GPLUS EDUCATION

Dat		DUVEICE		
Tin Ma	ne : rks :			PHYSICS
		ALTERN	ATING CURRENT	
		Single (Correct Answer Type	
1.	amplitude of the curren		s voltage $V=20\cos(\omega t)$ vo	olts with $\omega=2000~rad/sec$. The
	5 mH, 4Ω 50) µr		
	a) 2 <i>A</i>	b) 3.3 <i>A</i>	c) $2/\sqrt{5} A$	d) √5 <i>A</i>
2.	For a series $L - C - R$ cirresonance will be	cuit, the phase differ	ence between current and	voltage at the condition of
	a) $\frac{\pi}{2}$	b) $\frac{\pi}{4}$	c) Zero	d) Nothing can be said
3.	_	d to an AC source. W π	hen compared to voltage , t b) Lags in phase b d) Lags in phase b	_
4.	which of the following of f a) X_c \uparrow $\rightarrow f$	curves correctly reprint x_c $ \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$	resents the variation of capa x_c $\uparrow \qquad \qquad$	acitive reactance X_C with frequency
5.	circuit is	uit consists of 3 <i>ohm</i>		tance. The power factor of the
6.	a) 0.4In an AC series circuit, tmaximum. The circuit ea) Pure inductorc) Pure resistor	he instantaneous cur	b) Pure capacitor	d) 1.0 e instantaneous voltage is f capacitor and an inductor
7.	millisecond?	•		changes from 3 A to 2 A in one
	a) 5000 H	b) 5 mH	c) 50 H	d) 5 H
8.	$\frac{2.5}{\pi}\mu F$ capacitor and 300	00- <i>ohm</i> resistance ar	e joined in series to an ac s	ource of 200 <i>volt</i> and $50sec^{-1}$
			nd the power dissipated in i	t will respectively be
	a) 0.6, 0.06 W	b) 0.06, 0.6 W	c) 0.6, 4.8 W	d) 4.8, 0.6 W
9.	angle θ to the horizont	al. At the bottom, th		rails l distance apart and set at an stance R, figure. There is a uniform clocity of the rod is

b)
$$\frac{mgR \cot \theta}{R^2 l^2}$$

b)
$$\frac{mgR \cot \theta}{B^2 l^2}$$
 c) $\frac{mgR \sin \theta}{B^2 l^2}$

d)
$$\frac{mgR \cos \theta}{B^2 l^2}$$

10. An *LCR* circuit contains $R = 50 \Omega$, L = 1 mH and $C = 0.1 \mu F$. The impedance of the circuit will be minimum for a frequency of

a)
$$\frac{10^5}{2\pi}$$
 s⁻¹

b)
$$\frac{10^6}{2\pi}$$
 s⁻¹

c)
$$2\pi \times 10^5 s^{-1}$$

d)
$$2\pi \times 10^6 s^{-1}$$

11. An alternating *e*mf is applied across a parallel combination of a resistance *R*, capacitance *C* and an inductance L. If I_R , I_L , I_C are the current through R, L and C respectively, then the diagram which correctly represents the phase relationship among I_R , I_L , I_C and source emf E, is given by

12. Power dissipated in an *LCR* series circuit connected to an a.c. source of *emf E* is

a)
$$E^2R/\left[R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2\right]$$

b)
$$\frac{E^2 \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}{R}$$
d)
$$\frac{E^2 R}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}$$

c)
$$\frac{E^2 \left[R^2 + \left(L\omega - \frac{1}{c\omega} \right)^2 \right]}{R}$$

d)
$$\frac{E^2 R}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}$$

13. In the figure shown, three AC voltmeters are connected. At resonance

a)
$$V_2 = 0$$

b)
$$V_1 = 0$$

c)
$$V_3 = 0$$

d)
$$V_1 = V_2 \neq 0$$

- 14. An electric bulb has a rated power of 50 W at 100 V. If it is used on an AC source 200 V, 50 Hz, a choke has to be used in series with it. The should have an inductance of
 - a) 0.1 mH
- b) 1 mH
- c) 0.1 H

- d) 1.1 H
- 15. An alternating current of frequency 'f' is flowing in a circuit containing a resistance R and a choke L in series. The impedance of this circuit is
 - a) $R + 2\pi f L$
- b) $\sqrt{R^2 + 4\pi^2 f^2 L^2}$
- c) $\sqrt{R^2 + L^2}$
- d) $\sqrt{R^2 + 2\pi f L}$
- 16. A magnet is suspended lengthwise from a spring and while it oscillates, the magnet moves in and out of the coil C connected to a galvanometer G. Then as the magnet oscillates.
 - a) G shows no deflection

- b) G shows deflection on one side
- c) Deflection of G to the left and right has constant amplitude
- d) Deflection of G to the left and right has decreasing amplitude
- 17. A transformer is having 2100 turns in primary and 4200 turns in secondary. An AC source of 120 V, 10 A is connected to its primary. The secondary voltage and current are
 - a) 240 V,5 A
- b) 120 V, 10 A
- c) 240 V, 10 A
- d) 120 V, 20 A

- 18. The current flowing in a step down transformer 220 V to 22 V having impedance 220 Ω is
 - a) 1 A

b) 0.1 A

c) 2 mA

- d) 0.1 mA
- 19. In order to obtain a time constant of 10 s in a R-C circuit containing a resistance of $10^3\Omega$, the capacity of the condenser should be
 - a) $10 \mu F$
- b) 100 μF
- c) $1000 \, \mu F$
- d) 10000 μF
- 20. A conducting rod PQ of length L = 1.0 m is moving with a uniform speed v = 2.0 ms⁻¹ in a uniform magnetic field = 4.0 T directed into the paper. A capacitor of capacity $C = 10 \, \mu F$ is connected as shown in figure. Then,

a) $q_A = -80 \mu C$ and $q_B = +80 \mu C$

b) $q_A = +80\mu$ C and $q_B = -80\mu$ C

c) $q_A = 0 = q_B$

- d) Charge stored in the capacitor increases expotentially with time
- 21. In an *L-C-R* series AC circuit the voltage across *L*, *C* and *R* is 10 V each. If the inductor is short circuited, the voltage across the capacitor would become
 - a) 10 V

- b) $\frac{20}{\sqrt{2}}$ V
- c) $20\sqrt{2} \text{ V}$
- d) $\frac{10}{\sqrt{2}}$ V
- 22. In an *R-C* circuit while charging, the graph of ln *I versus* time is as shown by the dotted line in the adjoining diagram where *I* is the current. When the value of the resistance is doubled, which of the solid curves best represents the variation of ln *I versus* time?

a) *P*

b) Q

c) R

- d) S
- 23. In the previous question, if the direction of i is reversed, $(V_B V_A)$ will be
 - a) 20 V

b) 15 V

c) 10 V

- d) 5 V
- 24. A step-up transformer is used on a 120 V line to provide a potential difference of 2400 V. If the primary coil has 75 turns, the number of turns in the secondary coil is
 - a) 150

b) 1200

c) 1500

- d) 1575
- 25. In a series L-C-R circuit $R=200~\Omega$ and the voltage and the frequency of the main supply is 220V and 50 Hz respectively. On taking out the capacitance from the circuit the current lags behind the voltage by 30°. On taking out the inductor from the circuit the current leads the voltage by 30°. The power dissipated in the L-C-R circuit is
 - a) 305 W
- b) 210 W
- c) Zero

- d) 242 W
- 26. In a *LCR* circuit having L=8.0 henry, C=0.5 μF and R=100 ohm in series. The resonance frequency in per second is
 - a) 700 radian
- b) 600 Hz
- c) 500 radian
- d) 500 Hz
- 27. An inductor of inductance L and resistor of resistance R are joined in series and connected by a source of frequency ω . Power dissipated in the circuit is

	a) $\frac{(R^2 + \omega^2 L^2)}{V}$	b) $\frac{V^2R}{(R^2 + \omega^2L^2)}$	c) $\frac{V}{(R^2 + \omega^2 L^2)}$	$d)\frac{\sqrt{R^2+\omega^2L^2}}{V^2}$
28.	Which of the following qu	antities remains constant	in a step-down transforme	r?
	a) Current	b) Voltage	c) Power	d) None of these
29.	The root mean square val	ue of the alternating curre	ent is equal to	
	a) Twice the peak value		b) Half the peak value	
	c) $\frac{1}{\sqrt{2}}$ times the peak value		d) Equal to the peak valu	e
30.	The natural frequency of $\frac{1}{2}$			
	a) $\frac{1}{2\pi}\sqrt{LC}$	b) $\frac{1}{2\pi\sqrt{LC}}$	c) $\frac{1}{2\pi} \sqrt{\frac{L}{C}}$	d) $\frac{1}{2\pi} \sqrt{\frac{C}{L}}$
31.	What is the self-inductand millisecond?	ce of a coil which produce:	s 5 V when the current char	nges from 3 A to 2 A in one
	a) 5000 H	b) 5 mH	c) 50 H	d) 5 H
32.	The power factor of good	choke coil is		
	a) Nearly zero	b) Exactly zero	c) Nearly one	d) Exactly one
33.	Two inductors of inductar	nce L each are connected i	in series with opposite mag	netic fluxes. What is the
	resultant inductance? (Ign	nore mutual inductance)		
	a) Zero	b) <i>L</i>	c) 2 <i>L</i>	d) 3 <i>L</i>
34.			apacitor of $C = 17.36 \mu F$ are	e connected in series with
	an AC source. Find the Q-			
	a) 3.72	b) 40	c) 2.37	d) 80
35.	For a series <i>L-C-R</i> circuit	4.756		
	a) Peak energy stored by		stored by an inductor	
	b) Average power = appa			
	c) Wattles current is zero			
26	d) Power factor is zero	aguanay () ia fad agraea a	resistor r and a capctior ${\it C}$ i	n apping The grownt
30.			I to $\omega/3$ (maintaining the sa	
		=	of reactance to resistance a	= :
	Г	_	_	
	a) $\frac{3}{5}$	b) $\frac{2}{5}$	c) $\frac{1}{5}$	d) $\sqrt{\frac{4}{5}}$
27	$\sqrt{5}$	$\sqrt{5}$	$\sqrt{5}$	\sqrt{s}
3/.	In Colpitt oscillator the fe			. in decate a
	a) Two inductors and a ca	-	b) Two capacitors and an	
20	c) Three pairs of <i>R-C</i> circuit shown		d) Three pairs of <i>R-L</i> circ	uit
38.		_ *		
	$ \begin{array}{c c} L & C \\ \hline $	R 300Ω		
	1 Η 20 μΓ			

39. In an AC circuit the instantaneous values of emf and current are $e=200\sin 300\ t$ volt

b) 300 Ω

c) 100Ω

d) $^{200\,\Omega}$

a) 500 Ω

and

$$i = 2\sin\left(300t + \frac{\pi}{3}\right)$$
amp.

The average power consumed in watt is

a) 200

b) 100

c) 50

d) 400

40. A current of 10 A in the primary coil of a circuit is reduced to zero. If the coefficient f mutual inductance is 3H and emf induced in secondary coil is 30 kV, time taken for the change of current is

a) 10^3

b) 10^2 s

c) 10^{-3} s

d) 10^{-2} s

41. A coil of inductance 300 mH and resistance 2 Ω is connected to a source of voltage 2V. The current reaches half of its steady state value in

a) 0.05 s

b) 0.1 s

c) 0.15 s

d) 0.3 s

42. The power factor of *LCR* circuit at resonance is

a) 0.707

b) 1

c) Zero

d) 0.5

43. In an ideal transformer, the voltage is stepped down from 11 kV to 220 V. If the primary current be 100 A, the current in the secondary should be

a) 5 kA

b) 1 kA

c) 0.5 kA

d) 0.1 kA

44. If a current I given by $I_0 \sin\left(\omega t - \frac{\pi}{2}\right)$ flows in an ac circuit across, which an ac potential of $E = E_0 \sin \omega t$ has been applied, then the power consumption P in the circuit will be

a) $P = \frac{E_0 I_0}{\sqrt{2}}$

b) $P = \sqrt{2}E_0I_0$

c) $P = \frac{E_0 I_0}{2}$

d) P = 0

45. In ac circuit of capacitance the current from potential is

a) Forward

b) Backward

c) Both are in the same phase

d) None of these

46. The frequency for which a 5 μ F capacitor has a reactance of $\frac{1}{1000}$ ohm is given by

a) $\frac{100}{\pi}MHz$

b) $\frac{1000}{\pi}Hz$

c) $\frac{1}{1000}$ Hz

d) 1000 Hz

47. An ac supply gives 30 V r. m. s. which passes through a 10 Ω resistance. The power dissipated in it is

a) $90\sqrt{2} W$

b) 90 W

c) 45√2 W

d) 45 W

48. The impedance of a R-C circuit is Z_1 for frequency f and Z_2 for frequency 2f. Then,

 $\frac{Z_1}{Z_2}$ is

a) Between 1 and 2

b) 2

c) Between $\frac{1}{2}$ and 1

d) $\frac{1}{2}$

49. If the capacity of a condenser is 1 F, then its resistance in a DC circuit will be

a) Zero

b) infinity

c) 1Ω

d) $\frac{1}{2} \Omega$

50. In the circuit shown below what will be the readings of the voltmeter and ammeter? (Total impedance of circuit $Z = 100 \Omega$)

a) 200 V, 1 A

b) 800 V, 2 A

c) 100 V, 2 A

d) 220 V, 2.2 A

51. A conducting wire frame is placed in a magnetic field, which is directed into the paper, figure. The magnetic field is increasing at a constant rate. The directions of induced current in wires *AB* and *CD* are

	a) A to B and C to D		b) B to A and C to D				
	c) A to B and D to C		d) B to A and D to C				
52.	The quality factor of LCR	circuit having resistance (A	R) and inductance (L) at re	sonance frequency (ω) is			
	given by						
	a) $\frac{\omega L}{R}$	b) $\frac{R}{\omega L}$	c) $\left(\frac{\omega L}{R}\right)^{1/2}$	d) $\left(\frac{\omega L}{R}\right)^2$			
	$\frac{a_{I}}{R}$	$\frac{\omega L}{\omega L}$	$(\frac{R}{R})$	(R)			
53.	For a large industrial city	with much load variations	, the DC generator should \boldsymbol{l}	oe			
	a) Series wound	b) Shunt wound	c) Mixed wound	d) Any			
54.	Choke coil works on the p	orinciple of					
	a) Transient current	b) Self induction	c) Mutual induction	d) Wattless current			
55.	The potential difference V	$^{\prime}$ and the current i flowing	through an instrument in a	in ac circuit of frequency f			
	are given by $V = 5 \cos \omega t$	<i>volts</i> and $I = 2 \sin \omega t$ am	peres (where $\omega = 2\pi f$). The second representation of the second represe	he power dissipated in the			
	instrument is						
	a) Zero	b) 10 <i>W</i>	c) 5 <i>W</i>	d) 2.5 <i>W</i>			
56.	A resistor R , an inductor R	$\it L$ and a capacitor $\it C$ are con	nected in series to an oscill	ator of frequency <i>n</i> , if the			
	resonant frequency is n_r ,	then the current lags behin	nd voltage, when				
	a) $n = 0$	b) $n < n_r$	c) $n = n_r$	d) $n > n_r$			
57.	In AC series circuit, the re	esistance, inductive reactar	nce and capacitive reactanc	e are 3Ω , 10Ω and 14Ω			
	respectively. The impeda:	nce of the circuit is					
	a) 5Ω	b) 4Ω	c) 7Ω	d) 10Ω			
58.	In the circuit shown in the	e figure, the ac source gives	s a voltage $V = 20\cos(2000)$	0t). Neglecting source			
	resistance, the voltmeter	resistance, the voltmeter and ammeter reading will be					
	6Ω	- At 1					
	50.5						
	5mH 4Ω 50μF						
	0000000 44444						
	v	C EDII/	LACITAL				
	a) 0V, 0.47A	b) 1.68 <i>V</i> , 0.47 <i>A</i>	c) 0V, 1.4 A	d) 5.6V, 1.4 A			
59.	A circuit draws 330 W fro	om a 110V, 60 Hz AC line. T	he power factor is 0.6 and	the current lags the voltage.			
	The capacitance of a serie	es capacitor that will result	in a power factor of unity i	s equal to			
	a) 31μF	b) 54μF	c) 151μF	d) 201μF			
60.	The primary winding of a	transformer has 200 turns	s and its secondary winding	g has 50 turns. If the current			
	in the secondary winding	is 40 A, the current in the J	primary is				
	a) 10 A	b) 80 A	c) 160 A	d) 800 A			
61.	An LC circuit contains a 2	$20~\mathrm{mH}$ inductor and a $50~\mu\mathrm{F}$	F capacitor with an initial cl	harge of 10 mC. The			
	resistance of the circuit is negligible. Let the instant the circuit is closed be $t=0$. At what time is the energy						
	stored completely magne	tic?					
	a) $t = 0$	b) $t = 1.57 \text{ ms}$	c) $t = 3.14 \text{ ms}$	d) $t = 6.28 \text{ ms}$			
62.	An electric heater rated 2	20 V and 550 W is connect	ed to A.C. mains. The curre	nt drawn by it is			
	a) 0.8 <i>A</i>	b) 2.5 <i>A</i>	c) 0.4 <i>A</i>	d) 1.25 <i>A</i>			
63.	_		_	shown in the figure. Which			
	of the following graphs co	orrectly depicts the variation	on of current with frequenc	у			
	Signal						
	Generator $\bigvee_{\sim} V$	$\stackrel{\perp}{=} c$					
	$\overline{}$						

66. The values of L, C and R for a circuit are 1H, 9F and 3 Ω . What is the quality factor for the circuit at

67. The value of alternating emf E in the given circuit will be

a) 220 V b) 140 V c) 100 V

d) 20 V

68. An ac source is rated at 220V, 50 Hz. The time taken for voltage to change from its peak value to zero is d) $5 \times 10^{-3} sec$ c) 5 sec b) 0.02 sec_

69. The expression for magnetic induction inside a solenoid of length L, carrying a current i and having Nnumber of turns is

a)
$$\frac{\mu_0}{4\pi} \frac{N}{L} i$$

d) $\mu_0 \frac{N^2}{r} i$

70. If the total charge stored in the LC circuit is Q_0 , then for $t \ge 0$ a) The charge on the capacitor is $Q = Q_0 \cos\left(\frac{\pi}{2} + \frac{t}{\sqrt{LC}}\right)$

b) The charge on the capacitor is $Q = Q_0 \cos\left(\frac{\pi}{2} - \frac{t}{\sqrt{LC}}\right)$

c) The charge on the capacitor is $Q = -LC \frac{d^2Q}{dt^2}$

d) The charge on the capacitor is $Q = \frac{1}{\sqrt{LC}} \frac{d^2Q}{dt^2}$

71. A $4\mu F$ capacitor, a resistance of 2.5 m Ω is in series with 12 V battery. Find the time after which the potential difference across the capacitor is 3 times the potential difference across the resistor. [Given In (2)=0.693

a) 13.86 s

b) 6.93 s

c) 7 s

d) 14 s

72. If E_0 is the peak emf, I_0 is the peak current and ϕ is the phase difference between them, then the average power dissipation in the circuit is

c) $\frac{1}{2}E_0I_0\sin\phi$

d) $\frac{1}{2}E_0I_0\cos\phi$

73. What is the self inductance of an air core solenoid 1 m long, diameter 0.05m, if it has 500 turns? Take π^2 =

a) 3.15×10^{-4} H

b) 4.8×10^{-4} H

c) 5×10^{-4} H

d) 6.25×10^{-4} H

74. If the coils of a transformer are made up of thick wire, then

a) Eddy currents loss will be more

b) Magnetic flux leakage is reduced

c) Joule's heating loss is increased

d) Joule's heating loss is reduced

75. A square metal wire loop *PQRS* of side 10 cm and resistance 1 Ω is moved with a constant velocity v_c in a uniform magnetic field of induction $B = 2 \text{ Wbm}^2$, as shown in figure. The magnetic field lines are

perpendicular to the plane of the loop (directed into the paper). The loop is connected to network ABCD of resistors each of value 3 Ω . The resistance of the lead wires SB and RD are negligible. The speed of the loop so as to have a steady current of mA in the loop is

- a) 2 ms^{-1}
- b) $2 \times 10^{-2} \text{ms}^{-1}$
- c) 20 ms^{-1}
- d) 200 ms^{-1}
- 76. Let C be the capacitance of a capacitor discharging through a resister R. Suppose t_1 is the time taken for the energy stored in the capacitor to reduce to half its initial value and t_2 is the time taken for the charge to reduce to one-fourth its initial value. Then the ratio $\frac{t_1}{t_2}$ will be
 - a) 1

b) $\frac{1}{2}$

c) $\frac{1}{4}$

- d) 2
- 77. A series R-C circuit is connected to AC Voltage source. Consider two cases: (A) when C is without a dielectric medium and (B) when C is filled with dielectric of constant 4. The current I_R through the resistor and voltage V_C across the capacitor are compared in the two cases. Which of the following is/are true?
 - a) $I_{R}^{A} > I_{R}^{B}$
- b) $I_R^A < I_R^B$
- c) $V_C^A > V_C^B$
- d) $V_C^A < V_C^B$

- 78. Time constant of LC circuit is
 - a) $\frac{1}{2\pi LC}$
- b) $\frac{1}{2\pi L^2 C^2}$
- c) $\frac{LC}{2\pi}$

d) $2\pi \sqrt{LC}$

79. Voltage V and current i in AC circuit are given by

 $V = 50\sin(50t)$ volt

$$i = 50\sin\left(50t + \frac{\pi}{3}\right) \text{mA}$$

The power dissipated in circuit is

a) 5.0 W

b) 2.5 W

b) 40 ohm

- c) 1.25 W
- d) zero
- 80. A resistance of 40 *ohm* and an inductance of 95.5 *millihenry* are connected in series in a 50 *cycles/ second* ac circuit. The impedance of this combination is very nearly
 - a) 30 ohm

- c) 50 ohm
- d) 60 ohm

- 81. At high frequency, the capacitor offer
 - a) More reactance
- b) Less reactance
- c) Zero reactance
- d) Infinite reactance
- 82. In the circuit shown below, the key K is closed at t = 0. The current through the battery is

a)
$$\frac{VR_1R_2}{\sqrt{R_1^2+R_2^2}}$$
 at $t=0$ and $\frac{V}{R_2}$ at $t=\infty$

b)
$$\frac{V}{R_2}$$
 at $t = 0$ and $\frac{V(R_1 + R_2)}{R_1 R_2}$ at $t = \infty$

c)
$$\frac{V}{R_2}$$
 at $t = 0$ and $\frac{VR_1R_2}{\sqrt{R_1^2 + R_2^2}}$ at $t = \infty$

d)
$$\frac{V(R_1+R_2)}{R_1R_2}$$
 at $t=0$ and $\frac{V}{R_2}$ at $t=\infty$

83.	-	or are connected in series v	-	otential drop across the
	a) 13 V	b) 17 V	c) 5 V	d) 12 V
84.	In an A. C. circuit the cu	rrent		
	a) Always leads the volt	age	b) Always lags behind t	the voltage
	c) Is always in phase wi	th the voltage	d) May lead or lag behi	nd or be in phase with the
			voltage	
85.	An <i>LCR</i> series circuit wi	th $R = 100\Omega$ is connected t	to a 200 <i>V</i> , 50 <i>Hz</i> a.c. sourc	ce when only the capacitance
	is removed, the current	leads the voltage by 60°. W	hen only the inductance is	removed, the current leads
	the voltage by 60°. The	current in the circuit is		
	2.2.4	1344	$\sqrt{3}$	2
	a) 2 <i>A</i>	b) 1 <i>A</i>	c) $\frac{\sqrt{3}}{2}A$	d) $\frac{2}{\sqrt{3}}A$
86.	The ratio of turns in pri primary and secondary	mary and secondary coils o	f a transformer is 1 : 20. T	he ratio of currents in
	a) 1:20	b) 20 : 1	c) 1:400	d) 400 : 1
87.		•	•	each, the mutual inductance
07.	a) Becomes 4 times	imary and secondary const	b) Becomes 2 times	acii, tiic iiiataai iiiaactanee
	c) Becomes 1 /4 times		d) Remains unchanged	
88		voltage that is given by $V =$,	in seconds. The frequency
00.	and r . m . s . voltage are	voltage that is given by v =	- 240 3111 120 t, where t is	in seconds. The frequency
		b) 19 <i>Hz</i> and 120 V	c) 19 Hz and 170 V	d) 754 <i>Hz</i> and 70 V
89	•	connected across a 120V –		
07.	very nearly	connected across a 120v	oo nz ac source. The carr	ent in the material win be
	a) 4.55 <i>amp</i>	b) 0.355 <i>amp</i>	c) 0.455 <i>amp</i>	d) 3.55 <i>amp</i>
90.	The peak value of 220 v	The Last	c) 0.433 amp	u) 3.33 ump
90.	a) 155.6 <i>volts</i>	b) 220.0 volts	c) 311.0 <i>volts</i>	d) 440 <i>volts</i>
91.	-	$X_L - f$ and $X_C - f$ curves is	-	u) 440 <i>voits</i>
71.		JPLUS ELL	CATION	
	P R S			
	Q	\overrightarrow{f}		
	X_{c}			
	a) <i>P</i>	b) <i>Q</i>	c) R	d) <i>S</i>
92.	The impedance of a circ	uit, when a resistance Ran	d an inductor of inductanc	$\in L$ are connected in series in
	an AC circuit of frequen	$\operatorname{cy} f$, is		
	a) $\sqrt{R + 2\pi^2 f^2 L^2}$	b) $\sqrt{R + 4\pi^2 f^2 L^2}$	c) $\sqrt{R^2 + 4\pi^2 f^2 L^2}$	d) $\sqrt{R^2 + 2\pi^2 f^2 L^2}$
93.	•	· · · · · · · · · · · · · · · · · · ·	•	n the coil 2 increases at the
				A. The flux linkage in coil 2
	a) 4 mWb	b) 6 mWb	c) 10 mWb	d) 16 mWb
94.	_	•	•	inductance is 60 V, between
		acitor is 30 V and that acro		
	equal to			, 11 5
	a) 50 V	b) 70 V	c) 130 V	d) 10 V
95.	_	ply varies with time (t) as	•	,
	and frequency respective	= -		O.
	a) 12 <i>volts</i> , 100 <i>Hz</i>		c) 60 volta 200 Uz	d) 60 volts 100 Uz
		b) $\frac{120}{\sqrt{2}}$ volts, $100 Hz$	cj 00 voits, 200 112	aj 00 voits, 100 112
96.	The self inductance of a	choke coils is 10 mH. When	n it is connected with a 10	V dc source, then the loss of

WEB: WWW.GPLUSEDUCATION.ORG PHONE NO: 8583042324 Page | 9

GPLUS EDUCATION

				Gpius Educatioi
	power is 20 watt ac source will be	. When it is connected with 1	10 <i>volt</i> ac source loss of po	ower is 10 watt. The frequency of
	a) 50 <i>Hz</i>	b) 60 <i>Hz</i>	c) 80 Hz	d) 100 <i>Hz</i>
97.	An ideal choke di	raws a current of 8 A when c	onnected to an AC supply o	of 100 V, 50 Hz. A pure resistor
		of 10 A when connected to the es and then connected to the		
	becomes			
	a) $\frac{15}{\sqrt{2}}$ A	b) 8 A	c) 18 A	d) 10 A
98.	In an $L - C - R$ cir	cuit, capacitance is changed	from C to 2 C . For the reson	ant frequency to remain
	unchanged, the in	nductance should be changed	l from L to	
	a) 4 <i>L</i>	b) 2 <i>L</i>	c) L/2	d) <i>L</i> /4
99.	The instantaneou	us value of current in an A.C.	circuit is $I = 2\sin(100 \pi t)$	$+\pi/3$) A. The current will be
	maximum for the	e first time at		
	$a) t = \frac{1}{100} s$	b) $t = \frac{1}{200}s$	$c) t = \frac{1}{400} s$	d) $t = \frac{1}{600}s$
100	. For the series $\it L$ -	-C-R circuit shown in the fig	gure, what is the resonance	e frequency and the amplitude of
	the current at the	e resonating frequency?		
	8 mH			

101. A bulb is connected first with dc and then ac of same voltage it will shine brightly with

 $b) I_{rms} = \frac{1}{\sqrt{2}} I_0$

b) 2.4 A

b) $2\pi\sqrt{LC}$

b) $50\sqrt{2} \text{ V}$

b) $\pi/2$

JPLUS ELPU b) DC 101

104. A fully charged capacitor C with initial charge q_0 is connected to a coil of self inductance L at t = 0. The

105. The phase difference between the current and voltage of LCR circuit in series combination at resonance is

106. In an L-C-R series AC circuit, the voltage across each of the components. L, C and R is 50 V. The voltage

107. In an induction coil, the coefficient of mutual inductance is 4H. If current of 5A in the primary coil is cut off

time at which the energy is stored equally between the electric and the magnetic fields is

WEB: WWW.GPLUSEDUCATION.ORG

102. In an ac circuit, the r.m.s. value of current, I_{rms} is related to the peak current, I_0 by the relation

b) $2500 \text{ rad} s^{-1}$ and 5 A

d) $250 \text{ rad } s^{-1}$ and $5\sqrt{2}$ A

d) Equally with both

 $d) I_{rms} = \pi I_0$

d) 1.7 A

d) $\pi\sqrt{LC}$

d) zero

PHONE NO: 8583042324 Page | 10

c) $I_{rms} = \sqrt{2}I_0$

c) Zero

c) \sqrt{LC}

c) π

c) 100 V

a) $2500 \text{ rad } s^{-1} \text{ and } 5\sqrt{2} \text{ A}$

c) Brightness will be in ratio 1/1.4

103. The reading of ammeter in the circuit shown will be

 $R = 55\Omega$

across the L – C combination will be

c) 2500 rads⁻¹ and $\frac{5}{\sqrt{2}}$ A

a) AC

a) 2A

a) $\frac{\pi}{4}\sqrt{LC}$

GPLUS EDUCATION

a) $I_{rms} = \frac{1}{\pi} I_0$

 $i \, 1/\, 1500$ s, the emf at the terminals of the secondary coil will be

- a) 15 kV
- b) 60 kV
- c) 10 kV
- d) 30 kV

108. The maximum value of AC voltage in a circuit is 707 V. Its rms value is

- a) 70.7 V
- b) 100 V
- c) 500 V
- d) 707 V

109. A metal rod of resistance 20 Ω is fixed along a diameter of a conducting ring of radius 0.1 m and lies on xy plane. There is a magnetic field $\vec{B} = (50 \text{ T}) \hat{k}$. The ring rotates with an angular velocity $\omega =$ 20 rads⁻¹ about its axis. An external resistance of 10 Ω is connected across the centre of the ring and rim. The current through external resistance is

a) $\frac{1}{2}$ A

b) $\frac{1}{2}$ A

c) $\frac{1}{4}$ A

d) zero

110. An ac source of variable frequency f is connected to an LCR series circuit. Which of the graphs in figure represents the variation of current I in the circuit with frequency f

111. A coil of resistance R and inductance L is connected to a battery of emf E volt. The final current in the coil

a) $\frac{E}{R}$

- c) $\sqrt{\frac{E}{R^2 + L^2}}$
- d) $\left(\frac{EL}{R^2 + L^2}\right)$

112. An alternating e.m.f. is applied to purely capacitive circuit. The phase relation between e.m.f. and current flowing in the circuit is or

In a circuit containing capacitance only

- a) e.m.f. is ahead of current by $\pi/2$
- b) Current is ahead of e m.f. by $\pi/2$

c) Current lags behind e.m.f. by π

d) Current is ahead of e.m.f. by π

113. What is the value of inductance L for which the current is a maximum in a series L-C-R circuit with C = $10\mu F$ and $\omega = 1000 \text{ s}^{-1}$?

a) 100 mH

- b) 1 mH
- c) Cannot be calculated unless R is known
- d) 10 mH

114. What will be the self inductance of a coil, to be connected in a series with a resistance of $\pi\sqrt{3}\Omega$ such that the phase difference between the emf and the current at 50 Hz frequency is 30°

- a) 0.5 henry
- b) 0.03 henry
- c) 0.05 henry

115. When an AC source of emf $e = E_0 \sin(100t)$ is connected across a circuit, the phase difference between the emf e and the current i in the circuit is observed to be $\frac{\pi}{4}$, as shown in the diagram. If the circuit consists possibly only of R – C or R – L or L – C in series, find the relationship between the two elements

- a) $R = 1 \text{ k} \Omega$, $C = 10 \mu\text{F}$ b) $R = 1 \text{ k} \Omega$, $C = 1 \mu\text{F}$
- c) $R = 1 \text{ k} \Omega, L = 10 \text{ H}$ d) $R = 1 \text{ k} \Omega, L = 1 \text{ H}$

116	The current in series <i>LCR</i>	circuit will be maximum w	then ω is	
	a) As large as possible		b) Equal o natural freque	ncy of <i>LCR</i> system
	c) \sqrt{LC}		d) $\sqrt{1/LC}$	
117	-	e with the same speed on a	- v ,	niform horizontal magnetic
	-	-		ne second (B) rolls without
	slipping, and the third rol	= :	-) F0 ,	()
	a) The same emf is induce		b) No emf is induced in a	ny of the rings
	c) In each ring, all points		B developes the mayin	num induced emf, and A the
	o) euen 1g, p ee	т с ис от с сить россии.	d) least.	,
118	An alternating voltage $e =$	= 200 sin 100 <i>t</i> is applied to		30Ω and an inductor of
	400 mH. The power factor			
	a) 0.01	b) 0.2	c) 0.05	d) 0.6
119		gular frequency ω is applie	-	
	developed in the circuit h			r
	a) $\omega/4$	b) ω/2	c) ω	d) 2ω
120		rnating emf E given by $E =$	•	•
	$t = \frac{1}{100}$ s, the instantaneou		0	
	200) F. I.	1) 4 17
	a) 10 V	b) 5√3 V	c) 5 V	d) 1 V
121.			$\sin(100t)$ is connected to 1	μF capacitor through an AC
	ammeter. The reading of			
	a) 10 mA	b) 20 m A	c) 40 mA	d) 80 mA
122.	In an AC circuit, V and I ar	re given by $V = 150 \sin(150)$	Ot) volt and $I = 150 \sin(18)$	$50t + \frac{\pi}{2}$ amp.
	The power dissipated in t	2796		3/
	a) Zero	b) 5625 W	c) 150 W	d) 106 W
123.	-	of the tank circuit of an osc	,	
			$\frac{1}{\pi^2} = \frac{1}{\pi^2} = \frac{1}{\pi^2}$	$\mu C = 0.04 \mu F$ are
	connected in parallel is	b) 25 kHz	c) 2.5 kHz	2 25 252
			,	d) 25 MHz
124.	- · · · · · · · · · · · · · · · · · · ·	s converted into dc is know		1) ()
405	a) Purification	b) Amplification	c) Rectification	d) Current amplification
125.	In the adjoining figure the	e impedance of the circuit w	71II be	
	90 V			
	$\sum_{X_L = 30 \Omega} {}^{90 V} X_C = 20\Omega$	<u></u>		
	\(\lambda_c = 20\)\(\lambda_c			
	a) 120 ohm	b) 50 <i>ohm</i>	c) 60 ohm	d) 90 ohm
126	-		,	0Ω resistance. The ratio of
	currents at time $t = \infty$ ar		O .	
			2 . 1	n 1
	a) $\frac{e^{1/2}}{e^{1/2}-1}$	b) $\frac{e^2}{e^2 - 1}$	c) $1 - e^{-1}$	d) e^{-1}
127	_	ight 140 W, 24 V lamp from	a 240 V AC mains. The curr	ent in the mains is 0.7 A.
	The efficiency of transform			
	a) 90%	b) 80%	c) 70%	d) 60%
128	Eddy current are produce		,	,
	a) A metal is kept in varyi		b) A metal is kept in stead	dy magnetic field
	c) A circular coil is placed		d) Through a circular coil	
129	-	ins a resistance of 10 <i>ohm</i>	_	-
		of 60 <i>Hz</i> is applied to this ci		
	a) 0.32 <i>amp</i>	b) 0.16 amp	c) 0.48 amp	d) 0.80 amp
			•	•

400 ml +		100 1 011
130. The instantaneous values of current and voltage i		<u>-</u>
200 in $(314 t + \pi/3)V$ respectively. If the resistan		
a) $-200\sqrt{3} \Omega$ b) $\sqrt{3} \Omega$	c) $-200\sqrt{3} \Omega$	d) $100\sqrt{3} \Omega$
131. Alternating current cannot be measured by DC an	nmeter because	
a) AC cannot pass through DC ammeter		
b) AC changes direction		
c) Average value of current for complete cycle is z	zero	
d) DC ammeter will get damaged		
132. A voltage of peak value 283 V and varying frequen	ncy is applied to a seri	es $L - C - R$ combination in which
$R=3~\Omega$, $L=25~\mathrm{mH}$ and $C=400\mu\mathrm{F}$. The frequence	cy (in Hz)of the source	e at which maximum power is
dissipated in the above, is		
a) 51.5 b) 50.7	c) 51.1	d) 50.3
133. A choke coil has		
a) High inductance and low resistance	b) Low inductance	e and high resistance
c) High inductance and high resistance	d) Low inductanc	e and low resistance
134. The number of turns in the primary coil of a trans	former is 200 and the	number of turns in secondary coil
is 10. If 240 V $$ AC is applied to the primary, the ou	utput from secondary	will be
a) 48 V b) 24 V	c) 12 V	d) 6 V
135. If an 8 Ω resistance and 6 Ω reactance are present	in an ac series circuit	then the impedance of the circuit
will be		•
a) 20 <i>ohm</i> b) 5 <i>ohm</i>	c) 10 ohm	d) $14\sqrt{2}$ ohm
136. In an ac circuit with voltage <i>V</i> and current <i>I</i> , the p		, = 1, = 1,
The second secon	-	
a) <i>VI</i>	b) $\frac{1}{2}VI$	
c) $\frac{1}{\sqrt{2}}VI$	D.D 1 1	1 1 1 17 17
$\frac{c}{\sqrt{2}}VI$	a) Depends on the	e phases between V and I
137. In an AC circuit, the instantaneous values of emf a	and current are $e = 20$	$00 \sin 314t$ volt and $I =$
$\sin\left(314t + \frac{\pi}{3}\right)$ amp. The average power consume		
		1) 2E
a) 200 b) 100	c) 50	d) 25
138. In a region of uniform magnetic induction $B = 10$		
π^2 ohm is rotated about an axis which is perpend		
the coil. If the rotates at $200 rpm$ the amplitude o	-	
a) $4\pi^2 mA$ b) $30 mA$	c) 6 <i>mA</i>	d) 200 mA
139. A rectangular loop with a sliding connector of length and the	<u> </u>	9
2T. Perpendicular to the plane of loop. Resistance		
are connected as shown in figure. The external for	rce required to keep th	he connector moving with a
constant velocity $v = 2 \text{ ms}^{-1}$ is		
\otimes_{B}		
$6 \Omega \stackrel{\triangleright}{\leq} \longrightarrow v \qquad \stackrel{\triangleright}{\leq} 3 \Omega$		
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
a) 2 N b) 1 N	c) 4 N	d) 6 N
140. An AC voltage source has an output of $\Delta V = (200^{\circ})$	V) sin $2\pi f t$. This source	ce is connected to a $100~\Omega$ resistor.
RMS current in the resistance is		
a) 1.41 A b) 2.41 A	c) 3.41 A	d) 0.71 A
141. The average power dissipated in a pure inductor	of inductance L when	an ac current is passing through it,
is		
(Inductance of the coil L and current I)		

- a) $\frac{1}{2}LI^{2}$
- b) $\frac{1}{4}LI^2$

c) $2 Li^2$

d) Zero

142. The time taken by AC of 50 Hz in reaching from zero to the maximum value is

- a) 50×10^{-3} s
- b) 5×10^{-3} s
- c) 1×10^{-3} s
- d) 2×10^{-3} s

143. A 100 V, AC source of frequency 500 Hz is connected to an *L-C-R* circuit with *L*=8.1 mH, $C=12.5~\mu\text{F}$, $R=10~\Omega$ all connected in series as shown in figure. What is the quality factor of circuit?

a) 2.02

- b) 2.5434
- c) 20.54
- d) 200.54

144. Two coils A and B have coefficient of mutual inductance M = 2H. The magnetic flux passing through coil A changes by 4 Wb in 10 s due to change in current in B. Then

a) Change in current in B in this time interval is 0.5 A b) Change in current in B in this time interval is 8 A

c) The change in current in B in this time interval is 2d) A change in current of 1 A in coil A will produce a change in flux passing through B by 4 Wb

145. In an *LCR* circuit R = 100 *ohm*. When capacitance C is removed, the current lags behind the voltage by $\pi/3$. When inductance L is removed, the current leads the voltage by $\pi/3$. The impedance of the circuit is

- a) 50 ohm
- b) 100 ohm
- c) 200 ohm
- d) 400 ohm

146. The instantaneous values of current and emf in an ac circuit are $I = 1/\sqrt{2} \sin 314 t$ amp and $E = \sqrt{2} \sin(314 t - \pi/6) V$ respectively. The phase difference between E and I will be

- a) $-\pi/6$ rad
- b) $-\pi/3$ rad
- c) $\pi/6$ rad
- d) $\pi/3$ rad

147. In the given circuit diagram the current through the battery and the charge on the capacitor respectively in steady state are

- a) 1 A and 3 μC
- b) 17 A and 0 μC
- c) $\frac{6}{7}$ A and $\frac{12}{7}$ μ C
- d) 11 A and 3 μC

^{148.} In a L-R circuit, the value of L is $\left(\frac{0.4}{\pi}\right)$ H and the value of R is 30 Ω. If in the circuit, an alternating emf of 200 V at 50 cycle/s is connected, the impedance of the circuit and current will be

- a) 11.4Ω , 17.5 A
- b) 30.7Ω , 6.5 A
- c) $40.4 \Omega, 5 A$
- d) 50Ω , 4 A

149. The time constant of the given circuit is

a)	3RC
aj	

c) $\frac{5RC}{6}$

d) None of these

- 150. A bulb and a capacitor are in series with an ac source. On increasing frequency how will glow of the bulb change
 - a) The glow decreases

b) The glow increases

c) The glow remain the same

- d) The bulb quenches
- 151. An L-C-R circuit of $R=100~\Omega$ is connected to an AC source 100 V, 50 Hz. The magnitude of phase difference between current and voltage is 30°. The power dissipated in the L – C – R circuit is
 - a) 50 W
- b) 86.6 W
- c) 100 W
- d) 200 W
- 152. The time taken by an alternating current of 50 Hz in reaching from zero to its maximum value will be
 - a) 0.5 s

- b) 0.005 s
- c) 0.05 s
- d) 5 s
- 153. The voltage of domestic ac is 220 volt. What does the represent
 - a) Mean voltage

b) Peak voltage

c) Root mean voltage

- d) Root mean square voltage
- 154. If the value of potential in an ac circuit is 10V, then the peak value of potential is
 - a) $\frac{10}{\sqrt{2}}$

- b) $10\sqrt{2}$
- c) $20\sqrt{2}$

- 155. Which of the following components of a L C R circuit, with AC supply, dissipates energy?

TUPLUS EDUCATION

a) *L*

b) *R*

- d) All of these
- 156. In an AC circuit the emf(e) and the current (i) at any instant are given respectively by

$$e = E_0 \sin \omega t$$

 $i = I_0 \sin(\omega t - \phi)$

The average power in the circuit over one cycle of AC is

- b) $\frac{E_0 I_0}{2} \sin \phi$
- c) $\frac{E_0 I_0}{2} \cos \phi$
- d) E_0I_0
- 157. In a current carrying long solenoid, the field produced does not depend upon
 - a) Number of turns per unit length

b) Current flowing

c) Radius of solenoid

- d) All of the above
- 158. In a series combination $R = 300 \Omega$, L = 0.9H, $C = 2.0 \mu$ F, $\omega = 1000 \text{ rads}^{-1}$, the impedance of the circuit is
 - a) 1300 Ω
- b) 900 Ω
- c) 500Ω
- d) 400Ω

- 159. Average power in the *L-C-R* circuit depends upon
 - a) Current

b) phase difference only

c) Emf

- d) Current, emf and phase difference
- 160. In L-C-R circuit, an alternating emf of angular frequency ω is applied then the total impedance will be

a)
$$\left[(R\omega)^2 + \left(L\omega - \frac{1}{C\omega} \right)^2 \right]^{1/2}$$

b)
$$\left[R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2\right]^{-\frac{1}{2}}$$

c)
$$[R^2 + (L\omega - C\omega)^2]^{1/2}$$

d)
$$\left[R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2\right]^{1/2}$$

- 161. A capacitor $50\mu\text{F}$ is connected to a supply of 220 V and angular frequency 50 rad s⁻¹. The value of rms current in the circuit is
 - a) 0.45 A
- b) 0.50 A
- c) 0.55 A
- d) 0.60 A

				Gplus Education
162	. The initial phase angl	$e for i = 10 \sin \omega t + 8 c$	$\cos \omega t$ is	
	a) $\tan^{-1}\left(\frac{4}{5}\right)$	b) $\tan^{-1}\left(\frac{5}{4}\right)$	c) $\sin^{-1}\left(\frac{4}{5}\right)$	d) 90°
163		the current in the circu		If <i>e</i> denotes the induced emf of the following graphs, figure
	a) e i	b) e	c) e	d) e
164				ins only inductance and the other
	• •	itor. If the frequency of	the emf of AC is increased, the	he effect on the value of the
	current		1 .1	
		st circuit and decreases	in the other	
	b) Increases in both tlc) Decreases in both t			
	•	rst circuits rst circuit and increases	in the other	
165	•			and 10 respectively and mutual
100	inductance of the tran	-	number of turns in primary a	and secondary are made 10 and 5
	a) 25 H	b) 12.5 H	c) 50 H	d) 6.25 H
166			and the second s	efore it overheats and it damaged.
			THE RESERVE OF THE PROPERTY OF	or is connected to a 120 V line is
	a) 120 V	b) 116 V	c) 124 V	d) 4 V
	across the coil is			ate of 2 As ⁻¹ . The emf developed
	a) -10 V	b) + 10 V	c) 2.5 V	d) -2.5 V
168	In an ac circuit, the cu	rrent is given by $i = 5$	$\sin\left(100\ t-\frac{\pi}{2}\right)$ and the ac po	d) -2.5 V estential is $V = 200 \sin(100) \text{ volt.}$
	Then the power const		(2)	
	a) 20 watts	b) 40 watts	c) 1000 watts	d) 0 watt
169	•	•	•	the circuit is maximum, at that
	time the ratio of the e	nergies stored in the ca	pacitor and the inductor wil	ll be
	a) 1:1	b) 1:2	c) 2:1	d) 1 : 5
170	. In AC circuit a resista	nce of R Ω is connected	in series with an inductance	e <i>L</i> . If the phase difference
		_	nductive reactance will be	
	a) <i>R</i> /2	b) <i>R</i> /4	c) <i>R</i>	d) None of the above
171	-	ige from 2 A to 4 A in 0.	05 s, 8 V of emf is developed	l in a coil. The coefficient of self-
	induction is	F) 0 2 H	-) 0.411	7) 0 0 11
172	a) 0.1 H	b) 0.2 H	c) 0.4 H	d) 0.8 H
1/2	of the following?	it iags beilillu tile volta	se by a phase difference of π	/2, the circuit will contain which
	a) Only <i>R</i>	b) Only C	c) Rand C	d) Only <i>L</i>
173	. In an ac circuit, V and	•	-, 3	
			$\left(1 + \frac{\pi}{3}\right) mA$. The power dissipa	ated in circuit is

a) 10^4 watt

a) 10 V

b) 10 watt

 $10\ V$ respectively. The AC voltage applied to the current will be

174. In a series resonant circuit, the AC voltage across resistance $\it R$, inductor $\it L$ and capacitor $\it C$ are 5 V, 10 V and

c) 2.5 *watt*

- 175. A 10 *ohm* resistance, 5 mH coil and 10 μF capacitor are joined in series. When a suitable frequency alternating current source is joined to this combination, the circuit resonates. If the resistance is halved, the resonance frequency
 - a) Is halved
- b) Is doubled
- c) Remains unchanged
- d) In quadrupled
- 176. Current growth in two L-R circuits (ii) and (iii) is as shown in figure (i). Let L_1, L_2, R_1 and R_2 be the corresponding values in two circuits. Then

- a) $L_1 > L_2$
- b) $L_1 < L_2$
- c) $R_1 > R_2$
- d) $R_1 = R_2$
- 177. Two connectric and coplanar circular coils have radii a and b as shown in figure. Resistance of the inner coil is R. Current in the other coil is increased from o to o, then the total charge circulating the inner coil is

- a) $\frac{\mu_0 iab}{2 R}$
- b) $\frac{\mu_0 i \ a \ \pi b}{2 \ a \ b}$
- c) $\frac{\mu_0}{2\pi} \frac{ib}{R}$

- d) $\frac{\mu_0 i a^2}{2 Rb}$
- 178. Find the time required for a 50 Hz alternating current to become its value from zero to the rms value
 - a) 10.0 ms
- b) 2.5 ms
- c) 15.0 ms
- d) 5.0 ms
- 179. A pure inductive coil of 30 mH is connected to an AC source of 220 V, 50 Hz. The rms current in the coil is
 - a) 50.35 A
- b) 23.4 A
- c) 30.5 A
- d) 12.3 A
- 180. In a circuit, the value of the alternating current is measured by hot wire ammeter as 10 *ampere*. Its peak value will be
 - a) 10 A

b) 20 A

- c) 14.14 A
- d) 7.07 A
- 181. The reactance of a coil when used in the domestic ac power supply (220 *volts*, 50 cycles per second) is 50 *ohms*. The inductance of the coil is nearly
 - a) 2.2 *henry*
- b) 0.22 henry
- c) 1.6 *henry*
- d) 0.16 henry
- 182. In an ac circuit, peak value of voltage is 423 volts. Its effective voltage is
 - a) 400 volts
- b) 323 *volts*
- c) 300 volts
- d) 340 volts
- 183. A circuit consists of an inductance of 0.5 mH and a capacitor of 20μ F. The frequency of the L C oscillations is approximately
 - a) 400 Hz
- b) 88 Hz
- c) 1600 Hz
- d) 2400 Hz

184. If A and B are identical bulbs, which bulb glows brighter

a) A

b) *B*

- c) Both equally bright
- d) Cannot say
- 185. A coil of wire of certain radius has 100 turns and a self inductance of 15 mH. The self inductance of a second similar coil of 500 turns will be

- a) 75 mH
- b) 375 mH
- c) 15 mH
- d) None of these

186. What is the charge stored by 1 μ F as shown in the figure?

- a) 2.33 μC
- b) 3.33 μC
- c) 1.33 µC
- d) 4.33 μC
- 187. A pure inductor of 25 mH is connected to a source of 220 V. Given the frequency of the source as 50 Hz, the rms current in the circuit is
 - a) 7 A

b) 14 A

c) 28 A

- d) 42 A
- 188. The magnet in figure rotates a shown on a pivot through its center. At the instant shown, what are the directions of the induced currents.

a) A to B and C to D

b) B to A and C to D

c) A to B and D to C

- d) B to A and D to C
- 189. A telephone wire of length 200 km has a capacitance of $0.014~\mu F$ per km. If it carries an AC frequency 5 kHz, what should be the value of an inductor required to be connected in series so that the impedance of the circuit is minimum?
 - a) 0.35 mH
- b) 3.5 mH
- c) 2.5 mH
- d) zero
- 190. Two parallel wires A_1L and B_1 M placed at a distance w are connected by a resistor R and placed in a magnetic field B which is perpendicular to the plane containing the wires (see figure). Another wire CD now connects the two wires perpendicularly and made to slide with velocity v through distance L. The power developed is

- 191. A 12 *ohm* resistor and a 0.21 henry inductor are connected in series to an ac source operating at 20 *volts*, 50 cycle/second. The phase angle between the current and the source voltage is
 - a) 30

h) 40

c) 80°

- d) 90°
- 192. The inductance of the oscillatory circuit of the ratio station is 10 mH and its capacitance is 0.25 μ F. Taking the effect of resistance negligible, wavelength of the broadcasted waves will be (velocity of light = 3.0 \times

- $10^8 \text{ ms}^{-1}, \pi = 3.14$)
- a) 9.42×10^4 m
- b) 18.8×10^4 m
- c) 4.5×10^4 m
- d) None of these
- 193. A square loop of side a placed in the same plane as a long straight wire carrying a current i. The centre of the loop is at a distance r from the wire, where r >> a, figure. The loop is moved away from the wire with a constant velocity v. The induced emf in the loop is

- a) $\frac{\mu_0 i \ a}{2 \pi r}$
- b) $\frac{\mu_0 i \ a^3 \ v}{2 \pi \ r^3}$
- c) $\frac{\mu_0 i \ v}{2 \pi}$

- d) $\frac{\mu_0 i \ a^2 \ v}{2 \pi \ r^2}$
- 194. What is the r. m. s. value of an alternating current which when passed through a resistor produces heat which is thrice of that produced by a direct current of 2 amperes in the same resistor
 - a) 6 amp
- b) 2 amp
- c) 3.46 amp
- d) 0.66 amp
- 195. A 220 *V*, 50 *Hz* ac source is connected to an inductance of 0.2 *H* and a resistance of 20 *ohm* in series. What is the current in the circuit
 - a) 10 A

b) 5 A

- c) 33.3 A
- d) 3.33 A
- 196. A coil of inductance L has an inductive reactance of X_L in an AC circuit in which the effective current is L. The coil is made from a super-conducting material and has no resistance. The rate at which power is dissipated in the coil is
 - a) 0

b) IX_L

c) I^2X_L

- d) IX_L^2
- 197. The resonant frequency of a circuit is f. If the capacitance is made 4 times the initial values, then the resonant frequency will become
 - a) f/2

- b) 2f
- c) *f*

- d) f/4
- 198. Two identical incandescent light bulbs are connected as shown in figure. When the circuit is an AC voltage source of frequency f, which of the following observation will be correct

- a) Both bulbs will glow alternatively
- b) Both bulbs will glow with same brightness provided $f = \frac{1}{2\pi} \sqrt{(1/LC)}$
- c) Bulb b_1 will light up initially and goes off, bulb b_2 will be ON constantly
- d) Bulb b_1 will blink and bulb b_2 will be ON constantly
- 199. In an L-R circuit to a battery, the rate at which energy is stored in the inductor is plotted against time during the growth of current in the circuit. Which of the following, figure best represents the resulting curve?

200. A vertical ring of radius r and resistance R falls vertically. It is in contact with two vertical rails which are joined at the top, figure. The rails are without friction and resistance. There is a horizontal uniform magnetic field of magnitude B perpendicular to the plane of the ring and the rails. When the speed of the ring is v, the current is the section PQ is

a) Zero

b)
$$\frac{2 Rrv}{R}$$

d) $\frac{8 Brv}{R}$

- 201. A circuit has a resistance of 11Ω , an inductive reactance of 25Ω and a capacitative resistance of 18Ω . It is connected to an ac source of 260V and 50Hz. The current through the circuit (in amperes) is
 - a) 11

b) 15

c) 18

- 202. If instantaneous current is given by $i = 4\cos(\omega t + \phi)$ amperes, then the r.m.s value of current is
 - a) 4 amperes
- b) $2\sqrt{2}$ amperes
- c) $4\sqrt{2}$ amperes
- d) Zero amperes
- 203. A parallel plate capacitor C with plates of unit area and separation d is filled with a liquid of dielectric constant K=2. The level of liquid is $\frac{d}{2}$ initially. Suppose the liquid level decreases at a constant speed v, the time constant as a function of time tis.

b) $\frac{(15d + 9vt)\varepsilon_0 R}{2d^2 - 3dvt - 9v^2t^2}$ c) $\frac{6\varepsilon_0 R}{5d - 3vt}$

d) $\frac{(15d - 9vt)\varepsilon_0 R}{2d^2 + 3dvt - 9v^2t^2}$

-	cy choke uses core or		
a) Air	b) Iron	c) Air and iron	d) None of these
205. In a <i>L – R</i> circu	uit of 3 mH inductance and 4 Ω	resistance, emf $E = 4 \cos 100$	00t~ m V is applied. The amplitude
of emf is			
a) 0.8 A	4	c) 1.0 A	4
aj olo II	b) $\frac{4}{7}$ A	0) 1.0 11	d) $\frac{4}{\sqrt{7}}$ A
206 A thin comicin	,	us D is falling with its plane	vertical in a horizontal magnetio
			_
		he speed of the ring is \emph{v} . The	e potential difference developed
across the ring	g is		
x x	× ×B		
	N ^ ^B		
× / ×	× ×		
1	R		
1 1			
×I	× I ×		
MV	Q		
× ×	v v		
	× ×		
a) Zero			
b) $\frac{1}{2} B v \pi R^2$,	and <i>M</i> is at a higher potential		
2			
•	d Q is at a higher potential		
=	dQ is at a higher potential		
		rt circuited, the current in it,	decreases η time in time t_0 . The
time constant	of the circuit is		
t_0	b) $\frac{t_0}{n-1}$	c) t_0 In η	d) $\frac{t_0}{n}$
a) $\frac{t_0}{\ln \eta}$	$\overline{\eta-1}$	$\epsilon_0 \ln \eta$	$\frac{\alpha}{\eta}$
208. An inductor of	f 2 H and a resistance of $10~\Omega$ a	re connected in series with a l	pattery of 5 V. the initial rate of
change of curi	ent is	JUCATION	
a) 0.5 As ⁻¹	b) 2.0 As ⁻¹	c) 2.5 As ⁻¹	d) 0.25 As^{-1}
	erage value of the AC voltage o	,	a, 0.20 110
	crage value of the Me voltage o		V
a) Zero	b) $V_{\rm max}$	c) $\frac{2V_{\text{max}}}{\pi}$	d) $\frac{V_{\text{max}}}{2}$
210 Dayyan daliyyan	ad by the governo of the giravit l	π	Z
210. Power deliver	ed by the source of the circuit l		
a) $\omega L = \omega C$	b) $\omega L = \frac{1}{L}$	c) $\omega L = -\left(\frac{1}{\omega C}\right)^2$	d) $\omega L = \sqrt{\omega C}$
.,	ωC	$\omega L = (\omega C)$, w2
211. What is the ap	proximate peak value of an alt	ernating current producing fo	our times the heat produced per
second by a st	eady current of 2.0 A in a resist	tor	
a) 2.8 <i>A</i>	b) 4.0 A	c) 5.6 <i>A</i>	d) 8.0 <i>A</i>
	it the emf(<i>e</i>) and the current (<i>t</i>		•
$e = E_0 \sin \theta$		y at any motant are given resp	yeelively by
=			
$i = I_0 \sin \theta$		1 6461	
The average p	ower in the circuit over one cy		
		E_0I_0	D = 1
a) $\frac{E_0I_0}{}$	b) $\frac{E_0 I_0}{\sin \phi}$	c) $\frac{20.0}{100}$ cos ϕ	d) E_0I_0
a) $\frac{E_0 I_0}{2}$	-	c) $\frac{E_0I_0}{2}\cos\phi$	d) $E_0 I_0$
2	b) $rac{E_0I_0}{2}\sin\phi$ of ac mains in India is	c) $\frac{2000}{2}$ cos ϕ	d) E_0I_0
2	of ac mains in India is	c) $\frac{20.0}{2} \cos \phi$ c) $60 c/s$ or Hz	d) $E_0 I_0$ d) 120 c/s or Hz
213. The frequency a) 30 <i>c/s</i> or <i>H</i>	of ac mains in India is $z b) 50 c/s or Hz$	c) 60 <i>c/s</i> or <i>Hz</i>	d) 120 <i>c/s</i> or <i>Hz</i>
213. The frequency a) 30 <i>c/s</i> or <i>H</i> 214. An air cored c	of ac mains in India is (z) b) 50 c/s or Hz oil has a self-inductance of 0.1	c) 60 <i>c/s</i> or <i>Hz</i>	
213. The frequency a) 30 <i>c/s</i> or <i>H</i> 214. An air cored c	of ac mains in India is $z b) 50 c/s or Hz$	c) 60 <i>c/s</i> or <i>Hz</i>	d) 120 <i>c/s</i> or <i>Hz</i>

215.			c circuit, the $r.m.s$ value of E_0	
	a) $\frac{E_0}{\pi}$	b) $\frac{E_0}{2}$	c) $\frac{E_0}{\sqrt{\pi}}$	d) $\frac{E_0}{\sqrt{2}}$
216.	The capacity of a pure cap	acitor is 1 farad. In dc circ	cuits, its effective resistance	e will be
	a) Zero	b) Infinite	c) 1 ohm	d) 1/2 ohm
217.		•	d be the average e.m.f. duri	, ,
	a) 198 <i>V</i>	b) 386 <i>V</i>	c) 256V	d) None of these
218.	•		e instantaneous e mf (E) in	•
	Which of the following sta		()	Ö
	$O = \begin{bmatrix} E & I \\ \pi/2 & 3\pi/2 \\ 1 & 2\pi & \omega t \end{bmatrix}$			
	a) The voltage lags behind	l the current by $\pi/2$	b) The voltage leads the co	arrent by $\pi/2$
	c) The voltage and the cur	rent are in phase	d) The voltage leads the co	arrent by π
219.	Which one of the following	g curves represents the var	riation of impedance (Z) wi	th frequency f in series
	LCR circuit			
	a) <i>z</i> ↑	b) <i>z</i> ↑	c) z ↑	d) z ↑
	<i>J</i>	$ \begin{array}{c} \downarrow \\ \downarrow \\$	\longrightarrow I	$\stackrel{\smile}{\longleftarrow}$
220.				a resistance, a capacitance
			ne coil, the resistance and tl	
			rnating current source in \emph{v}	
	a) 94	b) 14	c) 10	d) 76
221.	t is in second and V is in v	olts. Then	V = 100 ing to the equation $V = 100$	$\sin 100\pi t \cos 100\pi t$ where
	a) The peak voltage of the			
	b) The peak voltage of the			
	c) The peak voltage of the	source is $100/\sqrt{2}$ volts		
	d) The frequency of the so	urce is 50 <i>Hz</i>		
222.	A resistance R, inductance	e L and capacitor C are con	nected in series to an oscill	ator of frequency f . If
	resonant frequency is f , the	nen current will lag the vol	tage when	
	a) $f = 0$	b) $f < f_r$	c) $f = f_r$	d) $f > f_r$
223.	There is a 5Ω resistance in	an ac, circuit. Inductance	of $0.1H$ is connected with it	in series. If equation of ac
	e .m.f. is $5 \sin 50t$, then the	phase difference between	current and e.m.f. is	
	a) $\frac{\pi}{2}$	b) $\frac{\pi}{6}$	c) $\frac{\pi}{4}$	d) 0
	2	U	4	,
224.	In an AC circuit the voltage	e applied is $E = E_0 \sin \omega t$.	The resulting current in the	e circuit is $I = I_0 \sin(\omega t -$
	$(\frac{\pi}{2})$. The power consumption			
	a) $P = \frac{E_0 I_0}{\sqrt{2}}$	b) $P = zero$	c) $P = \frac{E_0 I_0}{2}$	$d) P = \sqrt{2}E_0I_0$
225	V Z	room the realtern and the are	2	0 0
ZZ5.	-	=	rrent in an ac circuit is $\pi/4$. If the frequency is 50 Hz
	-	will be equivalent to a time		J) 2F
	a) 0.02 <i>s</i>	b) 0.25 <i>s</i>	c) 2.5 <i>ms</i>	d) 25 <i>ms</i>

WEB: WWW.GPLUSEDUCATION.ORG PHONE NO: 8583042324 Page | 22

226. A uniformly wound solenoidal coil of self inductance 1.8×10^{-4} H and resistance 6 Ω is broken up into two identical coils. These identical coils are then connected in parallel across a 12 V battery of negligible

GPLUS EDUCATION

PHONE NO: 8583042324 Page | 23

	a) 3×10^{-5} s, 8 A	b) 1.5×10^{-5} s, 8 A	c) 0.75×10^{-4} s, 4 A	d) 6×10^{-5} s, 2 A
227.				nductive reactance are both
		erence between the applie		
	a) Zero	b) $\pi/6$	c) $\pi/4$	d) $\pi/2$
228.	An inductance of $1 mH$ a c			· ·
		d condensers are same. The		
	a) 100 Ω	b) 30 Ω	c) 3.2 Ω	d) 10 Ω
229.	In a series $L - C - R$ circuit			,
				Ω , the potential difference
	across the series combina		1	, 1
	a) 8 V	b) 10 V	c) 22 V	d) 52 V
230.	The current i' in an induc	•		
	A			5 F
	(0,0) t			
	Which of the following plo	ots shows the variation of v	oltage in the coil	
	a) v _↑	b) <i>v</i> ↑	c) v _*	d) v _↑
	(0, 0)	(0, 0)	(0, 0)	(0, 0)
231.	For a coil having $L = 2 \text{ mH}$	I, current flows at the rate	of 10^3 As ⁻¹ . The emf induce	ced is
	a) 2 V	b) 1 V	c) 4 V	d) 3 V
232.	In a series resonant <i>R-L-C</i>	circuit, the voltage across	R is 100 V and the value of	= 1000Ω . The capacitance
	of the capacitor is 2×10^{-1}	6 F; angular frequency of A	1 C is 200 rad s ⁻¹ . Then the	potential difference across
	the inductance coil is			
	a) 100 V	b) 40 V	c) 250 V	d) 400 V
233.	A group of electric lamps I $200 \sin(310t + 60^{\circ})$. Then	having a total power rating n the r . m . s . value of the cir	• •	y an ac voltage E =
	a) 10 A	b) $10\sqrt{2} A$	c) 20 A	d) $20\sqrt{2} A$
234.	When the rate of change o	of current is unity, induced	emf is equal to	
	a) Thickness of coil	b) Number of turns in coil	c) Coefficient of self- induction	d) Total flux linked with coil
235.	The induced emf of a gene	erator when the flux of pole	es is doubled and speed is d	loubled
	a) Becomes half		b) Remains same	
	c) Becomes double		d) Becomes 4 times	
236	In the non-resonant circui	t, what will be the nature o	of the circuit for frequencie	s higher than the resonant
	frequency			
	a) Resistive	b) Capacitive	c) Inductive	d) None of the above
237.	$\frac{R}{I}$ has the dimensions to			
	a) Time	b) Mass	c) Length	d) Frequency
238.	If $E = 100 \sin(100t)$ volt a		, ,	
		(37		varues or voltage allu
		alues of voltage and curren		1) 4 4 4 4 17 4 4 4 4 4
220	a) 70.7 <i>V</i> , 70.7 <i>mA</i>	b) 70.7 <i>V</i> , 70.7 <i>A</i>	c) 141.4V, 141.4mA	d) 141.4V, 141.4A
Z39.	Some magnetic flux is cha	ngeu irom a con of resistar	ice 110 12. As a result, an in	duced current is developed

WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

GPLUS EDUCATION

resistance. The time constant of the current in the circuit and the steady state current through battery is

in it, which varies with time as shown in figure. The magnitude of change in flux through the coil in weber is

b) 8

c) 2

d) 6

240. The armature of a DC motor has a resistance of 20 Ω . It draws a current of 1.5 A when run by 220 V DC. The value of peak emf induced in it will be

a) 150 V

b) 170 V

c) 190 V

d) 180 V

241. The readings of ammeter and voltmeter in the following circuit are respectively

a) 2A, 200V

b) 1.5*A*, 100*V*

c) 2.7*A*, 220*V*

d) 2.2A, 220V

242. In L - C - R series circuit the resonance condition in terms of capacitive reactance (X_C) and inductive reactance (X_L) is

a) $X_C + X_L = 0$

b) $X_C = 0$

c) $X_L = 0$

d) $X_C - X_L = 0$

- 243. The power is transmitted from a power house on high voltage ac because
 - a) Electric current travels faster at higher *volts*
 - b) It is more economical due to less power wastage
 - c) It is difficult to generate power at low voltage
 - d) Changes of stealing transmission lines are minimized
- 244. The frequency of an alternating voltage is $50 \ cycles/sec$ and its amplitude is 120V. Then the r.m.s. value of voltage is

a) 101.3*V*

b) 84.8V

c) 70.7V

d) 56.5V

245. 220 V, 50 Hz AC is applied to a resistor. The instantaneous value of voltage is

a) $220\sqrt{2} \sin 100\pi t$

b) $220 \sin 100\pi t$

(c) $220\sqrt{2} \sin 50\pi t$

d) $220 \sin 50\pi t$

246. *L*, *C* and *R* represent physical quantities inductance capacitance and resistance respectively. The combination representing dimension of frequency is

a) LC

b) $(LC)^{-1/2}$

c) $\left(\frac{L}{C}\right)^{-1/2}$

d) $\frac{C}{L}$

- 247. For series *LCR* circuit, wrong statement is
 - a) Applied e.m.f. and potential difference across resistance are in same phase
 - b) Applied e.m.f. and potential difference at inductor coil have phase difference of $\pi/2$
 - c) Potential difference at capacitor and inductor have phase difference of $\pi/2$
 - d) Potential difference across resistance and capacitor have phase difference of $\pi/2$
- 248. The figure shows variation of R, X_L and X_C with frequency f in a series L, C, R circuit. Then for what frequency point, the circuit is inductive

a) A

b) *B*

c) C

d) All points

- 249. Current in the LCR circuit becomes extremely large when
 - a) Frequency of AC supply is increased
 - b) Frequency of AC supply is decreased
 - c) Inductive reactance becomes equal to capacitive reactance
 - d) Inductance becomes equal to capacitance
- 250. The *r.m.s.* voltage of the wave form shown is

a) 10 V

b) 7 V

c) 6.37 V

d) None of these

251. Two coils A and B have 200 and 400 turns respectively. A current of 1 A in coil A causes a flux per turn of 10^{-3} Wb to link with A and a flux per turn of 0.8×10^{-3} Wb through B. The ratio of mutual inductance of A and B is

a) 0.625

b) 1.25

c) 1.5

d) 1.625

252. In the circuit shown in figure, a conducting wire HE is moved with a constant speed v towards legt. Th complete circuit is placed in a uniform magnetic field \vec{B} perpendicular to the plane of circuit inwards. The current in HKDE is

a) Anti-clock-wise

b) Clock-wise

c) Alternating

d) Zero

- 253. A circuit area is $0.01~\text{m}^2$ is kept inside a magnetic field which is normal to its plane. The magnetic field changes from 2 T to 1 T in 1 millisecond. If the resistance of the circuit is 2Ω . The amount of heat evolved is a) 0.05~J b) 50~J c) 0.50~J d) 500~J
- 254. An inductor (L = 100 mH), a resistor ($R = 100 \Omega$) and a battery (E = 100 V) are initially connected in series as shown in figure. After a long time the battery is disconnected after short circuiting the points A and B.

The current in the circuit 1 ms after the short circuit is

- a) 1/e A
- b) e A

c) 0.1 A

- d) 1 A
- 255. The ratio of peak value and r.m.s. value of an alternating current is

- d) $1/\sqrt{2}$
- 256. One 10 V, 60 W bulb is to be connected to 100 V line. The required induction coil has self inductance of value (f = 50 Hz)
 - a) 0.052 H
- b) 2.42 H
- c) 16.2 mH
- d) 1.62 mH

- 257. In L C R circuit if resistance increases, quality factor
 - a) Increases finitely
- b) Decreases finitely
- c) Remains constant
- d) None of the above
- 258. An inductance of $\left(\frac{200}{\pi}\right)$ mH, a capacitance of $\left(\frac{10^{-3}}{\pi}\right)$ F and a resistance of 10 Ω are connected in series with an AC source 220 V, 50 Hz. The phase angle of the circuit is
 - a) $\frac{\pi}{6}$

d) $\frac{\pi}{3}$

- 259. Which of the following statement is incorrect?
 - a) In a L C R series AC circuit, as the frequency of the source increases, b) circuit is same as its the impedance of the circuit first decreases and then increases
 - If the net reactance of c) At resonance, the an L - C - R series AC resistance, then the current lags behind the voltage by 45°
- impedance of an AC circuit becomes purely resistive.
- d) Below resonance, voltage leads the current while above it, current leads the voltage

- 260. Power factor is maximum in an LCR circuit when
 - a) $X_L = X_C$
- b) R = 0
- c) $X_L = 0$
- d) $X_C = 0$
- 261. A 280 ohm electric bulb is connected to 200V electric line. The peak value of current in the bulb will be
 - a) About one ampere
- b) Zero

- c) About two ampere
- d) About four ampere
- 262. Three identical coils A, B and C are placed with their planes parallel to one another. Coils A and C carry currents as shown in figure. Coils *B* and *C* are fixed in position and coil A is moved towards *B*. Then, current induced in B is in

- a) Clock-wise current
- b) Anti-clock-wise current
- c) No current is induced in B
- d) Current in induced only when both coils move
- 263. In the alternating current shown in the figure, the currents through inductor and capacitor are 1.2 amp and 1.0 amp respectively. The current drawn from the generator is

a) 0.4 amp

b) 0.2 amp

c) 1.0 amp

d) 1.2 amp

264. The graphs given below depict the dependence of two reactive impedances X_1 and X_2 on the frequency of the alternating e.m.f. applied individually to them. We can then say that

a) X_1 is an inductor and X_2 is a capacitor

b) X_1 is a resistor and X_2 is a capacitor

c) X_1 is a capacitor and X_2 is an inductor

d) X_1 is an inductor and X_2 is a resistor

265. The resistance of an R-L circuit is 10 Ω . An emf E_0 applied across the circuit at $\omega=20$ rad s⁻¹. If the current in the circuit is $\frac{i_0}{\sqrt{2}}$, what is the value of L?

a) 0.5 H

b) 2.25 H

c) 3.9 H

d) 1.0 H

266. *L*, *C* and *R* denote inductance, capacitance and resistance respectively. Pick out the combination which does not have the dimensions of frequency

a) $\frac{1}{RC}$

b) $\frac{R}{L}$

c) $\frac{1}{\sqrt{LC}}$

d) $\frac{C}{L}$

267. In a series resonant L - C - R circuit, the voltage across R is 100 V and $R = 1 k \Omega$ with $C = 2\mu$ F. The resonant frequency ω is 200 rads⁻¹. At resonance the voltage across L is

a) $2.5 \times 10^{-2} \text{ V}$

b) 40 V

c) 250 V

d) $4 \times 10^{-3} \text{ V}$

268. In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage and the current in the circuit is $\pi/3$. If instead, C is removed from the circuit, the phase difference is again $\pi/3$. The power factor of the circuit is

a) 1/2

b) $1/\sqrt{2}$

c) 1

d) $\sqrt{3}/2$

269. The phase difference between the alternating current and emf is $\pi/2$. Which of the following cannot be the constituent of the circuit?

a) Calone

b) *R, L*

c) *L, C*

d) L alone

270. The phase angle between *e*.m.f. and current in *LCR* series as circuit is

a) 0 to $\frac{\pi}{2}$

b) $\frac{\pi}{4}$

c) $\frac{\pi}{2}$

d) π

271. The diagram shows a capacitor C and a resistor R connected in series to an ac source. V_1 and V_2 are voltmeters and A is an ammeter

Consider the following statements

I. Readings in A are always in phase

II. Reading in V_1 is ahead in phase with reading in V_2

III. Reading in A and V_1 are always in phase. Which of these statements are/is correct

a) I only

b) II only

c) I and II only

d) II and III only

272. An alternating current of rms value 10 A is passed through a 12 Ω resistor. The maximum potential

difference across the	e resistor is		
a) 20 <i>V</i>	b) 90 <i>V</i>	c) 169.68 V	d) None of these
273. The current <i>i</i> passed	in any instrument in a	n AC circuit is $i = 2 \sin \omega t$ A a	and potential difference applied is
given by $V = 5 \cos \omega$	t V. Power loss in the i	nstrument is	
a) 10 W	b) 5 W	c) Zero W	d) 20 W
274. In a series <i>L</i> – <i>C</i> – <i>R</i> o	circuit, resistance $R = 1$	10Ω and the impedance $Z=1$	$10~\Omega$. The phase difference
between the current	and the voltage is		
a) 0°	b) 30°	c) 45°	d) 60°
275. Following figure sho	ws an ac generator con	nected to a "block box" throu	gh a pair of terminals. The box
contains possible R,	<i>L, C</i> or their combination	on, whose elements and arran	gements are not known to us.
Measurements outsi	de the box reveals t		
~	?		
$e = 75\sin(\sin\omega t)v$	olt,		
$i = 1.5\sin(\omega t + 45^{\circ})$) amp . The wrong state	ement is	
a) There must be a c	apacitor in the box	b) There must be a	n inductor in the box
c) There must be a r	esistance in the box	d) The power factor	r is 0.707
276. A capacitor and an in	nductance coil are conn	ected in separate AC circuits v	with a bulb glowing in both the
circuits. The bulb glo	ows more brightly wher	n	
a) An iron rod is inti	oduced into the induct	ance coil	
-	rns in the inductance co		
	en the plates of the cap	THE RESERVE OF THE PERSON OF T	
		tween the plates of the capaci	
	_	sed at time $t = 0$. The charge	which passes through the battery
in one time constant	is	A	
	GPLUS E	DUCATION	
7.			
E S	οI	aD^2F	
a) $\frac{EL}{aR^2}$	b) $\frac{eL}{ER}$	c) $\frac{eR^2E}{I}$	d) $E\left(\frac{L}{R}\right)$
278 A coil of inductance		L nce is connected to a 90 V sou	rce. At what rate will the current
	e instant the coil is con		recipie what face will the earrent
a) 450 As ⁻¹	b) 4.5 As ⁻¹	c) 45 As ⁻¹	d) 0.45 As ⁻¹
•	*	the reactance of a series <i>LC</i> c	
27 7. Willelf of the followi	ng piots may represent	the reactance of a series Le e	ombination
actance	→		

280. A coil of inductive reactance 31Ω has a resistance of 8Ω . It is placed in series with a condenser of capacitative reactance 25Ω . The combination is connected to an a.c. source of $110\ volt$. The power factor of the circuit is

a) 0.80

a) a

b) 0.33

b) *b*

c) 0.56

c) c

d) 0.64

d) *d*

281. The output current versus time curve of a rectifier is shown in the figure. The average value of output current in this case is

a) 0

b) $\frac{I_0}{2}$

c) $\frac{2I_0}{\pi}$

d) *I*₀

282. A LCR series A. C. circuit is tuned to resonance. The impedence of the circuit is now

a) R

b) $\left[R^2 + \left(\frac{1}{\omega C} - \omega L\right)^2\right]^{1/2}$

c) $\left[R^2 + (\omega L)^2 + \left(\frac{1}{\omega C} \right)^2 \right]^{1/2}$

d) $\left[R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2\right]^{1/2}$

283. A transistor-oscillator using a resonant circuit with an inductor L (of negligible resistance) and a capacitor C in series produce oscillation of frequency f. If L is doubled and C is changed to AC, the frequency will be

a) $f/2\sqrt{2}$

b) f/2

c) f/4

d) 8f

284. The i - v curve for anti-resonant circuit is

a)

b)

cj

d)

285. Consider a short magnetic dipole of magnetic length 10 cm. Its geometric length is

a) 12 cm

b) 5

c) 3

d) 4

286. Two electric bulbs marked 25W - 220V and 100W - 220V are connected in series to a 440V supply. Which of the bulbs will fuse

a) Both

b) 100 W

c) 25 W

d) Neither

287. An ideal coil of 10 H is connected in series with a resistance of 5 Ω and a battery of 5 V. 2s after the connection is made, the current flowing (in ampere) in the circuit is

a) (1 - e)

b) *e*

c) e^{-1}

d) $(1 - e^{-1})$

288. An inductor *L* and a capacitor *C* are connected in the circuit as shown in the figure. The frequency of the power supply is equal to the resonant frequency of the circuit. Which ammeter will read zero ampere

a) *A*₁

b) A_2

c) A_3

d) None of these

289. The power factor of an AC circuit having resistance R and inductance L (connected in series) and an angular velocity ω is

a) $R/\omega L$

b) $R/(R^2 + \omega^2 L^2)^{1/2}$

c) $\omega L/R$

d) $R/(R^2 - \omega^2 L^2)^{1/2}$

290. If coefficient of self induction of a coil is 1 H, an emf of 1 V is induced, if

a) Current flowing is 1 A

b) Current variation rate is 1 As⁻¹

a) Resistance is high, i	rircuit will be minimum when nductance is high	b) Resistance is high, in	ductance is low
c) Resistance is low, in	ower dissipation in an ideal c	d) None of the above	
		c) Zero	2
a) 2 <i>CV</i> ²	b) $\frac{1}{2}CV^2$	ej Zero	d) <i>CV</i> ²
293. The instantaneous vol the current is	tage through a device of imp	edance 20Ω is $e = 80 \sin \Omega$	100 πt . The effective value of
a) 3 A	b) 2.828 A	c) 1.732 A	d) 4 A
294. In a series <i>LCR</i> circuit,	operated with an ac of angu	lar frequency ω , the total i	mpedance is
a) $[R^2 + (L\omega - C\omega)^2]^2$		b) $\left[R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2\right]^1$	/2
c) $\left[R^2 + \left(L\omega - \frac{1}{C\omega} \right)^2 \right]$	-1/2	d) $\left[(R\omega)^2 + \left(L\omega - \frac{1}{C\omega} \right) \right]$	$\binom{2}{1}^{1/2}$
	inductance 0.005 H. The cur O A and $\omega=100\pi~{ m rads^{-1}}$. The cur		oil according to equation $i = 0$
a) 2π	b) 5 π	c) π	d) 4 π
	t given in the figure, the curre	,	,
	potential difference across t		olosedi ile motane when the
4000Ω $12mH$			
		>	
	141		
240V	4		
-) 7	L) 2401/	-) 100V	1) (01)
a) Zero $297 \text{ An amf } F = 4 \cos(10)$	b) $240V$	c) 180V	d) 60 <i>V</i> If and resistance 4 <i>ohms</i> . The
amplitude of current in		-circuit of muuctance 3 mi	and resistance 4 ounts. The
· ,		4	
a) $\frac{4}{\sqrt{7}}A$	b) 1.0 <i>A</i>	c) $\frac{4}{7}A$	d) 0.8 <i>A</i>
298. An inductance 1 H is c	onnected in series with an A	C source of 220 V and 50 H	z. The inductive reactance (in
ohm) is			
a) 2 π	b) 50 π	c) 100 π	d) 1000π
299. In pure inductive circu	iit, the curves between frequ	ency f and reciprocal of in	ductive reactance $1/X_L$ is
↑	1	1.	↑
1	1	1	,
a) X_L	b) X _L	c) $\overline{X_L}$	d) $\frac{1}{X_t}$
<u>v</u>	$\stackrel{\longrightarrow}{f}$	f	\rightarrow f
300. The maximum voltage	in DC circuit is 282V. The eff	fective voltage in AC circui	t will be
a) 200 V	b) 300 V	c) 400 V	d) 564 V
301. An irregular closed loo	pp carrying a current has a sh	nape such that the entire lo	oop cannot lie in a single
	in a uniform magnetic field, t)
a) Must be zero		b) Can never be zero	
c) May be zero			one particular direction of
		the magnetic field	

potential across the capacitance would be

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 30

302. A 50 V AC is applied across an R-C (series) network. The rms voltage across the resistance is 40 V, then the

	a) 10 V	b) 20 V	c) 30 V	d) 40 V	
202		,	•		
303.	303. A resistor 30 Ω, inductor of reactance 10 Ω and capacitor of reactance 10 Ω are connected in series to an AC voltage source $e = 300\sqrt{2}\sin(\omega t)$. The current in the circuit is				
	•	, ,			
	a) $10\sqrt{2}$ A	b) 10 A	c) $30\sqrt{11}$ A	d) $30/\sqrt{11}$ A	
304	The number of turns in a	secondary coil is twice the	number of turns in primar	y. A leclanche cell of 1.5 V is	
	connected across the prin	mary. The voltage across se	condary is		
	a) 1.5 V	b) 3.0 V	c) 240 V	d) Zero	
305	If an alternating voltage i	s represented as $E = 141 s$	in $(628 t)$, then the rms val	ue of the voltage and the	
	frequency are respective	ly			
	a) 141 V, 628 Hz	b) 100 V, 50 Hz	c) 100 V, 100 Hz	d) 141 V, 100 Hz	
306	Q-factor can be increased	l by having a coil of			
	a) Large inductance, sma	ll ohmic resistance			
	b) Large inductance, larg	e ohmic resistance			
	c) Small inductance, large				
	d) Small inductance, sma				
307	•	of 12 Ω and an impedance	of 15 Ω . The power factor α	of the circuit will be	
	a) 0.8	b) 0.4	c) 1.25	d) 0.125	
308	•	ifference between virtual vo	•	•	
	circuit is wattles				
	a) 90°	b) 45°	c) 180°	d) 60°	
309		C - R circuit, when driven	•	•	
000	-	ircuit effectively behaves lil		and frequency / o fine	
		in care effectively behaves in			
	$\leftarrow 100 \mu\text{H} \rightarrow \sim 1 \mu F \rightarrow \sim 10 \Omega \rightarrow$	131			
		~			
	_	1.0			
	a) Purely resistive circuit	Typitis EDUC	b) Series $R - L$ circuit		
	c) Series $R - C$ circuit	OLLO LD 64	d) Series $L - C$ circuit with	th R = 0	
310	In AC circuit in which ind	luctance and capacitance ar	e joined in series. Current i	is found to be maximum	
	when the value of inducta	ance is 0.5 H and the value	of capacitance is 8 μ F. The a	angular frequency of	
	applied alternating voltag		•		
	a) 4000 Hz	b) 5000 Hz	c) $2 \times 10^5 \text{ Hz}$	d) 500 Hz	
311	Average power generated	d in an inductor connected	-		
			c) Zero	d) None of these	
	a) $\frac{1}{2}Li^2$	b) <i>Li</i> ²	-,	,	
312	In general in an alternati	ng current circuit			
	a) The average value of c	urrent is zero			
	b) The average value of s	quare of the current is zero	1		
	c) Average power dissipa	ation is zero			
		etween voltage and curren	t is zero		
313				$dR_2 = 2\Omega$ are connected to	
				y is negligible. The switch S	
		ential drop across L as a fu			
	A	1			
	T \$ €′				
	}R₁ €				

a) $6e^{-5t}$ V b) $\frac{12}{t}e^{-3t}$ V c) $6(1 - e^{-t/0.2})$ V d) $12e^{-5t}$ V

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 31

314.	In an AC circuit, the currer	nt lags behind the voltage b	by $\pi/3$. The components of	the circuit are	
	a) R and L	b) L and C	c) Rand C	d) Only R	
315.	The natural frequency (ω_0) of oscillations in L - $\mathcal C$ cir	cuit is given by		
	a) $\frac{1}{2\pi} \frac{1}{\sqrt{LC}}$	b) $\frac{1}{2\pi}\sqrt{LC}$	c) $\frac{1}{\sqrt{IC}}$	d) \sqrt{LC}	
	$\frac{dJ}{2\pi} \frac{1}{\sqrt{LC}}$	$\frac{1}{2\pi}\sqrt{LC}$	\sqrt{LC}	u) γ <i>L</i> C	
	The inductive reactance of	**	50 <i>Hz</i> frequency is		
	a) $\frac{50}{\pi}$ ohm	b) $\frac{\pi}{50}$ ohm	c) 100 ohm	d) 50 ohm	
317.		epresented as $E = 20 \sin 3$	300t. The average value of $ m v$	oltage over one cycle will	
	be a) Zarra			20	
	a) Zero	b) 10 <i>volt</i>	c) $20\sqrt{2}$ volt	$d)\frac{20}{\sqrt{2}}volt$	
318.	The network shown in figu	are is part of a complete cir	rcuit. If a certain instant, th	e current i is 5 A and is	
	decreasing at a rate 10^3A	s ⁻¹ , then $(V_B - V_A)$ is			
	A 15 V	TTT B			
	a) 20 V	b) 15 V	c) 10 V	d) 5 V	
319.	The coil of choke in a circu	uit	,	,	
	a) Increases the current		b) Decreases the current		
	c) De not change the curre	ent	d) Has high resistance to	dc circuit	
320.	,		, ,	in the coil. Self inductance	
	of the coil is				
	a) 0.1 H	b) 0.2 H	c) 0.4 H	d) 0.8 H	
321.			the following diagram. Wh		
	diagrams will represent th	The same and the s	0 0	, and the same of	
	↑ V				
		- rolle	ATTACK		
		PLUS EDUC	AHON .		
		21.102.100			
	/ \(\)				
	a) ↑ <i>i</i>	b) ↑ <i>i</i>	c)	d)	
	\land				
	$\xrightarrow{\hspace*{1cm}}$	\xrightarrow{t}	\xrightarrow{f}	$\xrightarrow{\hspace*{0.5cm}}$	
322	A solenoid has 2000 turns	 wound over a length of t	0.30 m. The area of its cro	ss section is 1.2×10^{-3} m ² .	
522.				t of 2 A in the solenoid is	
	reversed in 0.25 s, then the			t of 2 If in the solehold is	
	a) $6 \times 10^{-4} \text{ V}$	b) 4.8×10^{-2} V	c) $6 \times 10^{-2} \text{ V}$	d) 48 kV	
323	-		llowing cannot be the expr	-	
323.	in an LCA series resonant	circuit willen one of the fo.	_	ession for the Q-factor	
	a) $\frac{\omega L}{R}$	b) $\frac{1}{\omega CR}$	c) $\sqrt{\frac{L}{C}\frac{1}{R}}$	d) $\frac{R}{LC}$	
	R	ωCR	$\sqrt{C} \overline{R}$	LC	
324.	A coil has resistance 30 oh	ım and inductive reactance	e 20 Ohm at 50 Hz frequenc	y. If ac source, of 200 volt,	
	324. A coil has resistance 30 ohm and inductive reactance 20 Ohm at 50 Hz frequency. If ac source, of 200 volt, 100 Hz, is connected across the coil, the current in the coil will be				
				12.0.04	
	a) $\frac{20}{\sqrt{13}}A$	b) 2.0 <i>A</i>	c) 4.0 <i>A</i>	d) 8.0 <i>A</i>	
	V 10	ot contribute to the power	consumed in an AC circuit	is called	
	a) non-ideal current	1	b) wattles current		

c) convectional current

d) inductance current

326			5 H and a capacitor of capa	citance 8 μF in series. The
		aximum when the angular		
	a) 500 rad/sec	b) $2 \times 10^5 \ rad/sec$	c) 4000 rad/sec	d) 5000 <i>rad/sec</i>
327	. In a choke coil, the reacta	nce X_L and resistance R are	e such that	
	a) $X_L = R$	b) $X_L >> R$	c) $X_L \ll R$	d) $X_L = \infty$
328	. In a purely resistive ac cir	cuit, the current		
	a) Lags behind the e.m.f. i	n phase		
	b) Is in phase with the e.n	ı,f,		
	c) Leads the e.m.f. in phas	se		
	-	the cycle and lags behind i	t in the other half	
329				connected to an alternating
		cy 60 <i>Hz</i> , then power facto		· · · · · · · · · · · · · · · · · · ·
	a) 0.32	b) 0.30	c) 0.28	d) 0.24
330		*	urrent changes by 2 A in co	
330	-	n Y. The value of mutual in	-	II A and magnetic nux
	a) 0.8 H	b) 0.2 Wb	c) 0.2 H	4) E U
221	•	,		d) 5 H
331			circuit. What is the phase d	inerence between the
	applied voltage and the ci π		π	π
	a) $\frac{\pi}{6}$	b) $\frac{\pi}{3}$	c) $\frac{\pi}{4}$	d) $\frac{\pi}{2}$
332		•	1	-
332			requency $\frac{400}{\pi}Hz$ is 25Ω. The	
	a) 50 <i>μF</i>	b) 25 <i>μF</i>	c) 100μF	d) 75μ <i>F</i>
333	. In a circuit containing an i	inductance of zero resistan	ice, the e .m.f. of the applied	ac voltage leads the
	current by			
	a) 90°	b) 45°	c) 30°	d) 0°
334	When a DC voltage of 200	V is applied to a coil of sel	f-inductance $\left(\frac{2\sqrt{3}}{\pi}\right)$ H, a curr	ent of 1 A flows through it.
			the current in the coil is re-	
	frequency of AC supply is	e with he source of 200 v,	the current in the con is re	aucea to 0.5 m. Then the
	a) 100 Hz	b) 75 Hz	c) 60 Hz	d) 50 Hz
225	. Voltage and current in an	,	c) 00 Hz	u) 30 112
333	_			
	$V = 5\sin\left(100\pi t - \frac{\pi}{6}\right) \text{ an}$	$dI = 4\sin\left(100\pi t + \frac{\pi}{6}\right)$		
	a) Voltage leads the curre	nt by 30°	b) Current leads the volta	ge by 30°
	c) Current leads the volta	ge by 60°	d) Voltage leads the curre	ent by 60°
336	. A virtual current of 4 <i>A</i> and	d 50 <i>Hz</i> flows in an ac circ	uit containing a coil. The po	wer consumed in the coil is
	240 W. If the virtual volta	ge across the coil is 100 V	its inductance will be	
	1 , 1	b) $\frac{1}{5\pi}H$	1	1 I
	a) $\frac{1}{3\pi}H$	$\frac{1}{5\pi}H$	c) $\frac{1}{7\pi}H$	d) $\frac{1}{9\pi}H$
337	. An ac generator, produces	s an output voltage $E = 17$	0 sin 377 t volts, where t is	s in seconds. The frequency
	of ac voltage is			
	a) 50 <i>Hz</i>	b) 110 <i>Hz</i>	c) 60 Hz	d) 230 <i>Hz</i>
338	=	•	resistance R and an inducta	•
			ance is $150V$, then the appl	
	a) 350 <i>V</i>	b) 250 <i>V</i>	c) 500 V	d) 300 V
339	•	•	ch across L , C and R . If the	•
	respective voltage across		and the second	
	a) 10 V, 10 V and 5 V		c) 20 V, 20 V and 5 V	d) 20 V. 20 V and 10 V
340	•		ts frequency is 60 Hz. Find i	=
5 10	="	alue of current starting from		to find value and tille
	tancii to reacii the peak ve	and of carrein starting iro	20101	

a) 3.536A; 4.167 ms	b) 3.536 A;15 ms	c) 6.07 A; 10 ms	d) 2.536 A; 4.167 ms
341. If a current of 3 A flowing	in the primary coil is redu	iced to zero in 0.001 s, the i	nduced emf in between the
two coils is 15000 V, the co	oefficient of mutual induc	tion is	
a) 0.5 H	b) 5 H	c) 1.5 H	d) 10 H
342. If L and R represent induc	tance and resistance resp	ectively, then dimension of	L/R will be
a) $[ML^{0}T^{0}]^{-}$	b) $[M^0L^0T^{-1}]$	c) $[M^0L^0T^{-2}]$	d) $[M^0LT^{-2}]$
343. A low-loss transformer ha	s 230 V applied to the pri	mary and gives 4.6 V in the	secondary. Secondary is
connected to a load, which	n draws 5 A of current. Th	e current (in ampere) in th	e primary is
a) 0.1	b) 1.0	c) 10	d) 250
344. In the circuit shown in figu	are neglecting source resi	stance, the voltmeter and a	mmeter readings will be
respectively			•
(V)			
$R = 30 \Omega$ $X_L = 25 \Omega X$			
$R = 30 \Omega$ $X_L = 25 \Omega X$	C= 25 Ω		
0			
240 V			
a) 0 V, 3 A	b) 150 V, 3 A	c) 150 V, 6 A	d) 0 V, 8 A
345. The current <i>i</i> in the circuit	t shown here varies with t	time t is	
R			
$V = \frac{1}{r}$			
$^{\prime}$	S. de	₽	
<u> </u>			
i 🕇 💢	i↑	<i>i</i> ↑	<i>i</i> ↑
'			
a) /	b)	c)	d) /
	JPLUSEUU(
t	\overrightarrow{t}	\overrightarrow{t}	ť
346. A 20 volts ac is applied to	a circuit consisting of a re	esistance and a coil with ne	gligible resistance. If the
voltage across the resistan	nce is $12 V$, the voltage acr	coss the coil is	
a) 16 volts	b) 10 volts	c) 8 volts	d) 6 volts
347. The resistance of a coil for	dc is in ohms. In ac, the r	esistance	•
a) Will remain same	b) Will increase	c) Will decrease	d) Will be zero
348. The natural frequency of a	nL - C circuit is 125000 of	cycle/s. Then the capacitor	C is replaced by another
capacitor with a dielectric	medium of dielectric con-	stant <i>K</i> . In this case, the fre	quency decreases by 25 kHz
The value of <i>K</i> is			
a) 3.0	b) 2.1	c) 1.56	d) 1.7
349. A light bulb is rated 100 W	V for a 220 V supply. The π	resistance of the bulb and t	he peak voltage of the
source respectively are			
a) 242 Ω and 311 V	b) 484 Ω and 311 V	c) $484~\Omega$ and $440~V$	d) 242 Ω and 440 V
350. Two inductors L_1 and L_2 a	are connected in parallel a	and a time varying current f	lows as shown in figure.
The ratio of currents i_1/i_2	at any time t is		

tion

			Gplus Education
a) L_2/L_1	b) L_1/L_2	c) $\frac{L_2^2}{(L_1 + L_2)^2}$	d) $\frac{L_1^2}{(L_1 + L_2)^2}$
	nce between curren nce between curren urely resistive ero ry of 10 V is connec	It and voltage is 90° It and voltage is 45° It actions that the given cited across points A and B in the gi	-
no charge initially, at (Take ln 5 = 1.6, ln 3	•	ond) does the voltage across them	become 4 V?
2M Ω Λ Δ 2M Ω Λ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	2μF 		
a) 2	b) 3	c) 2.5	d) $\frac{3}{2}$
353. A coil of 200Ω resista		nctance is connected to an ac sourc	4

35 Phase angle between potential and current will be

354. In the adjoining ac circuit the voltmeter whose reading will be zero at resonance is

a) V_1

b) V_2

c) V_3

d) V_4

355. In an ac circuit the reactance of a coil is $\sqrt{3}$ times its resistance, the phase difference between the, voltage across the coil to the current through the coil will be

a) $\pi/3$

b) $\pi/2$

c) $\pi/4$

d) $\pi/6$

356. adsf

a) 122

b) 3

c) 4

d) 5

357. If 25 A current is drawn by 220 V motor and back emf produced is 80 V, the value of armature resistance is

a) 56Ω

b) 5.6 Ω

c) 0.56 Ω

d) 0.5Ω

358. In a pure inductive circuit or In an ac circuit containing inductance only, the current

a) Leads the e.m.f. by 90°

b) Lags behind the e.m.f. by 90°

c) Sometimes leads and sometimes lags behind the e.m.f.

d) Is in phase with the e.m.f.

359. Two conducting circular loops of radii R_1 and R_2 are placed in the same plane with their centres coinciding. If $R_1 > R_2$, the mutual inductance M between them will be directly proportional to

360. Two circuits have mutual inductance of 0.09 H. Average emf induced in the secondary by a change of current from 0 to 20 A in 0.006 s in primary will be

b) 200 V

c) 180 V

361. In an LR-circuit, the inductive reactance is equal to the resistance R of the circuit. An e.m.f. $E=E_0\cos(\omega t)$

is applied to the circuit. The power consumed in the circuit is

a) $\frac{E_0^2}{R}$

b) $\frac{E_0^2}{2R}$

c) $\frac{E_0^2}{4R}$

 $d)\frac{E_0^2}{8R}$

362. In L – R circuit, resistance is 8 Ω and inductive reactance is 6 Ω , then impedance is

a) 2 Ω

b) 14 Ω

c) 4 Ω

d) 10Ω

363. Is it possible

a) Yes

b) No

c) Cannot be predicted

- d) Insufficient data to reply
- 364. In the transmission of a.c. power through transmission lines, when the voltage is stepped up n times, the power loss in transmission
 - a) Increases n times

b) Decreases *n* times

c) Increases n^2 times

d) Decreases n^2 times

365. The *r*. *m*. *s*. value of potential difference *V* shown in the figure is

a) $V_0/2$

- b) $V_0/\sqrt{3}$
- c) V_0

d) $V_0/\sqrt{2}$

- 366. Mutual inductance of two coils can be increased by
 - a) Decreasing the number of turns in the coils
- b) Increasing the number of turns in the coils
- c) Winding the coils on wooden cores
- d) None of the above
- 367. In a circuit L, C and R are connected in series with an alternating voltage source of frequency f. The current leads the voltage by 45°. The value of C is

a)
$$\frac{1}{2\pi f (2\pi f L + R)}$$

b)
$$\frac{1}{\pi f (2\pi f L + R)}$$

c)
$$\frac{1}{2\pi f \left(2\pi f L - R\right)}$$

d)
$$\frac{1}{\pi f (2\pi f L - R)}$$

368. From figure shown below a series L – C – R circuit connected to a variable frequency 200 V source. C = 80 μF and R = 40 Ω . Then the source frequency which drive the circuit at resonance is

- a) 25 Hz
- b) $\frac{25}{\pi}$ Hz

- c) 50 Hz
- d) $\frac{50}{2}$ Hz
- 369. A coil is wound on a core of rectangular cross-section. If all the linear dimensions of core are increased by a factor 2 and number of turns per unit length of coil remains same, the self-inductance increases by a factor of
 - a) 16

b) 8

c) 4

d) 2

370. A choke is preferred to a resistance for limiting current in AC circuit because

a) Choke is cheap

b) There is no wastage of power

c) Choke is compact in size

d) Choke is a good absorber of heat

371. An AC voltage source of variable angular frequency ω and fixed amplitude V_0 is connected in series with a

capacitance C and an electric bulb of resistance R (inductance zero). When ω is increased

a) The bulb glows dimmer

- b) The bulb glows brighter
- c) Total impedance of the circuit is unchanged
- d) Total impedance of the circuit increases

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 37