GPLUS EDUCATION

Date: Time: **PHYSICS** Marks: **MAGNETISM AND MATTER** Single Correct Answer Type Magnetic intensity for an axial point due to a short bar magnet of magnetic moment *M* is given by a) $\frac{\mu_0}{4\pi} \times \frac{M}{d^3}$ b) $\frac{\mu_0}{4\pi} \times \frac{M}{d^2}$ c) $\frac{\mu_0}{2\pi} \times \frac{M}{d^3}$ d) $\frac{\mu_0}{2\pi} \times \frac{M}{d^2}$ To measure which of the following, is a tangent galvanometer used b) Angle c) Current d) Magnetic intensity a) Charge A long magnet is placed vertically with its S —pole resting on the table. A neutral point is obtained 10 cm from the pole the geographic north of it. If $H = 3.2 \times 10^{-5} \text{T}$, then the pole strength of magnet is a) 8 ab-A-cm $^{-1}$ b) 16 ab-A-cm⁻¹ c) 32 ab-A-cm^{-1} d) 64 ab-A-cm^{-1} The magnetic moment of a magnet of length 10 cm and pole strength 4.0 Am will be a) $0.4 \, Am^2$ b) $1.6 Am^2$ c) $20 Am^2$ d) $8.0 Am^2$ 5. Two magnets held together in earth's magnetic field with same polarity together make 12 vib - min and when opposite poles together make 4 vib - min. The ratio of magnetic moments is b) 1:3 c) 1:9 d) 10:8 In which direction, the magnetic field on the axis at a distance z from the centre of the bar magnet would he? a) In the perpendicular direction of the magnetic moment (M) of the magnet b) In the direction of the magnetic dipole moment (M) of the magnet c) Its direction depends on the magnitude of the magnetic moment (M) of the magnet d) In the opposite direction of the magnetic dipole moment(M) of the magnet Two short magnets have equal pole strengths but one is twice as long as other. The shorter magnet is placed 20 cm in tan A position from the compass needle. The longer magnet must be placed on the other side of the magnetometer for no deflection at a distance equal to a) 20 cm b) $20 \times (2)^{1/3}$ cm c) $20 \times (2)^{2/3}$ cm d) $20 \times (2)$ cm Electromagnets are made of soft iron because soft iron has a) Low susceptibility and low retentivity b) Low susceptibility and high retentivity c) High permeability and low retentivity d) High permeability and high coercivity A long magnet is cut into two equal parts, such that the length of each half is same as that of original magnet. If the period of original magnetic is *T*, the period of new magnet is 10. If the B-H curves of two samples of P and Q of iron are as shown below, then which one of the following statements is correct?

a) Both *P* and *Q* are suitable for making permanent magnet

Sample Q

b) P is suitable for making permanent magnet and Q for making electromagnet

		ng electromagnet and $\it Q$ is able for making electroma	suitable for permanent mag	gnet	
11		•	gnets agnetic field of strength 1 <i>T</i>	When another magnetic	
11.	-	=	perpendicular direction, the	-	
	angle θ , where θ is	applied to the needle in a p	ber penareular un cedon, the	necure deficets thi ough an	
	a) 30°	b) 45°	c) 90°	d) 60°	
12.		ility does not depend upor	,	u) oo	
	a) Ferrite substances		b) Ferromagnetic subst	ances	
	c) Diamagnetic substan	ces	d) Paramagnetic substa		
13.	, ,		, ,	kg material is magnetized by	
	•	= =	ne hour will be (density of m		
	a) $6 \times 10^4 J$	b) $6 \times 10^4 erg$			
14.		ced in two perpendicular i	magnetic fields \overrightarrow{B} and \overrightarrow{H} and	= = = = = = = = = = = = = = = = = = =	
	a) $B = H$	h) $R \cos A - H \sin A$	c) $B \sin \theta = H \cos \theta$	d) $R = H \tan \theta$	
15	,	•	•	ne side, their time period will	
10.	be	o or two magnets or equal	pole strength and length sai	ne side, then time period win	
	a) Zero	b) One second	c) Infinity	d) Any value	
16.		-	-	deflections produced are 45°	
101	•	•	: 2, the ratio of their pole st	-	
	a) 3:1	b) 3 : 2	c) $\sqrt{3}:1$	d) $2\sqrt{3}:1$	
17.	•		hrough an angle θ with resp		
	field <i>H</i> , then the work do	The state of the s	ough un ungre o with reop		
	a) $MH \sin \theta$		c) $MH \cos \theta$	d) $MH(1 - \cos \theta)$	
18.	•		hich has 10 turns is 0.1 m.		
		$60^{\circ} (B_H = 4 \times 10^{-5} \text{ T}) \text{ is}$		•	
	a) 3 A	b) 1.1 A	c) 2.1 A	d) 1.5 A	
19.	At a temperature of 30°	C, the susceptibility of a fe	erromagnetic material is fou	nd to be X. Its susceptibility	
	at 333° C is				
	a) <i>X</i>	b) 0.5 <i>X</i>	c) 2 <i>X</i>	d) 0.09 <i>X</i>	
20.	Magnetic moment of bar	r magnet is <i>M</i> . The work d	one to turn the magnet by 9	0° of magnet in direction of	
	magnetic field B will be				
	a) Zero	b) $\frac{1}{2}MB$	c) 2 <i>MB</i>	d) <i>MB</i>	
0.4	m 11 11 11 11	4	•	1 1 1	
21.	Two identical short bar magnets, each having magnetic moment of $10 Am^2$, are arranged such that their				
	axial lines are perpendicular to each other and their centres be along the same straight line in a horizontal plane. If the distance between their centres is $0.2 m$, the resultant magnetic induction at a point midway				
	between them is	tween their centres is 0.27	m, the resultant magnetic in	iduction at a point midway	
	$(\mu_0 = 4\pi \times 10^{-7} Hm^{-1})$				
			c) $\sqrt{2} \times 10^{-3} tesla$	d) $\sqrt{5} \times 10^{-3} tesla$	
22				$a)$ $\sqrt{5}$ \times 10^{-3} testa	
<i>ZZ</i> .	a) 5500×10^7	firon is 5500, then it magn b) 5500 × 10^{-7}	c) 5501	d) E400	
22	•	•	,	d) 5499	
23.		_		inting north. The null point is ield (horizontal component)	
	•	s, the magnetic moment of	-	leid (norizontai component)	
	a) $8.0 \times 10^2 e.m.u$	b) $1.2 \times 10^3 e.m.u$	c) $2.4 \times 10^3 e.m.u$	d) $3.6 \times 10^3 e.m.u$	
24	Hysteresis loss is minim		cj 2.7 10 c.m.u	aj Jio A 10 Eillia	
<u>.</u> .	a) Alloy of steel	indea by asing	b) Shell type of core		
	c) Thick wire which has	s low resistance	d) Mu metal		
	o, imen will willen has	15 I COIDCAILCE	a) Ha mean		

23.	30°. The couple acting on		A-m is kept in a magn	euc neid of 50 Wb iii — at an angle
	a) 7.5	b) 3.0	c) 4.5	d) 1.5
26.	If the angular momentum			
	a) <u>eJ</u>	a I	c) <i>eJ</i> 2m	d) $\frac{2m}{eI}$
	m	2111		c)
27.				et is introduced, the deflection
	removed, the period of or		_	ometer is T . When the magnet is $\frac{1}{2}T_0$ is
				d) $T^2 = \frac{T_0^2}{\cos \theta}$
			****	2050
28.		-	=	ength <i>m</i> units is broken into two
	pieces at the middle. The			olece will be
	a) $\frac{M}{2}$, $\frac{m}{2}$	b) $M, \frac{m}{2}$	c) $\frac{M}{2}$, m	d) <i>M</i> , <i>m</i>
29.	A solenoid has core of a r	naterial with relative p	ermeability 500 and its	windings carry a current of $1A.\mathrm{The}$
	number of turns of the so		_	
	a) $2.5 \times 10^3 Am^{-1}$		c) $2.0 \times 10^3 Am^{-1}$	
30.	_			magnetic meridian are placed with
			netic needle. If the need	dle remains undeflected, the ratio of
	their magnetic moments		-) (4 : 125	D 0 /=
21	a) 4:5	b) 16:25	c) 64:125	d) 2 : √5
31.	The lines of force due to (a) Parallel straight lines			a are d) Parabolic
32.	,	The state of the s		mA is to produce a deflection of
521				ent of earth's magnetic field=
	$0.36 \times 10^{-4} \text{ T and } \mu_0 = 4$ a) 229	b) 458	c) 689	d) 916
33.				en to a geomagnetic pole. It
	a) Will become rigid show	•		
	b) Will stay in any position			
	c) Will stay in north-sout	•		
24	d) Will stay in east-west of The magnetic moment of	•		
JT.	a) Much greater than one	-	b) 1	
	c) Between zero and one		d) Equal to zero	
35.				cm. A current of 0.1 A is passing
	through it. The plane of t	he coil is set parallel to	the earth's magnetic m	eridian. If the value of the earth's
				$4\pi \times 10^{-7}$ weber/amp \times m, then
	the deflection in the galva			
	a) 45°	b) 48.2°	c) 50.7°	d) 52.7°
36.	-			(l) and magnetic moment <i>M</i> , the
	four equal pieces, the tim	_	-	net is cut normal to its length into
	a) 16	b) 2	c) 1	., 1
	u, 10	<i>□, •</i>	<i>□</i> , <u>∓</u>	d) $\frac{1}{4}$
37.			ere is bent in the form	of a circle. What is the magnitude of
	magnetic of magnetic dip		_	-
	a) $iL^2/4\pi$	b) $i^2L^2/4\pi$	c) i ² L/8π	d) $iL^2/8\pi$

		_	e radius are connected in se io of the number of turns in	eries. A current flowing in n the coil is
	a) 4/3	b) $(\sqrt{3} + 1)/1$	c) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$	d) $\frac{\sqrt{3}}{1}$
39.	poles facing in a inverted	ts with a length $10\ cm$ and vertical glass tube. The u	y 3 – 1 I weight 50 <i>g-weight</i> are a pper magnet hangs in the a nagnet is 3 <i>mm</i> . Pole streng	ir above the lower one so
40	a) 6.64 <i>amp</i> × <i>m</i>	b) $2 amp \times m$	c) 10.25 <i>amp</i> × <i>m</i>	d) None of these
40.	The magnetized wire of i magnetic moment is	noment <i>M</i> and length <i>I</i> is	pent in the form of semiciro	le of radius <i>r.</i> Then its
	_	b) <i>2 M</i>	M	d) Zero
	a) $\frac{2M}{\pi}$	~, =	c) $\frac{M}{\pi}$,
41.		-	netism identify the proper	ty that is wrongly stated
		do not have permanent m		
		ained in terms of electrom	•	
		s have a small positive sus		
42		t of individual electrons n		ded such that the magnetic
14.				y a very small angle (θ) , the
		Magnetic induction of eart		y a very sman angre (e), and
		b) $\frac{IB_H\theta}{M}$		Ιθ
	aı ——	01	C1	
	I I	1 M	IB_H	d) $\frac{I\theta}{MB_H}$
43.	A tangent galvanometer	has a coil of 25 turns and	a radius of 15 cm. The horiz	contal component of the
43.	A tangent galvanometer earth's magnetic field is	has a coil of 25 turns and a 3×10^{-5} T. The current re	a radius of 15 cm. The horiz quired to produce a deflect	contal component of the ion of 45° in it is
	A tangent galvanometer earth's magnetic field is a a) 0.29 A	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A	a radius of 15 cm. The horiz quired to produce a deflect c) 1.2 A	contal component of the ion of 45° in it is d) 3.6×10^{-5} A
	A tangent galvanometer earth's magnetic field is a a) 0.29 A A magnet makes 40 oscil	has a coil of 25 turns and a 3 × 10 ^{–5} T. The current re b) 0.14 A lations per minute at a pla	a radius of 15 cm. The horiz quired to produce a deflect c) 1.2 A ace having magnetic field in	contal component of the ion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At
	A tangent galvanometer earth's magnetic field is 3 a) 0.29 A A magnet makes 40 oscil another place, it takes 2.	has a coil of 25 turns and a 3 × 10 ^{–5} T. The current re b) 0.14 A lations per minute at a pla	a radius of 15 cm. The horiz quired to produce a deflect c) 1.2 A ace having magnetic field in	contal component of the ion of 45° in it is d) 3.6×10^{-5} A
	A tangent galvanometer earth's magnetic field is 3 a) 0.29 A A magnet makes 40 oscil another place, it takes 2. is+	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place to complete one vibrations.	a radius of 15 cm. The horiz quired to produce a deflect c) 1.2 A ace having magnetic field in ration. The value of earth's l	contal component of the ion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place
44.	A tangent galvanometer earth's magnetic field is a) 0.29 A A magnet makes 40 oscil another place, it takes 2. is+ a) $0.25 \times 10^{-6}T$	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place $5 \sec t$ to complete one vibrob) 0.36×10^{-6} T	a radius of 15 cm. The horizquired to produce a deflect c) 1.2 A ace having magnetic field in ration. The value of earth's left c) $0.66 \times 10^{-8}T$	contal component of the ion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$
44.	A tangent galvanometer earth's magnetic field is 3 a) 0.29 A A magnet makes 40 oscil another place, it takes 2. is $+$ a) $0.25 \times 10^{-6}T$ Two identical magnetic of	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place $5 \sec t$ to complete one vibrol 0.36×10^{-6} T lipoles of magnetic mome	a radius of 15 cm. The horiz quired to produce a deflect c) 1.2 A ace having magnetic field in ration. The value of earth's l c) $0.66 \times 10^{-8} T$ nt 2 Am ² are placed at a sep	contal component of the ion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$ paration of 2 m with their
44.	A tangent galvanometer earth's magnetic field is a) 0.29 A A magnet makes 40 oscil another place, it takes 2. is+ a) $0.25 \times 10^{-6}T$ Two identical magnetic of axis perpendicular to each	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place 5 sec to complete one vibroly 0.36×10^{-6} T lipoles of magnetic momesth other in air. The resulta	a radius of 15 cm. The horiz quired to produce a deflect c) 1.2 A ace having magnetic field in ration. The value of earth's l c) $0.66 \times 10^{-8}T$ at 2 Am ² are placed at a segont magnetic field at a mid-p	contal component of the ion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$ paration of 2 m with their point between the dipoles is
44. 45.	A tangent galvanometer earth's magnetic field is 3 a) 0.29 A A magnet makes 40 oscil another place, it takes 2. is+ a) $0.25 \times 10^{-6}T$ Two identical magnetic caxis perpendicular to each a) $4\sqrt{5} \times 10^{-5}$ T	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place $5 \sec t$ to complete one vibrology 0.36×10^{-6} T lipoles of magnetic mome th other in air. The resultable $2\sqrt{5} \times 10^{-5}$ T	a radius of 15 cm. The horiz quired to produce a deflect c) 1.2 A ace having magnetic field in ration. The value of earth's l c) $0.66 \times 10^{-8} T$ ant 2 Am^2 are placed at a seg ant magnetic field at a mid-p c) $4\sqrt{5} \times 10^{-7} \text{ T}$	contal component of the ion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$ paration of 2 m with their point between the dipoles is d) $2\sqrt{5} \times 10^{-7}$ T
44. 45.	A tangent galvanometer earth's magnetic field is a) 0.29 A A magnet makes 40 oscil another place, it takes 2. is+ a) $0.25 \times 10^{-6}T$ Two identical magnetic caxis perpendicular to each a) $4\sqrt{5} \times 10^{-5}$ T Two short magnets with	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place 5 sec to complete one vibroloop 5 0.36 \times 10^{-6} T lipoles of magnetic mome th other in air. The resultable $2\sqrt{5} \times 10^{-5}$ T pole strengths of 900 ab a	a radius of 15 cm. The horiz quired to produce a deflect c) 1.2 A ace having magnetic field in ration. The value of earth's l c) $0.66 \times 10^{-8} T$ ant 2 Am^2 are placed at a seg ant magnetic field at a mid-p c) $4\sqrt{5} \times 10^{-7} \text{ T}$	contal component of the sion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$ corration of 2 m with their coint between the dipoles is d) $2\sqrt{5} \times 10^{-7}$ T in are placed with their axes
44. 45.	A tangent galvanometer earth's magnetic field is 3 a) 0.29 A A magnet makes 40 oscillanother place, it takes 2. is+ a) $0.25 \times 10^{-6}T$ Two identical magnetic caxis perpendicular to eaca) $4\sqrt{5} \times 10^{-5} \mathrm{T}$ Two short magnets with in the same vertical line,	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place 5 sec to complete one vibroloop 5 sec to complete one vibroloop 5 sec to a complete one vibroloop 5 s	a radius of 15 cm. The horiz quired to produce a deflect c) 1.2 A ace having magnetic field in ration. The value of earth's l c) $0.66 \times 10^{-8}T$ at 2 Am ² are placed at a seg ant magnetic field at a mid-p c) $4\sqrt{5} \times 10^{-7}$ T amp-cm and 100 ab-amp-cm	contal component of the son of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$ contaction of 2 m with their coint between the dipoles is d) $2\sqrt{5} \times 10^{-7}$ T in are placed with their axes is a length of 1 cm. When
44. 45.	A tangent galvanometer earth's magnetic field is 3 a) 0.29 A A magnet makes 40 oscil another place, it takes 2. is+ a) $0.25 \times 10^{-6}T$ Two identical magnetic caxis perpendicular to eaca) $4\sqrt{5} \times 10^{-5}$ T Two short magnets with in the same vertical line, separation between the	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place 5 sec to complete one vibroloop 0.36×10^{-6} T lipoles of magnetic mome chother in air. The resultab) $2\sqrt{5} \times 10^{-5}$ T pole strengths of 900 ab a with similar poles facing the earer poles is 1 cm, the way and the similar poles facing the earer poles is 1 cm, the way and 3×10^{-5} T with similar poles facing the earer poles is 1 cm, the way and 3×10^{-5} T cm, the way and 3×10^{-5} T cm, the way are poles in 3×10^{-5} T cm, the way are poles in 3×10^{-5} T cm, the way are poles in 3×10^{-5} T cm, the way are poles in 3×10^{-5} T cm, the way are poles in 3×10^{-5} T cm, the way are poles in 3×10^{-5} T cm, the way are poles in 3×10^{-5} Cm.	a radius of 15 cm. The horizontarial radius of 15 cm. The horizontarial radius of 1.2 A are having magnetic field in ration. The value of earth's labeled at 2 2 and 2 2 are placed at a segnt magnetic field at a mid-parameter of 2 and 2 are radius of 2 and 2 are radius at a mid-parameter field at a mid-parameter and 100 ab-amp-creation other. Each magnet have	contal component of the ion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$ contains of 2 m with their coint between the dipoles is d) $2\sqrt{5} \times 10^{-7}$ T in are placed with their axes is a length of 1 cm. When apported by the repulsive
44.45.46.	A tangent galvanometer earth's magnetic field is 3 a) 0.29 A A magnet makes 40 oscillanother place, it takes 2. is+ a) $0.25 \times 10^{-6}T$ Two identical magnetic caxis perpendicular to each a) $4\sqrt{5} \times 10^{-5}$ T Two short magnets with in the same vertical line, separation between the force between the magneta) 100 g	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place 5 sec to complete one vibrology 5 sec to complete one vibrology 5 sec to a graph of 5 sec to complete one vibrology 5 sec to a graph of 5 sec to complete one vibrology 5 sec to complete one vibrology 5 sec to complete one vibrology 5 sec to complete one vibrology 5 sec to complete one v	a radius of 15 cm. The horizontal radius of 15 cm. The horizontal radius of 15 cm. The horizontal radius of 2.0 1.2 A for a central radius of earth's left of 2.0 1.0 \times 10 \times	contal component of the ion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$ contaction of 2 m with their point between the dipoles is d) $2\sqrt{5} \times 10^{-7}$ T in are placed with their axes is a length of 1 cm. When apported by the repulsive is d) 77.5 g
44.45.46.	A tangent galvanometer earth's magnetic field is 2 a) 0.29 A A magnet makes 40 oscil another place, it takes 2. is+ a) $0.25 \times 10^{-6}T$ Two identical magnetic of axis perpendicular to each a) $4\sqrt{5} \times 10^{-5}$ T Two short magnets with in the same vertical line, separation between the magnetic between the magneta a) 100 g Nickel shows ferromagnets	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place 5 sec to complete one vibrologically 5 sec to complete one vibrologically 5 sec to a complete	a radius of 15 cm. The horizontal radius of 15 cm. The horizontal radius of 15 cm. The horizontal radius of 2.0 1.2 A for a central radius of earth's left of 2.0 1.0 \times 10 \times	contal component of the sion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$ contains of 2 m with their coint between the dipoles is d) $2\sqrt{5} \times 10^{-7}$ T in are placed with their axes is a length of 1 cm. When apported by the repulsive is
44.45.46.	A tangent galvanometer earth's magnetic field is a) 0.29 A A magnet makes 40 oscillanother place, it takes 2. is+ a) $0.25 \times 10^{-6}T$ Two identical magnetic caxis perpendicular to each a) $4\sqrt{5} \times 10^{-5} T$ Two short magnets with in the same vertical line, separation between the force between the magneta) 100 g Nickel shows ferromagnet temperature, then it will	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place 5 sec to complete one vibrologically 5 sec to complete one vibrologically 5 sec to a complete	a radius of 15 cm. The horizquired to produce a deflect c) 1.2 A are having magnetic field in ration. The value of earth's left of $0.66 \times 10^{-8}T$ and $0.66 \times 10^{-8}T$ and $0.66 \times 10^{-8}T$ and 0.66×10^{-7} To appear appear appear and 0.66×10^{-7} To appear appear and 0.66×10^{-7} To appear	contal component of the ion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$ contains of 2 m with their coint between the dipoles is d) $2\sqrt{5} \times 10^{-7}$ T in are placed with their axes is a length of 1 cm. When apported by the repulsive is d) 77.5 g re is increased beyond Curie
44.45.46.	A tangent galvanometer earth's magnetic field is 3 a) 0.29 A A magnet makes 40 oscillanother place, it takes 2. is+ a) $0.25 \times 10^{-6}T$ Two identical magnetic caxis perpendicular to eaca) $4\sqrt{5} \times 10^{-5} \mathrm{T}$ Two short magnets with in the same vertical line, separation between the magnetic between the magnetical a) 100 g Nickel shows ferromagnetic magnetic between the magnetic magn	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place 5 sec to complete one vibrob) 0.36×10^{-6} T lipoles of magnetic mome though other in air. The resultab) $2\sqrt{5} \times 10^{-5}$ T pole strengths of 900 ab a with similar poles facing the earer poles is 1 cm, the weeks. If $g = 1000$ cms ⁻² , therb) 55 g etic property at room tem show	a radius of 15 cm. The horizquired to produce a deflect c) 1.2 A ce having magnetic field in ration. The value of earth's left of $0.66 \times 10^{-8}T$ and $0.66 \times 10^{-8}T$ are placed at a sent magnetic field at a mid-partic field at a mid-part	contal component of the ion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$ contains of 2 m with their coint between the dipoles is d) $2\sqrt{5} \times 10^{-7}$ T in are placed with their axes is a length of 1 cm. When apported by the repulsive is d) 77.5 g re is increased beyond Curie
44.45.46.47.	A tangent galvanometer earth's magnetic field is 2 a) 0.29 A A magnet makes 40 oscil another place, it takes 2. is+ a) $0.25 \times 10^{-6}T$ Two identical magnetic caxis perpendicular to each a) $4\sqrt{5} \times 10^{-5}$ T Two short magnets with in the same vertical line, separation between the magnetic between the magnetic between the magnetic between the magnetic property temperature, then it will a) Paramagnetism c) No magnetic property	has a coil of 25 turns and a 3×10^{-5} T. The current reb) 0.14 A lations per minute at a place 5 sec to complete one vibrology 5 sec to complete one vibrology 5 sec to a complete one 5 sec	a radius of 15 cm. The horizquired to produce a deflect c) 1.2 A are having magnetic field in ration. The value of earth's left of $0.66 \times 10^{-8}T$ and $0.66 \times 10^{-8}T$ and $0.66 \times 10^{-8}T$ and 0.66×10^{-7} To appear appear appear and 0.66×10^{-7} To appear appear and 0.66×10^{-7} To appear	contal component of the ion of 45° in it is d) 3.6×10^{-5} A tensity of $0.1 \times 10^{-5}T$. At horizontal field at that place d) $1.2 \times 10^{-6}T$ paration of 2 m with their point between the dipoles is d) $2\sqrt{5} \times 10^{-7}$ T In are placed with their axes a length of 1 cm. When apported by the repulsive is d) 77.5 g The ion are placed with their axes are along the repulsive is d) 77.5 g The ion are placed beyond Curie

				Opius Luacatioi
	c) Iron		d) Diamagnetic subs	stance
49.	The basic magnetizatio	n curve for a ferromagne	etic material is shown in fig	gure. Then, the value of relative
	permeability is highest	for the point		
	41	_		
	1.5 Sign 1.0 0.5 P 0 1 2 3 4 5 6 7			
	$H\left(\times 10^3A/m\right)$			
	a) <i>P</i>	b) <i>Q</i>	c) <i>R</i>	d) <i>S</i>
50.	A small bar magnet A o	scillates in a horizontal _l	plane with a period $\it T$ at a p	place where the angle of dip is
	60°. When the same ne	edle is made to oscillate	in a vertical plane coincidi	ng with the magnetic meridian,
	its period will be			
	$\frac{T}{T}$	b) <i>T</i>	c) $\sqrt{2}T$	d) 2 <i>T</i>
	a) $\sqrt{2}$	b) I	C) V21	u) 21
51.	A dip circle is at right a	ngles to the magnetic me		
	a) 0°	b) 90°	c) 45°	d) 4:1
52.			ed along the x -axis in a ma	gnetic field $\vec{B} = (0.5 \hat{\imath} + 3.0 \hat{\jmath})T$.
	The torque acting on th	ie magnet is		
	a) 175 <i>k̂ N-m</i>	b) 150 <i>k̂ N-m</i>	c) 75 <i>k̂ N-m</i>	d) $25\sqrt{37} \ \hat{k} \ N-m$
53.	When a metallic plate s	wings between the pole	s of a magnet	
	a) No effect on the plate		-	
		The second secon		s along the motion of the plate
			the direction of the currer	nt oppose the motion of the plate
	d) Eddy currents are se			_
54.	Susceptibility of Mg at a) 450 K	300 K is 1.2×10^{-5} . The b) 200 K	temperature at which sus c) 375 <i>K</i>	ceptibility will be 1.8×10^{-5} is d) None of these
55.	The magnetic susceptib	oility of paramagnetic ma	aterials is	
	a) Positive, but very hig	gh	b) Negative, but very	y small
	c) Negative, but very hi	O .	d) Positive, but smal	
56.		is represented by the ar	ea enclosed by a hysteresis	s loop (<i>B-H</i> curve)?
	a) Permeability		b) Retentivity	
	, ,	unit volume in the samp	,	
57.		g current <i>i</i> is turned into K.S. unit is <i>M,</i> the length		nitude of magnetic moment
		$\sqrt{4\pi M}$	$4\pi i$	$M\pi$
	a) 4 <i>πiM</i>	b) $\sqrt{\frac{4\pi M}{i}}$	c) $\sqrt{\frac{4\pi i}{M}}$	d) $\frac{M\pi}{4i}$
۲o.	A 10	V	V	
აგ.		-		ace where the angle o dip is 45°
	60° and total intensity i		er or oscinations per minu	te at a place where dip angle is
	a) 5	b) 7	c) 9	d) 11
59.			•	nat of substance <i>Y</i> is slightly
	I CIGGI TO POI III CUDIII	,	o,	

b) X is diamagnetic and Y is ferromagnetic

d) *X* is diamagnetic and *Y* is paramagnetic

more than unity, then

a) *X* is paramagnetic and *Y* is ferromagnetic

c) *X* and *Y* both are paramagnetic

each pole of the magnet experiences a force of $6 \times 10^{-4} N$, the length of the magnet is

60. A bar magnetic moment 3.0 A- m^2 is placed in a uniform magnetic induction field of $2 \times 10^{-5} T$. If

	a) 0.5 m	o) 0.3 m	c) 0.2 m	d) 0.1 <i>m</i>	
61.	A magnet freely suspended	,		,	
	20 oscillations per minute at a place B . If the horizontal component of earth's magnetic field at A is 36 \times				
	10^{-6} T, then its value at <i>B</i> is	_	r	0	
		$(9) 9 \times 10^{-6} \text{T}$	c) 144×10^{-6} T	d) 228×10^{-6} T	
62.		,	-,	,	
·		o) Current	c) Resistance	d) Potential difference	
63.	At a certain place the horizo	•		-	
00.	The total intensity of the fie	-	a magnetie mera 10 20 a	ina ane angre or arp is it i	
	•	b) $\sqrt{2} B_0$	c) 2 B ₀	d) B_0^2	
64	If a bar magnet of length /a:	•			
01.	the pole strength of each po		is cut into two equal parts	as snown in figure, then	
	1	L			
	ι —				
	N	S			
	7 7				
	N	S			
	N	S			
	a) Half	o) Double	c) One-fourth	d) Four time	
65.	At a point on the right bisec	The second secon		,	
	a) Potential varies as $\frac{1}{r^2}$	" CL	O .		
	b) Potential is zero at all po	ints on the right hisector			
	c) Field varies as r^2	ints on the right bisector			
	d) Field is perpendicular to	the axis of dinole	ATION		
66.	Two short magnets placed a		hair lika nolas facing each	other renel each other with	
00.	a force which varies inverse		men like poles lacing each	other repercach other with	
	a) Square of the distance	Liy as	b) Cube of the distance		
	c) Distance		d) Fourth power of the dis	stance	
67.	A bar magnet of magnetic m	noment \overrightarrow{M} is placed in a m			
	is	iomene m is placed in a m	agnetic held of madetion i	7. The torque exerted on it	
		$(\mathbf{D}) - \overrightarrow{M} \cdot \overrightarrow{B}$	c) $\vec{M} \times \vec{B}$	d) $\vec{B} \times \vec{M}$	
68	A dip needle which is free to	,	•	•	
00.	a) Horizontal	o move m a vertical plane	b) Vertical	mendian win remain	
	c) Neither horizontal nor ve	ertical	d) Inclined		
69			-	Which of the following	
0,1	Relative permittivity and permeability of a material are ε_r and μ_r , respectively. Which of the following values of these quantities are allowed for a diamagnetic material?				
	a) $\varepsilon_r = 0.5$, $\mu_r = 1.5$	9		d) $\varepsilon_m = 1.5$, $\mu_m = 1.5$	
70.	At a place the angle of dip is				
	field intensity is			т по	
	•	$2B_H$	> - F	12 - /5	
	a) $\frac{B_H}{2}$	$(2)\frac{2B_H}{\sqrt{3}}$	c) $B_H\sqrt{2}$	d) $B_H\sqrt{3}$	
71.	Two magnets of equal mass	are joined at 90° each ot	her as shown in figure. Mag	gnet $N_1 S_1$ has a magnetic	
	moment $\sqrt{3}$ times that of N_2	$_2$ S_2 . The arrangement is p	pivoted so that it is free to i	otate in horizontal plane.	

When in equilibrium, what angle should $N_1 \ S_1$ make with magnetic meridian?

a) 75°

b) 60°

c) 30°

72. Two normal uniform magnetic fields contain a magnetic needle making an angle 60° with *F*. Then the ratio

a) 1:2

b) 2:1

c) $\sqrt{3} : 1$

d) 1 : $\sqrt{3}$

73. A short bar magnet experiences a torque of magnitude 0.64 J. When it is placed in a uniform magnetic field of 0.32 T, taking an angle of 30° with the direction of the field. The magnetic moment of the magnet is

a) 1 Am²

b) 4 Am²

c) 6 Am²

d) None of these

74. A circular loop of radius 0.0157 m carries a current of 2.0 A. The magnetic field at the center of the loop is $[\mu_0 = 4\pi \times 10^{-7} \text{Wb} - \text{A}^{-1} \text{m}^{-1}]$

a) 1.57×10^{-5} Wb $- m^2$

b) $8.0 \times 10^{-5} \text{ Wb} - \text{m}^2$

c) $2.0 \times 10^{-5} \text{ Wb} - \text{m}^2$

d) $3.14 \times 10^{-5} \text{ Wb} - \text{m}^2$

75. A magnet is suspended in such a way that it oscillates in the horizontal plane. It makes 20 oscillations per minute at a place where dip angle is 30° and 15 oscillations per minute at a place where dip angle 60°. The ratio of total earth's magnetic field at the two places is

a) $3\sqrt{3} : 8$

b) $16:9\sqrt{3}$

c) 4:9

d) $2\sqrt{3}:9$

76. A certain amount of current when flowing in a properly set tangent galvanometer, produces a deflection of 45°. If the current be reduced by a factor of $\sqrt{3}$, the deflection would

a) Decrease by 30°

b) Decrease by 15°

c) Increase by 15°

d) Increase by 30°

77. The magnetic field of earth is due to

a) Motion and distribution of some material in and outside the earth

b) Interaction of cosmic rays with the current of earth

c) A magnetic dipole buried at the centre of the earth

d) Induction effect of the sun

78. A bar magnet is placed north-south with its north pole due north. The points of zero magnetic field will be in which direction from center of magnet

a) North and south

b) East and west

c) North-east and south-west

d) North-east and south-east

79. A deflection magnetometer is adjusted in the usual way. When a magnet is introduced, the deflection observed is θ , and the period of oscillation of the needle in the magnetometer is T. When the magnet is removed, the period of oscillation is T_0 . The relation between T and T_0 is

a) $T^2 = T_0^2 \cos \theta$ b) $T = T_0 \cos \theta$

c) $T = \frac{T_0}{\cos \theta}$ d) $T^2 = \frac{T_0^2}{\cos \theta}$

80. A compass needle placed at a distance r from a short magnet in a tan A position shows a deflection of 60°. If the distance is increased to $r(2)^{1/3}$, the deflection of compass needle is

b) 60°

d) 0°

81. At the magnetic poles of the earth, a compass needle will be

a) Vertical

b) Bent slightly

c) Horizontal

d) Inclined at 45° to the horizontal

82. The length of magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is 2 s. The magnet is cut along its length into three equal parts and these parts are then placed on each other with their like poles together. The time period of this combination will be

	a) $\frac{2}{\sqrt{3}}$ s	b) $\frac{2}{3}$ s	c) 2√3s	d) 2 s	
83.	Water is				
	a) Diamagnetic	b) Paramagnetic	c) Ferromagnetic	d) None of these	
84.	34. The ratio of magnetic moments of two bar magnets is 13 : 5. These magnets held together in a vibration magnetometer oscillate with 15 oscillations per minute in earth's magnetic field with like poles together. What will be the frequency of oscillations of system if unlike poles are together				
	a) 10 oscillations/min	b) 15 oscillations/min	c) 12 oscillations/min	d) $\frac{75}{13}$ oscillations/min	
85.	Curie temperature is the call Paramagnetic substants b) Paramagnetic changes c) Diamagnetic changes tall Ferromagnetic changes tall Paramagnetic cha	ce changes of ferromagneti to diamagnetic o paramagnetic	c		
86.	Time period for a magnet	is T . If it is divided in four	equal parts along its axis a	nd perpendicular to its axis	
	as shown then time perio				
	S				
	a) 4 <i>T</i>	b) T/4	c) T/2	d) <i>T</i>	
87.		, ,	deal battery. If the number	•	
071	doubled, the deflection w		dear bactery in the namber	or turns in the con is	
	a) Increase		b) Decrease		
	c) Remain unchanged		d) Either increase or decr	rease	
88.	Curie-Weiss law is obeyed	d by iron	,		
	a) At Curie temperature o		b) At all temperatures		
	c) Below Curie temperatu		d) Above Curie temperati	ıre	
89.			27°C. At what temperature	e will its susceptibility be	
	K/2?				
	a) 600°C	b) 287°C	c) 54°C	d) 327°C	
90.	Two bar magnets with ma	agnetic moments 2 <i>M</i> and <i>l</i>	M are fastened together at i	right angles to each other at	
	their centres to form a cro	ossed system, which can ro	tate freely about a vertical	axis through the centre.	
	The crossed system sets i	n earth's magnetic field wi	th magnet having magnetic	moment $2M$ making an	
	angle θ with the magnetic	c meridian such that			
	a) $\theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$	b) $\theta = \tan^{-1}(\sqrt{3})$	c) $\theta = \tan^{-1}\left(\frac{1}{2}\right)$	d) $\theta = \tan^{-1}\left(\frac{3}{4}\right)$	
91.	, ,		• •	nts obtained on the board is	
	a) Four	b) Three	c) Two	d) One	
92.	•		moment M , are taken, If P i	,	
	_	al line, all the four pieces o		O	
	a) Equal pole strength	-	c) Magnetic moment $\frac{M}{2}$	d) Magnetic moment M	
93	When a niece of a ferrom	•	a uniform magnetic field, th		
73.	-	•	magnetic permeability of t	•	
	a) 1	b) 2	c) 3	d) 4	
94	•	,	er min. At another place wh	,	
JŦ.	double, its time period wi	=	a min, at another place wil	ere the magnetic ficialis	
	a) 4 s	b) 2 s	c) 1/2 s	d) $\sqrt{2}$ s	
95	•		e atom is not zero, is know	•	
<i>,</i> ,,	Substances in wintin the L	nagnetic moment of a singl	c acom is not Let 0, is know	น ผง	

GPLUS EDUCATION

	a) Diamagnetism		b) Ferromagnetism		
	c) Paramagnetism		d) Ferrimagnetism		
96.	A bar magnet has a magne	etic moment equal to $5 imes 1$	0^{-5} Wb-m. It is suspended	in a magnetic field which	
	has a magnetic induction	<i>B</i> equal to $8\pi \times 10^{-4}$ T. Th	e magnet vibrates with a p	eriod of vibration equal to	
	15 s. The moment of inert	ia of magnet is			
	a) $4.54 \times 10^4 \text{ kg} - \text{m}^2$	b) $4.54 \times 10^{-5} \text{ kg} - \text{m}^2$	c) $4.54 \times 10^{-4} \text{ kg} - \text{m}^2$	d) $4.54 \times 10^5 \text{ kg} - \text{m}^2$	
97.		e between magnetic poles v			
	them are both doubled				
	a) Force increases to two	times the previous value			
	b) No change	•			
	c) Force decreases to half	the previous value			
	d) Force increases to four	times the previous value			
98.	The vertical component o	f earth's magnetic field is z	ero at or The earth's magn	etic field always has a	
	vertical component excep	t at the	_	•	
	a) Magnetic poles	b) Geographical poles	c) Every place	d) Magnetic equator	
99.	A bar magnet is held at rig	ght angles to a uniform mag	gnetic field. The couple act	ing on the magnet is to be	
	halved by rotation it from	this position. The angle of	rotation is		
	a) 60°	b) 45°	c) 30°	d) 75°	
100	. The angle of dip at a place	e on the earth gives			
	a) The horizontal component of the earth's magnetic field				
	b) The location of the geo	graphic meridian			
	c) The vertical componen	t of the earth's field			
	d) The direction of the ear	rth's magnetic field	P		
101	. The magnetic lines of forc	e inside a bar magnet			
	a) Are from north-pole to	south-pole of the magnet			
	b) Do not exist				
		of cross-section of the bar	magnet		
		north-pole of the magnet	ATTON .		
102		magnetic field behaves lik			
	a) Magnetic dipole	b) Magnetic substance	c) Magnetic pole	d) All are true	
103	•	-		a certain distance \emph{d} apart. If	
	-	is negligible as compared	to d , the force between the	m will be inversely	
	proportional to		1		
	a) <i>d</i>	b) <i>d</i> ²	c) $\frac{1}{d^2}$	d) <i>d</i> ⁴	
104	. Magnetic dipole moment	ic a	a^{2}		
101	a) Scalar quantity	b) Vector quantity	c) Constant quantity	d) None of these	
105		· making electromagnets sh		d) None of these	
103	a) High retentivity and hi	-	b) Low retentivity and lo	w coercivity	
	c) High retentivity and lo	•	d) Low retentivity and hi	-	
106	. Isogonic lines on magneti		a) how recentivity and in	Sir coercivity	
100	a) Zero angle of dip	e map win nave	b) Zero angle of declination	on	
	c) Same angle of declinati	on	d) Same angle of dip		
107	· -	ition magnetometer is T_0 . It		nother magnet whose	
107	-	nes and magnetic moment i		=	
	be	ies and magnetic moment	o 1/ o or the initial magnet	The time period now win	
	a) $3T_0$	b) <i>T</i> ₀	c) $T_0/\sqrt{3}$	d) $T_0/3$	
108		are drawn by keeping magi			
100	a) One	b) Two	c) Four	d) Five	
	a) One	<i>0)</i> 1 W 0	c _j rour	aj i ive	

- 109. The magnetic moment of a magnet is 0.1 amp \times m². It is suspended in a magnetic field of intensity 3 \times 10^{-4} Wbm⁻². The couple acting upon it when deflected by 30° from the magnetic field is a) 1×10^{-5} N m b) 1.5×10^{-5} N m c) 2×10^{-5} N m d) 2.5×10^{-5} N m 110. The variation of magnetic susceptibility (χ) with magnetising field for a paramagnetic substance is a) (+) 1 111. Due to the earth's magnetic field, charged cosmic ray particles a) Require greater kinetic energy to reach the equator than the poles b) Require less kinetic energy to reach the equator than the poles c) Can never reach the equator d) Can never reach the poles 112. Magnetic lines of force due to a bar magnet do not intersect because a) A point always has a single net magnetic field b) The lines have similar charges and so repel each other c) The lines always diverge from a single point d) The lines need magnetic lenses to be made to intersect 113. Tangent galvanometer is used to measure a) Steady currents b) Current impulses c) Magnetic moments of bar magnets d) Earth's magnetic field 114. The figure illustrates how B, the flux density inside a sample of unmagnetised ferromagnetic material, varies with B_0 , the magnetic flux density in which the sample is kept. For the sample to be suitable for making a permanent magnet PLUS EDUCATION a) *OQ* should be large, *OR* should be small b) OQ and OR should both be large c) OQ should be small and OR should be large d) OQ and OR should both be small 115. A bar magnet of magnetic moment $10^4 I/T$ is free to rotate in a horizontal plane. The work done in rotating the magnet slowly from a direction parallel to a horizontal magnetic field of $4 \times 10^{-5} T$ to a direction 60°
- from the field will be
 - a) 0.2 /

b) 2.0 *J*

- c) 4.18 *J*
- d) $2 \times 10^2 I$
- 116. Two like magnetic poles of strength 10 and 45 SI units are separated by a distance 30 cm. The intensity of magnetic field is zero on the line joining them
 - a) At a point 10 cm from the stronger pole
- b) At a point 20 cm from the stronger pole

c) At the mid-point

- d) At infinity
- 117. Domain formation is the necessary feature of
 - a) Ferromagnetism
- b) Paramagnetism
- c) Diamagnetism
- d) All of these
- 118. A short bar magnet placed with its axis at 30° with a uniform external magnetic field of 0.16 tesla experiences a torque of magnitude 0.032 J. The magnetic moment of bar magnet will be
 - a) 0.23 J/T
- b) 0.40 I/T
- c) 0.80 J/T
- 119. Some equipotential surfaces of the magnetic scalar potential are shown in the figure. Magnetic field at a point in the region is

 $10^{-2}T$. If a current of 0.1 A is passed through the coil, what is the couple acting a) $5\sqrt{3} \times 10^{-7} N - m$ b) $5\sqrt{3} \times 10^{-10} N - m$ c) $\frac{\sqrt{3}}{5} \times 10^{-7} N - m$ d) None of these

130. Curie's law can be written as

b) $\chi \propto \frac{1}{T - T_c}$ c) $\chi \propto \frac{1}{T}$ a) $\chi \propto (T-T_c)$

131. Two bar magnets of the same mass, same length and breadth but having magnetic moments M and 3M are joined together pole for pole and suspended by a string.

	•	•	trength H is 3 s. If now the property is H in H is H and H is H is H is H and H is	•
	_	the combination is again m	ade to oscillate in the same	field, the time of oscillation
	is	-	. —	
	a) 3 s	b) $3\sqrt{3}$ s		d) 6 s
132.	A magnet of magnetic mo	ment $\it M$ is rotated through	360° in a magnetic field H .	The work done will be
	a) <i>MH</i>	b) 2 <i>MH</i>	c) 2πMH	d) Zero
133.	A coil of 50 turns and area	a $1.25 \times 10^{-3} \text{ m}^2$ is pivoted	d about a vertical diameter	in a uniform horizontal
	magnetic field and carries	s a current of 2 A. When the	e coil is held with its plane i	s $N - S$ of 2A. When the
	coil is held with its plane i	in $N-S$ direction, it exper	rience a couple of 0.04 N-m;	and when its plane is E –
	-	iple is 0.03 N-m. The magn	=	•
	a) 0.2 T	b) 0.3 T	c) 0.4 T	d) 0.5 T
134.		,	noment 10 Am ² . Find the m	•
	-	-	is negligible as compared t	-
	a) $2 \times 10^{-3} \text{ T}$	b) $3 \times 10^{-3} \text{T}$		d) $4 \times 10^{-3} \text{ T}$
125	Lines which represent pla		•	uj + × 10 1
133.	a) Isobaric lines	b) Isogonic lines	_	d) Igodymamia linos
126	,	, ,	•	•
136.		0 0	etic moment <i>M</i> , are placed a	•
		n otner in a norizontal plai	ne. The magnetic induction	at a point midway between
	them is	1.4	.O . M	7.6
	a) $\frac{\mu_0}{1}(\sqrt{2})\frac{M}{12}$	b) $\frac{\mu_0}{1}(\sqrt{3})\frac{M}{18}$	c) $\left(\frac{2\mu_0}{\pi}\right)\frac{M}{d^3}$	d) $\frac{\mu_0}{1}(\sqrt{5})\frac{M}{12}$
405	17t tt	in a	$\langle n \rangle \alpha$	17t tt
137.	-		rom its centre is 10 cm and	
	-		. The length of the magnet	
	a) 5 <i>cm</i>	b) 25 <i>cm</i>	c) 10 <i>cm</i>	d) 20 <i>cm</i>
			bar magnet with usual nota	
	\overline{I}	MB_{II}	c) $T = \sqrt{\frac{I}{MB_H}}$	B_{II}
	a) $T = 2\pi \left \frac{1}{MR_H} \right $	b) $T = 2\pi \left \frac{112 \text{H}}{I} \right $	c) $T = \left \frac{1}{MR_{tt}} \right $	d) $T = 2\pi \left \frac{-\pi}{MI} \right $
139.		• •	stance between the poles a	nd pole strengths of each
	pole are doubled, then the			
	a) <i>2F</i>	b) $\frac{F}{2}$	$c)\frac{F}{-}$	d) <i>F</i>
	***	4	1	
140.			ature above its curie point,	
	a) Is permanently magnet		b) Remains ferromagnetic	
	c) Behaves like a diamagn		d) Behaves like a parama	
141.			c field. It experiences force	and torque both due to
	unequal forces acting on p	ooles.		
	a) A torque but not a force	e	b) Neither a force nor a to	orque
	c) A force and a torque		d) A force but not a torqu	e
142.	The value of the horizonta	al component of the earth's	s magnetic field and angle o	f dip are 1.8 ×
	10^{-5} weber/ m^2 and 30° re	espectively at some place.	The total intensity of earth	s magnetic field at that
	place will be		-	
	a) $2.08 \times 10^{-5} weber/m^2$		b) $3.67 \times 10^{-5} weber/m^2$	
	c) $3.18 \times 10^{-5} weber/m^2$		d) $5.0 \times 10^{-5} weber/m^2$	
142		et due to the earth' magne	tic field is maximum when	the axis of the magnet is
113	a) Perpendicular to the fig	_	de neia is maximum when	are axis of the magnet is
	•	component of the earth's fi	iold	
	=	=	iciu	
	c) At an angle of 33° with	respect w-s direction		

d) Along the North-South (N-S) direction

GPLUS EDUCATION

144.	144. If the magnetic is cut into four equal parts such that their lengths and breadths are equal. Pole strength of			
	each part is			
	a) <i>m</i>	b) <i>m/2</i>	c) <i>m/4</i>	d) <i>m/8</i>
145.	-	• •		nt magnetic field, indicated
	by arrow head at the poin	_		,
	S	_		
	P			
	N			
	a)	b) 🖊	c) \	d)
146.	A bar magnet of length 10	cm and having pole streng	rth equal to 10 ⁻³ Wh is ken	t in a magnetic field having
		al to $4\pi \times 10^{-3}$ T. It makes		
		torque acting on the magne		ection of magnetic
	a) 0.5 Nm		c) $\pi \times 10^{-5} \text{ Nm}$	d) $0.5 \times 10^{-5} \text{ Nm}$
147	•	-	-	sidual magnetism to zero is
147.	called	un ed to be applied in oppo	site direction to reduce res	diddai magnetism to zero is
	a) Coercivity	b) Retentivity	c) Hysteresis	d) None of these
148.	A paramagnetic liquid is t	aken in a U-tube and arran	ged so that one of its limbs	is kept between pole
	pieces of the magnet. The	liquid level in the limb		
	a) Goes down		b) Rises up	
	c) Remains same		d) First goes down and th	en rises
149.	A bar magnet is oscillating	g in the Earth's magnetic fie	, ,	
	motion if its mass is quad		•	
	a) Motion remains SHM w	L'IL	b) Motion remains SHM a constant	nd period remains nearly
	a) Motion romaina CHM v	with times manied - 2T		with time an awied— AT
150	c) Motion remains SHM w		d) Motion remains SHM w	-
150.	of the following is best	s (B-H) curves are given as	snown in figure. For makir	g temporary magnet which
	a) ^B	b)	c) $\stackrel{B}{\uparrow}$	d) ^B ↑
				7
	\longrightarrow H	\longrightarrow H	\longrightarrow H	\longrightarrow H
151.	A magnet makes 5 oscillat	tions per min in $B = 0.3 \times 10^{-1}$	10 ^{–4} T. By what amount sh	ould the field be increased
	so that number of oscillat	ions is 10 in the same time?	?	
	a) 0.3×10^{-4} T	b) $0.6 \times 10^{-4} \mathrm{T}$	c) $0.9 \times 10^{-4} \text{ T}$	d) $1.2 \times 10^{-4} \text{ T}$
152.	The length of a magnet is	large compared to its width	n and breadth. The time pe	riod of its oscillation in a
	vibration magnetometer i	s 2 s. The magnet is cut alo	ng its length into three equ	al parts and three parts are
	then placed on each other	with their like poles togetl	her. The time period of this	combination will be
	a) 2 s	b) 2/3 s	c) $2\sqrt{3}$ s	d) $2/\sqrt{3}s$
153.		a ferromagnetic material is	•	· '
	of hysteresis loop of alter	nating magnetizing field of	_	_
	loss per second will be			
		b) 2.777×10^{-5} J		
154.	A small bar magnet has a be: $(\mu_0 = 4\pi \times 10^{-7} - m/A)$	magnetic moment 1.2 <i>A-m²</i>	² . The magnetic field at a di	stance $0.1 m$ on it axis will
	a) $1.2 \times 10^{-4}T$	b) $2.4 \times 10^{-4}T$	c) $2.4 \times 10^4 T$	d) $1.2 \times 10^4 T$
155		•	•	uj 1.4 ^ 10 1
TOO.	ome of magnetic flux dens	sity (or magnetic induction)	<i>)</i> 19	

	a) Tesla		b) Weber/metre ²	
	c) Newton/ampere – m	etre	d) All of the above	
156		ical short bar magnets who f separation is increased to ld become		
	a) 2.4 N	b) 1.2 N	c) 0.1 N	d) 1.15 N
157	because of the restoring a) The torsion of the silk b) The force of gravity		m	the horizontal plane
		nent of earth's magnetic fie	ια	
450	d) All of the above factor			. 34 ' 17 141 . ' .1
158		t a point on the axial line of		ment M is V . What is the
	magnetic potential due to	o a bar magnet of dipole mo	ment $\frac{M}{4}$ at the same point	
	a) 4 <i>V</i>	b) 2 <i>V</i>	c) $\frac{V}{2}$	d) $\frac{V}{4}$
		,	4	4
159		nt galvanometer is increase		
	a) Number of turn decrea	ases	b) Number of turn increas	ses
	c) Field increases		d) None of the above	
160	9	elations is correct in magnet		
	a) $I^2 = V^2 + H^2$	b) $I = V + H$	$c) V = I^2 + H^2$	$d) V^2 = I + H$
161	. Susceptibility of ferroma		5	
	a) >1	b) <1	c) Zero	d) 1
162		e equipment from the exter	nal magnetic field, it should	l be
	a) Placed inside an alumi			
	b) Placed inside an iron of			
	c) Wrapped with insulatedd) Surrounded with fine	ion around it when passing copper sheet	current through it	
163	. The plane of a dip circle i	s set in the geographic mer	idian and the apparent dip	is δ_1 .
	It is then set in a vertical	plane perpendicular to the	geographic meridian. The a	apparent dip angle is δ_2 .
	The declination θ at the p	olace is		
	a) $\theta = \tan^{-1}(\tan \delta_1 \tan \delta$	2)	b) $\theta = \tan^{-1}(\tan \delta_1 + \tan \delta_2)$	δ_2)
	c) $\theta = \tan^{-1} \left(\frac{\tan \delta_1}{\tan \delta_2} \right)$		d) $\theta = \tan^{-1}(\tan \delta_1 - \tan \delta_1)$	δ_2)
164	. Two magnets of same siz	e and mass make respective	ely 10 and 15 oscillations	<i>per minute</i> at certain place.
	The ratio of their magnet		·	•
	a) 4:9	b) 9:4	c) 2:3	d) 3 : 2
165		resis curve for a given mate		
	a) Voltage loss	b) Hysteresis loss	c) Current loss	d) All of these
166	. The universal property o	• •	,	,
	a) Diamagnetism	b) Ferromagnetism	c) Paramagnetism	d) All of these
167	,	ts are placed one above the	,	
	_	ne period of this combination		
	of each magnet in the sar			F
	a) $\sqrt{2} T$	b) $2^{\frac{1}{4}}T$	c) $2^{\frac{1}{4}}T$	d) $2^{\frac{1}{2}}T$
1.00	-		CJ Z4 I	ω) Δ2 <u>I</u>
108		f a diamagnetic substance	h) Ia not offerted beet	onatura
	a) Decreases with tempe		b) Is not affected by temp	
	c) Increases with temper	atult	d) First increase then dec	rease with temperature

			•
169. The magnetic field	due to a small magnetic di	pole of magnetic moment <i>M</i>	, at distance r from the centre on
=	is given by (in M.K.S systen	The state of the s	
a) $\frac{\mu_0}{M} \times \frac{M}{M}$	b) $\frac{\mu_0}{M} \times \frac{M}{M}$	c) $\frac{\mu_0}{4\pi} \times \frac{2M}{r^2}$	d) $\frac{\mu_0}{M} \times \frac{2M}{M}$
176 1	176 1	176 7	176 1
mass 50 mg, and th	-	tal. If the strength of each po	upper end is now loaded with a ole is 98.1 ab-amp-cm and g=981
a) 0.50 G	b) 0.25 G	c) 0.005 G	d) 0.05 G
171. The magnetism of a		c) 0.003 d	u) 0.03 G
a) The earth	i magnet is due to	b) Cosmic rays	
c) The spin motion	of alactrons	•	nagnet inside the earth
		deflection in a tangent galva	_
172. Which curve may b	est represent the current t	deficetion in a tangent gaiva	nometer
$\frac{\pi}{2} \qquad \qquad \frac{\mathbf{a} \mathbf{b}}{\mathbf{d}} \qquad \qquad \mathbf{b}$			
a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>
-	_	tometer depends on which	_
	-	-	ion, \emph{M} is the magnetic moment of
~	s the external magnetic fie		
a) <i>I</i> and <i>M</i> only			d) I, M and H only
_		_	xis and co-ordinates of their
		The state of the s	les of CD is opposite to that of AB
			and CD at a point $P(2, 2)$ is $100 >$
_	_		induction is 50×10^{-7} T. The
	noments of AB and CD (in AB)		
a) 300; 200	b) 600; 400	c) 200; 100	d) 300; 150
-	a bar magnet suspended h	orizontally in the earth's m	agnetic field and allowed to
oscillate			
	ortional to the square root		
	ortional to its pole strength		
, , ,	portional to its magnetic m		
_	ength increases but pole st	_	
	-		a short bar magnet at a certain
<u> </u>	osition. If the distance is do		
a) $\sin^{-1}\left[\frac{\sqrt{3}}{8}\right]$	b) $\cos^{-1}\left[\frac{\sqrt{3}}{8}\right]$	$\tan^{-1}\left \frac{\sqrt{3}}{2}\right $	d) $\cot^{-1}\left[\frac{\sqrt{3}}{8}\right]$
a) 3111 [8]	p) cos [8]	c) tan [8]	a) coc [8]
177 A D	- 1t1tt1 4t1-		haratan andrama andriah isanisih la
		arge in the upper layers of t	he atmosphere, which is visible
more frequently in		b) F	
a) Polar regions		b) Equator	
c) Lunar eclipse		d) Regions of earth'	-
	e nuil points is on the equa	torial line of a par magnet, v	when the north pole of the magne
is pointing	h) Carrela	a) East	d) Mask
a) North	b) South	c) East	d) West
			$3 \times 10^{-23} Am^2$. Knowing that the
_	_	veight is 56 and Avogadro's	number of 6.02×10^{23} the
magnetic moment of	of bar in the state of magne	etic saturation will be	

a) $4.75 Am^2$ 180. Magnetic meridian i	b) $5.74 Am^2$ is a	c) 7.54 Am ²	d) 75.4 <i>Am</i> ²
a) Point		c) Vertical plane	d) Line along <i>N-S</i>
181. A very long magnet	-	-	point was found at 20 cm from
the pole. What is the	e pole strength if the vertica	l component of earth's field	is $0.4 \times 10^{-4} \text{Wbm}^{-2}$?
a) 16 A-m	b) 8 A-m	c) 4 A-m	d) None of these
182. The only property p	oossessed by ferromagnetic	substance is	
a) Hysteresis		b) Susceptibility	
c) Directional prope	•	d) Attracting magneti	c substances
	quation for magnetic field li		
a) $\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$	b) $\overrightarrow{\nabla} \cdot \overrightarrow{B} \neq 0.1$	c) $\overrightarrow{\nabla} \cdot \overrightarrow{B} > 0$	$\mathrm{d}) \vec{\nabla} \cdot \vec{B} < 0$
184. The hysteresis cycle	e for the material of perman	_	
a) Short and wide	b) Tall and narrow	-,	d) Short and narrow
185. An electron moving		angular momentum l has a	magnetic moment
a) $\frac{e}{m}l$	b) $\frac{e}{2m}l$	c) $\frac{2e}{m}l$	d) $\frac{e}{2\pi m}l$
116			270110
S	solute permeability of the m	d is 499. The absolute perm	eability of vacuum is 4n ×
		c) $3\pi \times 10^{-4} \text{ HM}^{-1}$	$d) 4\pi \times 10^{-4} \text{ um}^{-1}$
		moment 'M' by an angle of	-
		rough an angle at 60°, when	
a) 1/2	b) 2	c) 1/4	d) 1
, ,			n magnetic field of intensity 0.3
_		ng it by an angle of 30° in Co	_
a) 6	b) 3√3	c) $3(2-\sqrt{3})$	d) 3
•	required to demagnetize th		
a) Retaintivity	-	c) Energy loss	d) Hysteresis
	magnetic meridian and geog	graphical meridian is known	
a) Magnetic dip		b) Magnetic latitude	
c) Magnetic Declina	ition	d) Magnetic longitude	2
191. An inductor of 10 m	H shows 50 mH when oper	ate with a core mad e of ferr	ite. The susceptibility of ferrite
is			
a) 5	b) 4	c) 3	d) None of these
O .	•	•	ally with its north pole on the
	, , ,	the pole, a neutral point is o	btained. If $H = 0.3$ G, then the
	magnet is approximately		
a) 185 ab-amp-cm	b) 185 amp-m	c) 18.5 ab-amp-cm	d) 18.5 amp-cm
			th into two equal parts and one
	in the same way, then its tin	=	
a) 4 <i>sec</i>	b) 2 <i>sec</i>	c) $\sqrt{2}$ sec	d) 1 <i>sec</i>
J		¹⁻¹ is placed with its axis per	•
		ne magnet, the resultant fiel	d is inclined at 45° with earth's
field, $H = 0.4 \times 10^{-1}$			
a) 5 m	b) 0.5m	c) 2.5 m	d) 0.25 m
		g – m ² vibrate in a magneti	
		he magnetic moment of the	
a) 350 A — m²	b) $490 \text{ A} - \text{m}^2$	c) $3300 \text{ A} - \text{m}^2$	d) $5000 \text{ A} - \text{m}^2$

196. A magnet performs 10 os and the total intensity is 0 is 60° and total intensity	0.707 CGS units. The numbe		here the angle of dip is 45° e at a place where dip angle
a) 5	b) 7	c) 9	d) 11
	•	,	•
197. There is no couple acting	· ·	placed coaxially separated	by a distance because
a) There are no forces on	-		
	and their lines of action do r	not coincide	
c) The forces are perpend	licular to each other		
d) The forces act along th	e same line		
198. The points A and B are sit	tuated perpendicular to the	e axis of 2 cm long bar magr	net at large distances x and
3x from the centre on opp	posite sides. The ratio of ma	agnetic fields at A and B wil	ll be approximately equal to
a) 27 : 1	b) 1 : 27	c) 9:1	d) 1:9
199. The correct relation is	,		,
	component of earth's magn	etic field: $B_{vr} = \text{Vertical cor}$	nnonent of earth's
	otal intensity of earth's mag		inponent or cur til b
		-	
a) $\boldsymbol{B} = \frac{B_V}{B_W}$	b) $\boldsymbol{B} = B_V \times B_H$	c) $ B = \int B_H^2 + B_V^2$	$d) \mathbf{B} = B_H + B_V$
~ п		v	
of earth's magnetic field=	in the horizontal plane, the	net magnetic induction at <i>l</i>	o the norizontal plane. If the P is (Horizontal component
a) Zero	b) 2 <i>B_H</i>	c) $\frac{\sqrt{5}}{2}B_{H}$	d) $\sqrt{5} B_H$
201. At which place, earth's ma	agnetism becomes horizont	cal	
a) Magnetic pole	b) Geographical pole	c) Magnetic meridian	d) Magnetic equator
202. The angle of dip at a certa			
	The magnetic field at the pla	-	iorizontai component oi
_			1) 0 65 6
a) 0.13 G	b) 0.26 G	c) 0.52 G	d) 0.65 G
203. The variation of magnetic	\mathcal{L} susceptibility (\mathcal{L}) with abs	solute temperature 1 for a	ierromagnetic is given in
figure , by			
+ve	+ve	+ve	+ve
x	x	x	
a) [*]	b)	c) "	d) $x _{(0,0)} \longrightarrow T$
		3	(0, 0)
(0,0) T	(0,0) T	T	-
, , ,		(0, 0)	-ve
204. At a certain place, horizon	ntal component is $\sqrt{3}$ times †	the vertical component. Th	e angle of dip at this place
is			
a) Zero	b) $\pi/3$	c) π/6	d) None of these
205. The resultant magnetic m	• •	• •	
a) Infinity		c) Zero	μ_B
a) mining	b) μ_B	e, zero	d) $\frac{\mu_B}{2}$
206. The horizontal componen	nt of the earth's magnetic fie	eld is 0.22 <i>gauss</i> and total i	magnetic field is 0.4 gauss.
The angle of dip is	S	G	
a) $tan^{-1}(1)$	b) tan ⁻¹ (∞)	c) tan ⁻¹ (1.518)	d) $tan^{-1}(\pi)$
207. A short magnet oscillates	, , ,	• • •	, , ,
-	——————————————————————————————————————	-	
	A is established in a vertica	i wire 20 cm east of the ma	gnet, The new time period
of oscillator	13.0.000) 0 0 = 6	22.0.0
a) 0.1 <i>s</i>	b) 0.089 <i>s</i>	c) 0.076 s	d) 0.057 <i>s</i>
208. The relative magnetic per	meability of ferromagnetic	materials is of the order of	
a) 10	b) 100	c) 1000	d) 10000

S
net
etic
ł
le of
S
ther
the
the
the
e d

a) Low permeability and high hysteresis loss

b) High permeability and low hysteresis loss

c) High permeability and high l	- - -	d) Low permeability and l	-		
223. A current carrying small loop b	ehaves like a small m	agnet. If \emph{A} be its area and \emph{M}	Iits magnetic moment, the		
current in the loop will be					
a) <i>M/A</i> b) <i>A</i>	/M	c) <i>MA</i>	d) AM^2		
224. A bar magnet 20 cm in length is	s placed with it south	pole towards geographic n	orth. The neutral points are		
situated at a distance of 40 cm	from centre of the ma	gnet.			
If horizontal component of eart	th's field = 3.2×10^{-5}	T, then pole strength of m	agnet is		
	0 AM	c) 45 AM	d) 20 AM		
225. A compass needle whose magn	etic moment is 60 am	$p imes m^2$ pointing geographi	cal north at a certain place,		
where the horizontal compone	nt of earth's magnetic	field is $40 \mu Wb/m^2$, expending	riences a torque 1.2 ×		
$10^{-3}N \times m$. What is the declina		. , .	•		
a) 30° b) 4		c) 60°	d) 25°		
226. Two small magnets each of mag		-	sition $0.1 m$ apart from		
their centres. The force acting b		1	1		
	$.06 \times 10^7 N$	c) 0.6 <i>N</i>	d) 0.06 <i>N</i>		
227. In a vibration magnetometer, the		,			
earth's magnetic field is 2 s. Wh	=	_	-		
s. The ratio $\frac{F}{H}$ of the fields, F du		=	-		
a) $\sqrt{3}$ b) $\frac{1}{\sqrt{3}}$	L =	c) $\frac{1}{3}$	d) 3		
· ·	•	3			
228. Which of the following is the m					
	oft iron	c) Copper	d) Nickel		
229. The length of a magnet is large		•			
vibration magnetometer is T . T			_		
placed together as shown in the	e figure. The time peri	od of this combination will	be		
N S	LUS EDUC	ATION			
N S	LUJEDUG	17114011			
SN					
SN					
SN					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
SN					
7	ľ	T	d) Zero		
a) T b) $\frac{T}{\sqrt{1}}$	-	c) $\frac{T}{2\sqrt{3}}$	u) 2010		
230. In sum and difference method	~	•	if		
	-	ter, the time period is more	; 11		
a) Similar poles of both magnets are on same sides					
b) Opposite poles of both magnets are on same sidesc) Both magnets are perpendicular to each other					
	uiai to each other				
d) Nothing can be said			wiwomtal wlawa awd it		
231. At two places <i>A</i> and <i>B</i> using vib	_	-			
respective periodic time are 2 s			zontal components are $H_{\rm A}$		
and $H_{\rm B}$ respectively. Then the r			1) 2 2		
a) 9:4 b) 3		c) 4:9	d) 2 : 3		
232. For ferromagnetic material, the	e relative permeability	$\gamma\left(\mu_{r} ight)$ versus magnetic inte	nsity (H) has the following		
shape					

- 233. The period of oscillations of a magnetic needle in a magnetic field is 1.0 sec. If the length of the needle is halved by cutting it, the time period will be
 - a) 1.0 sec
- b) 0.5 sec
- c) 0.25 sec
- d) 2.0 sec
- 234. A curve between magnetic moment and temperature of magnet is

- 235. A magnetic dipole is placed at right angles to the direction of lines of force of magnetic induction B. If it is rotated through an angle of 180°, then the work done is

- b) 2 *MB*
- c) -2 MB
- d) Zero

236. The given figure represents a material which is

- a) Paramagnetic
- b) Diamagnetic
- c) Ferromagnetic
- d) None of these

- 237. Which of the following statements is not true
 - a) While taking reading of tangent galvanometer, the plane of the coil must be set at right angles to the earth's magnetic meridian
 - b) A short magnet is used in a tangent galvanometer since a long magnet would be heavy and may not easily move
 - c) Measurement with the tangent galvanometer will be more accurate when the deflection is around 45°
 - d) A tangent galvanometer can not be used in the polar region
- 238. Two tangent galvanometers A and B have coils of radii 8 cm and 16 cm respectively and resistance 8 Ω each. They are connected in parallel with a cell of emf 4 V and negligible internal resistance. The deflections produced in the tangent galvanometers A and B are 30° and 60° respectively. If A has 2 turns, then B must have
 - a) 18 turns
- b) 12 turns
- c) 6 turns
- 239. A magnetic needle lying parallel to a magnetic field requires Wunits of work to turn it through 60°. The torque required to keep the needle in this position will be
 - a) 2W

b) W

- d) $\sqrt{3}W$
- 240. The time period of a freely suspended magnet does not depend upon
 - a) Length of magnet

- b) Pole strength of magnet
- c) Horizontal component of earth's field
- d) Length of the suspension
- 241. Magnetic field intensity is defined as
 - a) Magnetic moment per unit volume
 - b) Magnetic induction force acting on a unit magnetic pole
 - c) Number of lines of force crossing per unit area
 - d) Number of lines of force crossing per unit volume
- 242. A magnetic needle is placed on a cork floating in a still lake in the northern hemisphere. Does the needle together with the cork move towards the north of the lake

				•
	a) Yes			
	b) No			
	c) May be or may not be n	nove		
	d) Nothing can be said			
243		at a distance R from the ce		
	a) R^2	b) <i>R</i> ³	c) $1/R^2$	d) $1/R^3$
244		places are 30° and 45° resp	pectively, then the ratio of	horizontal components of
	earth's magnetic field at the			
	a) $\sqrt{3}$: $\sqrt{2}$	b) $1:\sqrt{2}$	c) $1:\sqrt{3}$	d) 1:2
245	Diamagnetic substance ar	e		
	a) Feebly attracted by ma	-	b) Strongly attracted by r	-
	c) Feebly repelled by mag		d) Strongly repelled by m	•
246	-		-	ice that of B . If T_1 and T_2 be
	_ -	cillation when their like po	les and unlike poles are ke	pt together respectively,
	then $\frac{T_1}{T_2}$ will be			
	1	1	, 1	,,
	a) $\frac{1}{3}$	b) $\frac{1}{2}$	c) $\frac{1}{\sqrt{3}}$	d) $\sqrt{3}$
247	In the case of bar magnet,	lines of magnetic induction	1	
	•	le and end at the south pol		
	b) Run continuously throu	-		
		ns from the middle of the ba	ar	
	d) Are produced only at th	ne north pole like rays of lig	ght from a bulb	
248	If the total magnetic field	due to earth is $28 \mathrm{Am}^{-1}$; th	en the total magnetic indu	ction due to earth is
	a) 28 T	b) $280 \text{ ab} - \text{Acm}^{-1}$	c) 0.352 G	d) 0.325 T
249	Intensity of magnetic field	l due to earth at a point ins	ide a hollow steel box is	
	a) Less than outside	b) More than outside	c) Same	d) Zero
250	Two magnets A and B are	identical in mass, length a	nd breadth but have differ	ent magnetic moments. In a
	vibration magnetometer,	if the time period of $\it B$ is tw	vice the time period of A. T	he ratio of the magnetic
	moments M_A/M_B of the m	agnets will be		
	a) 1/2	b) 2	c) 4	d) 1/4
251	Which one of the followin	g is a non-magnetic substa	nce	
	a) Iron	b) Nickel	c) Cobalt	d) Brass
252	The relative permeability	is represented by μ and the	e susceptibility is denoted	by χ for a magnetic
	substance. Then for a para	=		
	a) $\mu_r < 1, \chi < 0$	- · ·	c) $\mu_r > 1, \chi < 0$	
253	= **	y suspended bar magnet in	a field is 2 s. It is cut into t	wo equal parts along its
	axis, then the time period			
	a) 4 s	b) 0.5 s	c) 2 s	d) 0.25 s
254	•	•	e end on position is 9 <i>gaus</i>	ss. What will be the intensity
	at a distance $\frac{x}{2}$ on broad si	de on position		
	a) 9 <i>gauss</i>	b) 4 gauss	c) 36 gauss	d) 4.5 <i>gauss</i>
255	For an isotropic medium <i>l</i>	B, μ, H and M are related as	s (where B , μ_0 , H and M ha	ve their usual meanings in
	the context of magnetic m	aterial)		
	a) $(B - M) = \mu_0 H$	b) $M = \mu_0 (H + M)$	c) $H = \mu_0(H + M)$	$d) B = \mu_0(H + M)$
256	Which one of the followin	g is not a characteristics of	diamagnetism?	
	a) The diamagnetic mater	ials are repelled by a bar m	nagnet	
	b) The magnetic susceptib	oility of the materials is sm	all and negative	
	c) The origin of dia magne	etism is the spin of electron	ıs	

- d) The material move from a region of strong magnetic field to weak magnetic field
- 257. A superconductor exhibits perfect
 - a) Ferrimagnetism
- b) Ferromagnetism
- c) Paramagnetism
- d) Diamagnetism
- 258. On applying an external magnetic field, to a ferromagnetic substance domains
 - a) Align in the direction of magnetic field
- b) Align in the direction opposite to magnetic field

c) Remain unaffected

- d) None of the above
- 259. The magnetic field of a small bar magnet varies in the following manner by the influence of a magnet placed at a large distance *d*.

c)
$$\frac{1}{d^3}$$

$$\left(\frac{1}{d^4}\right)$$

260. The correct I-H curve for a paramagnetic material is represented by, figure.

261. The distance between the poles of a horse shoe magnet is 0.1 *m* and its pole strength is 0.01 *amp-m*. The induction of magnetic field at a point midway between the poles will be

a)
$$2 \times 10^{-5}T$$

b)
$$4 \times 10^{-6}T$$

c)
$$8 \times 10^{-7} T$$

- 262. The magnetic field due to a short magnet at a point on its axis at distance *X cm* from the middle point of the magnet is 200 *gauss*. The magnetic field at a point on the neutral axis at a distance *X cm* from the middle of the magnet is
 - a) 100 *gauss*
- b) 400 gauss
- c) 50 gauss
- d) 200 gauss
- 263. Two short bar magnets of equal dipole moment M are fastened perpendicularly at their centers, figure. The magnitude of resultant of two magnetic field at a distance d from the center on the bisector of the right angle is

a)
$$\frac{\mu_0}{4\pi} \frac{2\sqrt{2}N}{d^3}$$

b)
$$\frac{\mu_0}{4\pi} \frac{2M}{d^3}$$

c)
$$\frac{\mu_0}{4\pi} \frac{M}{d^3}$$

d)
$$\frac{\mu_0}{4\pi} \frac{2\sqrt{2}M}{d^3}$$

- 264. The unit for molar susceptibility is
 - a) m³

- b) $kg-m^{-3}$
- c) $kg^{-1}m^3$
- d) No units
- 265. A bar magnet A of magnetic moment M_A is found to oscillate at a frequency twice that of magnet B of magnetic moment M_B when placed in a vibrating magneto-meter. We may say that

a)
$$M_A = 2M_B$$

b)
$$M_A = 8M_B$$

c)
$$M_A = 4M_B$$

d)
$$M_{B} = 8M_{A}$$

266. A thin rectangular magnet suspended freely has a period of oscillation equal to *T*. Now it is broken into two equal halves (each having half of the original length) and one piece is made to oscillate freely in the same field. If its period of oscillation is *T'*, the ratio *T'*/*T*

a) $\frac{1}{2\sqrt{2}}$	b) $\frac{1}{2}$	c) 2	d) $\frac{1}{4}$
2 1 2	ring the current with a tange	ent galvanometer is minimu	m when the deflection is about
a) 0°	b) 30°	c) 45°	d) 60°
	_		he upper end of wire is rotated
•	flect the magnet by 30° from	_	
=	= = =	=	e magnet 30° from magnetic
	of magnetic moments of ma	_	N.O 15
a) 1:5	b) 1 : 8	c) 5:8	d) 8:5
		ingent galvanometer, it give	s a deflection of 30°. For 60°
deflection, the curr		-) 4	1) (
a) 1 <i>amp</i>	b) $2\sqrt{3} \ amp$	c) 4 amp	d) 6 amp
_	_	suspended in a magnetic ne	eld of intensity $0.25 N/A$ - m . The
a) 50 N-m	deflect it through 30° is b) 25 <i>N-m</i>	c) 20 <i>N-m</i>	d) 15 <i>N-m</i>
,	a place is 37° and the vertica	,	
0 1	ic field at this place is (tan 3'	-	magnetic field is 0×10^{-1} .
a) 7×10^{-5} T	b) 6×10^{-5} T	c) $5 \times 10^{-5} \mathrm{T}$	d) 10 ⁻⁴ T
*	niform magnetic field on a fre		,
	net force are present	b) Torque is present b	
	net force are absent	d) Net force is presen	
· ·	ostance is brought near north		•
a) Attracted by the		> .	
b) Repelled by the p	poles		
c) Repelled by the r	north pole and attracted by t	he south pole	
	north pole and repelled by t	-	
274. When $\sqrt{3}$ ampere of	urrent is passed in a tangent	galvanometer, there is a de	eflection of 30° in it. The
deflection obtained	when 3 amperes current is	passed, is	
a) 30°	b) 45°	c) 60°	d) 75°
	uth is suspended freely betw	_	_
0 0	ht angles to the magnetic fiel		
a) Diamagnetic	b) Paramagnetic	c) Ferri-magnetic	d) Antiferro-magnetic
			ced at right angle to each other
with north pole of c	one touching south pole of th	e other. Magnetic moment o	
a) <i>ml</i>	b) 2 <i>ml</i>	c) $\sqrt{2}ml$	d) $\frac{1}{2}ml$
277. If a magnet of pole	strength m is divided into for	ur parts such that the length	and width of each part is half
•	hen the pole strength of each		P P
a) <i>m</i> /4	b) m/2	c) m/8	d) 4 <i>m</i>
278. An example of a dia	magnetic substance is	,	
a) Aluminium	b) Copper	c) Iron	d) Nickel
279. Demagnetisation of	magnets can be done by		
a) Rough handling		b) Heating	
c) Magnetising in th	ne opposite direction	d) All the above	
_			. When a bar Q (identical to P
in mass and size) is	placed on top of <i>P</i> , the time	period is unchanged. Which	of the following statements is
true	_		
a) Q is of non-magn			
b) Q is a bar magne	t identical to P, and its north	I pole is placed on top of P' s	north pole

	zeu ierromagneut materia	d1	
	id about Q 's properties		
=			ximum potential energy is
a) <i>MH</i>	b) 2 <i>MH</i>	c) 3 <i>MH</i>	d) 4 <i>MH</i>
282. A frog can be levitate	ed in magnetic field produ	ced by a current in a verti	cal solenoid placed below the frog.
This is possible beca	use the body of the frog b	ehaves as	
a) Paramagnetic	b) Diamagnetic	c) Ferromagnetic	d) Anti-ferromagnetic
283. The period of oscilla	tion of a bar magnet in a v	ribration magnetometer is	2 s. The period of oscillation of
another bar magnet	whose moment is 4 times	that of 1st magnet is	
a) 4 s	b) 1 s	c) 2 s	d) 0.5 s
284. A paramagnetic subs	stance of susceptibility 3 >	$< 10^{-4}$ is placed in a magne	etic field of $4 imes 10^{-4}~{ m Am}^{-1}$. Then
	netization in the units of A		
a) 1.33×10^8	b) 0.75×10^{-8}	c) 12×10^{-8}	d) 14×10^{-8}
-	· · · · · · · · · · · · · · · · · · ·	•	one over the other such that they
_			mbination is 4 s. If one of the
	, find the period of other	neri ine dine period er cor	
a) 5 s	b) 3.36 s	c) 4.36 s	d) 5.36 s
	•	c field is zero at a place wh	,
a) 0°	b) 45°	c) 60°	d) 90°
•	•	•	t is displaced and then released it
	-	-	-
			same moment of inertia (about the
	ne magnet is attached to the	ne magnet, what would be	the new period of oscillation of
the system			
		3	
<	_	A .	
Вн	TOLLIS ED	UCATION	
	LLFF02 ETA	DCHITOIA	
N :	c		
, w	ALL .		
TT.	Tr.	T	
a) $\frac{I}{a}$	b) $\frac{I}{2}$	c) $\frac{1}{\sqrt{5}}$	d) $T\sqrt{2}$
3	2	$\sqrt{2}$	
J	ompletely demagnetized l	-	,
	net into small pieces	b) Heating it slight	-
c) Droping it into ice		d) A reverse field o	of appropriate strength
289. The magnetic suscep			
a) Paramagnetic mat		b) Diamagnetic ma	
c) Ferromagnetic ma		, ,	nd ferromagnetic materials
290. The angle of dip at a	certain place where the h	orizontal and vertical com	ponents of the earth's magnetic
field are equal is			
a) 30°	b) 90°	c) 60°	d) 45°
291. Let B_V and B_H be the	e vertical and horizontal co	omponents of earth's magi	netic field at any point on earth.
Near the north pole			
a) $B_V >> B_H$	b) $B_V << B_H$	c) $B_V = B_H$	$d) B_V = B_H = 0$
			r a short bar magnet is observed as
			me magnet, the value of $4\pi d^3/2\mu_0$
	36. The magnetic moment		3
a) 50 A-m	b) 100 A-m		d) 1000 A-m

293. A dip needle vibrates in the vertical plane perpendicular to magnetic meridian. The time period of					
	vibration is found to be 2 s. The same needle is then allowed to vibrate in the horizontal plane and time				
_	o be 2s. Then the angle of dip				
a) 0°	b) 30°	c) 45°	d) 90°		
-	er works on the principle of				
a) Torque acting on the	_				
b) Force acting on the l	bar magnet				
c) Both the force and the	he torque acting on the bar n	nagnet			
d) None of these					
295. A magnetic dipole is pl	aced in a uniform magnetic fi	ield. The net magnetic force	e on the dipole		
a) Is always zero		b) Depends on the orient	ation of the dipole		
c) Can never be zero		d) Depends on the streng	gth of the dipole		
296. The time period of a th	in bar magnet in earth's mag	netic field is T . If the magne	et is cut into equal parts		
perpendicular to its ler	ngth, the time period of each	part in the same field will b	e		
a) <i>T</i> /2	b) <i>T/</i> 4	c) $\sqrt{2} T$	d) 2 <i>T</i>		
297. If two identical bar ma	gnets, each of length <i>l</i> , pole s	trength <i>m</i> and magnet mon	nent <i>M</i> , are placed		
	other with their unlike poles	= =	_		
		-	d) 2 <i>M</i>		
a) $\frac{M}{\sqrt{2}}$	b) $lm(\sqrt{2})$	c) $2lm(\sqrt{2})$,		
298. For a paramagnetic ma	nterial, the dependence of the	ϵ magnetic susceptibility X	on the absolute temperature		
is given as			•		
a) $X \propto T$	b) $X \propto 1/T^2$	c) $X \propto 1/T$	d) Independent		
•	ometer is most sensitive whe		.,		
a) Nearly zero	b) Nearly 30°	c) Nearly 45°	d) Nearly 90°		
, ,	eight-rod samples, A, B, C, D s	•			
_	ach sample and the following		readin but magnet is		
(i) A is feebly war alled					
(ii) R is feebly attracted	d JPLUS EDU (ΓΔΤΙΩΝ			
(iii) C is strongly attracted	cted	SPETAGIT			
(iv) D remains unaffec					
Which one of the follow					
a) A is of a non-magnet	-				
b) B is of a paramagnet					
c) <i>C</i> is of a diamagnetic					
,					
d) <i>D</i> is of a ferromagne					
301. A superconducting material		a) Diamagnatia	d) Damana a ma ati a		
a) Ferromagnetic	b) Ferroelectric	c) Diamagnetic	d) Paramagnetic		
= -	bility of a paramagnetic subs	stance at $-/3^{\circ}$ L is 0.0060, t	then its value at-1/3°C will		
be	13.0.0400		D 0 0045		
a) 0.0030	b) 0.0120	c) 0.0180	d) 0.0045		
_	eter placed in magnetic meri	_	_		
	e period of 2 sec in earth's ho	_			
	nicrotesla is produced opposi	ite to the earth's field by pla	acing a current carrying		
wire, the new time per	-				
a) 4 <i>s</i>	b) 1s	c) 2 <i>s</i>	d) 3 <i>s</i>		
304. Which of the following					
a) Aluminium	b) Quartz	c) Nickel	d) Bismuth		
	on of a freely suspended bar r	nagnet is 4 s. If it is cut into	two equal parts in length,		
then the time period of	each part will be				

_			,	_	
Gp.	luc	Hα	111	ati	nr
UD	ıus	LU	иL	uu	

a) 4 s		b) 2 s	c) 0.5 s	a) 0.25 s		
		horizontal plane has a time other place where the angle	•	ace where the angle of dip is esultant magnetic fields at		
the tv	o places is					
a) $\frac{4v}{7}$	<u>3</u>	b) $\frac{4}{9\sqrt{3}}$	c) $\frac{9}{4\sqrt{3}}$	d) $\frac{9}{\sqrt{3}}$		
307 Ratio	of magnetic intens	ities for an axial point and a	point on broad side-on po	sition at equal distance d		
		et will be or The magnetic fi				
longi	udinal and transve	erse positions are in the ratio	0	_		
a) 1 :	1	b) 2:3	c) 2:1	d) 3 : 2		
308. A ma	gnet is parallel to a	uniform magnetic field. If it	is rotated by 60°, the worl	k done is 0.8 J. How much		
	is done in moving	_	•			
	$\times 10^7 erg$	b) 0.4 <i>J</i>	c) 8 <i>J</i>	d) 0.8 <i>erg</i>		
309. A rigi	d circular loop of ra	adius r and mass m lies in th	e x - y plane of a flat table	e and has a current <i>i</i> flowing		
		lace the earth's magnetic fie				
	ilting is	8	χ	r		
		mg	mg	$m\mathrm{g}$		
a) πr	$\frac{mg}{\sqrt{B_r^2 + B_z^2}}$	b) $\frac{1}{\pi r B_x}$	c) $\frac{mg}{\pi r B_z}$	d) $\frac{mg}{\pi r \sqrt{B_x B_z}}$		
	nagnetic susceptibi		2	V X Z		
			\mathcal{M}	M		
a) χ :	$=\frac{1}{H}$	b) $\chi = \frac{B}{H}$	c) $\chi = \frac{M}{V}$	d) $\chi = \frac{M}{H}$		
311. A sm	ıll bar magnet of m	oment M is placed in a uniform	orm field <i>H</i> . If magnet make	es an angle of 30° with field,		
the to	rque acting on the		>			
a) <i>Mi</i>	I	b) $\frac{MH}{2}$	MH	d) $\frac{MH}{4}$		
•		2	3	1		
	_	agnetic moment 'M' are plac	ced so as to form a cross at	right angles to each other.		
The r	nagnetic moment o	f the system will be	14 201 (0.1			
a) 2 <i>l</i>	1	b) √2 <i>M</i>	c) 0.5 <i>M</i>	d) <i>M</i>		
313. A ma	gnet of magnetic m	oment M oscillating freely is	n earth's horizontal magne	tic field makes n oscillations		
per n	inute. If the magne	tic moment is quadrupled a	nd the earth's field is doub	led, the number of		
oscill	ations made per m	nute would be				
a) $\frac{n}{2v}$	=	b) $\frac{n}{\sqrt{2}}$	c) $2\sqrt{2}n$	d) $\sqrt{2}n$		
		V 2		-		
		gles of dip observed in two v	rertical planes at right angl	es to each other and ϕ be		
	ue angle of dip, the			2		
	$s^2 \phi = \cos^2 \phi_1 + \cos^2 \phi_2$		b) $\sec^2 \phi = \sec^2 \phi_1 + \sec^2 \phi_2$	· -		
	$\phi^2 \phi = \tan^2 \phi_1 + \tan^2 \phi_2$		d) $\cot^2 \phi = \cot^2 \phi_1 + \cot^2 \phi_2$	$\sigma^2 \phi_2$		
	n of the following is					
	_	perature dependent				
-	-	nperature dependent				
-	•	nperature dependent				
=	ne of these					
	316. A bar magnet is situated on a table along east-west direction in the magnetic field of earth. The number of					
	al points, where th	e magnetic field is zero, are				
a) 2		b) 0	c) 1	d) 4		
	-	as a magnetic moment M . It	is bent at its middle point	at an angle of 60°. Then the		
_		w shape of wire will be		_		
a) <i>M</i>	$\sqrt{2}$	b) <i>M</i> /2	c) <i>M</i>	d) $\sqrt{2}M$		

way that their po	les are same side. Time perio ime period of oscillations is <i>T</i>	d of oscillations is T_1 . Now t	2 <i>M</i> are firstly placed in such a the polarity of one of the magnets of the magnets is reversed, and
a) $T_1 < T_2$	b) $T_1 = T_2$	c) $T_1 > T_2$	d) $T_2 = \infty$
	et has properties retentivity	·	W) 12
a) High-high	b) Low-low	c) Low-high	d) High-low
	•	,	vards the north, the null points
are at the	of a bar magnet points towar	us the south and s-pole tov	varus die nordi, die nun points
a) Magnetic axis		b) Magnetic centre	
, 0	divider of magnetic axis	d) N and S poles	
	_	, ·	nagnetic field of induction <i>B.</i> If it
	h an angle 180°, then the wor	=	_
_	_		
a) <i>MB</i>	b) 2 <i>MB</i>	c) $\frac{MB}{2}$	d) Zero
322. The incorrect stat	tement regarding the lines of	L	B is
	sity is a measure of lines of f		
	of force form a closes curve	oree passing an oagh ame a	
, ,		move from north nole of a r	nagnet towards its south pole
· · · · · · · · · · · · · · · · · · ·	et magnetic lines of force nev	-	nagnet towards its south pore
323. Magnetic permea	_	er eut euen ouier	
a) Diamagnetic si		b) Paramagnetic sub	netance
c) Ferromagnetic		d) All of these	ostance
•	edle of a vibration magnetom		or minute in the horizontal
_			
			s placed at some distance along
		_	. If the poles of the bar magnet
	, the number of oscillations it		,,
a) √61	b) √63	c) √65	d) $\sqrt{67}$
		the apparent dip in a plane	inclined at an angle of 30° with
magnetic meridia	ın is		
a) $\tan^{-1}\frac{1}{2}$	b) tan ⁻¹ (2)	c) $\tan^{-1}\left(\frac{2}{3}\right)$	d) None of these
4		(3)	
· ·	substance is heated, then it		
a) Becomes a stro		b) Losses its magnet	tism
c) Does not effect	_	d) Either (a) or (c)	
•	-	_	by inserting it inside a solenoid
_	aving 60 turns. The current t		
a) 2 <i>A</i>	b) 4 A	c) 6 <i>A</i>	d) 8 <i>A</i>
•	-		t in which n turn coil of area of
	_		l, the plane of the coil makes an
-	_	-	e magnetic field and the coil are
horizontal and ve	ertical respectively, the torqu	e on the coil will be	
N Coil	S		
a) $\tau = niAB \cos \theta$		b) $\tau = niAB \sin \theta$	

c) $\tau = niAB$

d) None of the above, since the magnetic field is radial

329. $Weber/m^2$ is equal to

a) Volt

b) Henry

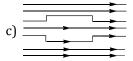
c) Tesla

d) All of these

330. The horizontal component of flux density of earth's magnetic field is 1.7×10^{-5} T. The value of horizontal component of intensity of earth's magnetic field will be?

a) 24.5Am⁻¹

b) $13.5 \, \text{Am}^{-1}$


c) $1.53 \, \text{Am}^{-1}$

d) $0.35 \, \text{Am}^{-1}$

331. A uniform magnetic field parallel to the plane of paper, existed in space initially directed from left to right. When a bar of soft iron is placed I the field parallel to it, the lines of force passing through it will be represented by figure.

332. A magnet of length 14 cm and magnetic moment *M* is broken into two parts of length 6 cm and 8 cm. They are put at a right angle to each other with opposite poles together. The magnetic moment of the combination is

a) M/10

b) *M*

c) M/1.4

d) 2.8 M

333. The $\chi - 1/T$ graph for an alloy of paramagnetic nature is shown in fig. the curie constant is

a) 57 *K*

b) $2.8 \times 10^{-3} K$

c) 570 K

d) $17.5 \times 10^{-3} K$

334. A short bar magnet, placed with its axis at 30° with an external magnetic field of 0.16 T, experiences a torque of magnitude 0.032 J. The magnetic moment of the bar magnet is (in units of J/T)

a) 4

b) 0.2

c) 0.5

d) 0.4

335. Two magnets A and B are identical and these are arranged as shown in the figure. Their length is negligible in comparison to the separation between them. A magnetic needle is placed between the magnets at point P which gets deflected through an angle θ under the influence of magnets. The ratio of distance d_1 and d_2 will be

a) $(2 \tan \theta)^{1/3}$

b) $(2 \tan \theta)^{-1/3}$

c) $(2 \cot \theta)^{1/3}$

d) $(2 \cot \theta)^{-1/3}$

336. The most appropriate magnetization M versus magnetizing field H curve for a paramagnetic substance is

a) *A*

b) *B*

c) C

d) *D*

337. Resultant force acting on a diamagnetic material in a magnetic field is in direction

- a) From stronger to the weaker part of the magnetic field
- b) From weaker to the stronger part of the magnetic field

C	Perpendicu	lar to	the	magn	etic	field

- d) In the direction making 60° to the magnetic field
- 338. A magnet is placed on a paper in a horizontal plane for locating neutral points. A dip needle placed at the neutral point will be horizontal at the
 - a) Magnetic poles
- b) Magnetic equator
- c) Latitude angle 45°
- d) Latitude angle of 60°

339. The dimensions of magnetic permeability are

a)
$$[MLT^{-2}A^{-2}]$$

b)
$$[ML^2T^{-2}A^{-2}]$$

c)
$$[ML^2T^{-2}A^{-1}]$$

c)
$$[ML^2T^{-2}A^{-1}]$$
 d) $[M^{-1}LT^{-2}A^{-2}]$

340. The tangent galvanometers having coils of the same radius are connected in series. Same current flowing in them produces deflections of 60° and 45° respectively. The ratio of the number of turns in the coil is

a)
$$\frac{4}{\sqrt{3}}$$

b)
$$\frac{\sqrt{3}+1}{1}$$

c)
$$\frac{\sqrt{3}+1}{\sqrt{3}-1}$$

d)
$$\frac{\sqrt{3}}{1}$$

- 341. At a place, the magnitudes of the horizontal component and total intensity of the magnetic field of the earth are 0.3 and 0.6 oersted respectively. The value of the angle of dip at this place will be

b) 45°

c) 30°

- 342. The magnetic induction in air at a distance d from an isolated point pole of strength m unit will be

c) md

- 343. At a certain place the horizontal component of the earth's magnetic field is B_0 and the angle of dip is 45° then total intensity of field at that place will be
 - a) B_0^2

b) $2B_0$

- c) $\sqrt{2}B_0$
- d) B_0
- 344. Rate of change of torque τ with defelection θ is maximum for a magnet suspended freely in a uniform magnetic field of induction B, when
 - a) $\theta = 0^{\circ}$
- b) $\theta = 45^{\circ}$
- c) $\theta = 60^{\circ}$
- 345. Two magnets of equal mass are joined at right angles to each other as shown. Magnet 1 has a magnetic moment 3 times that of magnet 2. This arrangement is pivoted so that it is free to rotate in the horizontal plane. In equilibrium what angle will the magnet 1 subtend with the magnetic meridian

GPLUS EDUCATION

- a) $\tan^{-1}\left(\frac{1}{2}\right)$
- b) $\tan^{-1}\left(\frac{1}{2}\right)$
- d) 0°

- 346. The direction of lines of magnetic field of bar magnet is
 - a) From south pole to north pole
 - b) From north pole to south pole
 - c) Across the bar magnet
 - d) From south pole to north pole inside the magnet and from north pole is south pole outside the magnet
- 347. A bar magnet having a magnetic moment of $2 \times 10^4 \ IT^{-1}$ is free to rotate in a horizontal plane. A horizontal magnetic field $B = 6 \times 10^{-4} T$ exists in the space. The work done in taking the magnet slowly from a direction parallel to the field to a direction 60° from the field is
 - a) 0.6 I

b) 12 I

d) 2 I

- 348. The magnetic moment of atomic neon is equal to
 - a) Zero

b) $\frac{1}{2}\mu_B$

- 349. A vibration magnetometer consists of two identical bar magnets placed one over the other such that they are perpendicular and bisect each other. The time period of oscillation in a horizontal magnetic field is

	$2^{5/4}$ second. One of the magnets is removed and if the other magnet oscillates in the same field, then the				
	time period in second is				
	a) 2 ^{1/4}	b) 2 ^{1/2}	c) 2	d) 2 ^{5/4}	
350	. The correct measure of m	nagnetic hardness of a mate	erial is		
	a) Remanant magnetism		b) Hysterses loss		
	c) Coercivity		d) Curie temperature		
351	. A dip circle is so that its n	needle moves freely in the n	nagnetic meridian. In this p	osition, the angle of dip is	
	40°. Now the dip circle is	rotated so that the plane in	n which the needle moves n	nakes an angle of 30° with	
	the magnetic meridian. In	n this position, the needle w	rill dip by an angle		
	a) 40°	b) 30°	c) More than 40°	d) Less than 40°	
352	The value of angle of dip i	is zero at the magnetic equa	ator because on it		
	a) V and H are equal		b) The value of V and H is	zero	
	c) The value of <i>V</i> is zero		d) The value of H is zero		
353	. A magnet when placed pe	erpendicular to a uniform fi	eld of strength $10^{-4}Wb/m^2$	² experiences a maximum	
		$^{-5}N/m$. What is its magnet		•	
	a) $0.4A \times m^2$	b) $0.2A \times m^2$	c) $0.16A \times m^2$	d) $0.04A \times m^2$	
354	. Identify the paramagnetic		,	,	
	a) Iron	b) Aluminium	c) Nickel	d) Hydrogen	
355	•	•	•	of earth's magnetic field and	
	angle of dip are respective		г	<i>g</i>	
	a) Zero, maximum	b) Maximum, minimum	c) Maximum , maximum	d) Minimum . minimum	
356			bstance varies with temper	-	
	curve	(1.1)	,	(-)	
	$\mu_r \uparrow$	191.			
	100 - C	~			
	10	1			
		C EDIL	A THOUSAN		
	1.0	PLUS EDUC	.AHON		
	0.1 D	0.100100			
	$T_c \longrightarrow T$				
	a) <i>A</i>	b) <i>B</i>	c) C	d) <i>D</i>	
357	Which of the following is	most suitable for the core of	of electromagnets		
	a) Soft iron	b) Steel	c) Copper-nickel alloy	d) Air	
358	Direction of magnetic fiel	d at equatorial point is			
	a) Parallel to M		b) Perpendicular to M		
	c) Making an angle of ang	gle 45° with M	d) Antiparallel to M		
359	. Choose the correct staten		,		
	a) A paramagnetic materi	ial tends to move from a str	rong magnetic field to weak	magnetic field	
	, ,		below its Curie temperatur	9	
	c) The resultant magnetic moment in an atom of a diamagnetic substance is zero				
	· ·	a ferromagnetic material is	-		
360	· · · ·	-		⁻⁵ . The percentage increase	
	in the magnetic field will	-	ry	Ι	
	a) 0.0068%	b) 0.068%	c) 0.68%	d) None of these	
261				•	
201	-		adius raround the nucleus	aca frequency v. The	
	magnetic moment associa	ated with the orbital motion	n of the electron is. πηρ	$\pi a m^2$	
	a) πver^2	b) $\frac{\pi v r^2}{e}$	c) $\frac{nve}{r}$	d) $\frac{\pi e r^2}{r}$	
		e	ı	v	

- 362. The magnetic field due to short bar magnet of magnetic dipole moment M and length 2l, on the axis at a distance z (where z >> l) from the center of the magnet is given by formula
 - a) $\frac{\mu_0 M}{4\pi z^3} \widehat{M}$
- b) $\frac{2\mu_0 M}{4\pi z^3} \widehat{M}$
- c) $\frac{4\pi M}{\mu_0 z^2} \widehat{M}$
- d) $\frac{\mu_0 M}{2\pi z^3} \widehat{M}$
- 363. Magnetic moment of two bar magnets may be compared with the help of
 - a) Deflection magnetometer

b) Vibration magnetometer

c) Both of the above

- d) None of the above
- 364. A bar magnet of length 3 cm has points A and B along its axis at distances of 24 cm and 48 cm on the opposite sides. Ratio of magnetic fields at these points will be

- b) $1/2\sqrt{2}$
- c) 3

- d) 4
- 365. If the magnetic flux is expressed in weber, then magnetic induction can be expressed in
 - a) Weber/ m^2
- b) Weber/m
- c) Weber-m
- 366. Two short magnets of magnetic moment 1000 Am^2 are placed as shown at the corners of a square of side 10 cm. The net magnetic induction at P at

a) 0.1 T

b) 0.2 T

c) 0.3 T

- d) 0.4 T
- 367. The figure shows the various positions (labelled by subscripts) of small magnetised needless P and Q. The arrows show the direction of their magnetic moment. Which configuration corresponds to the lowest potential energy among all the configurations shown

a) PQ_3

b) PQ_4

c) PQ_5

d) PQ_6

- 368. Before using the tangent galvanometer, its coil is set in
 - a) Magnetic meridian (or vertically north south)
 - b) Perpendicular to magnetic meridian
 - c) At angel of 45° to magnetic meridian
 - d) It does not require any setting
- 369. In the hysteresis cycle, the value of *H* needed to make the intensity of magnetization zero is called
 - a) Retentivity
- b) Coercive force
- c) Lorentz force
- d) None of the above
- 370. A current carrying coil is placed with its axis parallel to N-S direction. Let horizontal component of earth's magnetic field be H_0 and magnetic field inside the loop is H. If a magnet is suspended inside the loop, it makes angle θ with H. Then θ is equal to
- b) $\tan^{-1}\left(\frac{H}{H_{\bullet}}\right)$
- c) $\csc^{-1}\left(\frac{H}{H_0}\right)$ d) $\cot^{-1}\left(\frac{H_0}{H}\right)$

- 371. Ferromagnetic show their properties due to
 - a) Filled inner subshells

b) Vacant inner subshells

c) Partially filled inner subshells

d) All the subshells equally filled

372.	The strength of the magnetic field in which the magnet of a vibration magnetometer is oscillating is							
	•		oscillation would then become					
	a) Twice its original value		b) Four times it original value					
0.70	c) Half its original value	1	d) One-fourth its original					
373.	reduction factor <i>K</i> will be	radius of cross-section of th	ne coil of a tangent galvano	meter are doubled. The				
	a) <i>K</i>	b) 2 <i>K</i>	c) 4 <i>K</i>	d) <i>K</i> /4				
374.	At magnetic poles of earth							
	a) Zero	b) 45°	c) 90°	d) 180°				
375.	The intensity of magnetic field due to an isolated pole of strength m at a point distance r from it will be							
	a) $\frac{m}{r^2}$	b) mr^2	c) $\frac{r^2}{m}$	d) $\frac{m}{r}$				
	•	-		,				
376.	76. A tangent galvanometer shows a deflection 45° when $10 mA$ current passes through it. If the horizontal							
	component of the earth's field is $3.6 \times 10^{-5}T$ and radius of the coil is $10~cm$. The number of turns in the coil is							
	a) 5700 turns	b) 57 turns	c) 570 turns	d) 5.7 turns				
377.	The magnetic needle of an	oscillation magnetometer	makes 10 oscillations per	min under the action of				
		ne. When a bar magnet is pl						
	makes 14 oscillations per	min. If the bar magnet is tu	rned so that its poles inter	change their positions,				
	then the new frequency of	foscillation of the needle is	5					
	a) 10 vibs-m ⁻¹	b) 2 vibs-m ⁻¹	c) 4 vibs-m ⁻¹	d) 20 vibs-m ⁻¹				
378.	The magnetic susceptibility	ty of any paramagnetic mat	erial changes with absolut	e temperature T as				
	a) Directly proportional to	σT	b) Remains constant					
	c) Inversely proportional	to T	d) Exponentially decaying	g with T				
379.	A bar magnet is equivalen	t to						
	a) Torroid carrying currentc) Solenoid carrying current		b) Straight conductor carrying current					
			d) Circular coil carrying current					
380.	An iron rod of volume 10	$^{-4}$ m^3 and relative permeab	oility 1000 is placed inside	a long solenoid wound with				
	5 turns/cm. If a current o	f $0.5 A$ is passed through th	e solenoid, then the magne	etic moment of the rod is				
	a) $10 Am^2$	b) 15 Am ²	c) $20 Am^2$	d) $25 Am^2$				
381.	The magnet of a vibration	magnetometer is heated so	as to reduce its magnetic	moment by 19%. By doing				
	this the periodic time of th	=	· ·	, ,				
	a) Increase by 19%	b) Decrease by19%	c) Increase by 11%	d) Decrease by 21%				
382.	The permanent magnet is	made from which one of th	e following substances					
	a) Diamagnetic	b) Paramagnetic	c) Ferromagnetic	d) Electromagnetic				
383.	A permanent magnet							
	a) Attracts all substances							
	b) Attracts only magnetic	substances						
	c) Attracts magnetic subs	tances and repels all non-m	nagnetic substances					
	d) Attracts non-magnetic	substances and repels mag	netic substances					
384.	The ultimate individual un	nit of magnetism is any mag	gnet is called					
	a) North pole	b) South pole	c) Dipole	d) Quadrupole				
385.	A dip needle lies initially i	A dip needle lies initially in the magnetic meridian when it shows an angle of dip $ heta$ at a place. The dip circle						
	is rotated through an angle x in the horizontal plane and then it shows an angle of dip θ '. Then $\frac{\tan \theta'}{\tan \theta}$ is							
	a) $\frac{1}{\cos x}$	b) $\frac{1}{\sin x}$	c) $\frac{1}{\tan x}$	d) $\cos x$				
206				,				
აზნ.		c dipole of magnetic length						
207	a) 12 cm	b) 8 cm	c) 10 cm	d) 14 cm				
507.	Enquiu oxygen remain sus	pended between two poles	or magnet because it is					

	a) Diamagnetic	b) Paramagnetic	c) Ferromagnetic	d) Antiferromagnetic				
388.	9	9 9	eflected at angle of 30° due					
	horizontal component of earth's magnetic field is 0.34×10^{-4} T, then magnetic field at the center of the							
	coil due to current	1) 4 0 C 4 0 - 4 m) 4 06 · · 404 m	D 4.06 4.05 m				
200			c) $1.96 \times 10^4 \text{ T}$					
389.). A copper rod is suspended a non homogenous magnetic field region. The rod when in equilibrium wil							
	align itself a) In the region where magnetic field is strongest b) In the region where magnetic field is weak							
	a) in the region where ma	ighetic held is strongest	parallel to direction of magnetic field there					
	c) In the direction in which	ch it was originally	•	agnetic field is weakest and				
	suspended		perpendicular to the direction of magnetic field					
	•	Ü						
390.	there The north pole of the earth's magnet is near the geographical							
	a) South	b) East	c) West	d) North				
391.	l. If a diamagnetic solution is poured into a U-tube and one arm of this U-tube is placed between the poles							
			ield, then the level of soluti					
	a) Rise	b) Fall	c) Oscillate slowly	d) Remain as such				
392.	$\tilde{\frown}$	ue to a bar magnet are cor	rectly shown in					
	a)	b)						
			// \\	// \\				
		$\uparrow \uparrow$ \Box $\uparrow \uparrow$	$c)$ $\dagger \dagger$ $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow$	d) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	\\ <u>s</u>	\\ <u>s</u>						
			\\ //	\\				
303	3. The magnetic field at a point x on the axis of a small bar magnet is equal to the field at a point y on the							
373.	•		es of x and y from the centi					
	a) 2^{-3}	b) 2 ^{-1/3}	c) 2 ³	d) 2 ^{1/3}				
394.	,		eld with time period <i>T.</i> If its	,				
	times, then its time period	-	1					
	a) <i>4T</i>	b) <i>2T</i>	c) <i>T</i>	d) $\frac{T}{2}$				
				Z				
395.	_	-	eflected at an angle 30° due	_				
	•	earth's magnetic field 0.34	\times 10 ⁻⁴ T is along the plane	e of the coil. The magnetic				
	intensity is a) 1.96×10^{-4} T	b) 1.96× 10 ⁴ T	c) 1.96× 10 ⁻⁵ T	d) 1.96× 10 ⁵ T				
396	The angle of dip at the ma	,	C) 1.96X 10 1	u) 1.90× 10 1				
370.	a) 0°	b) 45°	c) 30°	d) 90°				
397.		ne material of a transforme		u) > 0				
	a) Short and wide	b) Tall and narrow	c) Tall and wide	d) Short and narrow				
398.	•	•	one of the following observ					
	conclusive evidence							
	a) It attracts a known mag	gnet	b) It repels a known magnet					
	c) Neither (a) nor (b)		d) It attracts a steel screw driver					
399.			and it is placed with the pl					
	perpendicular to the magnetic meridian. The deflection produced when a current of 1 A is passed thro							
	it is	13.450						
400	a) 60°	b) 45°	c) 30°	d) None of these				
400.	-		ular to each other at a place o with R and H respectively.	-				
	is placed in the field, it res	st making angle ou and su	° with B and H respectively	1. THE VALUE OF DET 18				

a) 1:2

b) 2:1

- c) $\sqrt{3} : 1$
- d) 1 : $\sqrt{3}$
- 401. The effective length of a magnet is 31.4 cm and its pole strength is 0.5 Am. Calculate its magnetic moment. If it is bent in form of semicircle, then magnetic moment will be
 - a) 0.157 Am², 0.01 Am²

b) 0.357 Am², 0.01 Am²

c) 1.157 Am², 1.01 Am²

d) None of these

- 402. The hysteresis curve is studied generally for
 - a) Ferromagnetic materials

b) Paramagnetic materials

c) Diamagnetic materials

- d) All of the above
- 403. A rod of ferromagnetic material with dimensions 10 cm \times 0.5 cm \times 0.2 cm is placed in a magnetic field of strength $0.5 \times 10^4 \text{A} - \text{m}^{-1}$ as a result of which a magnetic moment of $0.5 \text{ A} - \text{m}^{-2}$ is produced in rod. The value of magnetic induction will be
 - a) 0.54 T
- b) 6.28 T
- c) 0.358 T
- d) 2.591 T
- 404. A magnetic needle is made to vibrate in uniform field *H*, then it time period is *T*. If it vibrates in the field of intensity 4H, its time period will be
 - a) 2T

b) T/2

II.

c) 2/T

- d)T
- 405. The bob of a simple pendulum is replaced by a magnet. The oscillation are set along the length of the magnet. A copper coil is added so that one pole of the magnet passes in and out of the coil. The coil is short-circuited. Then which one of the following happens
 - a) Period decreases

b) Period does not change

c) Oscillations are damped

- d) Amplitude increases
- 406. A current carrying loop is placed in a uniform magnetic field in four different orientations, I, II, III and IV, arrange them in the decreasing order of potential energy

I.

III.

IV.

- a) I > III > II > IV
- b) I > II > III > IV
- c) I > IV > II > III
- d) III > IV > I > II
- 407. The line on the earth surface joining the point where the field is horizontal, is called
 - a) Magnetic equator
- b) Magnetic Line
- c) Magnetic axis
- d) Magnetic inertia
- 408. The time of vibration of a dip needle vibrating in the vertical plane is 3s. When magnetic needle is made to vibrate in the horizontal plane, the time of vibration is $3\sqrt{2}$ s. Then the angle of dip is
 - a) 30°

b) 45°

c) 60°

d) 90°

- 409. Magnetic lines of force
 - a) Always intersect

- b) Are always closed
- c) Tend to crowd far away from the poles of magnet d) Do not pass through vacuum

410. A bar magnet is 10 cm long, and is kept with its north (N)- pole pointing north. A neutral point is formed at a distance of 15 cm from each pole. Given the horizontal component of earth's field to be 0.4 Gauss, the pole strength of the magnet is								
) A-m	b) 6.75 A-m	c) 27 A-m	d) 1.35 <i>A-m</i>				
-		•						
	•	ar bar magnet the time per	•					
_	=		-	ration magnetometer when				
one	piece is used (in secor	nd) (bar magnet breadth is	small) is					
a) 1	.6	b) 8	c) 4	d) 2				
412. A sh	12. A short magnet of moment 6.75 Am^2 produces a neutral point on its axis. If horizontal component of							
eart	th's magnetic field is 5	$\times 10^{-5}Wb/m^2$, then the di	stance of the neutral point	should be				
	.0 <i>cm</i>	b) 20 <i>cm</i>	c) 30 cm	d) 40 cm				
_		tic substance is in the form		,				
				gnetization of the domain is				
_	$1.2 \times 10^5 \mathrm{A}\mathrm{m}^{-1}$		c) $7.2 \times 10^9 \mathrm{A}\mathrm{m}^{-1}$					
414. The	earth's magnetic indu	ction at a certain point is 7	$\times 10^{-5}$ Wbm ⁻² . This is to	be annulled by the				
mag	gnetic induction at the	center of a circular conduc	ting loop of radius 15 cm. 7	The required current in the				
loop	o is							
_	0.56 A	b) 5.6 A	c) 0.28 A	d) 2.8 A				
-		-	-	e magnetic meridian is T_0 . If				
	•	another magnet of the san	•	•				
		_	le size and pole strength b	ut with double the mass,				
	new time period will b	m						
a) $\frac{T}{2}$	0	b) $\frac{T_0}{\sqrt{2}}$	c) $\sqrt{2}T_{\circ}$	d) $2T_0$				
4	_	V Z						
416. If a	ferromagnetic materia	ll is inserted in a current ca	rrying solenoid, the magne	etic field of solenoid				
a) L	arge increases	b) Slightly increases	c) Largely decreases	d) Slightly decreases				
417. Whi	ich one of the following	g characteristics is not asso	ciated with a ferromagnet	ic material?				
	t is strongly attracted l		ATTONI					
-		region of strong magnetic	field to a region of low ma	onetic field				
-	ts origin is the spin of e		nera to a region of low ma	grietie neid				
-	•		actic proportion					
	_	rature, it exhibits paramagı		1 1 11				
		00 turns is mounted on one						
_		-		$A = 1.0 \ cm^2$, length of arm				
				alance is in equilibrium. On				
pass	sing a current $I = 22$ n	nA through the coil the equ	ilibrium is restored by put	ting the additional counter				
wei	ght of mass $\Delta m = 60 m$	ng on the balance pan. Find	d the magnetic induction at	t the spot where coil is				
loca	ated	•	5	•				
	N							
М	00000000	A						
←		$\overline{}$						
В	B .							
	S	(<u>-</u>						
.3.0	A 77	1.) 0.2 7	.) 0.2 %	D 0 1 T				
a) 0		b) 0.3 <i>T</i>	c) 0.2 <i>T</i>	d) 0.1 T				
	-	kept in a magnetic field the	~					
-	Paramagnetic	b) Ferromagnetic	c) Diamagnetic	d) Antiferromagnetic				
420. A lo	420. A loop of area 0.5 m 2 is placed in a magnetic field of strength 2 T in direction making an angle of 30° with							
the	the field. The magnetic flux linked with the loop will be							
_		_	c) 2 Wb	$\sqrt{3}$				
a) $\frac{1}{2}$	O VV	b) $\sqrt{\frac{3}{2}}$ Wb		d) $\frac{\sqrt{3}}{2}$ Wb				

- 421. Which of the following statements is incorrect about hysteresis
 - a) This effect is common to all ferromagnetic substances
 - b) The hysteresis loop area is proportional to the thermal energy developed per unit volume of the material
 - c) The hysteresis loop area is independent of the thermal energy developed per unit volume of the material
 - d) The shape of the hysteresis loop is characteristic of the material
- 422. Three identical bar magnets each of magnetic moment *M* are placed in the form of an equilateral triangle as shown. The net magnetic moment of the system is

a) Zero

b) 2 *M*

c) $M\sqrt{3}$

- d) $\frac{3M}{2}$
- 423. A magnet of magnetic moment M and pole strength m is divided in two equal parts, then magnetic moment of each part will be
 - a) *M*

b) M/2

c) M/4

d) 2M

