic solutions, protons coordinate with ammonia molecules forming $\mathrm{NH_4^+}$ ions and $\mathrm{NH_3}$ molecules are not available
- 124. Which of the following shows geometrical isomerism?
 - a) 1, 2-dicholoroethane

b) 1, 2-dimethylcyclopropane

c) CH₃CH

- d) All of the above
- 125. The shape of the complex $[Ag(NH_3)_2]^+$ is:
 - a) Octahedral
- b) Square planar
- c) Tetrahedral
- d) Linear
- 126. The π -bounded organometallic compound which has ethane as one of its component is
 - a) Dibenzene chromium b) Zeise salt
- c) Ferrocene
- d) Tetraethyl tin

127. The major product of the following reaction is:

- 128. Which is true in the case of Ni(CO)₄ complex?
 - a) Hybridization of Ni is sp^3
 - b) Tetrahedral shape of the molecule
 - c) Diamagnetic
 - d) All are correct

- 129. The reaction, $C_6H_5N_2Cl \xrightarrow{Cu_2Cl_2/HCl} C_6H_5Cl + N_2$ is called:
 - a) Etard's reaction
- b) Sandmeyer's reaction c) Wurtz-Fittig reaction d) Perkin's reaction

- 130. Which of the following does not show optical isomerism?
 - a) $[Co(en)_3]^{3+}$
- b) $[Co(en)_2Cl_2]^+$
- c) $[Co(NH_3)_3Cl_3]^0$
- d) $[Co(en)Cl_2(NH_3)_2]^+$

Having the IUPAC name as

a) 1, 2-dimethyl cyclobutane

b) 2, 3-dimethyl cyclobutene

c) 2, 3-dimethyl butane

- d) 1, 2-dimethyl cyclobut-1-ene
- 132. Which of the following ions is produced when we prepare nitrating mixture by mixing together concentrated HNO₃ and concentrated H₂SO₄?

b) NO₂⁺

c) NO_3^-

d) SO₃⁺H

133. The correct IUPAC name of

- a) 1-brmo-2-chloro-6-fluoro-4-iodobenzene
- b) 1-bromo-6-chloro-2-fluoro-4-iodobenzene
- c) 2-bromo-1-chloro-3-floro-5-iodobenzene
- d) 2-bromo-3-chloro-1-floro-5-odobenzene

- 134. $[Co(NH_3)_4(NO_2)_2]$ Cl exhibits:
 - a) Ionization isomerism, geometrical isomerism and optical isomerism
 - b) Linkage isomerism, geometrical isomerism and optical isomerism
 - c) Linkage isomerism, ionization isomerism and optical isomerism
 - d) Linkage isomerism, ionization isomerism and geometrical isomerism
- 135. Which of the following complexes are not correctly matched with hybridisation of their central metal ion?
 - 1. $[Ni(CO)_4]$
- 2. $[Ni(CO)_4]^{2-}$
- 3. $[CoF_6]^{3-}$
- d^2sp^3
- 4. $[Fe(CN)_6]^{3-}$
- sp^3d^2

Select the correct answer using the codes given below

- a) 1 and 2
- b) 1 and 3
- c) 2 and 4
- d) 2, 3 and 4

- 136. Which of the following is an explosive?
 - a) PCl₅

- b) HNO₃
- c) C_6H_5OH
- d) 2,4,6-trinitrophenol

- 137. The coordination number of Cr in $[Cr(NH_3)_3(H_2O)_3]Cl_3$ is:

b) 4

- 138. The major product obtained when 3-phenyl-1, 2-propane-diol is heated with H₂SO₄ is:
 - a) C_6H_5 — CH_2 —CO— CH_3
 - b) C₆H₅—CH₂—CH₂—CHO
 - c) C_6H_5 — CH_2 — $CH = CH_2$
- 139. Rate of substitution in phenol is:
 - a) Slower than as in benzene
 - b) Faster than as in benzene
 - c) Equal to that as in benzene
 - d) None of the above
- 140. Magnetic moment of $[Ag(CN)_2]^-$ is zero. How many unpaired electrons are there?

			0 1 51 .:
a) 7aua	L) 4	a) 2	Gplus Education
a) Zero	b) 4 lination compound having cer	c) 3 atral atom of:	d) 1
a) Ca	b) Mg	c) Na	d) K
142. Which of the followin	, ,	c) Hu	uj K
	e ligand has satisfied only the	secondary valency of ferric	cion.
	e ligand has satisfied both pri		
	e ligand has satisfied both pri	_	
	the ligand has satisfied only th		
	open chain isomers that an al		
a) 5	b) 4	c) 3	d) 2
144. Which one is the wrot	ng statement? unds are called aliphatic		
	unus are caneu anphatic ounds contain multiple bonds	in them	
_	rbons are called alkene	in them	
-	ds possess a characteristic ar	oma	
	es of Werner's theory for coo		ch of the following is true?
a) Primary valencies	are ionizable	b) Secondary valencies a	are ionizable
c) Only primary valer	icies are non-ionizable	d) Primary and secondar	ry valencies are non-
		ionizable	
	and Fe are respectively 24 ar	nd 26. Which of the following	ng is paramagnetic with the
spin of the electron?	b) [E ₂ (CO)]	c) [Fe(CN) ₆] ⁴⁻	d) $[Cr(NH_3)_6]^{3+}$
a) $[Cr(CO)_6]$	b) [Fe(CO) ₅] g structures correspond to the		
CH_2Cl_2 in presence of	The state of the s	e product expected, when e	excess of Gana reacts with
511 <u>7</u> 51 <u>7</u> 111 pr 5551100 51	y	Cl	
· CH-C)		
a) \(\sup \)	b) (())—CHCl ₂	c) $\langle \bigcirc \rangle_{\mathcal{C}}^{\mathcal{C}} \langle \bigcirc \rangle$	d) $\langle \bigcirc \rangle$ CH ₂ $\langle \bigcirc \rangle$
Cl	CARLUS EDU	CI	
148. Which of the followin	g will give a pair of enantiomo	orphs?	
a) [Co(en) ₂ Cl ₂]Cl		b) $[Cr(NH_3)_6][Co(CN)_6]$	
c) $[Pt(NH_3)_4][PtCl_6]$		d) $[Co(NH_3)_4Cl_2]NO_2$	
	sing energy for octahedral (Δ_0)) and tetrahedral (Δ_t) comp	
a) $\Delta_t = \frac{4}{9} \Delta_0$	b) $\Delta_t = \frac{1}{2} \Delta_0$	c) $\Delta_0 = 2\Delta_t$	d) $\Delta_0 = \frac{4}{9} \Delta_t$
,	he compound [Cu(NH ₃) ₄](NC	$(0_3)_2$, according to IUPAC sys	•
a) Cuprammonium ni	_		
b) Tetraamminecopp	er(II) dinitrate		
c) Tetraamminecopp			
d) Tetraamminecoppe			
~	owing will not show chain iso		1) C II O
a) C_3H_8	b) C_4H_{10} is with bromine to give s-trib	c) $C_5H_{12}O$	d) $C_5H_{10}O$
a) 1.5 mole	b) 3.0 mole	c) 4.5 mole	d) 6.0 mole
•	rms a coloured complex with	5) 1.0 more	, c.c
a) Ag	b) Ni	c) Cr	d) Zn
154. Which has regular tet	•	•	
a) $[Ni(CN)_4]^{2+}$	b) SF ₄	c) [BF ₄] ⁻	d) XeF ₄

156. For the given complex $[CoCl_2(en)(NH_3)_2]^+$, the number of geometrical isomers, the number of optical

c) +1

d) +4

155. In haemoglobin the iron shows oxidation state:

b) +3

		r of isomers of all type pos		
4 5 5	a) 2, 2 and 4	b) 2, 2 and 3	c) 2, 0 and 2	d) 0, 2 and 2
157	'. Which can show aromati) D	15 A11 C41
450	a) Furan	b) Pyrrol	c) Benzene	d) All of these
158		es, the one with the largest		_
450		b) [Ru(CN) ₆] ³⁻		3 = 1 07 01
155	-	pure enantiomer is $+ 16^{\circ}$.	its observed rotation if it is	s isolated from a reaction
	with 25% recemisation a		a) 1100	d) 100
160	a) –12°	b) +12°	c) +16°	d) -16°
100		minate is correctly represen		9) I :[VIII]
161	a) Al[LiH ₄] Which of the following of	b) Al ₂ [LiH ₄] ₃ ompounds is generally used	c) $Li[AlH_4]$	d) $Li[AlH_4]_2$
101	a) Ni(CO) ₄	b) [(C ₆ H ₅) ₃ P] ₃ RhCl		
167	2. The end product of the re		c) (cn ₃) ₃ Ai	d) $(C_5H_5)_2$ Fe
102	-	eaction,		
	$C_6H_6 + Cl_2 \xrightarrow{Sunlight} is:$			
		b) <i>o-</i> C ₆ H ₄ Cl ₂	c) C ₆ H ₆ Cl ₆	d) p -C ₆ H ₄ Cl ₂
163	$[Pt(NH_3)_6]Cl_4$ complex g			
	a) 4 ions	b) 3 ions	c) 2 ions	d) 5 ions
164	Which does not obey EAI			
	a) $[Cu(NH_3)_4]^{2+}$		c) [HgI ₄] ²⁻	d) Fe(CO) ₅
165	6. Oxidation number of Fe i			n
	a) +3	b) +2	c) +10	d) 1
166		not an organometallic com		D. Date of
4	a) NaOC ₂ H ₅	b) (CH ₃) ₃ Al	c) (C ₂ H ₅) ₄ Pb	d) $RMgX$
167		s field ligand, the number o	f unpaired electrons in	
	$[Mn(H_2O)_6]^{2+}$ will be (A) m	D. FI
4.66	a) Three	b) Five	c) Two	d) Four
168		the control of the control and the control of the c		n is 2.84 BM the correct one
	a) d^4 (in weak ligand fiel	-	b) d^4 (in strong ligand fie	-
4.00	- 1	in strong field)	, ,	d)
165		can be synthesized in the la	boratory:	
	a) By heating phenol with		- 4h - dii	'DE
		tisation followed by heating	g the diazonium sait with H	Br ₄
	c) By direct fluorination			
170	d) By reacting bromoben			
1/(). Which compound burns $^{\circ}$ a) $C_6H_5CH_2OH$	with a sooty name:		
	b) C ₆ H ₅ COOH			
	c) CH ₃ OH			
	d) CH ₃ COC ₂ H ₅			
171		nediaminetetraacetic acid)	molecules are required to	make an octahedral
1/1	complex with a Ca ²⁺ ion?		molecules are required to	make an octanicarai
	a) Six	b) Three	c) One	d) Two
172	=	ement of phenyl esters to g		•
1/2	as:	ement of phenyl esters to g	ive o and p derivatives in p	resence of frieig is known
	a) Friedel-Craft's reaction	n		
	b) Fries rearrangement			
	c) Esterification			
	d) Coupling			
	· ,			

173. Which reaction can produce R—CO—Ar species?

a)
$$ArCOCl + H \longrightarrow Ar \xrightarrow{AlCl_3}$$
 b) $COCl + RMgX \longrightarrow$

b)
$$COCl + RMgX \rightarrow$$

c)
$$RCOCl + H - Ar \xrightarrow{AlCl_3}$$

d)
$$R + CrO_3 \rightarrow$$

174. Acidic character of phenol is due to:

- a) Resonance of phenoxide ion
- b) Tautomerism occurring in phenol
- c) The fact that the electronegativity of oxygen is more than that of hydrogen
- d) None of the above

175. In triethylenediamine cobalt(III) chloride the coordination number of cobalt is:

176. Mark the unidentical compound

177. A complex compound in which the oxidation number of a metal is zero, is

a)
$$K_4[Fe(CN)_6]$$

b)
$$K_3[Fe(CN)_6]$$

c)
$$[Ni(CO)_4]$$

d)
$$[Pt(NH_3)_4]Cl_2$$

178. In the halogenation of aromatic nucleus, the halogen carrier, used to generate the species is:

179. Among $[Ni(CN)_4]^{2-}$, $[NiCl_4]^{2-}$ and $[Ni(CO)_4]$:

- a) $[Ni(CN)_4]^{2-}$ is square planar and , $[NiCl_4]^{2-}$, $Ni(CO)_4$ are tetrahedral
- b) [NiCl₄]²⁻ is square planar and [NiCN₄]²⁻, Ni(CO)₄ are tetrahedral
- c) Ni(CO)₄ is square planar and [Ni(CN)₄]²⁻, [NiCl₄]²⁻ are tetrahedral
- d) None of the above

180. Benzene is obtained by:

- a) Condensation of three C₂H₂ molecules
- b) Polymerization of three C₂H₂ molecules
- c) Addition of three C₂H₂ molecules
- d) Substitution of three acetylene molecules

181. IUPAC name of *t*-butyl chloride is

b) 1-chloro-2-methylpropane

c) 2-chloro-2-methylpropane

d) None of the above

- 182. The *d*-electronic configuration of Cr²⁺, Mn²⁺, Fe²⁺, Ni²⁺ are 3d⁴, 3d⁵, 3d⁶ and 3d⁸ respectively. Which of the following complex will show minimum paramagnetic behaviour?
 - a) $[Fe(H_2O)_6]^{2+}$
- b) $[Ni(H_2O)_6]^{2+}$

c)
$$[Cr(H_2O)_6]^{2+}$$

d)
$$[Mn(H_2O)_6]^{2+}$$

183. Phenol is more acidic than cyclohexanol because:

- a) Benzene ring exists in resonance
- b) Cyclohexane ring shows resonance
- c) Phenol is poor in hydrogen
- d) Cyclohexanol is rich in hydrogen

184. Total possible structural isomers (not stereo) of C₄H₆ are

a) 4

b) 6

d) 12

185. In the reaction of *p*-chlorotoluene with KNH₂ in liq. NH₃ the major product is:

- a) o-toluidine
- b) *m*-toluidine
- c) p-toluidine
- d) p-chloroaniline

186. The type of isomerism in the molecule of compounds $CH_3CH_2COCH_2CH_3$ and $CH_3CHC(OH)CH_2CH_3$ is referred as:

- a) Metamerism
- b) Chain isomerism
- c) Functional isomerism
- d) Tautomerism

187. Phenol is less soluble in water. It is due to:

a) Non-polar nature of phenol

- b) Acidic nature of-OH group
- c) Non-polar hydrocarbons part in it
- d) None of the above
- 188. When phenol is treated with excess bromine water, it gives:
 - a) m-bromophenol
 - b) o-and p-bromophenol
 - c) 2,4-dibromophenol
 - d) 2,4,6-tribromophenol
- 189. Which have octahedral shape (d^2sp^3) hybridization of central atom?
 - a) $[Cr(NH_3)_6]^{2+}$
- b) $[Fe(CN)_6]^{3-}$

c) 4

d) All are correct

d) 1

190. Which of the following molecules/species are aromatic in character?

- 191. Among the following compounds;

the order of basicity is:

a) IV > III > II > I

192.

- b) II > I > III > IV
- c) III > IV > II > I
- d) I > III > IV > II

- The correct name of CO₃ Fe
- a) Tri-μ-carbonyl *bis*-(tricarbonyl)iron (0)
- b) Hexacarbonyl iron (III) μ-tricarbonyl ferrate(0)
- c) Tricarbonyl iron(0) μ-tricarbonyl iron(0) tricarbonyl
- d) Nonacarbonyl iron
- 193. Which is high spin complex?
 - a) [CoCl₆]³⁻
- b) $[FeF_6]^{3-}$
- c) $[Co(NH_3)_6]^{2+}$
- d) All are correct

- 194. The correct IUPAC name of tartaric acid is
 - a) 1, 4-dicarboxy-2, 3-dihydroxy ethane
- b) α , α' -dihydroxy butane-1,4-dioic acid
- c) 1, 4-dihydroxybutane-2, 3-dioic acid
- d) 2, 3-dihydroxybutane-1, 4-dioic acid
- 195. What is the overall formation equilibrium constant for the ion $[ML_4]^{2-}$ ion, given that β_4 for this complex is 2.5×10^{13} ?
 - a) 2.5×10^{13}
- b) 5×10^{-13}
- c) 2.5×10^{-14}
- d) 4.0×10^{-13}

- 196. The oxidation state of Cr in $[Cr(NH_3)_4 Cl_2]^+$ is

b) +1

- d) + 3
- 197. Which of the following compounds has the most acidic nature?

- 198. The oxidation state of Mo in its oxo-complex species $[Mo_2O_4(C_2H_4)_2(H_2O)_2]^{2-}$ is:

b) + 3

c) +4

- 199. CH₃MgI is an organometallic compound due to
 - a) Mg —I bond
- b) C —I bond
- c) C—Mg bond
- d) C —H bond
- 200. The effective atomic number of Cr (At. No.=24)in $[Cr(NH_3)_6]Cl_3$ is

a) 35

b) 27

c) 33

d) 36

201. When aniline is heated with benzaldehyde, the product is:

a) Benzoin

b) Schiff's base

c) Unsaturated acid

d) Azoxy benzene

202. Slow heating of salicylic acid gives:

a) Benzoic acid

b) Phenol

c) Benzaldehyde

d) None of these

203. According to Hückel, monocyclic compounds will show aromaticity when:

- a) It has 4π -electrons
- b) It has no π-electron
- c) It has $4\pi+2$ electrons
- d) It has $(4n + 2)\pi$ -electrons

204. When phenol is distilled with zinc dust, it gives:

a) Benzene

b) Toluene

c) C_6H_5CHO

d) None of these

205. The IUPAC name of the given structure

a) N-chloro-N-bromoethanamide

b) N-bromo-N-chloroethanamide

c) N-bromo-N-chloroacetamide

d) N-chloro-N-bromoacetamide

206. Acetophenone when reacted with a base C_2H_5ONa , yields a stable compound which has the structure:

207. Which of the following has maximum resonance energy?

a) Diphenyl

b) Benzene

c) Naphthalene

d) Phenanthrene

208. Benzene sulphonic acid on treating with P₂O₅ gives:

a) Salicylic acid

b) Benzoic acid

c) Acid anhydride

d) Sodium benzoate

209. Compounds with following formula will show

Cl $| \\ (i) \ CH_3CH_2CHCH_2CH_3 \ and \ (ii) \ CH_3CH_2CH_2CH_3 \\ | | | | Cl \ CH_3$

- a) Position and functional isomerism
- b) Chain and positional isomerism
- c) Chain and functional isomerism
- d) None of the above combinations
- 210. Which of the following statements is correct?
 - a) In K₃[Fe(CN)₆, the ligand has satisfied both primary and secondary valencies of ferric ion
 - b) In (Cu(NH₃)₄SO₄, the ligand has satisfied only the secondary valency of copper

- c) In K_3 [Fe(CN)₆, the ligand has satisfied only the secondary valency of ferric ion
- d) Both (b) and (c)
- 211. Which statement is not correct?
 - a) Fe(CO)₅ reacts with Br₂Cl₄
 - b) Carbonyl complexes are usually formed with transition metals
 - c) All transition metals form monometallic carbonyls
 - d) The decomposition of Ni(CO)₄ to give Ni is used in the extraction of Ni by Mond's process
- 212. The complex showing a spin-only magnetic moment of 2.82 BM is
 - a) $Ni(CO)_4$
- b) [NiCl₄]²⁻
- c) $Ni(PPh_3)_4$
- d) $[Ni(CN)_4]^{2-}$

- 213. The IUPAC name of $[CoCl(NO_2)(en)_2]Cl$ is:
 - a) Chloronitro-bis(ethylenediamine) cobaltic(III) chloride
 - b) Chloronitro-bis(ethylenediamine)cobalt(II) chloride
 - c) Chloro-bis(ethylenediamine)nitrocobalt(III) chloride
 - d) Bis-(ethylenediamine)chloronitrocobalt(III) chloride
- 214. The product of acid catalysed hydration of 2-phenyl propene is:
 - a) 3-phenyl-2-propanol
 - b) 1-phenyl-2-propanol
 - c) 2-phenyl-2-propanol
 - d) 2-phenyl-1-propanol
- 215. Carbolic acid is the name used for:
 - a) Opium
- b) Phenol
- c) Chloroform
- d) H_2CO_3

216. The major product of the following reaction

NO

PLUS EDUCATION

- 217. The oxidation number of cobalt in $K[Co(CO)_4]$ is
 - a) -1

b) + 3

c) +1

d) -3

- 218. Formaldehyde-phenol resin is:
 - a) Orlon
- b) Nylon
- c) Teflon
- d) Bakelite
- 219. Among the ligands NH₃, en, CN⁻ and CO, the correct order of their increasing field strength, is
 - a) $CO < NH_3 < en < CN^-$

b) $NH_3 < en < CN^- < CO$

c) $CN^- < NH_3 < CO < en$

- d) en < CN $^-$ < NH $_3$ < CO
- 220. Cyclopentadienyl anion is aromatic due to the presence of:
 - a) 6π-electrons
- b) 10π -electrons
- c) 4 π-electrons
- d) 12 π -electrons

- 221. The IUPAC name of $K_4[Fe(CN)_6]$ is
 - a) Potassium ferrocyanide
 - c) Tetra potassium hexa cyanoferrate (II)
- b) Potassium hexa cyanoferrate (I)
- d) Potassium hexa cyanoferrate (II)
- 222. Which xylene is most easily sulphonated?
 - a) Ortho
- b) Para
- c) Meta

d) All at the same rate

223. The IUPAC name of following polyfunctional compound is

a) 2,4-dioxo cyclohexanoic acid

- b) 2,4-dioxo cycloheptanoic acid
- c) 4-formyl-2-oxo cyclohexane-1-carboxylic acid
- d) 2,4-dioxo cyclohexane-1-carboxylic acid
- 224. Alkyl groups are *o* and *p*-directing because of:
 - a) Resonance effect
 - b) Inductive effect
 - c) Resonance effect through hyperconjugation
 - d) All of the above
- 225. Racemic modification can be resolved by
 - a) The use of enzymes

b) Fractional crystallisation

c) Fractional distillation

- d) None of the above
- 226. Which of the following structure contain 1 primary and 7 secondary hydrogen atoms?

$$\begin{array}{c|cccc} {\rm CH_3-CH-CH_2-CH_2} & & | & & | \\ & & | & & | & & | \\ {\rm a)} & & {\rm CH_3} & & {\rm CH-CH_3} \\ & & & | & & | \\ & & & & {\rm CH_3} \\ {\rm b)} & & & {\rm CH_3} \end{array}$$

$$\begin{array}{c} & | \\ \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH} \\ & | \\ \mathrm{CH_2} - \mathrm{CH_3} \\ \\ \mathrm{C}\mathrm{H_3} \\ \mathrm{C}\mathrm{)} & | \\ \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{CH_3} \\ \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_2} \\ \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_2} \\ \mathrm{d}\mathrm{)} & | \\ \mathrm{CH_2} - \mathrm{CH_3} \end{array}$$

- 227. Which of the following compounds does not dissolve in conc. H₂SO₄ even on warning?
 - a) Ethylene
- b) Benzene
- c) Hexane
- d) Aniline

- 228. In the complex $Fe(CO)_x$, the value of x is and it is:
 - a) 3, octahedral
- b) 4, tetrahedral
- c) 5, trigonal pyramidal d) 6, square pyramidal

- 229. The empirical formula of naphthalene is:
 - a) CH₂

- b) C_5H_4
- c) C_2H

d) $C_n H_{2n}$

- 230. The chemical formula of diammine silver (I) chloride is
 - a) $[Ag(NH_3)Cl]$
- b) $[Ag(NH_3)_3]Cl$
- c) $[Ag(NH_4)_2]Cl$
- d) $[Ag(NH_3)_2]Cl$
- 231. For the square planar complex [M(a)(b)(c)(d)] (where , M=central metal and a, b, c, and d are monodentate ligands), the number of possible geometrical isomers are
 - a) 1

b) 2

c) 3

d) 4

- 232. Which group is meta directing?
 - a) $-CCl_3$
- b) OH
- c) $-NH_2$
- d) $-CH_3$

- 233. The IUPAC name of the compound $[Cu(NH_3)_4(NO_3)_2]$ is:
 - a) Cuprammonium nitrate
 - b) Dinitratotetraamminecopper(II)
 - c) Tetraamminecopper(II) dinitrite
 - d) Tetraamminecopper(III) dinitrite
- 234. Coordination number of Fe in the complexes $[Fe(CN)_6]^{4-}$, $[Fe(CN)_6]^{3-}$ and $[FeCl_4]^-$ would be respectively
 - a) 6, 4, 6
- b) 6, 6, 4
- c) 6, 3, 3

- 235. Which statement is true for cyclohexane?
 - a) It has two possible isomers
 - b) It has three conformations
 - c) Boat conformation is most stable
 - d) Chair and boat conformations differ in energy by 44 kJ/mol
- 236. Ligands in a complex salt are:
 - a) Anions linked by coordinate bonds to a central metal atom or ion
 - b) Cations linked by coordinate bonds to a central metal atom or ion
 - c) Molecules linked by coordinate bonds to a central metal atom or ion
 - d) Ions or molecules linked by coordinate bonds to a central metal atom or ion
- 237. The IUPAC name of CH₃COCH₂COOC₂H₅ is
 - a) Ethyl butanoate

b) Ethyl-(3-oxo)butanoate

c) Ethyl butan-1-oate-2-one

- d) Ethyl butan-4-oate-2-one
- 238. When benzene is treated with CO and HCl in presence of anhydrous aluminium chloride, benzaldehyde is formed. This reaction is known as:
 - a) Friedel-Craft's reaction
 - b) Rosenmund's reaction
 - c) Stephen's reaction
 - d) Gattermann-Koch's reaction
- 239. $[Cr(NH_3)_6]^{3+}$ ion is:

- a) Paramagnetic
- b) Diamagnetic
- c) Square planar
- d) None of these

240. The following compound can exhibits

a) Tautomerism

b) Optical isomerism

c) Geometrical isomerism

d) Geometrical and optical isomerism

- 241. Which complex is diamagnetic?
 - a) $[Fe(CN)_6]^{4-}$
- b) $[Cu(NH_3)_4]^{3+}$
- c) $[Ti(H_2O)_6]^{3+}$
- d) None of these

- 242. Meso-tartaric acid is optically inactive due to the presence of
 - a) Molecular symmetry

b) Molecular asymmetry

c) External compensation

- d) Two asymmetric C-atoms
- 243. Complex forming tendency increases with:
 - a) Increase in size of cation
 - b) Decrease in size of cation
 - c) Increase in size of anion
 - d) None of the above
- 244. Ziegler-Natta catalyst is
 - a) (Ph₃P)₃RhCl

b) $Al_2(C_2H_6)_6 + TiCl_4$

c) $Fe(C_2H_5)_2$

- d) $K[PtCl_3(C_2H_4)]$
- 245. Among the following compounds the one that is most reactive towards electrophilic nitration is:
 - a) Toluene
- b) Benzene
- c) Benzoic acid
- d) Nitrobenzene

- 246. Phenol on oxidation gives chloranil. The oxidant used is:
 - a) $K_2S_2O_8$
- b) KMnO₄
- c) $KClO_3 + HCl$
- d) None of these

247. The IUPAC name of the compound

- a) 3-sec-butyl-5-ethyl-3-methyloctane
- b) 4-sec-butyl-5-ethyl-3-methyloctane
- c) 5-sec-butyl-4-ethyl-3-methyloctane
- d) 4-sec-butyl-3-ethyl-5-methyloctane
- 248. All the common m-directing groups.....the benzene ring towards electrophilic substitution reactions.
 - a) Deactivate
- b) Activate
- c) Both (a) and (b)
- d) None of these

- 249. Among the following, the coloured compound is:
 - a) CuCl

- b) $K_3C_4(CN)_4$
- c) CuF₂

- d) $[Cu(CH_3CN)_4]BF_3$
- 250. The existence of two different coloured complexes with the composition of $[Co(NH_3)_4Cl_2]^+$ is due to:
 - a) Linkage isomerism
 - b) Geometrical isomerism
 - c) Coordination isomerism
 - d) Ionisation isomersim
- 251. $[Co(NH_3)_4Cl_2]$ possesses:
 - a) Square planar geometry
 - b) Tetrahedral geometry
 - c) Tetrahedral nature
 - d) Octahedral geometry
- 252. Which one does not belong to ligand?
 - a) PH₃

b) NO+

c) BF₃

d) Cl-

253. Product formed in the reaction;

Phenol
$$\xrightarrow{\text{(CH}_3)SO}$$
 Product; is:

- 254. Which one of the following has square planar structure?
 - a) $[Ni(CN)_4]^{2-}$
- b) $[Ni(CO)_4]$
- c) $[NiCl_4]^{2-}$
- d) All of these
- 255. 4-methyl benzene sulphonic acid reacts with sodium acetate to give:

- 256. Phthalein test is characteristics ofand is given by it.
 - a) Alcohols
- b) Phenols
- c) Aldehydes
- d) Ketones
- 257. Which of the following compounds would exhibit coordination isomerism?
 - a) $[Cr(H_2O)_6]Cl_2$
- b) $[Cr(NH_3)_6][Co(CN)_6]$ c) $[Cr(en)_2]NO_2$
- d) $[Ni(NH_3)_6][BF_4]_2$

258. In a reaction of aniline a coloured product C was obtained.

The structure of *C* would be:

b)
$$NH-NH-ONC_{CH_3}^{CH_3}$$

c)
$$\langle \bigcirc \rangle$$
-N=N- $\langle \bigcirc \rangle$ -N $\langle ^{\text{CH}_3}_{\text{CH}_3}$

d)
$$\langle \bigcirc \rangle$$
 N=N-CH₂-N- $\langle \bigcirc \rangle$ CH₂

- 259. The carboxyl functional group (-COOH) is present in:
 - a) Picric acid
 - b) Barbituric acid
 - c) Ascorbic acid
 - d) Aspirin
- 260. Which of the following is an example of electrophilic substitution reaction?
 - a) Acylation
- b) Alkylation
- c) Benzoylation
- d) All of these
- 261. The number of ions given by $[Co(NH_3)_4]Cl_3$ in aqueous solution is:

b) 3

d) 4

262. Which of the following is an organometallic compound?

_					
(-n	liic	FΛ	116	atio	n
Up	us	Lu	uci	uuu	,,

a) $Ti(OC_6H_5)_4$	b) Ti(OCOCH ₃) ₄	c) $Ti(OC_2H_5)_4$	d) $Ti(C_2H_5)_4$			
263. A solution of CuCl is	263. A solution of CuCl in NH ₄ OH is used to measure the amount of which gas is a sample by simply measuring					
change in volume?						
a) CO ₂	b) H ₂	c) CO	d) All of these			
264. On passing benzene	e vapour through a tube at 70	0-800°C or through molte	n lead we get:			
a) Diphenyl	b) Phenol	c) Toluene	d) Benzaldehyde			
265. Picric acid is a yello	ow coloured compound. Its ch	emical name is:				
a) <i>m</i> -nitrobenzoic a		•	d) Trinitroaniline			
266. The ideal starting n	naterial for the synthesis of \emph{m}	-chloronitro benzene is:				
a) Benzene	b) Chlorobenzene	c) Toluene	d) Nitrobenzene			
			ta-isomer. The group Y can be:			
a) —NH ₂	b) —COOH	c) —CH ₃	d) —Cl			
	added to green aqueous soluti	ion of nickel(II) sulphate, t	the colour of the solution			
_	let. This is caused by:					
	ng a change in oxidation state					
	ules replacing water molecule	es surrounding nickel				
· -	ination number of nickel					
d) Change in pH val						
•	ose stereo chemical formula i	s written below, exhibits a	x-geometrical isomers and <i>y</i> -			
	e value of x and y are					
H ₃ C H						
Br' HO	- h	2				
CH ₃						
a) 4 and 4	b) 2 and 2	c) 2 and 4	d) 4 and 2			
•	ng-phenol, benzoic acid, nitrol	•				
nitration readily is:	EDI	LCATION				
a) Benzoic acid	b) Toluene	c) Phenol	d) Nitrobenzene			
271. Which one is organ						
a) Lithium acetate		b) Lithium methoxid	e			
c) Lithium dimethy	ıl amide	d) Methyl lithium				
272. What are the produ	icts formed when an equimola	ar mixture of benzaldehyd	e and formaldehyde is heated			
with concentrated l	NaOH?					
a) C ₆ H ₅ —CH ₂ —OH	I and H—COONa					
b) C ₆ H ₅ —COONa a	nd CH ₃ —OH					
c) C ₆ H ₅ —CH ₂ —CO	ONa					
d) C ₆ H ₅ —COOH an	d CH ₃ —ONa					
273. Gammexane (a γ-is	omer of) is:					
a) BHC						
b) Benzene hexachl	loride					
c) Lindane						
d) All of these						
274. Number of electron	is gained by Pd in $[PdCl_4]^{2-}$:					
a) 4	b) 8	c) 10	d) 0			
275. Which of the follow	ring is considered to be an ant	ticancer species?				

- 276. For benzaldehyde which of the following is incorrect?
 - a) It is an aromatic aldehyde
 - b) It is used in perfumery
 - c) On oxidation it yields benzoic acid
 - d) On reduction it yields phenol
- 277. The main source of aromatic compounds is:
 - a) Wood
- b) Petroleum
- c) Coal

- d) Both (b) and (c)
- 278. Phenol on hydrogenation in presence of a nickel catalyst at 160°C gives:
 - a) Benzene
- b) Cyclohexane
- c) Cyclohexanol
- d) n-hexanol

279. The IUPAC name of compound

a) Hexane-1, 2, 5-tricarbonitrile

b) Hexane-1, 3, 6-tricarbonitrile

c) Butane-1, 2, 4-tricarbonitrile

- d) Butane-1, 3, 4-tircarbonitrile
- 280. *Fac-mer* isomerism is associated with which one of the following complexes? (*M*=central metal)
 - a) $[M(AA)_2]$
- b) $[MA_3B_3]$
- c) $[M(AA)_3]$
- d) [MABCD]
- 281. Which of the following is the correct order of stability of the following four distinct conformation of nbutane?
 - a) Staggered > Gauche > Partially eclipsed > Fully eclipsed
 - b) Gauche > Staggered > partially eclipsed > Fully eclipsed
 - c) Staggered > Partially eclipsed > Gauche > Fully eclipsed
 - d) Fully eclipsed > Staggered > Partially eclipsed > Gauche
- 282. *o*-nitrophenol can form hydrogen bonds within the molecule. It thus, has:
- a) Very high m.p.
- b) Very high viscosity
- c) Low m.p.
- d) none of these

- 283. The element which does not form mononuclear carbonyl is:
 - a) Fe

b) Mn

c) Ni

d) W

- 284. Which of the following is hexadentate ligand?
 - a) Ethylene diamine

b) Ethylene diamine tetra acetic acid

c) 1,10-phenanthroline

- d) Acetyl acetonato
- 285. The molecular formula of a saturated compound is C₂H₄Cl₂. The formula permits the existence of two
 - a) Functional isomers
- b) Position isomers
- c) Optical isomers
- d) cis trans isomers
- 286. An octahedral complex is formed when hybrid orbitals of the following type are involved

b) dsp^2

- c) d^2sp^3
- d) sp^2d^2
- 287. The IUPAC name of the given compound $CH_3 CH = CH COOC_2H_5$ is
 - a) Ethyl propenoate

b) Ethyl-2-butenoate

c) Ethyl-1-butenoate

- d) Propene ethyl methanoate
- 288. Which product is not obtained by heating wood or coal in the absence of air?
 - a) Coal-tar
- b) Naphthalene
- c) Benzene
- d) Wax

- 289. Dry distillation of calcium benzoate with calcium formate gives:
 - a) Acetaldehyde
- b) Benzoic acid
- c) Benzaldehyde
- d) Benzoic anhydride

- 290. Which will give Fe³⁺ ions in solution?
 - a) $[Fe(CN)_6]^{3-}$
 - b) $Fe_2(SO_4)_3$
 - c) $[Fe(CN)_6]^{4-}$
 - d) $NH_4(SO_4)_2 \cdot FeSO_4 \cdot 6H_2O$
- 291. Each metal possesses:
 - a) Primary valencies satisfied by anions only
 - b) Secondary valencies satisfied by donor molecules
 - c) Coordination number
 - d) All of the above
- 292. Aspirin is:
 - a) Antibiotic
- b) Antipyretic
- c) Sedative
- d) Psychedelic
- 293. Hybridisation, shape and magnetic moment of $K_3[Co(CO_3)_3]$ is
 - a) $d^2 sp^3$, octahedral, 4.9 BM

b) sp^3d^2 , octahedral, 4.9 BM

c) dsp^2 , square planer, 4.9 BM

- d) sp^3 , tetrahedral, 4.9BM
- 294. Among the following complexes (K-P),

 $K_3[Fe(CN)_6](K)$, $[Co(NH_3)_6]Cl_3(L)$,

 $Na_3[Co(ox)_3](M)$

[Ni(H₂O)₆]Cl₂(N), and

 $[Zn(H_2O)_6](NO_3)_2(P)$ the diamagnetic complexes

- a) *K, L, M, N*
- b) K, M, O, P
- c) L, M, O, P
- d) L, M, N, O
- 295. Aniline when diazotised in cold and then treated with dimethyl aniline gives a coloured product. It structure would be:

- 296. Pyridine possesses:
 - a) Aromatic nature
 - b) Unsaturated aliphatic nature
 - c) Alicyclic nature
 - d) Aliphatic nature
- 297. A reagent used for identifying nickel ion is:
 - a) Potassium ferrocyanide
 - b) Phenolphthalein
 - c) Dimethyl glyoxime
 - d) EDTA
- 298. Aniline was diazotised and subsequently reduced with stannous chloride and hydrochloric acid to yield:
 - a) Phenyl aniline
- b) Phenyl hydrazine
- c) p-amino azobenzene
- d) Diazoamino benzene
- 299. The reaction of toluene with Cl₂ in presence of FeCl₃ gives predominantly:
 - a) *m*-chlorobenzene
 - b) Benzoylchloride

- c) Benzyl chloride
- d) o- and p-chlorobenzene
- 300. Which statement is not correct in the case of $[Co(NH_3)_6]^{3+}$ complex?
 - a) It is octahedral in shape
 - b) It involves d^2sp^2 -hybridization
 - c) It has diamagnetic nature
 - d) None of the above
- 301. Pick out the complex compound in which the central metal atom obeys EAN rule strictly
 - a) $K_4[Fe(CN)_6]$
- b) $K_3[Fe(CN)_6]$
- c) $[Cr(H_2O)_6]Cl_3$
- d) $[Cu(NH_3)_4]SO_4$
- 302. Amongst the following, the compound that can be most readily sulphonated is:
 - a) Benzene
- b) Methoxy benzene
- c) Toluene
- d) Chlorobenzene
- 303. *p*-chloroaniline and anilium hydrochloride can be distinguished by:
 - a) P_2O_5

- b) AgNO₃
- c) Carbylamine test
- d) Sandmeyer's reaction

- 304. Pyrogallol is.... trihydroxy benzene.
 - a) 1, 2, 4
- b) 1, 2, 3
- c) 1, 3, 5
- d) None of these
- 305. Phenol is weakly acidic but does not react with NaHCO₃ like carboxylic acids hence:
 - a) Phenol is weaker than carbonic acid
 - b) Phenol is stronger than acid
 - c) Phenol is stronger than carboxylic acid
 - d) None of the above
- 306. *p*-cresol reacts with chloroform in alkaline medium to give compound (*A*) which adds hydrogen cyanide to form compound (*B*). The latter on acidic hydrolysis gives chiral carboxylic acid. The acid is:

- 307. The number of isomeric xylenes is:
 - a) 2

b) 3

c) 4

d) 1

- 308. The IUPAC name of $[Cr(H_2O)_4Cl_2]Cl$ is:
 - a) Tetrahydrodichlorochromium(III) chloride
 - b) Tetraaquodichlorochromium(III) chloride
 - c) Tetraaquodichlorochromium(I) chloride
 - d) None of the above
- 309. Among the following metal carbonyls, C— O bond order is lowest in
 - a) $[Mn(CO)_6]^+$
- b) [Fe(CO)₅]
- c) $[Cr(CO)_6]$
- d) $[V(CO)_6]^-$

310.

a) 3-propyl-1,3-pentadiene

b) 3,3-dipropyl-1,3-pentadiene

c) 3,3-diethenyl penta-1,4-diene

- d) 4,4-diethenyl penta,1,2-diene
- 311. Which of the following shell, form an outer octahedral complex?
 - a) *d*

b) d⁸

c) d^6

- d) None of these
- 312. Friedel-Craft's reaction of bromobenzene with methyl iodide gives:
 - a) o-bromotoluene
 - b) p-bromotoluene
 - c) o-and p-bromotoluene

- d) m-bromotoluene
- 313. An organic compound C₇H₈O is neither soluble in NaOH nor gives blue colour with FeCl₃, is:
 - a) C₆H₅ · CH₂OH
- c) $C_6H_5 \cdot OCH_3$
- d) None of these

314. Which exist as a pair of mirror image isomers?

- 315. Benzene double bonds are not so reactive as those of hexatriene because:
 - a) The three double bonds are caged in a ring
 - b) Benzene is aromatic and has six π -resonating electrons
 - c) Benzene has no double bond
 - d) Benzene is non-polar
- 316. The most stable ion is
 - a) $[Fe(OH)_5]^{3-}$
- b) [FeCl₆]³⁻
- c) $[Fe(CN)_6]^{3-}$ d) $[Fe(H_2O)_6]^{3+}$

317. Which of the following is/are threo isomers?

- a) Only (i)
- c) Only (iii)

- b) Only (ii)
- d) All (i), (ii) and (iii)
- 318. In the coal-tar distillation of middle oil, the aromatic compounds present are:
 - a) Benzene, naphthalene, anthracene
 - b) Naphthalene, pyridine, phenol
 - c) Naphthalene, pyridine
 - d) None of the above
- 319. The correct order of increasing reactivity of C—X bond towards nucleophilic in the following compound is:

- a) I<II<IV<III
- b) II<III<IV
- c) IV<III<I<II
- d) III<II<IV

- 320. Which of the following system is most stable for a chelate?
 - a) Two fused cyclic system

b) Three fused cyclic system

c) Four fused cyclic system

- d) Five fused cyclic system
- 321. Which of the following reaction take place when a mixture of concentrated HNO₃ and H₂SO₄ reacts on benzene at 300 K?
 - a) Sulphonation
- b) Nitration
- c) Hydrogenation
- d) Dehydration

322. Consider the following reaction:

$$Phenol \xrightarrow{Zn \ dust} X \xrightarrow{CH_3Cl} X \xrightarrow{Ahhydrous \ AlCl_3} Y \xrightarrow{Alkaline \ KMnO_4} Z, the \ product \ Z \ is:$$

- a) Benzene
- b) Toluene
- c) Benzaldehyde
- d) Benzoic acid

323. The shortest C—O bond order exists in:

_					
Gpi	liic	-di	1100	7 <i>†1/</i>	าท
UD	ıus	Lui	<i>4</i> L L	<i>1</i> LI L	,,,

			Gplus Education
a) $[Mn(CO)_6]^+$	b) [Fe(CO) ₅]	c) $[Cr(CO)_6]$	d) [V(CO) ₆] ⁻
324. Between p-nitrophe	enol and salicyladehyde, solu	ıbility in base is:	
a) Almost nil in both	ı cases		
b) Higher in <i>p</i> -nitro	phenol		
c) Higher for salicyl	_		
d) Equal in nature	J		
	f optically active compounds	are different in	
a) Boiling points	b) Melting points	c) Specific gravity	d) Specific rotation
, 01	ent with dry HCN and HCl in	,	•
a) Chlorobenzene	b) Benzoic acid	c) Benzaldehyde	d) Cyanobenzene
•	wing compounds does the c	•	
a) K_3 Fe(CN) ₆	b) K ₄ Fe(CN) ₆	c) $Cu(NH_3)_4SO_4$	d) All of these
328. Pick the correct nam		c) du(14113)4504	a) In or these
	ne cobalt (III) chloride	b) Chloropentammir	ne cobalt (III)
	ne cobalt (II) chloride		ro cobalt(III) chloride
	$(CO)_4$ and Ni $(PPh_3)_2Cl_2$ are	uj rentamilinie cino	To cobait(III) cilioride
	d terrahedral respectively	h) Roth totrohodrol	
		b) Both tetrahedral	200
	square planer respectively	d) Both square plana	11
330. Select pair of chain i	isomers from the following		
$(II) \qquad (II)$			
(11)			
		>	
(III) (IV)		_	
a) I and II	b) II and III	c) I and IV	d) II and III
	ces a high crystal field splitt	,	-
a) CO	b) NO ₂	c) CN-	d) All are correct
	n-propyl chloride in the pro		
a) Isopropyl benzen		y artizott s	3 1
b) No reaction			
c) <i>n</i> -propylbenzene			
d) 3-propyl-1-chloro			
,	ing coordination compounds	s would exhibit ontical isor	nerism?
a) Pentaamminenitr	-	b) Diamminedinitro	
c) <i>trans</i> -dicyanobis	• •	•	mine) cobalt(III) bromide
334. What is the magneti		a) 1113 (carylenedia)	inne) cobare(iii) bronnae
a) 3.87 BM	b) 4.89 BM	c) 5.91 BM	d) 6.92 BM
335. The EAN of Cr in [Cr		c) 5.71 bM	u) 0.72 bM
a) 35	b) 33	a) 2 <i>1</i>	d) 27
•	,	c) 34	d) 37
	n paramagnetic character?	a) [C(NIII) 12+	J) [M (H, O) 12+
a) [Fe(CN) ₆] ⁴⁻	b) $[Cu(H_2O)_4]^{2+}$	c) $[Cu(NH_3)_4]^{2+}$	
	reacts with concentrated st	alphuric acid and then with	n concentrated nitric acid, gives:
a) Nitrobenzene			
b) 2, 4, 6-trinitrober	izene		
c) <i>o-</i> nitrophenol			
d) <i>p</i> -nitrophenol			
	ne ring by —NH ₂ in aniline c		
a) Dil. HCl	b) Ethyl alcohol	c) Acetic acid	d) Acetyl chloride
	zoic acid produces mainly:		
a) o-sulphobenzoic	acid		

b) m-suiphobenzoic acid		
c) p-sulphobenzoic acid		
d) o-p-disulphobenzoic acid		
340. The IUPAC name for the complex [Co(NO ₂)(NH ₃) ₅]	JCl ₂ is	
a) Nitrito -N- pentamminecobalt (III) chloride	b) Nitrito -N- pentamm	inecobalt (II) chloride
c) Pentammine nitrito-N- cobalt (II) chloride	d) Pentaammine nitrito	-N- cobalt (III) chlorid
341. The ionisation isomer of $[Cr(H_2O)_4Cl(NO_2)C]$ is		
a) $[Cr(H_2O)_4(O_2N)]Cl_2$	b) $[Cr(H_2O)_4Cl_2](NO_2)$	
c) [Cr(H ₂ O) ₄ Cl (ONO)] Cl	d) $[Cr(H2O)4Cl2(NO2)]$.H ₂ O
342. Salicylic acid, aspirin, nylon, plastics and picric acid	l have a common raw mate	erial, namely:
a) Methane b) Formic acid	c) Phenol	d) Alcohol
343. Ulmann's reaction is used for the preparation of:		
a) Diphenyl b) Iodobenzene	c) Toluene	d) Naphthalene
344. Which of the following statements is/are incorrect	for $D - (+)$ —glyceradehy	/de?
a) The symbol D not indicates the dextrorotatory n	ature of the compound	
b) The sign (+) indicates the dextrorotatory nature	e of the compound	
The symbol D indicates that hydrogen atom lies	left to the chiral centre in	the Fischer projection
c) diagram		
The symbol D indicates that hydrogen atom lies	right to the chiral centre is	n the Fischer projectio
d) diagram		
345. Complexes with CN ⁻ ligands are usually:		
a) High spin complexes b) Low spin complexes	c) Both (a) and (b)	d) None of these
346. The IUPAC of	>	
├─CH(CH ₃) ₂		
is	1)441: 11441	. 1 .1
a) 2-cyclopentyl propane	b) 1, 1-dimethyl-1-cyclo	opentyl methane
c) 1-(1-methyl) ethyl cyclopentane	d) None of the above	
347. Which ion is paramagnetic?	c) [Ni(CO) ₄]	4) [N:(CN) 12-
a) $[Ni(H_2O)_6]^{2+}$ b) $[Fe(CN)_6]^{4-}$	C_{J} [NI(CO) ₄]	d) [Ni(CN) ₄] ²⁻
348. HN COOH and CH2 Configuration of CH2		
Configuration of $\overset{\dot{C}H_2}{\checkmark}$ are		
Configuration of \sim b) R,S	c) <i>S</i> , <i>S</i>	d) <i>S, R</i>
349. Dow process is used for the conversion of chlorobe	•	u) 3, K
a) Benzene b) Nitrobenzene	c) Phenol	d) Gammexane
350. Phenolphthalein is produced on heating phthalic at		•
a) Salicylic acid b) Phenol	c) Phenacetin	d) Phenanthrene
351. Benzene is converted to toluene by:	c) Fliellacetili	u) Filelialitili elle
a) Friedel-Crafts reaction		
b) Grignard reaction		
c) Wurtz reaction		
d) Perkin's reaction		
352. The number of ions formed when hexamine copper	r (II) culphata is discalvad	in water ic?
	c) 4	
a) 1 b) 2 353. In a set of reactions <i>m</i> -bromobenzoic acid gave a p	•	d) 6 duct Dr
COOH	roduct <i>D</i> , fucility the proc	auct <i>D</i> .
<u> </u>		

$$d) \bigcup_{Br}^{NH_2}$$

- 354. In $[Cr(C_2O_4)_3]^{3-}$, the isomerism shown is:
 - a) Ligand
- b) Optical
- c) Geometrical
- d) Ionization

- 355. The hybridization of Fe in $K_4[Fe(CN)_6]$ complex is:
 - a) d^2sp^2
- b) d^2sp^3
- c) dsp^2

d) sp^3

356.

$$CH_3-CH_2 \qquad CH_2 \qquad | \qquad | \qquad |$$
The correct name of $C \equiv C - CH_1$

- a) Hex-3-yn-5-ene
- b) Hex-5-en-3-yne
- c) Hex-3-yn-1-ene
- d) Hex-1-en-3-yne

- 357. Nickel metal is in highest oxidation state in:
 - a) Ni(CO)₄
- b) K₂NiF₆
- c) $[Ni(NH_3)_6](BF_4)_2$
- d) $K_4[Ni(CN)_6]$
- 358. Which of the following complexes show six coordination number?
 - a) $[Zn(CN)_4]^{2-}$
- b) $[Ni(NH_3)_4]^{2+}$
- c) $[Cu(CN)_4]^{2-}$
- d) $[Cr(H_2O)_6]^{3+}$

- 359. Which of the following statements is wrong?
 - a) The IUPAC name of alkenes ends with suffix-ene
 - b) The IUPAC name of alkynes ends with suffix-yne
 - c) The IUPAC name of acid amide is alkanamide
 - d) The substituents get lower number in comparison to principal functional group
- 360. The possible number of isomers for the complex [MCl₂Br₂]SO₄ is:
 - a) 1

b) 2

d) 5

- 361. $K_3[(Al)(C_2O_4)_3]$ is called
 - a) Potassium aliminium (III) oxalate
- b) Potassium alumino oxalate
- c) Potassium trioxalato aluminate (VI)
- d) Potassium trioxalato aluminate (III)
- 362. In Fe(CO)₅, the Fe C bond possesses
 - a) π -Character only

b) Both σ and π –characters

c) Ionic characters

- d) σ -Character only
- 363. The reaction, $[Fe(CNS)_6]^{3-} \rightarrow [FeF_6]^{3-}$ taken place with
 - a) Decrease in magnetic moment

- b) Increase in magnetic moment
- c) Decrease in coordination number
- d) Increase in coordination number
- 364. Which chloro derivative of benzene among the following would undergo hydrolysis most readily with aqueous NaOH to furnish the corresponding hydroxyl derivative?

a)
$$O_2N$$
 O_2N

b)
$$O_2N$$
—C

c)
$$(CH_3)_2N\langle \bigcirc \rangle C$$

- d) C_6H_5Cl
- 365. Some salts although containing two different metallic elements give test for only one of them in solution. Such salts are:
 - a) Complex salts
- b) Double salts
- c) Normal salts
- d) None of these
- 366. Mixture X = 0.02 mole of $[Co(NH_3)_5SO_4]Br$ and 0.02 mole of $[Co(NH_3)_5Br]SO_4$ was prepared in 2 litre of

solution.

1 litre of mixture X+excess AgNO₃ $\rightarrow Y$.

1 litre of mixture X+ excess $BaCl_2 \rightarrow Z$.

No. of moles of *Y* and *Z* are.

- a) 0.01, 0.01
- b) 0.02, 0.01
- c) 0.01, 0.02
- d) 0.02, 0.02

367. The hybridization of central metal ion and shape of Wilkinson's catalyst is

a) sp^3d , trigonal bipyramidal

b) sp^3 , tetrahedral

c) dsp^2 , squre planar

d) d^2sp^2 , octahedral

368. The *d*-electron configurations of Cr^{2+} , Mn^{2+} , Fe^{2+} and Co^{2+} are d^4 , d^5 , d^6 and d^7 respectively. Which one of the following will exhibit minimum paramagnetic behaviour?

- a) $[Cr(H_2O)_6]^{2+}$
- b) $[Mn(H_2O)_6]^{2+}$
- c) $[Fe(H_2O)_6]^{2+}$
- d) $[Co(H_2O)_6]^{2+}$ (At. Nos. Cr = 24, Mn = 25, Fe = 26, Co = 27)

369. An enantiomerically pure acid is treated with racemic mixture of an alcohol having one chiral carbon. The ester formed will be

a) Optically active mixture

b) Pure enantiomer

c) meso compound

d) Racemic mixture

370. Which of the following ring is most strained?

- a) Cyclohexane
- b) Cyclopentane
- c) Cyclobutane
- d) Cyclopropane

371. Formylchloride has not been prepared so far. Which can function as formylchloride in formylation?

- a) HCHO + HCl
- b) $HCOOCH_3 + HCl$
- c) CO + HCl
- d) $HCONH_2 + HCl$

372. In hexacyanomanganate (II) ion the Mn-atom assumes d^2sp^3 -hybrid state. The number of unpaired electrons in the complex is:

a) 1

b) 2

c) 3

d) 0

373. Which one of the following does not give a white precipitate with silver nitrate solution?

- a) $[Co(NH_3)_6]Cl_3$
- b) $[Co(NH_3)_5Cl]Cl_2$
- c) $[Co(NH_3)_4Cl_2]Cl$
- d) $[Co(NH_3)_3Cl_3]$

374. In a set of reactions, ethyl benzene yielded a product D.

$$CH_{2}CH_{3} \xrightarrow{KMnO_{4}} B \xrightarrow{Br_{2}} C \xrightarrow{C_{2}H_{5}OH} D$$

D would be:

a)
$$CH_2$$
— CH — $COOC_2H_5$ $COOH$ $COOC_2H_5$ $COOC_2$ COO

375. The oxidation number of Pt in $[Pt(C_2H_4)Cl_3]$ is

b) +2

c) +3

d) + 4

376. Among $[Fe(H_2O)_6]^{3+}$, $[Fe(CN)_6]^{3-}$, $[Fe(Cl)_6]^{3-}$ species, the hybridization state of the Fe atom are, respectively

- a) d^2sp^3 , d^2sp^3 , sp^3d^2 b) sp^3d^2 , d^2sp^3 , d^2sp^3
- c) sp^3d^2 , d^2sp^3 , sp^3d^2
- d) None of these

377. Of the following complex ions, which is diamagnetic in nature?

- a) $[CoF_6]^{3-}$
- b) [NiCl₄]²⁻
- c) $[Ni(CN)_4]^{2-}$ d) $[CuCl_4]^{2-}$

378. The IUPAC name of compound

a) 2-methoxycarbonylbenzoic acid

b) Methyl-2-carboxy benzoate

c) 2-carboxy phenyl ethanoate

- d) o-carboxyphenyl acetate
- 379. Which of the following are produced from coal-tar?
 - a) Synthetic dyes
- b) Drugs
- c) Perfumes
- d) All of these

- 380. Chlorine is least reactive in:
 - a) CH₃Cl
- b) CH₂=CHCl
- c) C_6H_5Cl
- d) C_2H_5Cl

381. Correct IUPAC name of compound

 $(CH_3)_2C(CH_2CH_3)CH_2CH(Cl)CH_3$ is

a) 5-chloro-3,3-dimethylhexane

- b) 3-chloro-2-ethyl-2-methylpentane
- c) 2-chloro-4-ethyl-4-methylpentane
- d) None of the above

In the above reaction 'X' stands for:

a) NH₂

b) Cl

- c) SnCl₂
- d) $^{+}_{NH_3Cl}$

- 383. Which follows EAN rule?
 - a) $Fe(CO)_5$
- b) Ni(CO)₄
- c) $K_4[Fe(CN)_6]$
- d) All are correct

- 384. Which one is bidentate ligand?
 - a) $C_2 O_4^{2}$
- b) NH₂ · CH₂ · CH₂ · NH₂ c) Both (a) and (b)
- d) None of these
- 385. The reagent used for conversion of benzene diazonium chloride to benzene is:
 - a) $H_3PO_2 + H_2O$
- b) $Na_2SnO_2 + NaOH$
- c) C_2H_5OH
- d) All of these

- 386. Which will not give the usual test for iron?
 - a) $K_2 Fe_2(SO_4)_4 \cdot 24H_2O$
 - b) $(NH_4)_2 Fe(SO_4)_2 \cdot 6H_2O$
 - c) $K_3[Fe(CN)_6]$
 - d) $Fe_2(SO_4)_3$
- 387. $[Co(NH_3)_5SO_4]Br$ and $[Co(NH_3)_5Br]SO_4$ are a pair of isomers.
 - a) Ionisation
- b) Ligand
- c) Coordination
- d) Hydrate

- 388. The first organic compound prepared in the laboratory was
 - a) Acetic acid
- b) Acetylene
- c) Urea

d) Methane

- 389. Aniline on heating with conc. H₂SO₄ at 460 K gives:
 - a) Aniline sulphate
 - b) Benzene sulphonic acid
 - c) Sulphanilic acid
 - d) None of the above
- 390. Which of the following statements regarding phenols is not correct?
 - a) Phenols are stronger acid than water and alcohols
 - b) Phenols are weaker acids than carboxylic acids
 - c) Phenols are soluble in both aqueous NaOH and aqueous NaHCO3
 - d) Phenoxide ions are more stable than the corresponding phenols
- 391. Which would decolourise cold, aq. potassium permanganate solution?
 - a) Benzoic acid
- b) Cinnamic acid
- c) p-toluic acid
- d) m-toluic acid
- 392. The magnetic moment of $K_3[Fe(CN)_6]$ is found to be 1.7 BM. How many unpaired electron (s) is/are present per molecule?
 - a) 1

b) 2

c) 3

d) 4

393. The IUPAC name of the compound

$$CH_2$$
- CH - CH_2 - CH_2
 CH_2 is
 CH_2 - CH - CH_2 - CH_2

a) Bicyclo [2,5,0] nonane

b) Bicyclo [5,0,2] nonane

c) Bicyclo [5,2,0] nonane

d) Bicyclo [0,2,5] nonane

394. The IUPAC name of the compound

- a) 2-oxocyclohexane-1-carboxylic acid
- b) Cyclohexane-2-oxo-1-carboxylic acid
- c) 6-oxocyclohexane-1-carboxylic acid
- d) None of the above

395. The IUPAC name of

- a) Spiro [3.2.1] octane
- b) Bicyclo [3.2.2] octane c) Bicyclo [3.2.1] octane d) None of these

- 396. Which of the following deactivates benzene substitution?
 - a) -NHR
- b) OH

c) -0R

d) -COOR

- 397. Aniline, chloroform and alc. KOH on heating give:
 - a) Phenyl isocyanide
- b) Phenyl cyanide
- c) Chlorobenzene
- d) Phenol

398. In the chemical reactions,

the compounds "A" and "B" respectively are

- a) Nitrobenzene and chlorobenzene
- b) Nitrobenzene and fluorobenzene
- c) Phenol and benzene
- d) Benzenediazonium chloride and fluorobenzene
- 399. The incorrect statement for IUPAC system of nomenclature is
 - a) In an organic compound, the longest carbon chain is always selected for assigning the root word
 - b) There is no compound with the name 3-ethyl pentane
 - c) Out of NH₂ and OH groups present in an organic compound, —NH₂ is treated as substituent
 - d) Different alkyl groups are written alphabetically while, writing the IUPAC name
- 400. When sodium benzene sulphonate is fused with sodium hydroxide (solid), followed by hydrolysis the product formed is:
 - a) Benzene
- b) Sod. phenoxide
- c) Benzene thiophenol
- d) Phenol
- 401. The correct order of stability of conformations of cyclohexane is
 - a) Chair > twist boat > boat

b) Twist boat > chair > boat

c) Boat > chair > twist boat

d) Boat > twist boat > chair

402. Phenol with dilute HNO₃ gives:

- a) meta and para nitrophenol
- b) ortho and para nitrophenol
- c) Trinitrophenol
- d) ortho and meta nitrophenol
- 403. The increasing order of boiling points of compounds given below is:

- (I) 1,2-dihydroxy benzene
- (II) 1,3-dihydroxy benzene
- (III) 1,4-dihydroxy benzene
- (IV) Hydroxyl benzene
- a) I < II < III < IV
- b) I < II < IV < III
- c) IV < I < II < III
- d) IV < II < I < III
- 404. The pair of the compounds in which both the metals are in the higher possible oxidation state is
 - a) CrO_2Cl_2 , MnO_4^-

b) $[Co(CN)_6]^{3-}$, MnO_3

c) TiO_3 , MnO_2

- d) $[Fe(CN)_6]^{3-}$, $[Co(CN)_6]^{3-}$
- 405. The number of ions given by K₂[PtCl₆] in aqueous solution is:

c) 4

d) Zero

- 406. Which of the following are functional isomers?
 - a) CH₃CH₂Cl and CH₃CH₂Br

c) C₂H₅OC₂H₅ and CH₃OC₃H₇

- b) CH₃CHBr₂ and CH₂Br₂ · CH₂Br

 - CH₃CH₂CHO and CH₃—CH

- 407. Phenol is:
 - a) Strongly acidic
- b) Weakly acidic
- c) Strongly basic
- d) Weakly basic

- 408. The correct IUPAC name of $KAl(SO_4)_2 \cdot 12H_2O$ is:
 - a) Aluminium potassium sulphate-12-water
 - b) Potassium aluminium(III) sulphate-12-water
 - c) Potassium aluminate(III) sulphatehydrate
 - d) Aluminium(III) potassium sulphate hydrate-12
- 409. A complex shown below can exhibit:

PPLUS EDUCATION

- a) Optical isomerism only
- b) Geometrical isomerism only
- c) Both optical and geometrical isomerism
- d) None of the above
- 410. The IUPAC name of the complex $[Co(NH_3)_4Cl_2]Cl$ is
 - a) Dichloro tetraammine cobalt (III) chloride
- b) Tetraammine dichloro cobalt(III) chloride
- c) Tetraammine dichloro cobalt (II) chloride
- d) Tetraammine dichloro cobalt (IV) chloride
- 411. The correct decreasing order of their reactivity towards hydrolysis is:
 - (i) C₆H₅COCl

- a) (i)>(ii)>(iii)>(iv)
- b) (iv)>(ii)>(ii)>
- c) (ii)>(iv)>(i)>(iii)
- d) (ii) > (iv) > (iii) > (i)

- 412. Nitrobenzene is generally used for:
 - - a) Preparing shoe polish b) Preparing floor polish c) Preparing aniline
- d) All of these
- 413. In the coordination compound, $K_4[Ni(CN)_4]$, the oxidation state of nickel is
 - a) -1

b) 0

d) + 2

- 414. Salicylic acid as compared to benzoic acid:
 - a) Is more acidic
- b) Has same acidity
- c) Has less acidity
- d) None of these

- 415. Which ligand is expected to be bidentate?
 - a) $C_2 O_4^{2-}$
- b) $CH_3C \equiv N$
- c) Br⁻

- d) CH₃NH₂
- 416. Which one of the following is most reactive towards aqueous NaOH?
 - a) C_6H_5Cl
- b) $C_6H_5CH_2Cl$
- c) C_6H_5Br
- d) BrC₆H₄Br

- 417. Which is not an aromatic compound?
 - a) Pyridine
- b) Naphthalene
- c) Xylene
- d) Cyclohexane

- 418. Which one of the following is wrongly matched?
 - a) $[Cu(NH_3)_4]^{2+}$
- Square planar
- b) [Ni(CO)₄] d) $[Co(en)_3]^{3+}$
- Neutral ligand

Follows EAN rule

- c) $[Fe(CN_6)]^{3-}$ $sp^3 d^2$
- a) Molecular formula

419. Stereoisomers have different

b) Structural formula

c) Configuration

- d) Molecular mass
- 420. Which of the following will show optical isomerism?
 - a) $[Cu(NH_3)_4]^{2+}$
 - b) [ZnCl₄]²⁻
 - c) $[Cr(C_2O_4)_3]^{3-}$
 - d) $[Co(CN)_6]^{3-}$
- 421. A complex of cobalt has five ammonia molecules, one nitro group and two chlorine atoms for each cobalt atom. One mole of this compound produces three mole ions in aqueous solution which on treating with excess of AgNO₃ give two mole of AgCl. The formula of the compound is:
 - a) $[Co(NH_3)_4NO_2Cl][(NH_3b)[Co(NH_3)_5Cl][ClNO_2]$ c) $[Co(NH_3)_5NO_2]Cl_2$
- d) $[Co(NH_3)_5][(NO_2)_2Cl_2]$

- 422. Which one group is trivalent in nature?
 - a) Benzo
- b) Benzal
- c) Benzyl
- d) All of these
- 423. Benzene contains double bonds but does not give addition reactions because:
 - a) Double bonds in benzene are strong
 - b) Double bonds change their position rapidly
 - c) Resonance lowers the energy of benzene molecule and leads to greater stabilization
 - d) None of the above
- 424. Low spin complex of d^6 -cation in an octahedral field will have the following energy:

a)
$$\frac{-12}{5}\Delta_0 + P$$

$$b) \frac{-12}{5} \Delta_0 + 3P$$

c)
$$\frac{-2}{5}\Delta_0 + 2P$$

$$\frac{-2}{5}\Delta_0 + P$$

 $(\Delta_0 = \text{Crystal field splitting energy in an octahedral field, } P = \text{Electron pairing energy})$

- 425. C_7H_8O show how many isomers?
 - a) 2

c) 4

d) 5

426. Cl(

The above structural formula refers to:

a) BHC

b) DNA

c) DDT

d) RNA

427. The compound

Have its IUPAC name as

a) Octa dec-9-enoic acid	b) Oleic acid
c) Ethyl hexadic-9-enoic acid	d) All of these

428. The type of isomerism present in nitropentaammine-chromium (III) chloride is:

- c) Ionization a) Optical b) Linkage
- d) polymerization

429. Which complex compound possesses sp^3d^2 hybridisation?

- a) $[Fe(NH_3)_6]^{3+}$
- b) $[Fe(CN)_6]^{4-}$
- c) $[Fe(CN)_6]^{3-}$
- d) $[Fe(Cl)_6]^{3-}$

430. Amongst the following carboxylic acids the strongest acid is:

- a) Benzoic acid
- b) o-methoxybenzoic acid
- c) m-nitrobenzoic acid
- d) p-nitrobenzoic acid

431. When EDTA solution is added to Mg²⁺ ion solution, then which of the following statements is not true? Four coordinate sites of Mg^{2+} are occupied by EDTA and remaining two sites are occupied by water molecules.

- b) All six coordinate sites of \mbox{Mg}^{2+} are occupied.
- c) P^H of the solution is decreased.
- d) Colourless $[Mg EDTA]^{2-}$ chelate is formed.

432. The energy difference between chair and the boat conformation of cyclohexane is

- a) 29.7 kJ
- b) 44 kJ
- c) 151 kJ
- d) 36 kJ

433. Compounds having the same molecular formula but different properties are called

- a) Isotopes
- b) Isobars
- c) Isomers
- d) Isomorphs

434. CH₃OCH₂CH₂CH₂OCH₂CH₃ is

a) Ethylmethylpropyl diether

b) Ethylmethoxypropyl ether

c) 3-ethoxy-1-methoxy propane

- 435. The benzene molecule contains:
 - a) Six sp^2 -hybridized carbons
 - b) Three sp^2 -hybridized carbons
 - c) Six sp^3 -hybridized carbons
 - d) Three sp^3 -hybridized carbons

436. The correct order of stability of conformations of $NH_2 - CH_2 - CH_2 - OH$ is

a) Gauche > eclipsed > anti

b) Gauche > anti > eclipsed

c) Eclipsed > gauche > anti

- d) Anti > eclipsed > gauche
- 437. The solubility of AgCN increases by the addition of KCN because of:
 - a) Complex formation
- b) Redox change
- c) Salt formation
- d) None of these

438. Alicyclic compounds are

a) Aromatic cyclic compounds

b) Aliphatic cyclic compounds

c) Both (a) and (b)

d) None of the above

439. Which of the following compounds reacts slower than benzene in electrophilic bromination?

- a) C_6H_5 — NO_2
- b) C_6H_5 — NH_2
- c) C_6H_5 OH
- d) C_6H_6 — CH_3

440. The fraction of chlorine precipitated by AgNO₃ solution from [Cu(NH₃)₅Cl]Cl₂ is:

a) 1/2

b) 2/3

c) 1/3

d) 1/4

441. Number of possible optical isomers in $[Co(en)_2Cl_2]^+$ is

b) 3

c) 4

d) 6

442. Dimethyl glyoxime gives a red precipitate with Ni²⁺ which is used for its detection. To get this precipitate readily, the best pH range is

a)
$$< 1$$

b)
$$3 - 4$$

c)
$$9 - 11$$

d)
$$2 - 3$$

443. Predict the product:

- 444. Replacement of Cl of chlorobenzene to give phenol requires drastic conditions but chlorine of 2, 4-dinitrochlorobenzene is readily replaced because:
 - a) NO₂ makes the electron rich ring at *ortho* and *para* positions
 - b) NO₂ withdraws electrons at meta position
 - c) NO₂ donate electrons at *meta*-position
 - d) NO2 withdraws electrons at ortho and para positions
- 445. Salicylic acid on heating with soda lime forms:
 - a) Phenol
- b) Benzyl alcohol
- c) Benzene
- d) Benzoic acid

- 446. Which of the following is an organometallic compound?
 - a) $Ti(C_2H_5)_4$
- b) $Ti(OC_2H_5)_4$
- c) $Ti(OCOCH_3)_4$
- d) $Ti(OC_6H_5)_4$
- 447. Which kind of isomerism is exhibited by octahedral Co(NH₃)₄Br₂Cl?
 - a) Geometrical and ionisation

b) Geometrical and optical

c) Optical and ionisation

- d) Geometrical only
- 448. Which of the following is the strongest base?

c)
$$O$$
 CH_3

$$\frac{NH_2}{O}$$

449. Which of the following will be aromatic?

b)
$$\begin{bmatrix} C_6H_5 \\ C \\ C \\ C \\ C_6H_5 H \end{bmatrix}$$

450. The correct symbol rela	ting the two Kekule structu	re of benzene is:	
a) →	b) ⇌	c) ↔	d) ⇄
451. Benzaldehyde can be ob	tained by the hydrolysis of	:	
a) Benzyl chloride	b) Benzal chloride	c) Benzonitrile	d) Benzoic acid
452. Which of the following h	as an optical isomer?		
a) $[Co(en)(NH_3)_2]^{2+}$	b) $[Co(H_2O)_4(en)]^{3+}$	c) $[Co(en)_2(NH_3)_2]^{3+}$	d) $[Co(NH_3)_3Cl]^+$
453. Chromium carbonyl is:			
a) Cr(CO) ₄	b) Cr(CO) ₅	c) Cr(CO) ₆	d) None of these
454. Which of the following r	eagents may be used to dis	tinguish between phenol ar	nd benzoic acid?
a) Aqueous NaOH	b) Tollen's reagent	c) Molisch reagent	d) Neutral FeCl ₃
455. Which of the following o	omplex species do not invo	olve d^2sp^3 -hybridization?	
a) [CoF ₆] ³⁻	b) $[Co(NH_3)_6]^{3+}$	c) $[Fe(CN)_6]^{3-}$	d) $[Cr(NH_3)_6]^{3+}$
456. Which one of the follow	ing shows maximum value	of paramagnetic behaviour	?
a) [Sc(CN) ₆] ³⁻	b) [Co(CN) ₆] ³⁻	c) $[Ni(CN)_4]^{2-}$	d) $[Cr(CN)_6]^{3-}$
457. The IUPAC name of			
$HOOC - CH_2 - CH_2 - C$	$H_2 - CH - CH_2 - COOH$		
	1		
	CH ₂ COOH		
is	_		
a) 3-(carboxymethyl) he	eptane-1,7-dioic acid		
b) 5-(carboxymethyl) he	eptane-1,7-dioic acid		
c) 2-(carboxymethyl) po	entane dicarboxylic acid		
d) 4-(carboxymethyl) po	entane dicarboxylic acid	>	
458. Which of the following	species will be diamagnetic	?	
a) [Fe(CN) ₆] ^{4–}	b) [FeF ₆] ³⁻	c) $[Co(C_2O_4)_3]^{3-}$	d) [CoF ₆] ³⁻
459. Which one of the follow:	ing is an outer orbital comp	olex and exhibits paramagn	etic behaviour?
a) [Cr(NH ₃) ₆] ³⁺	b) $[Co(NH_3)_6]^{3+}$	c) $[Ni(NH_3)_6]^{2+}$	d) $[Zn(NH_3)_6]^{2+}$
460. Moth balls contain:	Treitis EDU	ΓΔΤΙΩΝ	
a) Camphor	b) Benzoic acid	c) Naphthalene	d) Cinnamic acid
461. The number of unidenta	te ligands in the complex io	on is called	
a) Oxidation number		b) Primary valency	
c) Coordination number	•	d) EAN	
462. According to Hückel rule	e, the number of π -electron	s in anthracene is:	
a) 12	b) 14	c) 10	d) 20
463. In ethane and cyclohexa	ne which one of the followi	ng pairs of conformations a	re more stable?
a) Eclipsed and chair co	nformations	b) Staggered and chair c	onformations
c) Staggered and boat co	onformations	d) Eclipsed and boat con	formations
464. Among the following wh	_	-	
a) $K[PtCl_3(\eta^2 - C_2H_4)]$	b) $Fe(\eta^5 - C_5H_5)_2$	c) $Cr(\eta^6 - C_6H_6)_2$	d) $(CH_3)_4Sn$
465. <i>o</i> , <i>p</i> -directing groups are	e generally:		
a) Activating groups	b) Deactivating groups	c) Neutral groups	d) None of these
466. Aryl halides are less rea	ctive towards nucleophilic	substitution reaction as cor	npared to alkyl due halides
to:			
a) The formation of less	stable carbonium ion		
b) Resonance stabilizati	on		
c) Longer carbon-halog	en bond		
d) The inductive effect			
467. Which would be least re	active towards bromine?		
a) Nitrobenze	b) Anisole	c) Phenol	d) Chlorobenzene
468. Which has a smell of oil	of winter green?		

			Opius Luacation
a) Benzaldehyde	b) Benzoic acid	c) Ethyl salicylate	d) Methyl salicylate
469. The coordination number	er of Pt in $[Pt(NH_3)_4Cl_2]^{2+1}$	ion is	
a) 2	b) 4	c) 6	d) 8
470. C ₆ H ₅ Cl on treating with	NaOH at 300°C gives phenol	l. However the yield is poor	because of side reaction
producing:			
a) C ₆ H ₅ Na	b) C ₆ H ₅ OCH ₃	c) $C_6H_5OC_6H_5$	d) None of these
471. In Cr(NH ₃) ₄ Cl ₂]Cl the lig		<i>y</i>	,
a) NH ₃ only	b) Cl ⁻ only	c) Both NH ₃ and Cl ⁻	d) Cr, NH ₃ , Cl ⁻
472. Which statement is not o	•	.,	,,
a) It is less basic than etl			
b) It can be steam distille			
c) It reacts with sodium			
d) It is soluble in water	to give ny arogen		
473. Among the following, ide	entify the species with an at	om of +6 oxidation state:	
a) $[MnO_4]^-$	b) $[Cr(CN)_6]^{3-}$	c) $[NiF_6]^{2-}$	d) CrO ₂ Cl ₂
474. Which of the following a			·
-	= = =	c) (CH ₃) ₃ CCH ₂ CH(CH ₃) ₂	_
a) (CH ₃) ₃ CH	b) $(C_2H_5)_3CH$	$c_1 (c_{13})_3 c_{12} c_{11} (c_{13})_2$	u) (Cn ₃) ₄ C
475. The hardness of water is		-) Tituing atomic on a the al	Distillation of the d
· · · · · · · · · · · · · · · · · · ·	b) EDTA method	-	d) Distillation method
476. I_2 is stirred in between t		. IT:	
a) Dissolves more in C ₆ H			
b) Dissolves more in H ₂ (
c) Dissolve equally		>	
d) Dissolves in neither C			
477. The number of tertiary (
a) 1	b) 2	c) 3	d) 4
478. Hydrogenation of benzo			
a) Benzyl alcohol	b) Benzaldehyde	c) Benzoic acid	d) Phenol
479. The Clemmensen reduct		27112011	
a) C ₆ H ₅ NH ₂	b) C ₆ H ₅ OH	c) $C_6H_5CH_3$	d) C ₆ H ₅ COOH
480. Which of the following li	gand has lowest Δ_o value?		
a) CN ⁻	-,	c) F ⁻	d) NH ₃
481. Which one of the followi	ng has an optical isomer?		
(en=ethylenediamine)			
a) $[Zn(en)(NH_3)_2]^{2+}$	b) $[Co(en)_3]^{3+}$	c) $[CO(H_2O)_4(en)]^{3+}$	d) $[Zn(en)_2]^{2+}$
482. Trichloroacetaldehyde, 0	CCl ₃ CHO reacts with chlorol	penzene in presence of sulp	huric acid and produces:
a) CI—\(\)			
CCl ₃			
C1.			
b) CI-(O)-c-(O)			
-, \ - / \ - /	-Cl		
	-C1		
CH ₂ Cl	−Cl		

- 483. Which fraction of coal-tar is rich in arene?
 - a) Light oil
- b) Heavy oil
- c) Green oil
- d) Middle oil
- 484. The coordination number and oxidation number of X in the following compound $[X(SO_4)(NH_3)_5]Cl$ will be
 - a) 10 and 3
- b) 2 and 6
- c) 6 and 3
- d) 6 and 4

- 485. Benzyl chloride is formed by treating toluene with Cl₂ in:
 - a) Presence of light
 - b) Absence of light
 - c) Treating benzene with anhy. AlCl₃
 - d) Treating benzene with As₂S₃
- 486. Which complex cannot ionize in solution?
 - a) $[CoCl_3(NH_3)_3]$
- b) $K_4(Fe(CN)_6]$
- c) $K_2[Pt(F_6)]$
- d) $[Pt(NH_3)_6]Cl_4$
- 487. [Ni $(CN)_4$]²⁻, $[MnBr_4]^{2-}$ and $[CoF_6]^{3-}$, geometry, hybridisation and magnetic moment of the ions respectively, are
 - Tetrahedral, square planar, octahedral:
 - sp^3 , dsp^2 , sp^3d^2 : 5.9, 0, 4.9
 - b) Tetrahedral, square planar, octahedral: dsp^2 , sp^3 , sp^3d^2 : 0, 5.9, 4.9
 - Square planar, tetrahedral, octahedral:
 - dsp^2 , sp^3 , d^2sp^3 : 5.9,4.9,0
 - d) Square planar, tetrahedral, octahedral : dsp^2 , sp^3 , sp^3d^2 : 0, 5.9, 4.9
- 488. Ozonolysis of benzene gives:
 - a) 1 molecule of glyoxal
 - b) 2 molecules of glyoxal
 - c) 3 molecules of glyoxal
 - d) None of these
- 489. In benzene, C—C bond length is 1.39 Å; the C—H bond length is:
 - a) 1.39

b) 1.08

c) 1.54

d) 1.46

490. The IUPAC name of following compound is

- a) N,N-dimethyl, 3-methyl pentan-3-amine
- b) 3-N,N-dimethyl, 3-methyl pentanamine
- c) 3-methyl-3-N, N-dimethyl pentane
- d) 3-methyl-3-N, N-dimethyl butane
- 491. Which of the following may be used as food preservative?
 - a) Benzene
 - b) Ethylene
 - c) Sodium benzoate
 - d) Sodium metaaluminate

492. Which compound is formed when sodium phenoxide is heated with ethyl iodide?

- a) Phenetole
- b) Ethyl phenyl alcohol
- c) Phenol
- d) None of these

493. In metal carbonyl (organometallic) complexes, the M— C bond is

a) Ionic

b) Covalent with ionic character

c) Covalent

d) Coordinate covalent

494. Octahedral complex

a) *cis*

- b) *trans*
- c) mer

d) fac

495. The correct order of magnetic moments (spin only values in BM) among the following is

(Atomic no. Mn=25, Fe=26, Co=27)

- a) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$
- b) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$
- c) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$
- d) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$

496. Aniline and methyl amine can be differentiated by:

- a) Diazotisation followed by coupling with phenol
- b) Reaction with chloroform and aqueous solution of KOH
- c) Reaction with HNO₂
- d) None of the above

497. The functional group present in cresols is:

- a) Alcoholic (— OH)
- b) Aldehydic (— CHO)
- c) Phenolic (— OH)
- d) Carboxylic (— COOH)

498. In the reaction;

the structure of the product T is:

a)
$$H_3C$$
 O O O

499. Which one of the following compounds is most acidic?

- 500. The most unstable configuration of cyclohexane is
 - a) Boat

b) Chair

c) Twist boat

b) 2-ethyl pentan-4-amine d) 4-ethyl pent-4-en-2-amine

d) Half chair

- 501. In which compound synergic effect is present?
 - a) [Ni(CO)₄]
- b) [NiCl₄]²⁻
- c) $[CuCl_4]^{2-}$
- d) $[Mn(H_2O)_6]^{2+}$

502. The IUPAC name of the compound

$$\begin{array}{c|c} \mathsf{CH_2} & \mathsf{CH_3} \\ \parallel & \mid \\ \mathsf{C_2H_5} - \mathsf{C} - \mathsf{CH_2} - \mathsf{CHNH_2} \\ \text{ is} \end{array}$$

- a) 4-amino-2-ethyl pent-1-ene
- c) Amino-4-pentene
- 503. Aqua regia reacts with Pt to yield:
 - a) $Pt(NO_3)_4$
- b) $H_2[PtCl_6]$
- c) PtCl₄

d) PtCl₂

- 504. $K_3[Al(C_2O_4)_3]$ is called:
 - a) Potassium aluminooxalate
 - b) Potassium alumino(III) oxalate
 - c) Potassium trioxalatoaluminate
 - d) Potassium trioxalatoaluminate(III)
- 505. The IUPAC name of

- a) 6-oxo-1,2,2-tri methyl bicycle [2.2.1] heptane
- b) 1,7,7-trimethyl bicyclo [2.2.1] heptan-2-one
- c) 1,5,5-trimethyl bicyclo [2.1.1] hexane-2-one
- d) 1,7,7-trimethyl bicyclo [2.1.2] heptan-2-one

- 506. Nitration of toluene takes place at:
 - a) ortho position
 - b) meta position
 - c) para position
 - d) Both ortho and para position
- 507. Estimation of calcium and magnesium is done by
 - a) EDTA
- b) Oxalate
- c) Phosphate
- d) None of these
- 508. How many enantiomer pairs are obtained by monochlorination of 2, 3-dimethyl butane?

b) Two

- c) Three
- d) One

- 509. Common reactions of benzene and its derivatives are:
 - a) Electrophilic addition reactions
 - b) Electrophilic substitution reactions
 - c) Nucleophilic substitution reactions
 - d) Nucleophilic addition reactions
- 510. The IUPAC name of the compound

- a) 1, 3, 5-triheptene

b) 2, 4, 6-triheptene

c) 2, 4, 6-heptatriene

511. Name of compound

GPLUS EDUCATION

d) Hepta-1, 3, 5-triene

a) 1, 2, 3-triformylpentane

b) Propane-1, 2, 3-tricarbaldehyde

c) 3-formylpentane-1, 5-dial

- d) Propane-1, 2, 3-trial
- 512. The attacking species in aromatic sulphonation is:
 - a) SO_3

- b) H₃SO₄⁺
- c) HSO₄

- d) SO_{2}^{+}
- 513. Which one of the following compound does not react with bromine?
 - a) Ethyl amine
- b) Propene
- c) Phenol
- d) Chloroform

- 514. The magnetic moment (spin only) of $[Ni Cl_4]^{2-}$ is
 - a) 1.82 BM
- b) 5.46 BM
- c) 2.82 BM
- d) 1.41 BM

515. 4

undergoes electrophilic substitution reaction preferentially :

- a) At position-2
- b) At position-3
- c) At position-4
- d) At positions-2 and 4

- 516. Ionization of $K[Ag(CN)_2]$ will give:
 - a) K^+ and $[Ag(CN)_2]^-$ ion
 - b) KCN and AgCN
 - c) K⁺, Ag⁺, CN⁻
 - d) None of the above
- 517. The coordination number and oxidation state of Cr in $K_3[Cr(C_2O_4)_3]$ are respectively
 - a) +6 and +3
- b) 3 and 0
- c) 4 and +2
- d) 3 and +3
- 518. A complex of platinum, ammonia and chlorine produces four ions per molecule in the solution. The structure consistent with the observation is:
 - a) $[Pt(NH_3)_4]Cl_4$
- b) $[Pt(NH_3)_2Cl_4]$
- c) $[Pt(NH_3)_5Cl]Cl_3$
- d) $[Pt(NH_3)_4Cl_2]Cl_2$

- 519. The type of magnetism exhibited by $[Mn(H_2O)^{2+}]$ ion is
 - a) Paramagnetism
- b) Diamagnetism
- c) Both (a) and (b)
- d) None of these
- 520. According to effective atomic number rule the central metal acquires:
 - a) Inert gas configuration
 - b) Duplet
 - c) Octet
 - d) Quartet
- 521. K₃CoF₆ is high spin complex. What is the hybrid state of Co-atom in this complex?
 - a) sp^3d

- b) sp^3d^2
- c) d^2sp^3

COOH

- d) dsp^2
- 522. The correct structure of ethylenediaminetetraacetic acid (EDTA) is

HOOC

- 523. [Co(NH₃)₅Br]SO₄ and [Co(NH₃)₅SO₄]Br are examples of which type of isomerism?
 - a) Linkage
- b) Optical
- c) Geometrical
- d) Ionisation
- 524. The coordination number of a central metal atom in a complex is determined by
 - a) The number of ligands around a metal ion bonded by σ bonds
 - b) The number of ligands around a metal ion bonded by π -bonds
 - c) The number of ligands around a metal ion bonded by σ –and π bonds both

СООН

-соон

d) The number of only anionic l	igands bonded to the	e metal ion	
525. Action of benzoic acid with hyd	razoic acid in presen	ce of N ₃ H gives:	
a) Aniline b) Be	enzamide	c) Phenyl cyanide	d) All of these
526. Which ion shows usually the co			
a) Cr ³⁺ b) Fe	3+	c) Fe ²⁺	d) All of these
527. Which of the following represer	nts hexadentate ligan	ıd?	
a) 2, 2-bipyridyl b) DI		c) Ethylenediamine	d) None of these
528. Nitrobenzene can be prepared f		ng a mixture of conc. $\mathrm{HNO_3}$	and conc. H ₂ SO ₄ .In the
mixture, nitric acid acts as a/an			
	educing agent	c) Acid	d) Base
529. The value of the 'spin only' mag	netic moment for on	e of the following configura	ations is 2.84 BM. The
correct one is			
a) d^5 (in strong ligand field)		b) d^3 (in weak as well as	
c) d^4 (in weak ligand field)		d) d^4 (in strong ligand fie	ld)
530. The IUPAC name of the compou	nd		
0 0			
CH ₂ CH ₂ C—CH ₃			
is			
26 (2 1- 1- 1) 1-1 1		10 6 (21-1)1-1	1
a) 6-(3-oxobutyl) cyclohexan-1		b) 6-(2-oxobutyl) cycloho	
c) 2-(3-oxobutyl) cyclohexan-1		d) 2-(2-oxobutyl) cycloho	exan-1-one
531. Hybridisation, shape and magnetic a) dsp^2 , square planar, zero	euc moment of [Mi(C	· · · =	72
	S. Ju. 1	b) dsp^2 , square planar, 1	
c) sp^2d^2 , octahedral, zero		d) d^2sp^3 , octahedral, 1.73	0
532. Choose the IUPAC name of			
a) Dicyclobutane		b) Bicyclo [2.2.0] hexane	
c) Bicyclo [2.2.1] hexane	EDIL	d) None of these	
533. Which of the following is a hete		.A.HUN	15.4.44
	niophene	c) Phenol	d) Aniline
534. $[Sc(H_2O)_6]^{3+}$ ion is			1
a) Colourless and diamagnetic		b) Coloured and octahed	
c) Colourless and paramagnetic		d) Coloured and paramag	gnetic
535. Benzene reacts with CH ₃ Cl in th	-	_	DD 111 11
	oluene	c) Chlorobenzene	d) Benzylchloride
536. The magnetic moment of [Co(N		2) ((d) 7 aug
a) 1.73 b) 2.5		c) 6.6	d) Zero
537. The correct order of reactivity t a) Phenol > Benzene > Chlorobe	-		
b) Benzoic acid>Chlorobenzene			
c) Phenol >Chlorobenzene>Be			
d) Benzoic acid>Phenol>Benzo			
538. The product formed by the reac		CH N ice	
536. The product formed by the reac	\sim	G1121N2 15.	d) None of these
a) $CH = CH_2N_2$ b) N	N	CH ₂ CH ₂	d) None of these
a) (b)		c) ()	
<u> </u>	\	\checkmark	
539. Increasing order of expected en			
a) $CH_3COCH_2CHO > CH_3COCH_3$		-	
b) $CH_3COCH_2COCH_3 > CH_3COC$	$H_2CHO > CH_3COCH$	$_3 > CH_3CHO$	

c) $\mathrm{CH_3CHO} > \mathrm{CH_3COCH_3} > \mathrm{CH_3COCH_2CHO} > \mathrm{CH_3COCH_2COCH_3}$

- d) $CH_3COCH_3 > CH_3COCH_2COCH_3 > CH_3CHO > CH_3COCH_2CHO$
- 540. Out of the following the metal which forms polynuclear carbonyl is:
 - a) Na

b) Mg

c) Mn

d) All of these

- - a) Aqueous NaHCO₃
- b) Aqueous NaOH
- c) Aqueous FeCl₃
- d) Aqueous Na₂CO₃

542. The compound having the lowest oxidation state of iron is

541. Picric acid and benzoic acid can be distinguished by:

- a) K_4 Fe(CN)₆
- b) K₂FeO₄
- c) Fe_2O_3
- d) $Fe(CO)_5$

- 543. The name of $[Pt(NH_3)_4Cl_2]^{2+}$, $[PtCl_4]^{2-}$ is
 - a) Tetramminedichloroplatinum(IV) tetrachloro platinate(II)
 - b) Dichloroplatinum (IV) tetrachloroplatinate
 - c) Tetrachloroplatinum (II) tetrammineplatinate
 - d) Tetrachloroplatinum (II) dichlorotetraammine platinate
- 544. *m*-dihydroxybenzene is also called:
 - a) Catechol
- b) Resorcinol
- c) Quinol
- d) Pyrogallol

- 545. The ion which exhibits green colour
 - a) Cu²⁺

b) Mn²⁺

c) Co^{2+}

d) Ni²⁺

- 546. $X \xrightarrow{Cl_2}$ Benzotrichloride $\xrightarrow{\text{Hydrolysis}} Y$
 - *X* and *Y* respectively are:
 - a) Benzene, benzaldehyde
 - b) Toluene, benzaldehyde
 - c) Toluene, benzoic acid
 - d) Benzene, benzoic acid
- 547. Geometrical isomerism is found in coordination compounds having coordination number:
 - a) 2

b) 3

- c) 4 (tetrahedral)
- d) 6
- 548. Which one of the following complexes is not expected to exhibit isomerism?
 - a) $[Ni(NH_3)_4(H_2O)_2]^{2+}$
- b) $[Pt(NH_3)_2Cl_2]$
- c) $[Ni(NH_3)_2Cl_2]$
- d) $[Ni(en)_3]^{2+}$

549. The correct acidity order of the following is:

- (I)
- (II)
- (III)
- (IV)
- a) (III) > (IV) > (II) > (I)
- b) (IV) > (III) > (I) > (II)
- c) (III) > (II) > (IV)
- d) (II) > (III) > (IV) > (I)
- 550. Identify 'Z' in the reaction;

$$\begin{array}{c}
\text{OH} \\
\hline
\text{CHCl}_3 + \text{NaOH} \\
\text{conc.}
\end{array}$$

$$Z$$

- 551. Pure aniline is a:
 - a) Brown coloured liquid
 - b) Colourless liquid
 - c) Brown coloured solid
 - d) Colourless solid
- 552. Aromatic compounds undergo most easily:
 - a) Nucleophilic substitution
 - b) Electrophilic substitution
 - c) Nucleophilic addition
 - d) Electrophilic addition
- 553. The colour of $CoCl_3 \cdot 5NH_3 \cdot H_2O$ is:
 - a) Orange yellow
- b) Orange
- c) Green
- d) Pink

- 554. The value of x on the $[Ni(CN)_4]^x$ is:
 - a) +2

b) -2

c) Zero

d) + 4

- 555. Complexes with halide ligands are generally:
 - a) High spin complexes
- b) Low spin complexes
- c) Both (a) and (b)
- d) None of these

- 556. The hybridization involved in $[CoF_6]^{3-}$ is:
 - a) d^2sp^3
- b) d^3sp^2
- c) dsp^3

d) sp^3d^2

Will have the name

a) N-ethyl-N-methylethanamine

b) N,N-diethylmethanamine

c) N,N-diethylethanamide

- d) None of the above
- 558. The oxidation state of Fe in the brown ring complex $[Fe(H_2O)_5NO]SO_4$ is
 - a) + 3

b) 0

c) +2

- d) + 1
- 559. The metal ion in complex $\underline{\textit{A}}$ has EAN identical to the atomic number of krypton . $\underline{\textit{A}}$ is
 - (At. no. of Cr=24, Fe=26, Pd=46)
 - a) $[Pd(NH_3)_6]Cl_4$
- b) $[Cr(NH_3)_5Cl]SO_4$
- c) $Na_4[Fe(CN)_6]$
- d) $K_3[Fe(CN)_6]$
- 560. Which one of the following is expected to exhibit optical isomerism [en =ethylenediamine]?
 - a) $trans [Co(en)_2Cl_2]$

b) $cis - [pt(NH_3)_2Cl_2]$

c) $cis - [Co9en)_2Cl_2$

- d) $Trans [pt(NH_3)_2Cl_2]$
- 561. What is the magnetic moment of $K_3[FeF_6]$?
 - a) 5.91 BM
- b) 4.89 BM
- c) 3.87 BM
- d) 6.92 BM

562. Identify 'Y' in the change;

d)
$$NH_2$$
 NH_2

- 563. Among the following statements on the nitration of aromatic compounds, the false one is:
 - a) The rate of nitration of benzene is almost the same as that of hexadeuterobenzene
 - b) The rate of nitration of toluene is greater than that of benzene
 - c) The rate of nitration of benzene is greater than that of hexadeuterobenzene
 - d) Nitration is an electrophilic substitution reaction
- 564. The bond length of C—O bond in carbon monoxide is 1.128Å. The C—O bond in Fe(CO)₅ is:
 - a) 1.15 Å
- b) 1.128 Å
- c) 1.72 Å
- d) 1.118 Å

- 565. Which one is not correct for homologous series?
 - a) All members are represented by same general formula
 - b) All members have same chemical properties
 - c) All members have same physical properties
 - d) All members have same functional group

is named in IUPAC as

- a) 2, 3-dimethyl bicyclo [2.2.1] hept-5-ene
- b) 1, 2-dimethyl bicyclo [2.2.1] hept-4-ene
- c) 5, 6-dimethyl bicyclo [2.2.1] hept-2-ene
- d) 4, 5-dimethyl bicyclo [2.2.1] hept-1-ene
- 567. Ferric ion forms a prussian blue coloured solution due to the formation of:
 - a) $K_4[Fe(CN)_6]$
- b) Fe(CNS)₃
- c) $Fe_4[Fe(CN)_6]_3$
- d) $K_3[Fe(CN)_6]$

- 568. What is the magnetic moment of $[FeF_6]^{3-}$?
 - a) 5.92

b) 5.49

c) 2.34

d) 4

- 569. Which of the following can exhibit geometrical isomerism?
 - a) $[MnBr_4]^{2-}$
- b) $[Pt(NH_3)_3Cl]^+$
- c) $[PtCl_2 . P(C_2H_5)_3]_2$
- d) $[Fe(H_2O)_5NO]^{2+}$
- 570. A compound contains 2 dissimilar asymmetric C-atoms. The number of optical isomers are
 - a) 2

b) 3

c) 4

d) 5

- 571. Coordination number of Ni in $[Ni(C_2O_4)_3]^{4-}$ is:
 - a) 3

b) 6

c) 4

d) 5

- 572. Which compound exhibits optical isomerism?
 - a) Pentaamminenitrocobalt (III) iodide
 - b) Diamminedichloroplatinum (II)
 - c) Trans-dicyano-bis-(ethylenediamine) chromium (III) chloride
 - d) Tris-(ethylenediamine)cobalt (III) bromide
- 573. Ruthenium carbonyl is:
 - a) Ru(CO)₄
- b) $Ru(CO)_5$
- c) $Ru(CO)_8$
- d) $Ru(CO)_6$

574. Oxidation state of nitrogen is incorrectly given for

Compound Oxidation state

a) [Co(NH₃)₅Cl]Cl₂

- b) NH₂OH
- -1

- c) $(N_2H_5)_2SO_4$
- 0 +2

- d) Mg_3N_2
- _₃
- 575. Which of the following can participate in linkage isomerism?
 - a) NH₃

b) H₂O

- c) H₂NCH₂CH₂NH₂
- d) NO_2^-
- 576. *Ortho*-nitrophenol is less soluble in water than *p*-and *m*-nitrophenols because:
 - a) o-nitrophenol shows intramolecular H-bonding

	vs intermolecular H-bonding nitrophenol is lower than thos	so of m-and n-isomors	
	ore volatile in steam than thos		
577. Among the following r		se of m and p isomers	
a) Benzyl amine	b) Aniline	c) Acetanilide	d) p-nitro aniline
•	n potassium hexachloroplatir	•	, -
a) 46	b) 86	c) 36	d) 84
•	rmed when copper ammoniu	•	
a) 1	b) 2	c) 4	d) Zero
580. Which of the following	g cannot show linkage isomer	rism?	
a) NO ₂	b) NH ₃	c) CN ⁻	d) SCN ⁻
581. Xylenes on oxidation v	with acidic KMnO ₄ gives:		
a) Phthalic acid	b) Isophthalic acid	c) Terephthalic acid	d) All of these
582. The ratio of σ -and π -b	onds in benzene is:		
a) 2	b) 4	c) 6	d) 8
	ng reactivity towards S_E react	tion for the given compoun	d is:
$(i)C_6H_6$			
$(ii)C_6H_5CH_3$			
(iii)C ₆ H ₅ Cl			
(iv)C ₆ H ₅ OH	13 (13 5 (113 5 (113 6 (13) (')> ('')> (')> (''')	D (2) (2) (2) (2)
	b) (iv)>(ii)>(i)>(i)		d) (i)>(ii)>(iii)>(iv)
	g compounds is not optically a	active?	и н
H CI	CI Br	Br ¬	7
a) ČI H	b) H H	c) H H B H	d) Br Br H
, H	1	H Br	H Br
		VO.). I	
	trical isomers of $[Co(NH_3)_3(N)]$		15. 4
a) Zero	b) 2	c) 3	d) 4
586. Phenol is less acidic th		a) n nituanhanal	d) Ethanal
a) Water 587. In the reaction,	b) p-methoxyphenol	c) <i>p</i> -nitrophenol	d) Ethanol
	NaOH Soda lime		
$C_6H_5CH_3 \xrightarrow{Oxidation} A$	$B \xrightarrow{\text{Sodd fille}} C$		
a) C ₆ H ₅ OH	b) C ₆ H ₆	c) C ₆ H ₅ COONa	d) C ₆ H ₅ ONa
588. Incorrect statement is			
a) Ethane can have an	infinite number of conforma	tions	
b) Cyclopropane mole	cule has considerable angle s	train	
	nane is less stable then stagge		
, 00	ation possess maximum ener	00	
) ₅ Br]SO ₄ will give white ppt.		
a) PbCl ₂	b) AgNO ₃	c) KI	d) None of these
•	g complexes exhibits the high	est paramagnetic behaviou	ır?
a) $[Fe(en)(bpy)(NH_3)$	$\left[\left(2\right) ^{2+}\right] $		
b) [Co(OX) ₂ (OH) ₂] ⁻			
c) $[Ti(NH_3)_6]^{3+}$	\ 1+		
$[V(gly)_2(OH)_2(NH_3)]$		harr — himrai dadaa siti sa	
	ie, en = ethylenediamine and $F_0 = 26$, $F_0 = 27$	ppy = bipyriayimoities	
(At. No. Ti= 22 , V= 2	23, Fe=26, C0=27) Iber in a/an complex m	av increase to Q	
a) Cobalt	b) Osmium	c) Nickel	d) Iron
	<i>Եյ</i> Ծուուսու	ej menel	aj ii oli
GPLUS EDUCATION	WEB: WWW.GPLUSEDUCAT	ION.ORG PHONE	NO: 8583042324 Page 48

F00 0		C 1.1	opius zaucution
592. Compound used for cove		=	
a) Benzoic acid	b) Aniline	c) Phenol	d) Salicylic acid
593. Cinnamic acid on decarbo		a) C+a	d) Donnald about
a) Benzene	b) Toluene	c) Styrene	d) Benzaldehyde
594. In which of the following		_	. 12-
a) $Cis-[Cr(C_2O_4)_2Cl_2]^{3-}$;		b) [PtCl(dien)]Cl, [NiCl ₂ B	- -
c) [Co(NO ₃) ₃ (NH ₃) ₃], cis		d) $[Co(en)_3]Cl_3$, cis - $[Co(en)_3]Cl_3$	
595. The name of the ring stru	= = = = = = = = = = = = = = = = = = = =		
a) Simple complex	b) Chelate complex	c) Polynuclear complex	d) None of the above
596. IUPAC name of			
$Cl_2CH - CH - CH - CCl_3$	is		
C_2H_5 C_2H_5			
a) 1,1,1,4,4-pentachloro-	-		
	(trichloromethyl)-hexane		
	-(dichloromethyl)-hexane		
d) 1,1,4,4,4-pentachloro-	-		
597. Which statement is wron	ig with regard to acetaldehy	de and benzaldehyde?	
a) Both react with hydro	xylamine to form oximes		
b) Both react with HCN to	o form cyanohydrin		
c) Both react with NaOH	to form polymers		
d) Both react with hydra:	zine to form hydrazones		
598. The coordination numbe	r of Cu in complex [Cu(H ₂ C	$[0)_4]^{2+}$ is	
a) 4	b) 3	c) 2	d) 1
599. Which reaction sequence	e would be best to prepare 3	3-chloroaniline from benze	ne?
a) Chlorination, nitration	, reduction		
b) Nitration, chlorination	, reduction		
c) Nitration, reduction, c	hlorination	'ATION	
d) Nitration, reduction, a	cetylation, chlorination, hyd	drolysis	
600. The complexes (Co(NH ₃)	(0_6)][Cr $(C_2O_4)_3$] and [Cr (NH_1)	$[(C_{1})_{6}][C_{1}(C_{2}C_{4})_{3}]$	
a) Geometrical isomerism	n	b) Ionization energy	
c) Coordination isomeris	sm	d) Linkage isomerism	
601. The reaction,			
$C_6H_5NHCOCH_3 \xrightarrow{B_2/Fe} BrC$	н инсосн		
is an example of:	6114111111111113		
a) Substitution reaction			
b) Addition reaction			
c) Condensation reaction	,		
d) Elimination reaction	1		
602. Given the molecular form	aula of the hove coordinated	d comployee is	
(A) CoCl ₃ .6NH ₃	iula of the nexa coordinated	a complexes is	
(B) $CoCl_3$.5NH ₃			
(C) CoCl ₃ .4NH ₃	ated NH_3 molecules in A , Ba	and Crospostivoly and 6 E	and 4 the primary valency
	ateu Nn ₃ molecules m A, D a	ind crespectively are 0, 5	and 4 the primary valency
in (A) , (B) and (C) are	b) 2 2 1	a) 0 1 2	4) 2 2 2
a) 6, 5, 4	b) 3, 2, 1	c) 0, 1, 2	d) 3, 3, 3
603. C_6H_{14} has two tertiary ca		a) 2 motherly ortage	d) 2.2 dimathyllantana
a) <i>n</i> -hexane	b) 2-methylpentane	c) 3-methylpentane	d) 2,3-dimethylbutane
604. The compound [Co(NO ₂)			
a) Geometrical isomers	b) Linkage isomers	c) Ligand isomers	d) Ionization isomers
GPLUS EDUCATION W	VEB: <u>www.gpluseducatio</u>	ON.ORG PHONE N	IO: 8583042324 Page 49

605. Which is not a π -bonded complex?

- a) Zeise salt
- b) Ferrocene
- c) Dibenzene chromium d) Tetraethyl lead

606. When phenol is treated with PCl₅, the yield of chlorobenzene is generally poor because of the formation of:

- a) Benzoyl chloride
- b) *p*-chlorophenol
- c) o-chlorophenol
- d) Tertiary phosphate

607. Which will show tautomerism?

608. The IUPAC name of compound

a) N-phenylaminoethanone

b) N-phenylethanamide

c) N-phenylmethanamide

d) N-phenylaminomethane

609. Which one of the following is most reactive towards electrophilic reagent?

610. Which of the following shows dsp^2 hybridisation?

- a) NiCl₄-
- b) SCl₄

c) NH₄⁺

d) PtCl₄²

611. Which one of the following is not an explosive?

- a) Trinitroglycerine
- b) o-aminotoluene
- c) Dynamite
- d) TNT

612. Spin only magnetic moment of the compound Hg[Co(SCN)₄]is

b) $\sqrt{15}$

c) $\sqrt{24}$

d) $\sqrt{8}$

613. When phenol is treated with NH₃ and ZnCl₂, it changes to:

- a) Aniline
- b) Salicylic acid
- c) Cyclohexanol
- d) None of these

614. In which complex is the transition metal in zero oxidation state?

- a) $[Co(NH_3)_6]Cl_2$
- b) $[Fe(H_2O)_6SO_4]$
- c) [Ni(CO)₄]
- d) $[Fe(H_2O)_3](OH)_2$

615. The species having tetrahedral shape is

- a) [NiCl₄]²⁻
- b) $[Ni(CN)_4]^{2-}$
- c) $[PdCl_4]^{2-}$
- d) $[Pd(CN)_4]^{2-}$

616. An imperfect complex of a complex compound is 100% ionized; the compound is called:

- a) Double salt
- b) Complex salt
- c) Acid salt
- d) Normal salt

617. For which transition metal ions are low spin complexes impossible?

a) Zn^{2+}

- b) Zr²⁺
- c) Ag⁺

d) All are correct

618. (A) $K_4[Fe(CN)_6]$

- $(B)K_3[Cr(CN)_6]$
- $(C)K_3[Co(CN)_6]$

 $(D)K_2[Ni(CN)_6]$

Select the complexes which are diamagnetic.

- a) (A), (B) and (C)
- b) (B), (C) and (D)
- c) (A), (C) and (D)
- d) (A), (B) and (D)

619. Wilkinson's catalyst, (Ph ₃ P) ₃ RhCl is used for		
a) Hydrogenation of oils	b) Hydrogenation of alkynes	
c) Hydrogenation of alkenes	d) Polymerization of alke	nes
620. Among the following compounds, the most acidic is:		
a) p-nitrophenol		
b) p-hydroxybenzoic acid		
c) <i>o-</i> hydroxybenzoic acid		
d) p-toluic acid		
621. An aromatic primary amine with cold nitrous acid lea	ads to the formation of:	
a) Alcohol b) Nitrite	c) Diazonium salt	d) Benzene
622. Chlorobenzene gives DDT when it reacts with:		
a) Phenol b) Naphthalene	c) Chloral	d) Acetaldehyde
623. Under suitable conditions $C_6H_5CH_2OH(A)$, $C_6H_5OH(A)$		-
order of their acidic strengths is:	, , ,	J
<u> </u>	c) $B < A < C$	d) $C < B < A$
624. Which is considered to be an anticancer species?		
$ m CH_2$		
	H.N. 61	
CI	H ₃ N Cl	H_3N Cl
a) Cl CH_2 b) Pt	c) Pt	d) Pt
Pt Cr Cl	H31N 'C1	Cl' 'Cl
Cl		
625. The compound required for the formation of thermo	setting polymer with meth	anal is:
a) Phenol b) Benzene	c) Benzaldehyde	d) All of these
626. Which one of the following has highest number of isc	,	
a) $[Co(NH_3)_5Cl]^{2+}$ b) $[Co(en)_2Cl_2]^+$	c) $[Ru(NH_3)_4Cl^-]$	d) $[In(PP_3)_2H(CO)]^{2+}$
627. Which group is <i>o</i> - and <i>p</i> -directing?) [7 . 37 . 73
a) $-NO_2$ b) $-SO_3H$	c) —COOH	d) —NHCOCH ₃
628. When benzyl chloride is boiled with aqueous solution		_
product is:		,
a) Benzoic acid b) Benzyl alcohol	c) Benzaldehyde	d) Nitrobenzene
629. Ligands in complex compounds	,	,
a) Donates electron pair	b) Accept electron pair	
c) Neither accept electron pair nor donate	d) All of the above	
630. Aniline is separated by:	,	
a) Fractional crystallisation		
b) Fractional distillation		
c) Steam distillation		
d) Vacuum distillation		
631. In which of the following octahedral complexes of Co	(at No. 27) will be magni	tude of Λ_0 be the highest?
a) $[Co(CN)_6]^{3-}$ b) $[Co(C_2O_4)_3]^{3-}$	c) $[Co(H_2O)_6]^{3+}$	d) $[Co(NH_3)_6]^{3+}$
632. The IUPAC name of $K_2[PtCl_6]$ is	c) [do(1120)6]	a) [66(1113) ₆]
a) Hexachloroplatinate potassium	b) Potassium hexachloro	olatinate (IV)
c) Potassium hexachloroplatinate	d) Potassium hexachloro	
633. Aqueous solution of nickel sulphate on treating with		
gives dark blue crystals of:	pyriame and then adding	a solution of souldin mulle
a) $[Ni(py)_4]SO_4$ b) $[Ni(py)_2(NO_2)_2]$	c) $[Ni(py)_4(NO_2)_2]$	d) $[Ni(py)_3(NO_2)]_2SO_4$
634. Benzyl alcohol is obtained from benzaldehyde by:	C) [141(P)/4(14O2/2]	a) [141(py/3(1402/]2304
, i di obtained it onl belibulating at by		

b) Cannizzaro's reaction c) Kolbe's reaction d) Wurtz's reaction

635. The structure of the compound that gives a tribromo derivative on treatment with bromine water is:

a) Fittig's reaction

- 636. The coordination number and the oxidation state of the element 'E' in the complex $[E(en)_2(C_2O_4)]NO_2$ (where (en) is ethylene diamine) are, respectively:
 - a) 6 and 3
- b) 6 and 2
- c) 4 and 2
- d) 4 and 3

- 637. Benzaldehyde reacts with PCl_5 to give:
 - a) Benzyl chloride
- b) Benzo trichloride
- c) Benzal chloride
- d) Chlorobenzene
- 638. Which one of the following complex ions has geometrical isomers?
 - a) $[Co(en)_3]^{3+}$
- b) $[Ni(NH_3)_5Br]^+$
- c) $[Co(NH_3)_2(en)_2]^{3+}$
- d) $[Cr(NH_3)_4(en)]^{3+}$
- 639. The strongest acid among the following aromatic compounds is:
 - a) *Ortho*-nitrophenol
- b) *para*-chlorophenol
- c) *para*-nitrophenol
- d) meta-nitrophenol

- 640. The isomers observed in alkanes is
 - a) Metamerism

b) Chain isomerism

c) Position isomerism

- d) Geometrical isomerism
- 641. The two compounds pentaamminesulphatocobalt (III) bromide and pentaamminesulphatocobalt(III) chloride represent:
 - a) Linkage isomerism
 - b) Ionization isomerism
 - c) Coordination isomerism
 - d) No isomerism
- 642. Both $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-}$ are diamagnetic. The hybridisation of nickel in the compounds respectively are :
 - a) sp^3 , sp^3
- b) sp^3 , dsp^2
- c) dsp^2 , sp^3
- d) dsp^3 , dsp^2
- 643. The following compounds on hydrolysis in aqueous acetone will give:

- $(M): CH_3O \bigcirc \begin{matrix} CH_3 & H & CH_3 \\ \hline H & CH_3 & OH \end{matrix} NO_2$
- a) Mixture of (K) and (L) b) Mixture of (K) and (M) c) Only (M)
- d) Only (K)

- 644. The number of π -electrons in cyclo hepta trienyl anion is:
 - a) 2

b) 3

c) 8

- d) 5
- 645. In the Grignard reaction, which metal forms an organometallic bond?
 - a) Sodium
- b) Titanium
- c) Magnesium
- d) Palladium

- 646. Aromatic hydrocarbons are the derivatives of:
 - a) Benzene
 - b) Methane
 - c) Normal series of paraffins
 - d) None of the above
- 647. Benzene easily shows:
 - a) Ring fission reactions since it is unstable
 - b) Addition reactions since it is unsaturated
 - c) Electrophilic substitution reactions due to stable ring and high π -electron density

- d) Nucleophilic substitution reactions due to stable ring and minimum electron density 648. The IUPAC name of the compound

 - a) Tetra phenyl methane

- b) 1,1,1,1-tetraphenyl methane
- c) 1,1,1,1-tetracyclohexyl methane

d) Methyno-1,1,1-1-tetracyclohexane

649.

having the IUPAC name as

a) 2,4,4-trimethyl pentanal

b) 4,4,2-trimethyl pentanal

c) 1,3,3-trimethyl butanal

- d) 3,3,1-trimethyl butanal
- 650. When benzoic acid is heated with soda lime, we get:
 - a) Phenol
- b) Benzyl alcohol
- c) Benzene
- d) Benzaldehyde
- 651. If a compound absorbs violet colour from the sunlight, then the observed colour is:
 - a) Yellow
- b) Orange
- c) Blue

d) Green

- 652. Sulphonic acid is used in the manufacture of:
 - a) Antipyretics
- b) Antitoxine
- c) Antibiotics
- d) Dyes
- 653. In the silver plating of Cu, $K[Ag(CN)_2]$ is used instead of $AgNO_3$. The reason is:
 - a) A thin layer of Ag is formed on Cu
 - b) More heat is required
 - c) Ag+ ions are completely removed from solution
 - d) Less availability of Ag⁺ ion as Cu cannot displace Ag from Ag(CN)₂
- 654. The strongest *o*-, *p*-directing group among the following is:
 - a) —0H
- b) —Cl c) —C₆H₅
- d) -Br
- 655. Out of TiF_6^{2-} , CoF_6^{3-} , Cu_2Cl_2 and $NiCl_4^{2-}$ (Z of Ti = 22, Co = 27, Cu = 29, Ni = 28) the colourless species are:
 - a) CoF_6^{3-} and $NiCl_4^{2-}$ b) TiF_6^{2-} and CoF_6^{3-}
- c) Cu_2Cl_2 and $NiCl_4^{2-}$
- d) TiF_6^{2-} and Cu_2Cl_2

- 656. Which is true in the case of $[Fe(CN)_6]^{3-}$ complex?
 - a) d^2sp^3 -hybridization of Fe
 - b) Paramagnetic
 - c) One unpaired electron
 - d) All of the above are correct
- 657. The IUPAC name of $[Ni(PPh_3)_2Cl_2]^{2+}$ is
 - a) Bis-dichloro (triphenylphosphine)nickel(II)
- b) Dichloro bis (triphenylphosphine)nickel(II)
- c) Dichloro triphenylphosphine nickel(II)
- d) Triphenyl phosphine nickel (II) dichloride

- 658. The complex $[Co(NH_3)_3Cl_3]$ is:
 - a) Neutral
- b) Cationic
- c) Anionic
- d) None of these
- 659. From the stability constant (hypothetical values) given below, predict which is the strongest ligand?
 - a) $Cu^{2+} + 4NH_3 \rightleftharpoons [Cu(NH_3)_4]^{2+}$; $(K = 4.5 \times 10^{11})$
 - b) $Cu^2 + 4CN \rightleftharpoons [Cu(CN)_4]^{2-}$; $(K = 2.0 \times 10^{27})$
 - c) $Cu^{2+} + 2en \rightleftharpoons [Cu(en)_2]^{2+}$; $(K = 3.0 \times 10^{15})$
 - d) $Cu^{2+} + 4H_2O \rightleftharpoons [Cu(H_2O)_4]^{2+}$; $(K = 9.5 \times 10^8)$
- 660. Which has highest m.p.?
 - a) *o*-bromophenol
- b) *m*-bromophenol
- c) *p*-bromophenol
- d) m-chlorophenol
- 661. Hexafluorocobaltate(III) ion is found to be high spin complex, the probable hybrid state of cobalt in it is:
 - a) d^2sp^3
- b) sp^3

c) sp^3d

d) sp^3d^2

			Gplus Education
	promotoluene is most dif	fficult to make from toluene?	
a) 2,3	b) 2,4	c) 3,5	d) 2,6
663. Which one of the fo	-	xcess of CN ⁻ (cyanide) a complex	
a) Cu ⁺	b) Ag ⁺	c) Ni ²⁺	d) Fe ²⁺
664. Nitration of salicyli	c acid gives:		
a) 2,4,6-trinitrosali	cylic acid		
b) 2,4,6-trinitrophe	enol		
c) 2,4,6-trinitrober	ızoic acid		
d) None of the abov	⁄e		
665. The IUPAC name of	f the compound		
CH_3 - CH_2 - C - C	H ₂ —CH ₃		
CH ₃ -CH ₂ -C-C N-O	H ic		
a) N-hydroxy-3-am		b) N-hydroxyamino pe	untano
c) N-hydroxy-3-im		d) None of the above	intane
666. Which is not true o	-		
	-		noriam
a) Exhibits geomet		b) Exhibits optical isond) Is an octahedral con	
c) Exhibits ionisati		d) is all octalied at con	iipiex
CH ₂ O	l.		
CH ₃ O CH ₃ —CH—CH—C- CH ₂ Br	—CI		
ĊH ₂ Br	is		
a) 3-(bromomethy	l)-2-methyl butanoyl chl	loride b) 3-(bromomethyl)-2	-methyl propanoyl chloride
c) 2-(bromomethy	l)-3-methyl butanoyl chl	loride d) None of the above	
668. Aniline is reacted v	vith bromine water and	the resulting product is treated w	rith an aqueous solution of
sodium nitrite in th	e presence of dilute HCl	. The compound so formed is trea	ated with fluoroboric acid
which is subsequer	ntly heated dry. The final	l product is:	
a) p-bromofluorob	enzene	DUCATION	
b) p-bromoaniline	OLTO2 F	DOCKITOIT	
c) 2,4,6-tribromofl	uorobenzene		
d) 1,3,5-tribromob	enzene		
669. Which of the follow	ring is a common donor	atom in ligands?	
a) Nitrogen	b) Oxygen	c) Arsenic	d) Both (b) and (c)
670. The reaction of ani	line with acetyl chloride	in presence of NaOH gives:	
a) Acetanilide	b) Aniline hydro	chloride c) <i>p</i> -chloroaniline	d) A red dye
671. In the reaction, the			
Me - CHO + 2	V CH3COONa		
Me—(СН=СНСООН		
a) CH ₃ COOH			
b) Br · CH ₂ COOH			
c) $(CH_3CO)_2O$			
d) CHO · COOH	zing will ovhihit mavimu		
b / / Which of the follow	and tall oxhibit maximil	m ionic conductivity/	

- 672. Which of the following will exhibit maximum ionic conductivity?
 - a) $K_4[Fe(CN)_6]$
- b) $[Co(NH_3)_6]Cl_3$
- c) $[Cu(NH_3)_4]Cl_2$
- d) $[Ni(CO)_4]$
- 673. Dipole moment of p-nitroaniline, when compared to nitrobenzene (X) and aniline (Y) will be:
 - a) Greater than (X) and (Y)
 - b) Smaller than (X) and (Y)
 - c) Greater than (X) but smaller than (Y)

- d) Equal to zero
- 674. The structure of iron pentacarbonyl is:
 - a) Square planar
- b) Trigonal bipyramidal
- c) Triangular
- d) None of these

- 675. Turnbull's blue is:
 - a) Ferricyanide
- b) Ferrous ferricyanide
- c) Ferrous cyanide
- d) Ferri ferrocyanide

676. The correct IUPAC name of

$$\begin{array}{c|c} & \text{OH} \\ & \mid \\ \text{CH}_2 & \text{C} & \text{CH}_2 \\ \mid & \mid & \mid \\ \text{COOH} & \text{COOH} & \text{COOH} & \text{is} \end{array}$$

- a) 2-hydroxypropane-1, 2, 3-tricarboxylic acid
- b) 3-carboxy-3-hydroxy-pentane-1, 5-dioic acid
- c) 2 carboxy-4 hydroxy-pentane-1, 5-dioic acid
- d) 3-carboxy-3-hydroxy-hexane-1, 6-dioic acid
- 677. The trivial name among the following is
 - a) Acetone
- b) Acetylene
- c) Uric acid
- d) None of these

- 678. The IUPAC name of $[Pt(NH_3)_4(NO_2)Cl]SO_4$ is
 - a) Chloronitro tetrammine platinum (IV) sulphate
 - b) Tetrammine chloronitro platinum (II) sulphate
 - c) Tetrammine chloronitro platinum (IV) sulphate
 - d) Chlorotetrammine nitroplatinum (IV) sulphate
- 679. The overlapping in benzene is in carbon-carbon orbitals of the type:

a)
$$p-p$$

b)
$$sp - sp$$

c)
$$sp^2 - sp^2$$

d)
$$sp^3 - sp^3$$

- 680. Change in composition of coordination sphere yields which type of isomer?
 - a) Geometrical
- b) Ionization
- c) Optical
- d) None of these

- 681. The IUPAC name of $K_2[Ni(CN)_4]$ is
 - a) Potassium tetracyanonickelate (II)
- b) Potassium tetracyanatonickelate (III)
- c) Potassium tetracyanatonickel (II)
- d) Potassium tetracyanonickel (III)
- 682. Aniline in a set of the following reactions yielded a coloured compound *Y*:

$$\begin{array}{c}
NH_2 \\
\hline
NaNO_2 + HCl \\
\hline
278K
\end{array}$$

$$X \xrightarrow{N,N-\text{dimethyl aniline}} Y$$

a)
$$N=N-N-N$$
 CH_3

c)
$$H_3C$$
 $N=N$ NH_2

d)
$$\stackrel{\text{CH}_3}{\mid}$$
 $\stackrel{\text{CH}_3}{\mid}$ $\stackrel{\text{N=N}}{\mid}$ $\stackrel{\text{NH}}{\mid}$

- 683. The effective atomic number rule is less likely to apply if the metal-ligand bond:
 - a) Is extremely weak
 - b) Has a covalent character
 - c) Has a large amount of ionic character
 - d) None is correct
- 684. Potassium ferrocyanide is an example of
 - a) Tetrahedral
- b) Octahedral 685. 1-phenyl, 2-chloropropane on treatment with aqueous KOH gives mainly:
 - c) Square planar
- d) Linear

			Gplus Education
a) 1-phenylpropane	b) 3-phenylpropane	c) 1-phenylpropan-2-ol	d) 1-phenylpropan-3-ol
686. Which class of compour	ıds can exhibit geometrical	isomerism?	
a) $C_6H_5CH = NOH$		b) $CH_3CH = CHCH_3$	
c) HOOCCH—CH ₂ —CH	ІСООН	d) All of the above	
687. The product of oxidation	n of aniline with K ₂ Cr ₂ O ₇ a	and conc. H ₂ SO ₄ will be:	
a) p-amino phenol			
b) p-benzoquinone			
c) Aniline black dye			
d) Phenyl hydroxylamin	ie		
688. Among the following the		meso-2, 3-butanediol are	
Me	Me		
H OH H	ОН		
но н н	ОН		
Me P	Ме		
Me	Q Ma		
Mo	Me ⊥ .H		
HO Me	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
но н			
HO´ `H H´	OH OH		
$\stackrel{\sim}{R}$	OH S		
a) <i>P</i> , <i>Q</i>	b) <i>P</i> , <i>R</i>	c) R,S	d) <i>Q</i> , <i>S</i>
689. A new carbon-carbon bo	The second secon		
a) Cannizzaro's reactior			
b) Friedel-Crafts reaction			
c) Clemmensen reduction	on		
d) None of the above	Trouge FDU	CATION	
690. Which of the following o	•		
СНО	COCH ₃	NO ₂	$CH_3 - CH - CH_3$
a) ()	b) ()	c) ()	d)
~	~	~	NH_2
691. The most basic compou	nd among the following is:		
a) Benzylamine	b) Aniline	c) Acetanilide	d) p -nitroaniline
692. Which of the following h	nas least oxidation state of	Fe?	
a) $K_3[Fe(OH)_6]$		b) $K_2[FeO_4]$	
c) $FeSO_4(NH_4)_2SO_4$.6H	20	d) $[Fe(CN)_6]^{3-}$	
693. The spin only magnetic	moment value (in Bohr ma	igneton units) of $Cr(CO)_6$ is	
a) 0	b) 2.84	c) 4.90	d) 5.92
694. Which is an excellent an	tiseptic?		
a) Phenol	b) Benzyl alcohol	c) Benzaldehyde	d) Acetic acid
695. Scientist who explained	the structures and isomer	ism in the complex compour	ıd was:
a) Sidgwick	b) Pauling	c) Powell	d) Werner
696. The cation that does not	-		
a) Al ³⁺	b) Ag ⁺	c) Cu ²⁺	d) Cd ²⁺
697. The complex ion which			
a) [CoF ₆] ³⁻	b) $[Co(NH_3)_6]^{3+}$	c) $[Ni(NH_3)_4]^{2+}$	d) [Ni(CN) ₄] ^{2–}
698. For square planar comp	lex of platinum (II), [Pt(NF	H_3)(Br)(Cl)Py] ²⁺ , how many	isomeric forms are

possible?

a) Two

c) Four

b) Three

d) Six

699. Which of the followir	g has highest boiling point?		
a) Benzene	b) Phenol	c) Toluene	d) Ethyl benzene
700. A nitrogen containing	g organic compound on heatin	ng with chloroform and alc	oholic KOH evolved very
unpleasant smelling	apours. The compound could	l be:	
a) Nitrobenzene	b) Benzamide	c) N, N-dimethyl amine	e d) Aniline
701. Which of the following	g 0.1 M complex compound s	•	•
a) Hexammine platin			e platinum (IV) chloride
	ne platinum (IV) chloride		platinum (IV) chloride
702. False statement is	p ()	.,	(11)
	crease the enol content in tau	ıtomerism	
	n the normal bond angles intr		ecule
• •	ve identical physical propertie		cedie
	also be position isomers		
703. The correct IUPAC na			
	=		
$CH_3 - CH - CH - CH$	$-\operatorname{GH}_2-\operatorname{GH}_3$		
Cl Br I	2 1 1 1	1) 2 1 2 .11 4	1.1.1
a) 4-bromo-5-chloro		b) 3-bromo-2-chloro-4	
c) 3-bromo-4-iodo -2		d) 2-bromo-3-bromo-4	
	₅ CH ₂ Cl) can be prepared fron		
a) SO ₂ Cl ₂	b) SOCl ₂	c) S_2Cl_2	d) NaOCl
705. The compound $2,2'$ -b	ipyridine has the structure		
	< A		
a) N	191	b) (N) (N)	
	4		
$\sqrt{N-N}$			
c) (<u> </u>	EDIL	d) N	
MOC MI HIDAG C	TOPLUS EDU	CALION	
706. The IUPAC name of			
\parallel			
соон			
OHC			
a) 4-formyl-6-oxocyo	lohexane-1-carboxylic acid	b) 2-oxo-4-formyl cyclo	ohexane-1-carboxylic acid
	clohexane-1-carboxylic acid		ohexane-1-carboxylic acid
707.		,	
The diazonium salt H	$C \longrightarrow N_2Cl$, gives,		
	`Br		
$H_3C - \langle \bigcap \rangle$, with	1:		
`Br			
a) HCl/CuCl	b) HNO ₂ /Cu	c) C ₂ H ₅ OH/Cu	d) SnCl ₂ /HCl
708. Diethylenetriammine			
a) Chelating agent	b) Polydentate ligand	c) Tridentate ligand	d) All of these
709. The no. of ions given	by [Pt(NH ₃) ₄ Cl ₂]Cl ₂ in aqueo	us solution is:	
a) 2	b) 3	c) 4	d) 5
710. Aniline reacts with ex	ccess of bromine to give:		
a) Benzyl bromide ar	id hydrobromic acid		
b) 2,4,6-tribromoani	ine		
c) 2-bromotoluene a	nd hydrobromic acid		

- d) 2-bromophenol and hydrobromic acid
- 711. The coordination compounds,

 $[Co(NH_3)_6]^{3+}[Cr(CN)_6]^{3-}$

and $[Cr(NH_3)_6]^{3+}[Co(CN)_6]^{3-}$ are example of

a) Linkage isomerism

b) Coordination isomerism

c) Ionisation isomerism

- d) Geometrical isomerism
- 712. Both Co³⁺ and Pt⁴⁺ have a coordination number of six. Which of the following pairs of complexes will show approximately the same electrical conductance for their 0.001 M. aqueous solutions?
 - a) CoCl₃ 4NH₃ and PtCl₄ 4NH₃

b) CoCl₃ .3NH₃ and PtCl₄.5NH₃

c) CoCl₃ .6NH₃ and PtCl₄ .5NH₃

- d) CoCl₃ .6NH₃ and PtCl₄.3NH₃
- 713. In SCN ligand if N is attached to central atom, the name of ligand is:
 - a) Thiocyanato-N
- b) Cyanato-N
- c) Thiocyanato-S
- d) Cyanato-S

714. The product formed on heating

a)
$$CH_2 \cdot CH = CH_2$$

b)
$$CH_2CH = CH_2$$

- 715. Oxidation of ethyl benzene by KMnO₄ gives:
 - a) Benzyl alcohol
- b) Benzophenone
- c) Acetophenone
- d) Benzoic acid
- 716. One of the following statements regarding Reimer-Tiemann reaction is false:
 - a) Reaction of phenol with CHCl3 and KOH
 - b) CCl₂ acts as a nucleophile
 - c) Reaction of phenol with CCl4 and NaOH
 - d) Reaction of phenol with formaldehyde to form bakelite
- 717. The structure representing a heterocyclic compound is

$$0) \begin{array}{c} CH_2 - CO \\ CH_2 - CO \end{array} > 0$$

$$c=0$$

718. Phenol reacts with Br₂in CCl₄ at low temperature to give:

- a) *m*-bromophenol
- b) *o*-and *p*-bromophenol
- c) p-bromophenol
- d) 2,4,6-tribromophenol

719. The correct name of the compound $[Cu(NH_3)_4](NO_3)_2$, according to IUPAC system is

a) Cuprammonium nitrate

b) Tetrammine copper (II) dinitrate

c) Tetrammine copper (II) nitrate

d) Tetrammine copper (II) dinitrite

720. Nitroethane can exhibit one of the following kind of isomerism

- a) Metamerism
- b) Optical activity
- c) Tautomerism
- d) Position isomerism

721. What would be the correct IUPAC name of

a) 3,3-dimethyl-3-cyclopentyl propanal

- b) 3-methyl-3-cyclopentyl butan-1-al
- c) 1-(1-methyl-1-formyl) methylethyl cyclopropane
- d) None of above

722. The number of unpaired electrons in the square planar $[Pt(CN)_4]^{2-}$ ion is

d) 3

723. The oxidation number of cobalt in $K[Co(CO)_4]$ is

a) +1

b) + 3

c) -1

d) -3

724. IUPAC name of $Na_3[Co(NO_2)_6]$ is

- a) Sodium hexanitrito cobaltate (II)
- b) Sodium hexanitro cobaltate (III)
- c) Sodium hexanitrito cobaltate (III)
- d) Sodium cobaltinitrite(II)

725. The total number of possible isomers for the complex compound [Cu(NH₃)₄][PtCl₄]

- b) 5
- c) 4

726. Benzaldehyde reacts with excess of anhydrous ethyl alcohol in the presence of HCl, gives:

- a) C₆H₅COCl
- b) $C_6H_5COOC_2H_5$
- c) $C_6H_5CH(OC_2H_5)_2$
- d) C₆H₅CH₂Cl

727. Which pair of isomerism is not possible together?

- a) Chain and position
- c) Tautomerism and functional

- b) Functional and position
- d) All of the above

728. Which type of conformation is shown by I and II?

- a) I is eclipsed, II is staggered
- c) Both are eclipsed

- b) II is eclipsed, I is staggered
- d) Both are staggered

729. Which will give chiral molecule?

- a) $CH_3COCl \xrightarrow{LiAlH_4}$
- c) $(CH_3)_2CHC_2H_5 \stackrel{Cu}{\rightarrow}$

b) $C_2H_5CHO \xrightarrow{CH_3MgBr}_{H^+/H_2O}$

d)
$$\stackrel{\mathsf{H}}{\underset{\mathsf{H}_3\mathsf{C}}{\triangleright}}\mathsf{C} = \mathsf{C} \stackrel{\mathsf{CH}_3}{\underset{\mathsf{CH}_3}{\longleftarrow}} \stackrel{\mathsf{Cl}_2}{\underset{\mathsf{CH}_3}{\longleftarrow}}$$

730. The neutral ligand is:

			Gplus Educa
a) Chloro	b) Hydroxo	c) Ammine	d) Oxalato
731. The effective atomic	number of cobalt in the co	-	•
a) 36	b) 24	c) 33	d) 30
732. $K_4[Fe(CN)_6]$ is used	to detect the presence of:	•	
a) Metallic ion	b) Ferrous ion	c) Ferric ion	d) None of these
733. p-nitro benzldehyde	e reacts with concentrated N	NaOH solution at room tempe	rature to give:
a) p -nitrobenzamid	e		
b) p -nitro benzyl ald	cohol and sod. $p ext{-}$ nitrobenzo	ate	
c) Benzaldehyde			
d) p -nitrotoluene			
734. But-1-ene and cyclo	butane exhibit		
a) Ring chain isome	rism		
b) Position isomeris	m		
c) Tautomerism			
d) Functional			
isomerism			
735. The groups satisfying	ng the secondary valencies o	of a cation in a complex are cal	lled:
a) Ligands	b) Radicals	c) Primary valencies	d) None of these
736. Benzene was dicove	ered by:		
a) Cavendish	b) Faraday	c) Berzelius	d) Wöhler
737. The number of struc	ctural and configurational is	somers of a bromo compound	C ₅ H ₉ Br obatined by the
addition of HBr on 2	-pentyne respectively are		
a) 1, 2	b) 2, 4	c) 4, 2	d) 2, 1
738. The primary valence	y of Fe in $K_3[Fe(CN)_6]$ is:	_	

b) 2

c) 1

2, 1 d) Zero

- 739. Which complex compound obeys 18-electron rule?
 - a) $[V(CO)_5]$
- b) $[Fe(NH_3)_6]^{2+}$
- c) $[Ni(CO)_6]$
- d) $[Mn(H_2O)_6]^{2+}$

- 740. Two isomers X and Y with the formula $Cr(H_2O)_5ClBr_2$ were taken for experiment on depression in freezing point. It was found that one mole of X gave depression corresponding to 2 moles of particles and one mole of Ygave depression due to 3 moles of particles. The structural formula of X and Y respectively,
 - a) $[Cr(H_2O)_5Cl]Br_2$; $[Cr(H_2O)_4Br_2]Cl.H_2O$
- b) $[Cr(H_2O)_5Cl]Br_2$; $[Cr(H_2O)_3ClBr_2].2H_2O]$
- c) $[Cr(H_2O)_5Br]BrCl; [Cr(H_2O)_4ClBr]Br.H_2O$
- d) $[Cr(H_2O)_4Br_2]ClH_2O; [Cr(H_2O)_5Cl]Br_2$

741. The IUPAC name of

OHC—
$$CH_2$$
— CH_2 — CH_2 — $COOH_{is}$

a) 1-formyl-3-oxo-pentanoic acid

b) 5-formyl-3-oxo pentanoic acid

c) 3-oxo-5-formyl pentanoic acid

- d) 3-oxo-1-formyl pentanoic acid
- 742. The two complexes given below are:

and

- a) Geometrical isomers
- b) Position isomers
- c) Optical isomers
- d) Identical

743. Which of the following statements is not correct?

- a) In oxyhaemoglobin Fe²⁺ is paramagnetic
- b) During respiration the size of Fe²⁺ increases when it changes from diamagnetic to paramagnetic state
- c) Four haeme groups are present in haemoglobin
- d) Haeme is the prosthetic group and it is non-protein part
- 744. Chlorination of toluene in the presence of light and heat followed by treatment with aqueous NaOH gives:
 - a) o-cresol
- b) p-cresol
- c) 2,4-dihydroxytoluene d) Benzoic acid
- 745. Which of the following has maximum probability of showing tautomerism?

- 746. The halide which undergoes nucleophilic substitution most readily is:
 - a) $p-H_3CC_6H_4Cl$
- b) o-H₃COC₆H₄Cl
- c) p-ClC₆H₄Cl
- d) p- $O_2NC_6H_4Cl$
- 747. The major product (70% to 80%) of the reaction between m-dinitrobenzene with $(NH_4)_2S_x$ is:

748. The 'E'-isomer is

$$a)$$
 CI $C = C < H$

$$C = C < C_2H_5$$
 $C = C < C_1H_5$
 $C = C < C_2H_5$

- d) None of the above
- 749. The Baeyer angle strain is minimum in
 - a) Cyclopropane
- b) Cyclobutane
- c) Cyclopentane
- d) Cyclohexane
- 750. Among the following ions, which one has the highest unpaired electrons?
 - a) $[Cr(H_2O)_6]^{3+}$
- b) $[Zn(H_2O)_6]^{2+}$
- c) $[Fe(H_2O)_6]^{2+}$
- d) $[Cr(H_2O)_6]^{3+}$
- 751. Which will give a white precipitate with AgNO₃ in aqueous solution?
 - a) $[Co(NH_3)_5Cl](NO_2)_2$
- b) $[Pt(NH_3)_6]Cl_4$
- c) [Pt(en)Cl₂]
- d) $[Cu(NH_3)_4]SO_4$

- 752. The organic product formed in the reaction;
 - $C_6H_5COOCH_3 \xrightarrow{(I)LiAlH_4} :$
 - a) C₆H₅CH₂OH and CH₃OH
 - b) C₆H₅COOH and CH₄
 - c) C₆H₅CH₃ and CH₃OH
 - d) C₆H₅CH₃ and CH₄
- 753. Complexes with bidentate ligands are called:
 - a) Ligands
- b) Chelates
- c) Complexes
- d) None of these

- 754. Excited state configuration of Mn²⁺ is
 - a) t_{2a}^{4}

- b) $t_{2q}^{3}e_{q}^{2}$
- c) $t_{2q}^4 e_q^2$

755. The IUPAC name of

			Gpius Eaucation
a) Ethyl acetylate		b) Ethyl methyl buten	oate
c) Ethyl acetoethanoate		d) Ethyl (3-methyl) bı	
756. The compound which re		on of carbon monoxide are	known as
a) Carbon permono	b) Electronic	c) Carbonyls	d) None of these
757. The correct IUPAC name	e of AlCl ₃ (EtOH) ₄ is:		
a) Aluminium(II) chlori			
b) Aluminium(III)chlori	de-4-ethanol		
c) Aluminium(IV)chlori	de-4-hydroxy ethane		
d) Aluminium chloride-	4-ethanol		
758. The IUPAC name of [Co($[\mathrm{NH_3})_6][\mathrm{Cr}(\mathrm{C_2O_4})_3]$ is		
a) Hexaamine cobalt (II	I) tris (oxalato) chromiu:	m	
b) Hexaamine cobalt (II	I) tris (oxalato) chromat	e(III)	
c) Hexaamine cobalt tri	s (oxalato) chromium(II	I)	
d) Hexaamine cobalt (II	I) chromium (III) oxalate		
759. The insecticide, germici	de gammexane is a formu	llation for:	
a) DDT			
b) Benzene hexachlorid	e		
c) Hexachlorobenzene			
d) Chloral			
760. Among $[Ni(CO)_4]^{2-}$, $[Ni$		es, the hybridisation states	s of the Ni atom are,
respectively (Atomic no	•		
	b) sp^3 , dsp^2 , sp^3		d) dsp^2 , sp^3 , sp
761. Which of the following o	complex ions is expected	to absorb visible light?	
a) $[Zn(NH_3)_6]^{2+}$	141	_	
b) $[Sc(H_2O)_3(NH_3)_3]^{3+}$	4	P	
c) $[Ti(en)_2(NH_3)_2]^{4+}$	1.0		
d) $[Cr(NH_3)_6]^{3+}$			
$\int [At. no. Zn = 30, Sc =$	21, Ti = 22, Cr = 24	ICATION	
762. Chain isomers of CH_3CH		01112011	
a) 2	b) 3	c) 4	d) 5
_	-	=	ce ofgroup in chlorobenzene
	it to give Ulmann's react		
a) NO ₂	b) NH ₂	с) ОН	d) SO ₃ H
764. Which statement is true			
	configuration is the (+) e		
		entially means inversion of	_
•	_	ecule, always racemic form	S
	ds on the chiral centre co		
765. Which can be used for can			D
a) Water	b) Liquid NH ₃	c) Oleum	d) Hydride ion
766. Which of the following o			
a) NO <u>-</u>	b) H ₂ NCH ₂ CH ₂ NH ₂	c) H ₂ O	d) : NH ₃
767. Aniline in a set of reaction			
NH NaNO ₂	CuCN, p. H ₂ , C. HNO ₂ , D.		
	$\frac{\text{CuCN}}{\text{Ni}} B \xrightarrow{\text{H}_2} C \xrightarrow{\text{HNO}_2} D$		
The structure of the pro	duct <i>D</i> would be:		
a) C ₆ H ₅ NHCH ₂ CH ₃	b) C ₆ H ₅ CH ₂ OH	c) C ₆ H ₅ CH ₂ NH ₂	d) C ₆ H ₅ NHOH
768. The number of ions form			
a) Zero	b) 1	c) 2	d) 4

769. Tautomerism is not exhibited by:

a)
$$C_6H_5 - CH = CH - OH$$
 b) $O = CO$

770. Benzaldehyde reacts with NH_3 to give:

- a) Aniline
- b) Benzamide
- c) Phenylcyanide
- d) Hydrobenzamide

771. In coal-tar fraction of heavy oil, the aromatic compound present is:

- a) Cresol
- b) Pyridine
- c) Benzene
- d) Anthracene

772. Optical isomerism is shown by octahedral complexes

a) Having all monodentate ligands

- b) Having all the three bidentate ligands
- c) Having two *trans* bidentate ligands
- d) Having two trans monodentate ligands
- 773. Which can be hydrolysed most easily?
 - a) $(C_6H_5)_3CCl$
- b) C₆H₅CH₂Cl
- c) $(C_6H_5)_2CHCl$
- d) C_6H_5Cl

- 774. The most stable configuration of n butane will be
 - a) Skew boat
- b) Eclipsed
- c) Gauche

PLUS EDUCATION

d) Staggered-anti

775. Anhydrous aluminium chloride is used in Friedel-Craft's reaction because it is:

- a) Electron rich
- b) Soluble in ether
- c) Ionizable to chloride and aluminium ions
- d) Electron deficient molecule

776. The two isomers given below are

(i) COOH

COOH (ii)

$$H - C - OH$$

HOOC

- a) Enantiomers
- b) Diastereomers
- c) Measomers
- d) Position isomers

777. Which of the following has lowest boiling point?

- a) Phenol
- b) o-nitrophenol
- c) *m*-nitrophenol
- d) p-nitrophenol

778. The IUPAC name of $[Ni(NH_3)_4][NiCl_4]$ is

- a) Tetrachloro nickel (II) tetraammine nickel (II)
- b) Tetraammine nickel (II) -tetrachloro nickel(II)
- c) Tetraammine nickel (II) –tetrachloro nickelate(II)
- d) Tetrachloro nickel (II) -tetraammine nickelate(0)

779. All ligands are:

- a) Lewis acid
- b) Lewis base
- c) Neutral
- d) None of these

780. Aspirin is known as:

- a) Phenyl salicylate
- b) Acetyl salicylate
- c) Methyl salicylic acid
- d) Acetyl salicylic acid

- 781. Which of the following has on optical isomer?
 - a) $[Co(NH_3)_3Cl]^+$
- b) $[Co(en)(NH_3)_2]^{2+}$ c) $[Co(H_2O)_4(en)]^{3+}$ d) $[Co(en)_2(NH_3)_2]^{3+}$

782. The IUPAC name of the compound

- a) 1,1,1-trichloro-2,2-diphenyl ethane
- b) 2,4,5-trichloro hexanol
- c) 2,2,2-trichloro bicyclo [4.4.0] nenone
- d) 2,2,2-trichloro-1,1-diphenyl ethane
- 783. The property by virtue of which a compound can rotate the plane of polarised light is known as
 - a) Polarisability
- b) Phosphorescence
- c) Optical activity
- d) Polarization
- 784. The molecules represented by the following two structures are

- a) Epimers
- b) Diastereomers
- c) Enantiomers
- d) Identical

785. The IUPAC name of the coordination compound $K_3[Fe(CN)_6]$ is

- a) Tripotassium hexacyanoiron (II)
- b) Potassium hexacyanoiron(II)
- c) Potassium hexacyanoferrate (III)
- d) Potassium hexacyanoferrate (II)
- 786. Which one of the following is an inner orbital complex as well as diamagnetic in nature?

 - a) $[Cr(NH_3)_6]^{3+}$ b) $[Co(NH_3)_6]^{3+}$ c) $[Ni(NH_3)_6]^{2+}$
- d) $[Zn(NH_3)_6]^{2+}$

787. How many unpaired electrons are present in the central metal ion of $[CoCl_4]^{2-}$?

b) 4

c) 5

d) 2

788. Show the coordination number of the metal ion, its oxidation number, the number of electrons in dorbitals and the number of unpaired electrons d-orbitals respectively in complex [Co(H₂O)₄SO₃]Cl.

- a) 6, 3, 6, 4
- b) 6, 3, 6, 0
- c) 5, 3, 6, 4
- d) 5, 3, 6, 0

789. Benzene reacts with.....to give acetophenone.

- a) Acetyl chloride
- b) Acetyl chloride in presence of anhy. AlCl₃
- c) Anhy. AlCl₃
- d) None of the above

790. Which group would you introduce into a drug or a dye to make it water soluble?

- b) —Cl

- c) $-SO_3H$
- d) —OH

791. In the coordination compound, $K_4[Ni(CN)_4]$, oxidation state of nickel is

b) +1

c) 0

d) + 2

792. The IUPAC name of $[Cr(NH_3)_4Cl_2]NO_3$ is:

- a) Tetraaminodichlorochromium (I) nitrate
- b) Tetraaminodichlorochromium (III) nitrate
- c) Dichlorotetraamminechromium (III) nitrate
- d) Tetraaminodichlorochromium (II) nitrate
- 793. Vanillin, used as a flavouring agent is:
- a) An aliphatic alcohol
 - b) An aromatic aldehyde c) A hydrocarbon
- d) A carbohydrate

794. Which of the following will exhibit optical isomerism?

- a) $[Cr(en)(H_2O)_4]^{3+}$
- b) $[Cr(en)_3]^{3+}$
- c) trans- $[Cr(en)_2Cl_2]^+$ d) $[Cr(NH_3)_6]^{3+}$

795. Which one is a mixed ketone?

- a) Benzophenone
- b) Benzenone
- c) Acetophenone
- d) Dibenzyl ketone

796. Transition metals can form complexes in:

- a) Zero oxidation state
- b) Cation form
- c) Anion form
- d) All of these

797. Toluene on oxidation with air in presence of V_2O_5 yields:

- a) Phenol
- b) Benzoic acid
- c) Benzaldehyde
- d) Benzyl alcohol

798. $[Pt((NH_3)_4]Cl_2$ is

- a) Pyramidal
- b) Pentagonal
- c) Tetrahedral
- d) Square planar

799. In $Fe(CO)_5$, the FE—C bond possess:

- a) π -character only
- b) Both σ and π -characters
- c) Ionic character
- d) σ-character only

800. Which molecule has tetrahedral geometry?

- a) $[Co(NH_3)_6]^{3+}$
- b) $[Ni(CN)_4]^{2+}$
- c) $Fe(CO)_5$
- d) $[NiCl_4]^{2-}$

801. $[Co(NH_3)_5Br]SO_4$ and $[Co(NH_3)_5SO_4]Br$ are the examples of:

- a) Linkage isomerism
- b) Geometrical isomerism
- c) Ionization isomerism
- d) Optical isomerism

802. The compounds $R - NO_2$ and R - ONO are

a) Geometrical isomers

b) Functional isomers

c) Metamers

d) Optical isomers

803. Which of the following Fischer projection formula is same as D-glyceraldehyde?

804. $[Fe(NO_2)_3Cl_3 \text{ and } [Fe(O-NO)_3Cl_3] \text{ shows}$

- a) Linkage isomerism
- c) Optical isomerism

- b) Geometrical isomerism
- d) None of the above

805.

WEB: WWW.GPLUSEDUCATION.ORG

The IUPAC name of the compound a) 2-ethenyl-3-methyl cyclohexa-1, 3-diene

- is
 - b) 2, 5-dimethyl hepta-2, 6-dienoic acid
- c) 2, 6-dimethyl hepta-2, 5dienoic acid
- d) 2, 3-dimethyl epoxyethane

806. When benzene sulphonic acid and p-nitrophenol are treated with NaHCO₃, the gases released respectively are:

- a) SO_2 , NO_2
- b) SO₂, NO
- c) SO_2 , CO_2
- d) NO₂, CO₂

807. Which of the following is non-ionizable?

- a) $[Co(NH_3)_3Cl_3]$
- b) $[Co(NH_3)_4Cl_2]Cl$
- c) $[Co(NH_3)_5Cl]Cl_2$ d) $[Co(NH_3)_6]Cl_2$

808. Increasing order of expected keto content

- a) $CH_3COC_2H_5 > CH_3CHO > CH_3COCH_3 > CH_3COCH_2COCH_3$
- b) $CH_3COCH_3 > CH_3CHO > CH_3COC_2H_5 > CH_3COCH_2COCH_3$
- c) $CH_3CHO > CH_3COC_2H_5 > CH_3COCH_3 > CH_3COCH_2COCH_3$
- d) $CH_3COCH_2COCH_3 > CH_3CHO > CH_3COCH_3 > CH_3COC_2H_5$

809. Which is colourless complex?

- a) $Cu_2(CH_3COO)_4 \cdot H_2O$
- b) Cu₂Cl₂
- c) $CuSO_4 \cdot 5H_2O$

- d) $[Cu(NH_3)_4]SO_4 \cdot SO_4 \cdot 4H_2O$
- 810. Which is not a reasonable structure for dimethyl benzene?

811.

The IUPAC name of the compound is

a) Propionic anhydride

b) Dipropanoic anhydride

c) Ethoxy propanoic acid

- d) Propanoic anhydride
- 812. A mixture of benzene and aniline can be separated by:
 - a) Alcohol
- b) Dil. HCl
- c) Dil. NaOH
- d) Hot water

- 813. The correct IUPAC name of the complex $Fe(C_5H_5)_2$ is
 - a) Cyclopentadienyl iron (II)

b) Bis (Cyclopentadienyl)iron (II)

c) Dicyclo pentadienyl ferrate (II)

d) Ferrocane

814. +CHCl₃+NaOH→

The electrophile involved in the above reaction is:

- a) dichloromethyl cation (CHCl₂)
- b) Dichlorocarbene (: CCl₂)
- c) Trichloromethyl anion (CCl₃)
- d) Formyl cation (CHO)
- 815. Benzoyl Chloride is prepared from benzoic acid by:
- b) SO₂Cl₂
- d) Cl₂, H₂O
- 816. Which of the following ions forms most stable complex compound?
 - a) Fe^{3+}

b) Mn²⁺

c) Ni²⁺

- d) Cu²⁺
- 817. Which one of the following cyano complexes would exhibit the lowest value of paramagnetic behaviour? (Atomic no. Cr=24, Mn=25, Fe=26, Co=27)
- a) $[Co(CN)_6]^{3-}$
- b) $[Fe(CN)_6]^{3-}$
- c) $[Mn(CN)_6]^{3-}$
- d) $[Cr(CN)_6]^{3-}$

- 818. Which of the following statements is not correct?
 - a) The complexes $[\mathrm{NiCl_4}]^{2-}$ and $[\mathrm{Ni(CN)_4}]^{2-}$ differ in the state of hybridisation of nickel.
 - b) The complexes $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ differ in the magnetic properties.
 - c) The complexes $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ differ in geometry.
 - d) The complexes $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ differ in primary valencies of nickel.
- 819. In the complexes $[Fe(H_2O)_6]^{3+}$, $[Fe(CN)_6]^{3-}$, $[Fe(C_2O_4)_3]^{3-}$ and $[FeCl_6]^{3-}$, more stability is shown by:
 - a) $[Fe(H_2O)_6]^{3+}$
- b) $[Fe(CN)_6]^{3-}$
- c) $[Fe(C_2O_4)_3]^{3-}$

820. In the reaction,

the intermediate 'X' is:

- a) Phthalic anhydride
- b) Phthalic acid
- c) *o*-xylene
- d) Benzoic acid

- 821. Which of the following is π complex?
 - a) Trimethyl aluminium b) Ferrocene
- c) Diethyl zinc
- d) Nickel carbonyl

822. When phenol is reacted		-	and formed is salicyladehyde.
a) Salicyladehyde	e of chloroform the product b) Phenolphthalein	c) Salicylic acid	d) Cyclohexanol
823. Among the properties (a			, ,
towards metal species is) complexing, the set of pr	roperties snown by CN Ton
a) B, c	b) A, b, c	c) C, a	d) A, b
824. Which of the following is		•	uj A, b
a) $-NO_2$	b) —SO ₃ H	c) —CHO	d) —COOH
825. Which among the follow		,	uj coon
a) CH ₃ COC ₃ H ₇	b) $CH_3OC_2H_5$	c) CH ₃ SC ₂ H ₅	d) CH ₃ OCH ₃
826. The hybridization of [Pto	, , , ,	c) diigodziig	uj dii30dii3
a) d^2sp^3	b) sp^2d^3	c) sp^3d	d) sp^3d^2
827. The correct name of [Pt(- •	cj sp u	aj sp a
	(II) dichloro tetrammine p	olatinate	
	platinum (IV) tetrachloro p		
_	platinum (IV) tetrachloro	, ,	
-	(II) tetrammine platinate		
828. The oxidation state of iro	· ·	()	
a) 1	b) 4	c) 3	d) 2
829. Formation of complex co		•	,
a) Change in colour	b) Change in solubility	•	d) All are correct
830. The complex that violate	, ,	, , ,	,
a) Potassium ferrocyanio		-	
b) Potassium ferricyanid	The state of the s		
c) Nickel carbonyl			
d) Cobalt(III) hexaammi	ne chloride		
831. Chlorobenzene on heatir	ng with aqueous NH ₃ unde	r pressure in presence of	Cu ₂ Cl ₂ gives:
a) Aniline	b) Benzamide	c) o-dichlorobenzene	d) Chloroaminobenzene
832. The complex, [Pt(Py)(NI	H_3)BrCl] will have how ma	ny geometrical isomers?	
a) 2			
b) 3			
c) 4			
d) 0			
833. Which one doesn't have	π —bond?		
a) Grignard reagent		b) Dibenzene chromiur	n
c) Zeise's salt		d) Ferrocene	
834. The IUPAC name of the o	ompound CH ₂ – CH – COO	OH is	
	NH ₂ OH		
a) 1-hydroxy-2-aminopr	•	b) 2-hydroxy-3-aminop	_
c) 3-amino-2-hydroxypr	opanoic acid	d) 2-hydroxy-1-aminop	propanoic acid
835. EDTA is aligand.			
a) Monodentate			
b) Hexadentate			
c) Bidentate			
d) Tridentate			
836. Thymol, a phenol deriva	tive is mainly used as:		
a) Germicide			
b) Insecticide			
c) Antibiotic			

d) Fragrance compound and antiseptic					
837. Which of the following complex has zero magnetic moment (spin only)?					
a) $[Ni(NH_3)_6]Cl_2$ b) $Na_3[FeF_6]$	c) $[Cr(H_2O)_6]SO_4$	d) $K_4[Fe(CN)_6]$			
838. Which compound is zero valent metal complex?					
a) $[Ni(CO)_4]$ b) $K_3[Fe(CN)_6]$	c) $[Pt(NH_3)_2Cl_2]$	d) $[Cu(NH_3)_4SO_4]$			
839.					
The IUPAC name of is					
a) Bicyclo [5.5.0] nonane	b) Biphenyl				
c) Cyclopropyl cyclohexane	d) Spiro [3.5] nonane				
840. The tetrahedral crystal field splitting is onlyof	the octahedral splitting.				
a) 1/9 b) 2/9	c) 4/9	d) 5/9			
841. IUPAC name of $[Co(ONO)(NH_3)_5]Cl_2$ is					
a) Pentammine nitrocobalt (II) chloride	b) Pentammine nitros	b) Pentammine nitrosocobalt (III) chloride			
c) Pentammine nitritocobalt (III) chloride	d) Pentammine oxo-nitrocobalt (III) chloride				
842. Point out the central ion ligand in the complex K	$_{2}[Cd(CN)_{4}];$				
a) Cd ⁺ , CN ¹⁻ b) Cd ²⁺ , CN ¹⁻	c) Cd ²⁺ , CN ⁴⁻	d) Cd ²⁺ , CN ²⁻			
843. Number of chiral centres in					
H₃C CH₃					
is/are					
a) 1 b) 2	c) 3	d) 4			
844. From the equation, $3C_2H_2 \rightarrow C_6H_6$, find the volu	ime of acetylene (NTP) for	the manufacture of 3 mole of			
benzene:					
a) 67.2 litre b) 134.4 litre	c) 201.6 litre	d) 33.8 litre			
845. According to IUPAC nomenclature sodium nitrop	russide is named as				
a) Sodium pentacyanonitrosyl ferrate(II)	b) Sodium pentacyano	onitrosyl ferrate(III)			
c) Sodium nitroferricyanide d) Sodium nitroferrocyanide					
846. Among $[Ni(CO)_4]$, $[Ni(CN)_4]^{2-}$ and $[NiCl_4]^{2-}$ spec					
a) sp^3, dsp^2, dsp^2 b) sp^3, dsp^2, sp^3	c) sp^3 , sp^3 , dsp^2	d) dsp^{2} , sp^{3} , sp^{3}			
847. The chemical name of DDT is:					
a) Dichloro dinitro toluene					
b) Dichloro dimethyl toluene					
c) p, p' -dichloro diphenyl trichloroethane					
d) None of the above					
848. The stability of complexes of Cu ²⁺ , Ni ²⁺ , Co ²⁺ an	nd Fe ²⁺ varies in the order				
a) $Cu^{2+} > Ni^{2+} > Co^{2+} > Fe^{2+}$	b) $Cu^{2+} > Fe^{2+} > Ni$	$^{2+} > Co^{2+}$			
c) $Ni^{2+} > Co^{2+} > Fe^{2+} > Cu^{2+}$	d) $Cu^{2+} < Ni^{2+} < Co^2$	$^{2+} < Fe^{2+}$			
849. The number of unpaired electrons in Ni(CO) ₄ is	•				
a) 0 b) 1	c) 3	d) 4			
850. In sodium tetrafluorooxochromate(), Na ₃ [Cr(0	D)F ₄] the left out place show	ald be filled with which of the			
following roman numerals?					
a) VI b) III	c) IV	d) None of these			
851. The IUPAC name of compound					
$CN - CH_2 - CH - CH_2 - COOCH_3$ is					
OCH ₃					
a) 3-methoxy-4-cyano methyl butanoate	a) 3-methoxy-4-cyano methyl butanoate b) Methyl-4-cyano-3-methoxy butanoate				
c) 4-cyano-3-methoxy methyl butanoate	d) Methyl-3-methoxy-4-cyano butanoate				

852. Cumene is:

tion

				Gplus Educat
	a) o-methyl phenol	<i>,</i> ,	c) Isopropyl benzene	d) Phenyl <i>n</i> -propane
853.		e is oxidised to benzaldehy	de using:	
	a) H_2O_2			
	b) Cl ₂			
	c) Chromium trioxide or	CrO_2Cl_2		
	d) KMnO ₄			
854.	-	ill exhibit geometrical isom		
	a) Propene		b) Butene-2	
	c) Butene-1		d) 1, 1-dichloro butane	
855.	Ferrocene is:		_	_
		b) $Fe(\eta^2 - C_5H_5)_2$	c) $Cr(\eta^5 - C_5H_5)_5$	d) $Os(\eta^5 - C_5H_5)_2$
856.	Which one is an outer orb			
		b) [Mn(CN) ₆] ⁴⁻		d) [Fe(CN) ₆] ^{4–}
857.		$_3)_5$]Cl and [CoCl(NH $_3)_5$]SO $_4$		
	a) Optical isomers		c) Coordination isomers	d) Ionisation isomers
858.	The IUPAC name of K ₂ [C	$r(CN)_2O_2(O)_2(NH_3)]$ is		
	a) Potassiumammine dic	yanodioxoperoxochromate	(VI)	
		noperoxodioxochrometic (-	
	•	yanodioxoperoxochromium	` '	
		yanodioxoperoxochromium		
859.	In spectrochemical series	chlorine is above than wat	er <i>i.e.</i> , $Cl > H_2O$, this is due	e to
	a) Good π -acceptor prope	erties of Cl		
	b) Strong σ –donor and	good π-acceptor properties	of Cl	
	c) Good π –donor proper			
	d) Larger size of Cl than H			
860.	The type of isomerism sh	own by [Co(en) ₂ (NCS) ₂]Cl	and [Co(en) ₂ (NCS)Cl]NCS	is:
	a) Coordination	b) Ionization	c) Linkage	d) All of these
861.		e coordination number 4 in	complexes?	
	a) Pt ²⁺	,	c) Fe ³⁺	d) Pt ⁴⁺
862.	The spin magnetic mome	nt of cobalt in Hg[Co(SCN)4	₄] is:	
	a) $\sqrt{3}$	b) $\sqrt{8}$	c) $\sqrt{15}$	d) $\sqrt{24}$
863.	Which of the following is	not an isomer of but-1-yne	?	
	a) But-2-yne	•		
	b) Buta-1-3-diene			
	c) Methyl cyclopropene			
	d) But-2-ene			
864.	•	trons are present in the cen	tral metal ion of $[CoCl_4]^{2-1}$?
	a) 2	b) 3	c) 4	d) 5
865.	-	compound is formulated as	-	
	2) ⊥1	h) ±2	c) +3	d) Zero

866. Correct IUPAC name of

a) Gammexane

b) Dichloro diphenyl trichloroethane

c) Diparachlorophenyl trichloroethane

d) 1,1,1-tirchloro-2,2-bis (4-chlorophenyl) ethane

867. IUPAC name of

a) Cumene

b) 2-phenyl propane

c) Phenyl propane

- d) 1-(2-propyl) benzene
- 868. Which of the following gives violet colour with an alcoholic solution of FeCl₃?
 - a) Benzoic acid
- b) Toluene
- c) Salicylic acid
- d) Nitrobenzene

- 869. Which of the following is wrong statements?
 - a) Ni(CO)₄, has zero oxidation number for Ni
- b) $Ni(CO)_4$, has oxidation number +4 for Ni

c) Ni is metal

- d) CO is gas
- 870. Which of the following represents a chelating ligand?
 - a) H₂(

b) Cl⁻

c) OH⁻

d) DMG

871. The correct order of reactivity of PhMgBr with;

- a) I > II > III
- b) III > I > II
- c) II > III > I
- d) II > I > III
- 872. Which of the following will give maximum number of isomers?
 - a) $[Co(NH_3)_4Cl_2]$
- b) $[Ni(en)(NH_3)_4]^{2+}$
- c) $[Ni(C_2O_4)(en)_2]$
- d) $[Cr(SCN)_2(NH_3)_4]^+$
- 873. CuCl reacts with KCN solution forming a complex. Coordination number of copper in the complex is:
 - a) 2

b) 3

c) 4

- d) 6
- 874. The terms stereoisomers, enantionmers and diastereomers will refer
 - a) Only to configurational isomers including geometric isomers
 - b) Only to configurational isomers
 - c) To both configurational as well as conformational isomers
 - d) To neither configuration nor conformational isomers
- 875. Aniline was acetylated. The product on nitration followed by alkaline hydrolysis gave:
 - a) o-nitroacetanilide
- b) *o*-and *p*-nitroaniline
- c) *m*-nitroaniline
- d) Acetanilide

- 876. The IUPAC name of the compound $[CuCl_2(CH_3NH_2)_2]$ is
 - a) Dichloro bis (dimethyl amine) copper(II)
- b) Dichloro bis (methyl amine) copper(II)
- c) Dimethyl amine copper (II) chloride
- d) Bis (dimethyl amine) copper (II) chloride
- 877. Which is the structure of compound 2-(1-cyclobutenyl)-1-hexene?

878. On explosion TNT gives:

- a) $CO + N_2 + H_2 + CH_4 + CO_2$
- b) $CO + N_2 + H_2$
- c) $CO_2 + N_2 + H_2O$

d) $CO + N_2 + H_2O$						
879. Hexafluoroferrate(III) ion is an outer orbital complex. The number of unpaired electrons present in it is:						
a) 1 b) 5	c) 4	d) Unpredictable				
880. The EAN of Fe in $K_3[Fe(CN)_6]$ is:						
a) 36 b) 37	c) 38	d) 35				
881. The IUPAC name of the compound	,	,				
OH						
CH ₃ is						
a) 4-methyl cyclopent-1-en-3-ol	b) 5-methyl cyclopent-	2 on 1 ol				
c) 2-methyl cyclopent-4-en-1-ol	d) 3-methyl cyclopent-					
		1-611-2-01				
882. Which one amongst the following, exhibit geom		4) [Dr][(MH) Cl]				
a) [Co ^{III} (NH ₃) ₅ Br]SO ₄ b) Co ^{III} [EDTA] ¹⁻	c) [Cr ^{III} (SCN) ₆] ³⁻	d) $[Pt^{II}(NH_3)_2Cl_2]$				
883. Chiral molecules are those which are	12.81	.1				
a) Superimposable on their mirror images	,	e on their mirror images				
c) Unstable molecules		geometrical isomerism				
884. At room temperature the eclipsed and the stagg						
a) Both the conformers are equally stable	b) They interconvent r					
There is a large energy barrier of rotation abo		ce between the				
the σ -bond	conformers is large					
885. A group of atoms can function as a ligand only w						
a) It is a small molecule	b) It has an unshared e	-				
c) It is a negatively charged ion	d) It is a positively cha	rged ion				
886. The IUPAC name of Ni(CO) ₄ is:	_					
a) Tetracarbonyl nickelate(0)						
b) Tetracarbonyl nickelate(II)						
c) Tetracarbonyl nickel(0)	LOATION!					
d) Tetracarbonyl nickel(II)	JCATION					
887. 2-methyl phenol is:						
a) <i>o-</i> cresol b) Catechol	c) <i>p</i> -cresol	d) m -cresol				
888. NH ₂ · NH ₂ serves as:						
a) Monodentate ligand b) Chelating ligand	c) Bridging ligand	d) Both (a) and (c)				
889. For blasting purpose TNT is mixed with:						
a) NH ₄ Cl b) NH ₄ NO ₃	c) NH ₄ NO ₂	d) $(NH_4)_2SO_4$				
890. During the debromination of meso-dibromobut	ane, the major compound for	rmed will be				
a) cis-2-butene b) 1-butene	c) <i>n</i> -butane	d) <i>trans-</i> 2-butene				
891. The IUPAC name of $K_2[Cr(CN)_2O_2(O)_2(NH_3)]$ i	s					
a) Potassium ammine dicyano dioxoperoxochro	omate b) Potassium ammine	cyano				
(VI)	peroxodioxochromi	um(VI)				
c) Potassium ammine cyano	d) Potassium ammine	cyano peroxodioxochromatic				
peroxodioxochromium(V)	(IV)					
892. Benzene on reaction with a mixture of HNO_3 and H_2SO_4 followed by reaction of $Cl_2/FeCl_3$ gives:						
a) 3-chloro-1-nitrobenzene						
b) 2-chloro-1-nitrobenzene						
c) 4-chloro-1-nitrobenzene						
d) A mixture of 2-chloro and 4-chloro-1-nitrobenzene						
893. The number of isomeric forms in which $[Co(NH_3)_4Cl_2]^+$ ion can occur is:						
a) 2 b) 3	c) 4	d) 1				
894. Nitration of benzene is:	- <i>)</i> -	- , -				
a) Nucleophilic substitution						

- b) Electrophilic substitution
- c) Electrophilic addition
- d) Nucleophilic addition

895. Reimer-Tiemann reaction involves a:

- a) Carbonium ion intermediate
- b) Carbene intermediate
- c) Carbanion intermediate
- d) Free radical intermediate

896. Which does not have a carboxyl group?

- a) Picric acid
- b) Ethanoic acid
- c) Aspirin
- d) Benzoic acid

897. In Cannizaro's reaction given below:

the slowest step is:

- a) The transfer of hydride to the carbonyl group
- b) The abstraction of proton from the carboxylic group
- c) The deprotonation of PhCH2OH
- d) The attack of: OH at the carboxyl group

898. The oxidation state of Ag in Tollens' reagent is:

a) Zero

b) +1

c) + 2

d) + 1.5

899. Hybridization of Fe in $[K_3Fe(CN)_6]$ is

a) sp^3

- b) d^2sp^3
- c) sp^3d^2
- d) dsp^3

900. Which of the following is not isomeric with diethyl ether?

- a) Methyl *n*-propyl ether
- b) Butan-1-ol
- c) 2-methyl propan-2-ol

- d) Butan-2-one
- 901. In the given conformation C_2 is rotated about $C_2 C_3$ bond anticlockwise by an angle of 120° then the conformation obtained is

JPLUS EDUCATION

a) Fully eclipsed conformation

b) Partially eclipsed conformation

c) Gauche conformation

- d) Staggered conformation
- 902. Crystal field stabilization energy for high spin d^4 octahedral complex is:
 - a) $-1.8 \Delta_0$
- b) $-1.6 \Delta_0 + P$
- c) $-1.2 \Delta_0$
- d) $-0.6 \Delta_0$
- 903. Which kind of isomerism is exhibited by octahedral $[Co(NH_3)_4Br_2]Cl$?
 - a) Geometrical and ionisation
 - b) Geometrical and optical
 - c) Optical and ionisation
 - d) Geometrical only
- 904. The IUPAC name of the following compound is

- a) 5-cyclopropyl pent-2-en-1-oic acid
- b) 6-cyclopropyl pent-2-en-1-oic acid
- c) 5-cyclopropyl pent-1-en carboxylic acid
- d) 6-cyclopropyl pent-1-en carboxylic acid
- 905. Which of the following compounds will show a negative test with phenyl hydrazine?
 - a) Glucose
- b) Ethyl alcohol
- c) A cetaldehyde
- d) Benzophenone

- 906. Friedel-Craft's reaction is not possible in:
 - a) C_6H_5OH
- b) $C_6H_5C_2H_5$
- c) $C_6H_5NO_2$
- d) $C_6H_5CH_3$

- 907. The geometry of Ni(CO)₄ and Ni(PPh₃)₂Cl₂ are
 - a) Both square planar

b) Tetrahedral and square planar respectively

c) Both tetrahedral

- d) Square planar and tetrahedral respectively
- 908. The number of isomers possible for square planar complex K₂[PdClBr₂SCN] is:

- d) 6
- 909. The correct order for the wavelength of absorption in the visible region is
 - a) $[Ni(NO_2)_6]^{4-} < [Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+}$
- b) $[Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+} < [Ni(NO_2)_6]^{4-}$
- c) $[Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+} < [Ni(NO_2)_6]^{4-}$
- d) $[Ni(NO_2)_6]^{4-} < [Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+}$
- 910. The IUPAC name of CCl₃CH₂CHO is
 - a) Chloral

b) 1,1,1-trichloropropanol

c) 2,2,2-trichloropropanol

- d) 3,3,3-trichloropropanol
- 911. The coordination number of Cu in $[Cu(H_2O)_4]^{2+}$ complex is
 - a) 2

b) 1

c) 3

d) 4

- 912. Among the following, the correct statement is
 - a) Prefixes are written before the name of compound
 - b) Suffixes are written after the name of compound
 - c) The IUPAC name is always written as a single word
 - d) All of the above
- 913. In which of the following p-electrons of the halogens are not involved in delocalisation?
 - a) Chlorobenzene
- b) Bromobenzene
- c) Allyl chloride
- d) Vinyl chloride

- 914. Which of the following does not have optical isomer?
 - a) $[Co(en)(NH_3)_2Cl_2]Cl$ b) $[Co(en)_2Cl_2]Cl$
- c) $[Co(NH_3)_3Cl]$
- d) $[Co(en)_3]Cl_3$

- 915. Ethylene diamine is an example of
 - a) Monodentate ligand
- b) Bidentate ligand
- c) Tridentate ligand
- d) Polydentate ligand

- 916. In chlorobenzene, the —Cl group:
 - a) Activates the benzene ring more via resonance effect than deactivating it via inductive effect
 - b) Deactivates the benzene ring more via inductive effect than activating it via resonance effect
 - c) Activates the benzene ring via resonance effect and deactivates it via inductive effect. Both these effects are more evenly matched
 - d) None of the above
- 917. The *R*-isomer among the following are

- a) (i) and (ii)
- b) (ii) and (iii)
- c) (iii) and (iv)
- d) (i) and (iii)
- 918. Which possesses tetrahedral shape (sp^3 -hybridization of central atom)?
 - a) $[Zn(NH_3)_4]^{2+}$

GPLUS EDUCATION

- b) [Ni(CO)₄]
- c) $[Cd(NH_3)_4]^{2+}$
- d) All are correct

- 919. The reaction,
 - $C_6H_5CHO + CH_3CHO \xrightarrow{Dil.NaOH} C_6H_5CH=CHCHO$ is called:
 - a) Benzoin condensation
 - b) Claisen condensation

- c) Perkin's reaction
- d) Cannizaro's reaction
- 920. Complexation is shown by:
 - a) Ag

b) Au

c) Cu

d) All of these

- 921. AgO in Ag(II) complex which is:
 - a) Diamagnetic
- b) Paramagnetic
- c) Ferromagnetic
- d) Neutral
- 922. Acylation of benzene to produce aliphatic aromatic ketones is called:
 - a) Benzoin condensation
 - b) Hydroformylation
 - c) Friedel-Crafts reaction
 - d) None of these
- 923. The structure of the major product formed in the given reaction

$$\begin{array}{c}
\text{CH}_2\text{Cl} \\
\text{DMF}
\end{array}$$
 is:

- 924. Chlorobenzene is prepared commercially by:
 - a) Grignard reaction
- b) Raschig process
- c) Wurtz Fittig reaction d) Friedel-Crafts reaction
- 925. An aqueous solution of CoCl2 on addition of excess of concentrated HCl turns blue to formation of
 - a) $[CoCl_4]^{2-}$
- b) $[Co(H_2O)_2Cl_4]^{2-}$
- c) $[Co(H_2O)_22Cl_4]^{2-}$
- d) $[Co(H_2O)_4Cl_2]$
- 926. Which one of the following will not show geometrical isomerism?
 - a) $[Cr(NH_3)_4Cl_2]Cl$
- b) $[Co(en)_2Cl_2]Cl$

b) $C_6H_5COO^-$, C_6H_5OH

c) $[Co(NH_3)_5NO_2]Cl_2$

c) C_2H_5OH , C_6H_5COOH

d) $[Pt(NH_3)_2Cl_2]$

d) $C_6H_5COO^-, C_2H_5O^-$

- 927. When ethyl benzoate is hydrolysed with aqueous alkali, the products present in the medium are:
- a) $C_6H_5COOH, C_2H_5O^-$ 928. The IUPAC name of

a) 2-carbamoyl hexanal	b) 2-carbamoyl hex-3-en-	
c) 6-keto-2-methylhexanamide	d) 5-formyl-2-methylpen	it-3-en-1-amide
929. Which of the following is more basic than aniline? a) <i>p</i> -Nitroaniline b) Benzylamine	c) Diphenylamine	d) Triphenylamine
930. Name of some compounds are given below. Which of		
$CH_3 - CH - CH - CH_3$		
a)	b) $CH_3 - C \equiv C - CH(CH)$ 4 methyl-2-pentyng	₃) ₂
OH CH ₃	4 methyl-2-pentyne	е
4-methyl-2-butanol		
		CH ₃
CH_3CH_2 — CH — CH_3		
CH_3CH_2 — C — CH — CH_3 \parallel \mid CH_2 CH_3	$ (H_3 - CH_2 - CH_2 - CH_2 - CH_1 - CH_2 -$	$H - CH - CH_2CH_3$
2 - ethyl-3- methyl - but -1- ene	, I	
, ,		H ₂ CH ₃
	3-methyl-4-ethyl	heptane
931. For which transition metal ions are low spin comple	_	15.44
a) Rh ³⁺ b) Mn ³⁺	c) Ru ²⁺	d) All are correct
932. Which one is monodentate ligand?		
a) F ⁻ b) NO ₂ ⁻	c) H ₂ 0	d) All are correct
933. Cyclic hydrocarbon molecule A has all the carbons a		
bonds are of same length and less than 1.54 Å and n	nore than 1.34 Å. The C— C	—C bond angle will be:
a) 120° b) 180°	c) 100°	d) 109°28′
934. Chlorine reacts with benzaldehyde to give:	>	
a) Benzyl chloride b) Benzal chloride	c) Benzoyl chloride	d) Chlorobenzene
935. Phenol is:		
a) A base weaker than NH ₃		
b) An acid stronger than carbonic acid	0.0000000	
c) An acid weaker than carbonic acid	CATION	
d) Neutral	27112011	
936. Which one is example of octahedral complex?		
a) $Cu(NH_3)_4^{2+}$ b) FeF_6^{3-}	c) $Zn(NH_3)_4^{2+}$	d) $Ni(CN)_4^{2-}$
937. Which one of the following statement is correct?		
a) Ferric ions give a deep green precipitate on addin		
b) On boiling a solution having K^+ , Ca^{2+} and HCO_3^- i	ons, we get a precipitate of	$K_2Ca(CO_3)_2$
c) Manganese salt give a violet vortex test in reduci	ing flame	
d) From a mixed precipitate of AgCl and AgI, ammor		_
938. Which of the following fractions obtained in fraction	nal distillation of coal-tar co	ontains benzene and
toluene?		
a) Light oil		
b) Heavy oil		
c) Middle oil		
d) Green oil		
939. The tetrahedral complexes have coordination numb	oer	
a) 3 b) 6	c) 4	d) 8
940. The C—C bond length in benzene isthan C—C b	ond length in alkenes.	
a) Less b) More	c) Equal	d) None of these
941. Which are generally used for preparing derivative o	of aldehydes and ketones?	
a) Hydroxylamine hydrochloride		
b) 2,4-dinitrophenylhydrazine		
c) Phenylhydrazinehydrochloride		

d) All of the above

942. In the reaction,

Phenol
$$\xrightarrow{\text{Zn}}$$
 (A) $\xrightarrow{\text{Conc.HNO}_3 \text{ at } 60^{\circ}\text{C}}$ (B) $\xrightarrow{\text{NaOH } (gg)}$

The compounds (A), (B) and (C) are the following:

- a) Benzene, nitrobenzene and aniline
- b) Benzene, dinitrobenzene and m-nitroaniline
- c) Toluene, *m*-nitrobenzene and *m*-toluidine
- d) Benzene, nitrobenzene and hydrazobenzene

943. En is an example of a:

a) Monodentate ligand b) Bidentate ligand c) Tridentate ligand d) Hexadentate ligand 944. The major product obtained when Br_2/Fe is treated with

945. Phenol on treatment with dil. HNO_3 at room temperature gives:

- 946. In an octahedral structure, the pair of d-orbitals involved in $d^2 sp^3$ hybridisation is
 - a) $d_{x^2-v^2}$, d_{z^2}
- b) d_{xz} , $d_{x^2-v^2}$
- c) d_{z^2} , d_{xz}
- d) d_{xy} , d_{yz}

- 947. In which of the following ions has the metal atom EAN as 36?
 - a) $[Fe(CN)_6]^{4-}$
- b) $[Fe(CN)_6]^{3-}$
- c) [PbCl₄]²⁻
- d) $[Pd(CN)_6]^{2-}$
- 948. The number of ions given by K[Pt(NH₃)₅Cl₅] in aqueous solution is:
 - a) 2

b) 3

c) 4

- d) 1
- 949. CuCl is sparingly soluble in H₂O but it dissolves in KCl solution due to the formation of:
 - a) $K_2(CuCl_4)$
- b) K₃(CuCl₄)
- c) K(CuCl₂)
- d) None of these

- 950. A characteristics group test for phenolic gp. is:
 - a) Libermann's nitroso reaction
 - b) Coupling with diazonium salt
 - c) aq. FeCl₃
 - d) All of the above
- 951. Write the IUPAC name of the compound

- a) 5, 6-dimethyl bicyclo [2,2,1] heptane
- b) 2, 3-dimethyl bicyclo [2,2,1] heptane
- c) 2, 3-dimethyl bicyclo [1,2,2] heptane
- d) 3, 4-dimethyl bicyclo [2,1,2] heptane
- 952. Choose the correct statement from the ones given below for two anilium in:

- a) II is not an acceptable canonical structure because carbonium ions are less stable than ammonium ions
- b) II is not an acceptable canonical structure because it is non-aromatic
- c) II is not an acceptable canonical structure because the nitrogen has 10 valence electrons
- d) II is an acceptable canonical structure
- 953. Which of the following statements is/are incorrect?
 - a) Metamerism belongs to the category of structural isomerism
 - b) Tautomeric structures are the resonating structures of a molecule
 - c) The violet colouration produce by a molecule with neutral ferric chloride solution indicates the presence of enolic group in the molecule
 - d) Geometrical isomerism is not shown by alkenes
- 954. Gives are (i) cyclohexanol; (ii) acetic acid; (iii) 2, 4, 6-trinitrophenol; and (iv) phenol. In these the order of decreasing acidic character will be:
 - a) (iii)>(ii)>(iv)>(i)
- b) (ii)>(iii)>(i)>(iv)
- c) (ii)>(iii)>(iv)>(i)
- d) (iii)>(iv)>(ii)>(i)

			Gpius Education
955	. Phenol and benzoic acid can be distinguish		D.C. H.CO
056	a) Aqueous NaHCO ₃ b) Aqueous NaN		d) Conc. H ₂ SO ₄
956	• The functional groups – OH, –COOH, –CHO		
	a) OH > COOH > CHO > OCH ₃	b) OCH ₃ > OH > CHO >	
	c) OCH ₃ > OH > COOH > CHO	d) $OCH_3 > COOH > CHO$	
957	. The hypothetical complex chloro diaquatr		=
958	a) $[CoCl(NH_3)_3(H_2O)_2]Cl_2b)$ $[Co(NH_3)_3(H_3O)_2]Cl_2b)$. Which is expected to be paramagnetic?	$H_2O)CI_3$ c) [Co(NH ₃) ₃ (H ₂ O) ₂ CI]	d) $[Co(NH_3)_3(H_2O)_3]Cl_3$
	a) $[Ni(H_2O)_6]^{2+}$ b) $[Ni(CO_4)]$	c) $[Zn(NH_3)_4]^{2+}$	d) $[Co(NH_3)_6]^{3+}$
959	. The molecular formula of diphenyl methar	ne	
	$\langle \bigcirc \rangle$ CH_2 is $C_{13}H_{12}$		
	How many structural isomers are possible	e when one of the hydrogen is replac	ced by a chlorine atom?
	a) 8 b) 7	c) 6	d) 4
960	. Among the properties (A) reducing, (B) of towards metal species is	xidising (C) complexing, the set of p	properties shown by CN ⁻ ion
	a) <i>A, B</i> b) <i>B, C</i>	c) <i>C, A</i>	d) <i>A, B, C</i>
961	.		
	In the double bonds are		
	a) cis, cis	b) cis, trans	
	c) trans, cis	d) trans, trans	
962	. The reaction of toluene with ${\rm Cl_2}$ in present		in presence of light gives
	'Y'.Thus, 'X' and 'Y' are:		I G G
	a) X =benzal chloride; $Y = o$ -chlorotoluen	e	
	b) $X = m$ -chlorotoluene; $Y = p$ -chlorotolu		
	c) $X = o$ -and p -chlorotouene; Y =trichloro		
	d) $X = \text{benzal chloride}$; $Y = m$ -chlorotolue		
963	Among the following four compounds:	DUCHTION	
	a) Phenol b) Methyl phen	ol c) <i>meta</i> -nitrophenol	d) para-nitrophenol
964	. Which gives phthalic anhydride on reactio	on with hot, conc. H_2SO_4 in presence	
	a) Naphthalene b) Phenol		_
965	. Cis-trans-isomerism is found in square pla	anar complexes of the molecular for	mula: (a and b are
	monodentate ligands)	-	·
	a) Ma_4 b) Ma_3b	c) Ma_2b_2	d) Mab_3
966	. Which ion produces a small crystal field sp	plitting (a weak ligand field)?	
	a) I ⁻ b) Cl ⁻	c) F ⁻	d) All of these
967	. Benzene undergoes substitution reaction i	more easily than addition because:	•
	a) It has a cyclic structure	•	
	b) It has three double bonds		
	c) It has six hydrogen atoms		
	d) Of resonance		
968	. Isomers have essentially identical		
	a) Structural formula	b) Chemical properties	
	c) Physical properties	d) Molecular formula	
969	. Which of the following pair is not correctly	y matched?	
	a) Absorption peak for $[Cr^{III}(NH_3)_6]^{3+}$ =	21680 cm ⁻¹	
	b) Effective atomic no. of Pt in $[PtCl_6]^{2-}$ =		
	c) Crystal field stabilization energy of d^2 in		
	d) Example of weak ligand field for d^5 confi		

970. Aspirin (or acetyl salicylic acid) is obt	tained by action of CH ₃ COCl with:	
a) Salicylic acid b) Phenol	c) Benzaldehyde	d) Aniline
971. CuCl dissolves in ammonia forming a	complex. The coordination number of	copper in the complex is:
a) 1 b) 2	c) 4	d) 6
972. IUPAC name of the following cycloalk	ane is	
CH ₃		
a) 8-methyl bicyclo [4,3,0] nonane	b) 1-methyl bicyclo [4	3 01 nonano
c) 3-methyl bicyclo [4,3,0] nonane	d) 4-methyl bicyclo [4	-
973. Schiff's bases are formed when anilin		r,3,0] Hollane
		d) Aliphatic alcoholo
	ic aldehydes c) Aryl chlorides	d) Aliphatic alcohols
974. Which of the following is not an organ		D.E.
a) Zeise's salt b) TEL	c) Sodium ethoxide	d) Ferrocene
975. Molecular formula $C_5H_{12}O$ will show		
a) Position		
b) Optical isomerism		
c) Functional isomerism		
d) All of these		
976. Both Co ³⁺ and Pt ⁴⁺ have a coordination		
approximately the same electrical cor	nductance for their 0.001 M aqueous s	olutions?
a) CoCl ₂ .4NH ₃ and PtCl ₄ .4NH ₃	b) CoCl ₃ .3NH ₃ and Pt	Cl ₄ .5NH ₃
c) $CoCl_3$. $6NH_3$ and $PtCl_4$. $5NH_3$	d) CoCl ₃ .6NH ₃ and Pt	Cl ₄ .3NH ₃
977. Which of the following is not an organ	nometallic compound?	
a) Sodium ethoxide	b) Trimethyl aluminiu	ım
c) Tetraethyl lead	d) Ethyl magnesium b	romide
978. The number of water molecule(s) dir	rectly bonded to the metal centre in Cu	$1SO_4.5H_2O$ is
a) 1 b) 2	c) 3	d) 4
979. The formula of sodium nitroprusside	is:	
a) $Na_4[Fe(CN)_5NO_2]$ b) $Na_2[Fe(CN)_5NO_2]$	[CN) ₅ NO] c) NaFe[Fe(CN) ₆]	d) $Na_2[Fe(CN)_6NO_2]$
980. The IUPAC name of the compound		
$H_2N - CH - CH_2OH$ is		
1		
СООН		
a) 2-amino-2-carboxy pentanol	b) 1-amino-2-hydroxy	y propanoic acid
c) 1-hydroxy-2-amino-3-propanoic a		
981. Which of the following complex speci	-	
a) $[CoF_6]^{3-}$ b) $[Co(NH_1)^{3-}$		d) [Cr(NH ₃) ₆] ³⁺
982. The EAN of nickel in $K_2[Ni(CN)_4]$ is:	7. 701) L (3/03
a) 35 b) 34	c) 36	d) 38
983. The type of isomerism shown by, 6,6's	_	,
a) Conformational b) Optical	c) Geometrical	d) Functional
984. Which one of the following compound	_	,
a) Chlorophenol b) Benzylc		d) Chlorotoluene
985. Glycinato ligand is:		,
• •		
NH		
a) CH ₂ <		
COO-		
b) Bidentate ligand		
c) Two donor sites N and O		
c) I wo donor sites is and o		

- d) All of the above
- 986. Which one is the most likely structure of $CrCl_3 \cdot 6H_2O$, if 1/3 of total chlorine of the compound is precipitated by adding $AgNO_3$ to its aqueous solution?
 - a) CrCl₃ · 6H₂O
 - b) $[Cr(H_2O)_3Cl_3] \cdot (H_2O)_3$
 - c) $[CrCl_2(H_2O)_4] \cdot Cl \cdot 2H_2O$
 - d) $[CrCl(H_2O)_5]Cl_2 \cdot H_2O$
- 987. Carbon in benzene undergoes sp^2 -hybridization and the bond angle is 120°. The shape of benzene molecule is:
 - a) Linear
- b) Planar
- c) Pyramidal
- d) Planar hexagonal

- 988. The example of coordination isomerism is
 - a) $[Co(NH_3)_6][Cr(CN)_6]$ and
 - 1J [Cr(NH₃)₆] [Co(CN)₆]

- b) $[Co(NH_3)_5Br]SO_4$ and $[Co(NH_3)_5SO_4]Br$
- c) $Co(NH_3)_5NO_3]SO_4$ and $[Co(NH_3)_5SO_4]NO_3$
- d) $[Pt(NH_3)_4Cl_2]Br_2$ and $[Pt(NH_3)_4Br_2]Cl_2$
- 989. Coordination compounds have great importance in biological systems. In this context which of the following statement is incorrect?
 - a) Haemoglobin is the red pigment of blood and contains iron
 - b) Cyanocobalamin is B_{12} and contains cobalt
 - c) Chlorophylls are green pigments in plants and contains calcium
 - d) Carbocypeptidase-A an enzyme and contains zinc

990.

re H is

The IUPAC name of the given structure

- a) Diisohexane
- b) Isohexane
- c) 2, 2-dimethylbutane
- d) 2, 3-dimethylbutane

- 991. Aniline on treating with phosgene gives:
 - a) Phenyl isocyanate
- b) A secondary base
- c) A neutral substance
- d) A tertiary base
- 992. On boiling with conc. hydrobromic acid, phenylethylether will yield:
 - a) Phenol and ethyl bromide
 - b) Bromobenzene and ethanol
 - c) Phenol and ethane
 - d) Bromobenzene and ethane
- 993. Ammonia gas does not evolve from the complex $FeCl_3$. $4NH_3$ but is gives white precipitate with aqueous solution of $AgNO_3$. Coordination number of central metal ion in above complex is six. Give IUPAC name of the complex.
 - a) Ammonium trichloro triammine ferrum(III)
- b) Tetra ammine ferrum (III) chloride
- c) Dichloro tetraammine ferrate (II) chloride
- d) Dichloro tetraammine ferrum (III) chloride
- 994. Nickel (Z=28) combines with a uninegative monodentate ligand X^- to form a paramagnetic complex[Ni X_4] $^{2-}$. The number of unpaired electron (s) in the nickel and geometry of this complex ion are respectively
 - a) One, tetrahedral
- b) Two, tetrahedral
- c) One, square planar
- d) Two, square planar
- 995. Amongst the compounds given, the one that would form a brilliant coloured dye on treatment with NaNO₂ in dil. HCl followed by addition to an alkaline solution of β -naphthol is:

OCH₃

c)
$$H_3C$$
 CH_2CH_2

996. Identify 'Z' in the reaction given below;

a)
$$H_3C$$
 CH_3 H_3C CH_3 CH_3

997. A solution containing 2.675 g of $CoCl_3$.6NH $_3$ (molar mass =267.5 g mol $^{-1}$) is passed through a cation exchanger. The chloride ions obtained in solution were treated with excess of $AgNO_3$ to give 4.78 g of AgCl (molar mass=143.5 g mol $^{-1}$). The formula of the complex is

(Atomic mass of Ag=108 u)

- a) $[Co(NH_3)_6]Cl_3$
- b) $[CoCl_2(NH_3)_4]Cl$
- c) $[CoCl_3(NH_3)_3]$
- d) $[CoCl(NH_3)_5]Cl_2$

998. $[Cr(H_2O)_6]^{3+}$ ion has d-electrons equal to:

a) 2

b) 3

c) 4

d) 5

HO

d)

999. Enol form is more stable in

- a) CH₃CHO
- b) CH₃COCH₃
- c) CH₃COCH₂COOC₂H₅

d) Cyclohexanone

100 The coordination number of cobalt in $[Co(en)_2Br_2]Cl_2$ is:

0.

a) 2

b) 4

c) 6

d) 8

100 Which one readily accepts a proton?

1.

- a) Acetylene
- b) Nitrobenzene
- c) Aniline
- d) Phenol

100 Identify 'Z' in the reaction;

CH₂-OH

$$\frac{\text{Vigorous}}{\text{oxidation}} X \xrightarrow{\text{Dry}} Z$$

100 The number of σ and π -bonds in a molecule of benzene is:

3.

- a) 6σ and 9π
- b) 9σ and 3π
- c) 12σ and 3π
- d) 6σ and 6π

100 The phenomenon of optical activity will be shown by:

4.

b)

100

5.

H₃C CH_{3 is}

The correct name of the compound

- a) 1,3,4-trimethyldecaline
- c) 1,8,10-trimethyldecaline

- b) 1,3,9-trimethyldecaline
- d) 1,3,10-trimethyldecaline

100 If NH₄OH is added to the (PtCl₄)²⁻ ion, the complex formed represents:

6.

- a) Zero dipole
- b) Finite dipole
- c) Infinite dipole
- d) All of these

100 Which one of the following will be able to show cis-trans-isomerism?

7.

- a) M_{A_2B}
- b) $M_{(AA')_2}$
- c) M_{A_2BCD}

d) M_{A_4} (AA' is unsymmetrical bidentate ligand, ABCD are unidentate ligands.)

100 The coordination number of a metal in coordination compound is

8.

a) Same as primary valency

b) Sum of primary and secondary valencies

c) Same as secondary valency

d) None of the above

100 The IUPAC name of $K_4[Ni(CN)_4]$ is

- a) Tetrapotassium tetracyanonickelate (II)
- b) Potassium tetracyanonickel (II)
- c) Potassium tetracyanonickelate (0)
- d) Potassium tetracyanonickelate (II)

101 Which of the following compounds shows optical isomerism?

0.

- a) $[Co(CN)_6]^{3-}$
- b) $[Cr(C_2O_4)_3]^{3-}$
- c) $[ZnCl_4]^{2-}$
- d) $[Cu(NH_3)_4]^{2+}$

101 $[C_6H_5]_2Pd(SCN)_2$ and $[(C_6H_5)_2Pd(NCS)_2]$ are:

- a) Linkage isomers
- b) Coordination isomers c) Ionization isomers
- d) Geometrical isomers

101 Mark the correct statement

2.

- a) Ethane has two conformations of which staggered conformation is more stable than the eclipsed conformation
- b) Ethane has an infinite number of conformations of which eclipsed conformation is more stable than the staggered conformation
- c) Ethane has an infinite number of conformation of which staggered conformation has the maximum energy
- d) Ethane has an infinite number of conformation of which the staggered conformation is possessed by majority of the molecules at room temperature

101 3.

Of the following on heating with alkali followed with acid hydrolysis?

101 Which among the following will be named as dibromidobis (ethylene diamine) chromium (III) bromide? 4.

- a) $[Cr(en)_2Br_2]Br$
- b) $[Cr(en)Br_4]^-$
- c) [Cr(en)Br₂]Br
- d) $[Cr(en)_3]Br_3$
- 101 Which one of the following complex is an outer orbital complex?
- 5. (Atomic no. Mn=25, Fe=24, Co=27, Ni=28)
 - a) $[Fe(CN)_6]^{4-}$
- b) $[Mn(CN)_6]^{4-}$
- c) $[Co(NH_3)_6]^{3+}$
- d) $[Ni(NH_3)_6]^{2+}$

101 Benzene can be directly obtained from:

6.

- a) CH≡CH
- b) CH₂=CH₂ and butadiene
- c) Chlorobenzene
- d) All of the above
- 101 Chlorobenzene on treatment with Raney nickel or Al in presence of alkali gives:

- a) Benzene
- b) Chlorophenol
- c) Phenol
- d) None of these
- 101 The compound that undergoes decarboxylation most readily under mild condition is:

8.

101 Which ion is paramagnetic?

- a) $[Ni(NH_3)_4]^{2+}$
- b) [Ni(CO)₄]
- c) $[Co(NH_3)_6]^{3+}$
- d) $[Ni(CN)_4]^{2-}$

102 Which kind of isomerism is exhibited by octahedral [Co(NH₃)₄Br₂Cl]?

a) Geometrical and ionization

b) Geometrical only

c) Geometrical and optical

d) Optical and ionisation

102 Resorcinol and conc. H₂SO₄ in presence of phthalic anhydride produce a compound which is:

1.

- a) A dye
- b) An antiseptic
- c) An indicator
- d) A detergent

102 Which of the following compounds shows optical isomerism?

- a) $[Cr(C_2O_4)_3]^{3-}$
- b) $[Cu(NH_3)_4]^{2+}$
- c) $[Co(CN)_6]^{3-}$
- d) $[ZnCl_4]^{2-}$

102 The IUPAC name of $[Co(NH_3)_6]Cl_3$ is

a) Hexamine cobalt (II) chloride

b) Triammine cobalt (III) trichloride

c) Hexamine cobalt (III) chloride

d) None of the above

102 In the following compounds, the order of acidity is:

4.

- a) III > IV > I > II

- d) IV > III > I > II

102 Consider the following structure and choose the correct statements

a) I and II have R-configuration

b) I and III have R-configuration

c) Only III has S-configuration

- d) Both (a) and (c) are correct
- 102 Benzaldehyde, when heated with concentrated KOH solution, gives:

- a) C₆H₅CH₂OH
- b) C₆H₅COOH
- c) C₆H₅COOK
- d) Mixture of C₆H₅COOK and C₆H₅CH₂OH
- 102 Write the IUPAC name of the compound

7.

GPLUS EDUCATION

a) Bicyclo-[2.2.2] octane-2,6-dione

b) Bicyclo-[2.2.2] octane-3,5-dione

c) Bicyclo -[2.2] octane 2,6-dione

d) Bicyclo [2,2] octane-3,5-dione

102 3-chloro-4-methyl benzene sulphonic acid on steam distillation gives:

- a) Toluene
- b) *m*-chloro benzene sulphonic acid
- c) $\frac{p\text{-methyl benzene}}{\text{sulphonic acid}}$
- d) o-chloro toluene

102 The oxidation number of platinum in [Pt(NH₃)₅Cl]Cl₃ is

a) 2

b) 3

c) 4

d) 6

103 Which of the following is not an organometallic compound?

- a) C₂H₅ONa
- b) CH₃Mgl
- c) Tetraethyl tin
- d) KC₄H₉

103 Which of the following pairs of compounds are enantiomers?

103 Which complex has square planar shape dsp^2 -hybridization?

2.

- c) [PtCl₄]²⁻
- d) All of these

a) $[Ni(CN)_4]^{2-}$ b) $[Cu(NH_3)_4]^{2-}$ 103 The complex used as an anticancer agent is

3.

a) cis-[PtCl₂(NH₃)₂]

c) trans-[Co(NH₃)₃Cl₃]

- b) Na₂CO₃ d) *cis*-K₂[PtCl₂Br₂]
- 103 Dyes are formed when diazonium salts react with:

- a) Phenols
- b) Aldehydes
- c) Ketones
- d) Alcohols
- 103 Potassium ferrocyanide is a

- a) Complex salt
- b) Double salt
- c) Normal salt
- d) Mixed salt
- 103 The primary and secondary valencies of chromium in the complex ion, dichlorodioxalatochromium (III),
- are respectively.

c) 3,6

d) 6,3

- a) 3,4 b) 4,3

 103 The reaction, $C_6H_6 + CH_3Cl \xrightarrow{Anhydrous} C_6H_5CH_3 + HCl$ 7.
- - a) Friedel-Craft's reaction
 - b) Kolbe's synthesis
 - c) Wurtz's reaction
 - d) Grignard synthesis
- 103 The correct statement related to IUPAC nomenclature is

8.

a) If 2 or more chains of equal length are seen in the compound then the chain with minimum number of side chains will be preferred

- b) If double and triple bonds are at symmetrical positions in a compound then triple bond gets lower preference c) Correct IUPAC name of CH₃COC₂H₅ is ethyl methyl ketone d) As far as possible, the IUPAC name of a compound is written as a single word 103 Which of the following isomerism is shown by ethyl acetoacetate?
 - a) Geometrical isomerism

b) Keto-enol tautomerism

c) Enantiomerism

- d) Diastereoisomerism
- 104 The number of moles of ions given on complete ionisation of one mole of [Co(NH₃)₆]Cl₃ is/are
 - a) 4

9.

b) 3

c) 2

d) 1

- 104 The major products (P, Q) in the given reaction are:

104 *p*-nitrophenol is stronger acid than phenol because nitro group is:

- 2.
- a) Electron withdrawing b) Electron donating
- c) Basic
- d) Acidic
- 104 Among the following group, which deactivates benzene ring for electrophilic substitution:
- 3.
- a) Methyl
- b) Amino
- c) Hydroxyl
- d) Chlorine

104 Iron has lowest oxidation state in:

- a) $Fe(CO)_5$
- b) Fe_2O_3
- c) $K_2 \text{feO}_4$
- d) $FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 6H_2 O$
- 104 The dihedral angle between the two methyl groups in Gauch conformation of n butane is 5.
- a) 120°

b) 180°

c) 45°

d) 60°

104 Increasing order of acid strength among p-methoxyphenol, p-methylphenol and p-nitrophenol is: 6.

- a) p-methylphenol < p-methoxyphenol < p-nitrophenol
- b) p-methoxyphenol < p-methylphenol < p-nitrophenol
- c) p-nitrophenol < p-methoxyphenol < p-methylphenol
- d) p-nitrophenol < p-methylphenol < p-methoxyphenol
- 104 Total number of isomeric alcohols with formula $C_4H_{10}O$ are

7.

a) 1

b) 2

c) 3

d) 4

104 What is the IUPAC name of Na₂[Fe(CN)₅NO]?

8.

- a) Pentacyanonitroso sodium ferrate
- b) Pentacyanonitroso sodium ferrate(II)
- c) Sodium pentacyanonitroso ferrate(II)
- d) Sodium pentacyanonitroso ferrate
- 104 Which of the following cations does not form an ammine complex with excess of ammonia?

a) Ag⁺

b) Cu²⁺

c) Cd^{2+}

d) Na⁺

105 In the complex $K_2[Fe(CN)_6]$

- a) The complex is high spin complex
- b) Both Fe atoms are in the same oxidation state
- c) The coordination number of iron is 4
- d) Both Fe atoms are in different oxidation state

105 The number of chiral carbon atoms present in the molecule

is

b) 4

d) 1

105 The complex that doesn't give a precipitate with AgNO₃ solution

- a) $[Co(NH_3)_33Cl_3]$
- b) $[Co(NH_3)_6]Cl_3$ c) $[Ag(NH_3)_2]Cl$
- d) $[Cr(NH_3)_4Cl_2]Cl$

105 The IUPAC name of the given compound [Co(NH₃)₅Cl]Cl₂ is

3.

- a) Penta amino cobalt chloride chlorate
- b) Cobalt penta ammine chloro chloride
- c) Pentamine chloro cobalt (III) chloride.
- d) Penta amino cobalt (III) chlorate

105 Amongst Ni(CO)₄, [Ni(CN)₄]²⁻ and [NiCl₄]²⁻

- a) $Ni(CO)_4$ is diamagnetic, $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ are paramagnetic
- b) $Ni(CO)_4$ and $[NiCl_4]^{2-}$ are diamagnetic and $[Ni(CN)_4]^{2-}$ is paramagnetic
- c) $Ni(CO)_4$ and $[Ni(CN)_4]^{2-}$ are diamagnetic and $[NiCl_4]^{2-}$ is paramagnetic
- d) $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ are diamagnetic and $Ni(CO)_4$ is paramagnetic

105 Which aromatic acid among the following is weaker than simple benzoic acid?

5.

105 Which statement is incorrect?

- a) Ni(CO)₄-tetrahedral, paramagnetic
- b) $[Ni(CN)_4]^{2-}$ -square planar, diamagnetic
- c) Ni(CO)₄-tetrahedral, diamagnetic

	D 52401 3			
	\mathfrak{a}) [NiCl ₄]	^{2 –} -tetrahedral, paramaş	gne	tic
105	5 Which of the following has asymmetric C-atom?			
7.		Ç ,		
	Cl	Br	Н	Cl

105 The IUPAC name of

a) 1-phenyl-3-propanol

b) 3-phenyl-1-propanol

c) 1-hydroxy-3-phenyl-propane

d) None of the above

105 The complexes $[Co(NH_3)_6][Cr(CN)_6]$ and $[Cr(NH_3)_6][Co(CN)_6]$ are the examples of which type of

PLUS EDUCATION

- isomerism?
 - a) Geometrical isomerism
 - b) Linkage isomerism
 - c) Ionization isomerism
 - d) Coordination isomerism
- 106 Racemic tartaric acid is optically inactive due to

0.

- a) External compensation
- c) Presence of plane of symmetry
- 106 Nitration of aniline is done in:

d) All of the above

b) Internal compensation

- 1.
 - a) Acidic medium
 - b) Alkaline medium
 - c) Neutral medium
 - d) In acidic medium by first converting it into acetanilide before nitration
- 106 A bridging ligand possesses:

2.

- a) Polydentate or monodentate nature
- b) Two or more donor centres
- c) The tendency to get itself attached to two metal ions
- d) All of the above

106 What is the neutralization equivalent of benzoic acid?

a) 122

b) 61

c) 244

d) 488

106 *m*-chlorobenzaldehyde on reaction with conc. KOH at room temperature gives:

- a) Potassium *m*-chlorobenzoate and *m*-hydroxy benzaldehyde
- b) *m*-hydroxybenzaldehyde and *m*-chlorobenzylalcohol
- c) *m*-chlorobenzylalcohol and *m*-hydroxy benzylalcohol
- d) Potassium *m*-chlorobenzoate and *m*-chlorobenzyl alcohol
- 106 The oxidation number of Fe in brown ring $[Fe(H_2O)_5NO]^{2+}$ is

5.

a) 0

b) +1

c) + 2

d) + 3

106 $[Cr(H_2O)_6]Cl_3$ (at. No. of Cr=24) has a magnetic moment of 3.83 BM. The correct distribution of 3d-

6.	electrons in the chromi	um of the complex:		
	a) $3d_{xy}^1$, $3d_{yz}^1$, $3d_{xz}^1$	b) $3d_{xy}^1$, $3d_{yz}^1$, $3d_{z^2}^1$	c) $(3d_{x^2-v^2}^1)$, $3d_{z^2}^1$, $3d_{x^2}^1$	d) $3d_{xy}^1$, $(3d_{x^2-y^2}^1)$, $3d$
10		solution is added to 100 m	•	•
7.		ilver chloride obtained in g		ver is 108].
	a) 287 × 10 ⁻³	b) 143.5×10^{-3}		d) 287×10^{-2}
	6 The total number of po	ssible structural isomers of	f the compound [${ m Cu^{II}}({ m NH_3})$	₄][Pt ^{II} Cl ₄] are:
8.				
4.0	a) 3	b) 5	c) 4	d) 6
10 9.	6 A similarity between of	ptical and geometrical isom	ierism is that :	
9.	a) Fach gives equal nur	nber of isomers for a given	compound	
	· ·	e is present then so is the o	-	
	c) Both are included in	-	••••	
	d) They have no similar			
10	7 In $[Ni(NH_3)_4]SO_4$, the v	valency and coordination n	umber of Ni will be respect	ively
0.				
	a) 3 and 6	b) 4 and 4	c) 4 and 2	d) 2 and 4
	7 C_6H_5 CHO is different fr	om aliphatic aldehyde in it	s reaction towards:	
1.	a) Tallan'a magant	h) Cahiffa naggant	a) NaUCO	d) Eabling's solution
10	a) Tollen's reagent 7 Oxidation of parhthalo	b) Schiff's reagent ne by acidic KMnO ₄ gives:	c) NaHSO ₃	d) Fehling's solution
2.	7 Oxidation of naphthate.	ne by acture RMno ₄ gives.		
	a) Toluene	b) Benzaldehyde	c) Phthalic acid	d) Benzoic acid
10		e theoretical conformations		
3.		4	,	
	a) Two	b) Three	c) Four	d) Infinite
		for acidic nature of following		
4.	(I) PhCOOH	(II) $o - NO_2C_6H_4C_6$	00H	
	(III) p - NO ₂ C ₆ H ₄ COOH a) II > III > IV > I		c) II > IV > I > III	d) $I > II > III > IV$
10	7 Salicylic acid when trea	•	C) II > IV > I > III	uj1 / 11 / 111 / 1V
5.	, builty he deld when the	ited with zine dust gives.		
	a) Phenol	b) Salicyladehyde	c) Benzene	d) Benzoic acid
10	7 Action of PCl ₅ on salicy	lic acid produces:		
6.				
	a) o-chlorobenzoyl			
	b) <i>o</i> -hydroxybenzoyl cl			
	c) o-chlorobenzoic acid	1		
10	d) None of the above7 Which of the following	enaciae ie moet etabla?		
7.	7 Willelf of the following	species is most stable.		
	. +			
	a) $p-O_2N-C_6H_4-CH_2$			
	b) $_{{ m C_6H_5}}$ $-{ m CH_2}^+$			
	c) $_{p\text{-Cl}C_{6}H_{4}}$ + $_{CH_{2}}^{+}$			
	d) p-CH ₃ O-C ₆ H ₄ -C			
	p-CH ₃ O $-$ C ₆ H ₄ $-$ C	fl ₂		

107 Give the IUPAC name of the following

a) 5-ethyl-4, 4-dimethyloctane

- b) 4-ethyl-5, 5-dimetyloctane
- c) 3-ethyl-2-methyl-2-propyl hexane
- d) 4-ethyl-5-methyl, 5-propyl hexane
- 107 Which of the following reacts with KCN to form benzoin?

9.

- a) C₆H₅CHO
- b) C_6H_5Cl
- c) C_2H_5Cl
- d) $C_6H_5CH_3$

108 Which one is an organometallic compound in the following?

0.

a) C₂H₅ONa

b) $C_2H_5 - S - S - C_2H_5$

c) $Al_2(CH_3)_6$

d) $Al(C_6H_5S)_3$

108 The formula of picramide is:

1.

$$\begin{array}{c} \text{CONH}_2\\ \text{O}_2\text{N} & \text{NO}_2\\ \text{NO}_2 \end{array}$$

108 An alkane forms isomers if minimum number of C-atom is:

2.

a) 1

b) 2

c) 3

d) 4

108 Which will form geometrical isomers?

3

b) $CH_3CH = NOH$

d) All of these

108 Choose the option which show correct preferential order of groups among the following

4.

a) -COOH, -CHO, -OH, $-NH_2$

b) $-NH_2$, -OH, CHO, -COOH

c) -COOH, -OH, $-NH_2$, -CHO

- d) -COOH, -NH₂, -CHO, -OH
- 108 The number of precipitable halide ions in $[Pt(NH_3)Cl_2Br]Cl$ is:

5.

a) 2

b) 3

c) 4

d) 1

108 Which of the following is polycyclic compound?

6.

- a) Xylene
- b) Cumene
- c) Styrene
- d) Naphthalene
- 108 Among acetic acid, phenol and *n*-hexanol, which of the compound(s) will react with NaHCO₃ solution to
- 7. give sodium salt and CO₂?
 - a) Acetic acid and phenol
 - b) Acetic acid
 - c) Phenol
 - d) n-hexanol
- 108 Nitrosobenzene can be isolated from nitrobenzene under:

- a) Metal and acid
- b) Zn dust and NH₄Cl

	c) Alkaline sodium arsen	ite			
100	d) None of the above	omplexes is an outer orbita	ol gomploy?		
9 <u>.</u>	which of the following co	omplexes is all outer orbita	ii complex:		
<i>)</i> .	a) [Fe(CN) ₆] ⁴⁻	h) [Co(NH _o) c] ³⁺	c) $[Ni(NH_3)_6]^{2+}$	d) None of these	
109	In which of the following	complex ion the central m	netal ion is in a state of sn ³	d^2 hybridisation?	
0.	19 In which of the following complex ion, the central metal ion is in a state of $sp^3 d^2$ hybridisation?				
	a) $[Co(F_6)]^{3-}$	b) $[Co(NH_3)_6]^{3+}$	c) [Fe(CN) ₆] ³⁻	d) $[Cr(NH_3)_6]^{3+}$	
109		k, name should specify the		7 L (3/03	
1.	H_3P Ir PH_3				
	a) Bis <i>trans</i> phosphinecarl	bonylchloroiridium [II]	b) Carbonylchlorobis <i>trai</i>	<i>ns</i> phosphineiridium[III]	
	c) Carbonylchlorobis tran	asphosphineiridium[I]	d) Chlorocarbonylbis <i>trai</i>	<i>ns</i> phosphineiridium [I]	
109	The function of anhydrou	ıs aluminium chloride in th	ne Friedel-Crafts reaction is	:	
2.					
	a) To absorb water				
	b) To absorb hydrochlori				
	c) To produce an electrop				
100	d) To produce nucleophil	e is caused by interchange o	fligands batturaen the		
3.	Coordination isomerism	is caused by interchange o	i nganus between the		
٥.	a) Complex cation and co	mplex anion	b) Inner sphere and oute	er sphere	
	c) Low oxidation and hig	_	d) <i>cis</i> and <i>trans</i> structur	-	
109		n the manufacture of perfu	•		
4.	-	Ä			
	-		c) Benzaldehyde	d) None of these	
	Which of the following sta	atements is not correct?	LATION		
5.					
	_	chiral centres but exhibit			
		s no chiral centres and thus	s are optically inactive alf of molecule is superimp	acabla on the athen arran	
	c) A meso compound has		an of molecule is superimp	osable oil the other even	
	A meso compound is o	*	he rotation caused by one b	nalf of molecule is cancelled	
	d) by the rotation produc		ne rotation caabou sy one r		
109			mplete precipitation of chlo	oride ions present in 30 mL	
6.	of 0.01 M solution of [Cr($\rm H_2O)_5Cl]Cl_2$, as silver chlo	oride is close to		
	a) 3	b) 4	c) 5	d) 6	
	Benzene is a resonance h	ybrid mainly of two Kekul	e structures. Hence:		
7.					
	•	•	e, and half to the second str	ructure	
		enzene can be separated in			
		equal contribution to resor	nance nybrid id forth between two struct	Tunos	
109	Keto form is more stable	-	iu ioi di between two sii uct	ures	
8.	reco form is more stable	111			
~.	a) CH ₃ COCH ₂ COOC ₂ H ₅	b) CH ₃ COCH ₂ COCH ₃	c) CH ₃ COCH ₃	d) CH ₃ COCH ₂ COC ₂ H ₅	
109			AN) of cobalt $(CoF_6)^{2-}$ are:		
9.			•	- *	
	a) 3 and 36	b) 4 and 35	c) 4 and 37	d) 2 and 35	

- 110 Benzamide on reaction with POCl₃ gives:
- 0.
- a) Aniline
- b) Chlorobenzene
- c) Benzylamine
- d) Benzonitrile

- 110 Which pair of carbon skeleton is an example of isomerism?

- 110 Electrolytic reduction of nitrobenzene in weak acidic medium gives:
- 2.
 - a) Aniline
 - b) p-hydroxy aniline
 - c) Nitrobenzene
 - d) N-phenyl hydroxyl amine
- 110 In complexes, metal atom acts as:
- 3.
- a) Lewis base
- b) Bronsted acid
- c) Bronsted base
- d) Lewis acid
- 110 When benzene is treated with concentrated HNO₃ at room temperature it will give:
- 4.
- a) CO2 and H2O
- b) Nitrochlorobenzene
- c) Dark red colour
- d) Dinitrobenzene
- 110 Which of the following compounds exhibit linkage isomerism?
- 5.
- a) $[Co(en)_3]Cl_3$
- b) $[Co(NH_3)_6][Cr(CN)_6]$ c) $[Co(en)_2NO_2Cl]Br$
- d) $[Co(NH_3)_5Cl]Br_2$

- 110 The compound

have IUPAC name as

a) Tricyclopropyl

b) Tricyclopropane

c) 1,1', 2', 1"-tercyclo propane

- d) None of the above
- 110 The most stable conformation of chlorohydrin at room temperature is
- 7.
- a) Fully eclipsed
- b) Partially eclipsed
- c) Gauche
- d) Staggered

```
110 Among Ni(CO)<sub>4</sub>, [Ni(CN)_4]^{2-} and [Ni(Cl)_4]^{2-}:
8.
      a) [Ni(CO)_4], [NiCl_4]^{2-} are diamagnetic and [Ni(CN)_4]^{2-} is paramagnetic
     b) [NiCl_4]^{2-}, [Ni(CN)_4]^{2-} are diamagnetic and [Ni(CO)_4] is paramagnetic
     c) [Ni(CO)_4], [Ni(CN)_4]^{2-} are diamagnetic and [NiCl_4]^{2-} is paramagnetic
      d) [Ni(CO)_4] is diamagnetic and [NiCl_4]^{2-}, [Ni(CN)_4]^{2-} are paramagnetic
110 The complex Hg[Co(CNS)<sub>4</sub>] is correctly named as:
      a) Mercury tetrathiocyanatocobaltate(II)
     b) Mercury cobalt tetrasulphocyano(II)
      c) Mercury tetrasulphocyanidecobaltate(II)
      d) Mercury sulphocyanatocobalt(II)
111 Which of the following compounds is not coloured?
0.
                                                                  c) K_4[Fe(CN)_6]
                                                                                                 d) K_3[Fe(CN)_6]
      a) Na<sub>2</sub>[CuCl<sub>4</sub>]
                                    b) Na<sub>2</sub>[CdCl<sub>4</sub>]
111 Which one has square planar geometry?
      a) [CoCl<sub>4</sub>]<sup>2-</sup>
                                    b) [FeCl<sub>4</sub>]<sup>2-</sup>
                                                                  c) [NiCl_4]^{2-}
                                                                                                 d) [PtCl<sub>4</sub>]<sup>2-</sup>
111 Which exhibits highest molar conductivity?
     a) [Co(NH_3)_6]Cl_3
                                    b) [Co(NH_3)_5Cl]Cl_2
                                                                  c) [Co(NH_3)_4Cl_2]Cl
                                                                                                 d) [Co(NH_3)_3Cl_3]
111 Coordination compounds have great importance in biological systems. In this context which of the
     following statement is incorrect?
      a) Chlorophyll is green pigment in plants and contain calcium.
      b) Haemoglobin is the red pigment of blood and contains iron.
      c) Cyanocobalamin is vitamin B<sub>12</sub> and contains cobalt.
      d) Carboxypeptidase-A is an enzyme and contains zinc.
111 Complex salt can be made by the combination of [Co^{III}(NH_3)_5Cl]^x with
4.
                                                                  c) PO_4^{3-}
                                                                                                 d) 2K<sup>+</sup>
     a) Cl
                                    b) 2Cl<sup>-</sup>
111 Which of the following pairs represents linkage isomers?
      a) [Cu(NH_3)_4][PtCl_4] and [Pt(NH_3)_4][CuCl_4]
                                                                  b) [Pd(PPh_3)_2 (NCS)_2] and [Pd(PPh_3)_2 (SCN)_2]
      c) [Co(NH_3)_5]NO_3SO_4 and [Co(NH_3)_5SO_4]NO_3
                                                                  d) [PtCl_2(NH_3)_4]Br_2 and [PtBr_2(NH_3)_4]Cl_2
111 The reaction products of C_6H_5OCH_3 + HI \xrightarrow{\Delta} is:
6.
      a) C_6H_5OH + CH_3I
                                    b) C_6H_5I + CH_3OH
                                                                  c) C_6H_5CH_3 + HOI
                                                                                                 d) C_6H_6 + CH_3OI
111 An aromatic amine (A) was treated with alcoholic potash and another compound (Y) when a foul smeling
     gas was formed with formula C_6H_5NC. (Y) was formed by reacting a compound (Z) with Cl_2 in the
      presence of slaked lime. Compound (Z) is:
      a) C_6H_5NH_2
                                    b) CH<sub>3</sub>OH
                                                                  c) CH<sub>3</sub>COCH<sub>3</sub>
                                                                                                 d) CHCl<sub>3</sub>
111 Chlorine is most reactive in:
                                                                  c) C_6H_5Cl
     a) CH<sub>3</sub>Cl
                                    b) CH_2 = CHCl
                                                                                                 d) C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>Cl
111 The C—C bond order in benzene is close to:
     a) 1.5
                                    b) 2.5
                                                                  c) 3.0
                                                                                                 d) 6.0
112 Mixture X = 0.02 mole of [Co(NH_3)_5SO_4]Br and 0.02 mole of [Co(NH_3)_5Br]SO_4 was prepared in 2 L of
      1 L of mixture X + excess AgNO<sub>3</sub> \rightarrow Y
```

1 L of mixture $X + \text{excess BaCl}_2 \rightarrow Z$

Number of moles of Y and Z are

- a) 0.01, 0.01
- b) 0.01,0.02
- c) 0.02, 0.01
- d) 0.02, 0.02

112 Phenol can be converted into salicylic acid by:

- a) Etard's reaction
- b) Kolbe's reaction
- c) Reimer-Tiemann reaction
- d) Both (b) and (c)
- 112 $Fe_2(CO)_9$ is diamagnetic. Which of the following reasons is correct?

2.

- a) Presence of one CO as bridge group
- b) Presence of monodentate ligand
- c) Metal-metal (Fe-Fe) bond in molecule
- d) Resonance hybridization of CO
- 112 The formula of dichlorobis (urea) copper(II) is:

- a) $[CuO = C(NH_2)_2]Cl_2$
- b) $[CuCl_2{O = C(NH_2)}]$
- c) $[Cu{O = C(NH₂)₂}Cl]Cl$
- d) $[CuCl_2][O = C(NH_2)_2]H_2$
- 112 Which of the following facts about the complex [Cr(NH₃)₆]Cl₃ is wrong?

- The complex involves d^2sp^3 hybridisation and isb) The complex is paramagnetic. octahedral in shape.
- c) The complex is an outer orbital complex.
- d) The complex gives white precipitate with silver nitrate solution.
- 112 The compounds P, Q and S were separately subjected to nitration using HNO₃/H₂SO₄ mixture. The major
- product formed in each case respectively, is:

c) HO
$$NO_2$$
 NO_2 OCH_3 OCH_3 OCH_3

d)
$$HO$$
 NO_2 H_3C NO_2 O NO_2 O NO_2

112 Aromaticity of benzene is due to:

6.

- a) Ring
- b) Three double bonds
- c) Delocalisation of π -electrons
- d) None of the above

112 7.

The IUPAC name of

- a) 2, 2, 4, 4-tetramethyl pentane
- c) 4-ethyl-3-methyl hex-3-ene

- b) 2, 2-dimethyl propane
- d) Ethyl isopropyl ethene
- 112 Phenol is heated with a solution of mixture of KBr and KBrO₃. The major product obtained in the above
- reaction is:
 - a) 2-bromophenol
- b) 3-bromophenol
- c) 4-bromophenol
- d) 2,4,6-tribromophenol
- 112 The coordination number of a central metal atom in a complex is determined by

9.

- a) The number around a metal ion bonded by pi-bonds
- b) The number of only anionic ligands bonded to the metal ion
- c) The number of ligands around a metal ion bounded by sigma and pi-bonds both
- d) The number of ligands around a metal ion bonded by sigma bonds
- 113 The true statement about benzene is:

0.

a) Because of unsaturation benzene easily undergoes additions

There are two types of b) C—C bonds in benzene c) delocalisation of π molecule

There is a cyclic electrons in benzene d) Monosubstitution of benzene gives three isomeric products

113 Which reagent can convert CO group to $C(C_6H_5)OH$?

1.

- a) C_6H_5OH
- b) C₆H₅CH₂OH
- c) C₆H₅MgBr
- d) C_6H_5Cl

113 Which has highest paramagnetism?

2.

- a) $[Cr(H_2O)_6]^{3+}$
- b) $[Fe(H_2O)_6]^{2+}$
- c) $[Cu(H_2O)_6]^{2+}$
- d) $[Zn(H_2O)_6]^{2+}$

113 Which is not true ligands metal complex?

- a) Larger the ligand, the more stable is the metal-ligand complex
- b) Highly charged ligand forms stronger bonds

				Opius Luucution
113 4.		dipole moment of ligand, the potential of central metal, to (NH ₃) ₄ Cl·NO ₂]Cl] are		·
	a) Optical isomers Acetophenone on oxidation	b) Geometrical isomers on by perbenzoic acid gives	c) Ionization isomers phenyl acetate. The reaction	d) Linkage isomers on is named as:
	a) Baeyer-Villiger oxidationb) Perkin's reactionc) Claisen condensationd) Reformatsky reaction			
	Friedel-Craft's reaction do	oes not occur in case of:		
6.	a) Toluene	b) Benzene	c) Naphthalene	d) pyridine
113 7.	One mode of a complex co	ompound Co(NH ₃) ₅ Cl ₃ give	es three moles of ions on dis	* * *
	a) [Co(NH ₃) ₃ Cl ₃] · 2NH ₃ c) [Co(NH ₃) ₄ Cl]Cl ₂ · NH ₃		b) $[Co(NH_3)_4Cl_2] \cdot Cl \cdot NH$ d) $[Co(NH_3)_5Cl]Cl_2$	3
113 8.	C ₆ H ₆ is a very good indus	trial solvent for:		
	a) Oil	b) Fat	c) Rubber	d) All of these
113 9.	Salol is used as:	< h :	>	
<i>)</i> .	a) Antiseptic	b) Antipyretic	c) Both (a) and (b)	d) None of these
114 0.	Presence of nitro gp. in be			
	a) Deactivates the ring for S	r S $_E$ reaction $_E$ reactions	ATION	
	c) Renders the ring basicd) Deactivates the ring for	r S _N reaction		
114 1.			rical as well as optical isom	erism? (en =ethylene
114 2.	a) [Pt(NH ₃) ₂ Cl ₂] The huge number of organ	b) [Pt(NH ₃) ₂ Cl ₄] nic compounds is due to th	c) [Pt(en) ₃] ⁴⁺ e fact that	d) [Pt(en) ₂ Cl ₂]
	a) Tetravalency of carbon	l	b) Carbon possesses prop	erty of catenation
	c) Carbon compounds exh	• •	d) Both (b) and (c)	
			of FeBr ₃ , the major product	formed is <i>m</i> -
3.	bromonitrobenzene. Statements which are related to obtain the m -isomer are: a) The relative electron density on $meta$ carbon is more than that of $ortho$ and $para$ positions			
	b) Loss of aromaticity whenc) Easier loss of H⁺ to reg	en Br ⁺ attacks at the <i>ortho</i>	and <i>para</i> positions and not teta position than from <i>ort</i>	ot at <i>meta</i> position
114 4.	d) None of the above Which one of the followin	g compounds when dissolv	ved in water, gives a solutio	n with pH more than 7?
	a) C ₆ H ₅ NH ₂ Formula of ferrocene is:	b) C ₆ H ₅ OH	c) C ₂ H ₅ OH	d) CH ₃ COCH ₃
٥.	a) [Fe(CN) ₆] ⁴⁻	b) [Fe(CN) ₄] ³⁺	c) [Fe(CO) ₅]	d) [(C ₆ H ₅) ₂ Fe]

	14 What is the EAN of nick	el in Ni(CO) ₄ ?		•
6.	a) 38	b) 30	c) 36	d) 32
1	,	•	•	solution in water . One mole
7.				es of $AgCl(s)$. The structure
′.	of the complex is	icts with two moles of right	53501dtion to yield two mor	es of rigui(5). The structure
	a) [Co(NH ₃) ₅ Cl]Cl ₂		b) [Co(NH ₃) ₃ Cl ₂]. 2NH ₃	
	c) [Co(NH ₃) ₄ Cl ₂]Cl. NH ₃	n	d) $[Co(NH_3)_4Cl]Cl_2.NH_3$	
1	14 Which one of the follow			
8.				
	a) $[Ru(NH_3)_4Cl_2]^+$	b) [Co(NH ₃) ₅ Cl] ²⁺	c) $[Ir(PR_3)_2H(CO)]^{2+}$	d) [CO(en), Cl,]+
1	14 Which complex is likely	,) [(3/2 (/3) [\ \ /2 \ 2]
9.	•	1		
	a) $Trans$ -[Co(NH ₃) ₄ Cl ₂]]+.		
	b) $[Cr(H_2O)_6]^{3+}$			
	c) Cis-[Co(NH ₃) ₂ (en) ₂]	3+		
	d) $Trans$ - $[Co(NH_3)_2(en$	$[a_{2}]^{3+}$		
1	15 A square planar comple	x is formed by hybridizatio	n of which atomic orbitals?	
0.				
	a) s, p_x, p_y, d_{yz}	b) $s, p_x, p_y, d_{x^2-y^2}$	c) s, p_x, p_y, d_{z^2}	d) s, p_x, p_y, d_{xy}
1	15 The IUPAC name of the	compound		
1.	$CH_2 - CH - CH - CH_2C$	OCl is		
	1 1 1	< L	>	
	COCl COCl COCl	731.		
	a) 1, 2, 3, 4-butanetetra		b) 1, 2, 3, 4-butanetetrac	hloroformyl
	c) 1, 2, 4-butanetricarbo	•	d) None of the above	
1	15 Nitrobenzene can be pro	A	ing a mixture of conc. HNO ₃	and conc. H ₂ SO ₄ . In the
2.	o s		CAHON	
	a) Base	b) Acid	c) Reducing agent	d) Catalyst
	15 In the compound lithiun	n tetrahydroaluminate, the	ligand is	
3.				
	a) H	b) H ⁺	c) H ⁻	d) None of these