GPLUS EDUCATION

ъ.	di Los Location
	ne : PHYSICS
ma	RAY OPTICS AND OPTICAL INSTRUMENTS
	Single Correct Answer Type
1.	A dentist has a small mirror of focal length 16 mm. He views the cavity in the tooth of a patient by holding the mirror at a distance of 8 mm from the cavity. The magnification is
2.	a) 1 b) 1.5 c) 2 d) 3 In an eye-piece, field lens and eye lens have focal lengths 7.5 <i>cm</i> and 7.3 <i>cm</i> . To eliminate spherical aberration, distance between them would be
3.	a) $0.2\ cm$ b) $0.4\ cm$ c) $0.1\ cm$ d) $0.5\ cm$ When sunlight is scattered by atmospheric atoms and molecules, the amount of scattering of light of
	wavelength 440 nm is A . The amount of scattering for the light of wavelength 660 nm is approximately a) $\frac{4}{9}A$ b) 2.25 A c) 1.5 A d) $\frac{A}{5}$
4.	A double convex lens, lens made of a material of refractive index μ_1 , is placed inside two liquids or refractive indices μ_2 and μ_3 , as shown. $\mu_2 > \mu_1 > \mu_3$. A wide, parallel beam of light is incident on the lens from the left. The lens will give rise to $\frac{1}{1-\mu_1} = \frac{1}{1-\mu_2} = \frac{1}{1-\mu_3} = \frac{1}{1-\mu_4} =$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5.	a) A single convergent beam b) Two different convergent beams c) Two different divergent beams d) A convergent and a divergent beam A convex lens of focal length 30 cm produces 5 times magnified real image of an object. What is the object distance?
6.	a) 36 cm b) 25 cm c) 30 cm d) 150 cm Light travels in two media A and B with speeds $1.8 \times 10^8 ms^{-1}$ and $2.4 \times 10^8 ms^{-1}$ respectively. Then the critical angle between them is
	a) $\sin^{-1}\left(\frac{2}{3}\right)$ b) $\tan^{-1}\left(\frac{3}{4}\right)$ c) $\tan^{-1}\left(\frac{2}{3}\right)$ d) $\sin^{-1}\left(\frac{3}{4}\right)$
7.	We combined a convex lens of focal length f_1 and concave lens of focal lengths f_2 and their combined focal length was F . The combination of these lenses will behave like a concave lens, if a) $f_1 > f_2$ b) $f_1 < f_2$ c) $f_1 = f_2$ d) $f_1 \le f_2$
8.	A biconvex lens form a real image of an object placed perpendicular to its principal axis. Suppose the radii of curvature of the lens tend to infinity. Then the image would a) Disappear b) Remain as real image still c) Be virtual and of the same size as the object d) Suffer from aberrations
9.	A divergent lens will produce a) Always a virtual image b) Always real image
10.	c) Sometimes real and sometimes virtual d) None of the above An astronomical telescope has an angular magnification of magnitude 5 for distant objects. The separation between the objective and the eye-piece is 36 cm and the final image is formed at infinity. The focal length f_0 of the objective and the focal length f_e of the eye-piece are

	a) $f_0 = 45 \text{ cm} \text{ and } f_e = -60 \text{ cm}$	–9 cm	b) $f_0 = -7.2 \text{ cm and } f_e =$	= 5 cm		
	c) $f_0 = 50 \text{ cm and } f_e = 1$	10 cm	d) $f_0 = 30 \text{ cm} \text{ and } f_e = 6$	5 cm		
11.	=	petween object and a screen n. When the lens is displace	·	and an image of height 9 cm vill be the size of image on		
	a) 2 cm	b) 6 cm	c) 4 cm	d) 1 cm		
12.	A double convex lens made out of glass (refractive index $\mu=1.5$) has both radii of curvature of					
	magnitudes 20 cm. Incid		e axis of this lens will conv	erge at a distance d such that		
	a) $d = 10 \text{ cm}$	b) $d = \frac{20}{3}$ cm	c) $d = 40 \text{ cm}$	d) $d = 20 \text{ cm}$		
13.		red, yellow and violet colou	~ .	re 2.84°, 3.28° and 3.72°		
		sive power of prism materia				
	a) 0.268	b) 0.368	c) 0.468	d) 0.568		
14.	A beam of monochroma wavelength in water wil	tic blue light of wavelength l be	4200 A in air travels in wa	ter ($\mu = 4/3$). Its		
	a) 2800 Å	b) 5600 Å	c) 3150 Å	d) 4000 Å		
15.		dium is μ . The incidence an	gle is twice that of refracti	ng angle. The angle of		
	incidence is	db	db			
	a) $\cos^{-1}\left(\frac{\mu}{2}\right)$	b) $\sin^{-1}\left(\frac{\mu}{2}\right)$	c) $2\cos^{-1}\left(\frac{\mu}{2}\right)$	d) $\sin^{-1}\mu$		
16.		a eye is at 40 $\it cm$. For remove				
	a) 40 <i>D</i>	b) –4 <i>D</i>	c) -2.5 D	d) 0.25 <i>D</i>		
17.		tance of 5 cm from the first	focus of a convex lens of f	ocal length 10 cm. If a real		
	-	ance from the lens will be) 25	D 20		
10	a) 15 cm	b) 20 cm lies along the axis of a conc	c) 25 cm	d) 30 cm		
10.		the rod. The length of the in		. One end of its magnified		
	a) <i>f</i>	b) $\frac{1}{2}f$	c) 2 <i>f</i>	d) $\frac{1}{4}f$		
19.	The solar spectrum during a complete solar eclipse is					
	a) Continuous	b) Emission line	c) Dark line	d) Dark band		
20.		f incident angle is 45° then				
	a) 30°	b) 60°	c) 45°	d) 90°		
21.	-	wo statements A and B and	identify the correct choice	in the given answers		
	A: Line spectra is due to atoms in gaseous state B: Band spectra is due to molecules					
	a) Both A and B are false		b) A is true and B is false			
	c) A is false and B is true		d) Both A and B are true			
22.		- 'presbyopia' (myopia and h	,			
	a) A concave lens	pressy opia (my opia ana n	y per metropia both derect	s) should use		
	b) A convex lens					
	c) A bifocal lens whose l	ower portion is convex				
	d) A bifocal lens whose u	apper portion is convex				
23.	A man having height 6 n	n, observes image of 2 m he	ight erect, then mirror used	d is		
	a) Concave	b) Convex	c) Plane	d) None of the above		
24.	·	ugh a compound microscop heet of transparent materia	= =	en it is 5 mm away from the veen the objective and the		

=		n to bring the object back i	nto the focus. The refractive
index of the transparent i	material is		
a) 1.5	b) 1.6	c) 1.8	d) 2.0
The Cauchy's dispersion	formula is		
a) $n = A + B\lambda^{-2} + C\lambda^{-4}$	b) $n = A + B\lambda^2 + C\lambda^{-4}$	c) $n = A + B\lambda^{-2} + C\lambda^4$	d) $n = A + B\lambda^2 + C\lambda^4$
A light ray is incident upo	on a prism in minimum dev	iation position and suffers	a deviation of 34°. If the
shaded half of the prism i	s knocked off, the ray will		
\bigwedge			
a) Suffer a deviation of 34	4°	b) Suffer a deviation of 6	8°
c) Suffer a deviation of 17	7°	d) Not come out of the pr	rism
The impact of an image o	n the retina remains for		
a) 0.1 s	b) 0.5 <i>s</i>	c) 10 s	d) 15 <i>s</i>
An object is placed at a di	stance of 10 <i>cm</i> from a con-	vex lens of power $5D$. Find	the position of the image
a) -20 <i>cm</i>	b) 30 <i>cm</i>	c) 20 cm	d) -30 <i>cm</i>
If eye is kept at a depth h	inside water of refractive i	ndex and viewed outside, t	then the diameter of the
	outer objects become visibl		
_			h
a) $\frac{h}{\sqrt{\mu^2-1}}$	b) $\frac{h}{\sqrt{\mu^2+1}}$	c) $\sqrt{u^2 - 1}$	d) $\frac{h}{\sqrt{\mu^2}}$
v ·	tance of distinct vision of a	V .	its focal length 5 cm is
a) 2	b) 4	c) 5	d) 6
Find the luminous intensi	ity of the sun if it produces	the same illuminance on th	ne earth as produced by a
bulb of 10000 candela at	a distance $0.3 m$. The dista	nce between the sun and t	the earth is $1.5 \times 10^{11} m$
Two immiscible liquids o	b) $25 \times 10^{18} cd$ frefractive indices 1.5 and	4 are filled in glass jar each	of length 6 cm. A light of
	of the jar, the apparent dep		or rengun a amirringine ar
Minimum and the bottom	7	in or right source will be	
4/3	6 cm		
	en cu		
1.5			
	∑ oʻ		
a) 12.5 cm	b) 17 cm	c) 12 cm	d) 8.5 cm
	light falls on a convex lens.		,
•	distance of 0.20 <i>m</i> , 0.205 <i>n</i>	•	•
the material of the lens w		1 0	1 1
a) 619/1000	b) 9/200	c) 14/205	d) 5/214
•	, ,	, ,	al to the angle of emergence
	$\frac{3}{4}$ th the angle of prism. The		
a) 45°	b) 39°	c) 20°	d) 30°
-	,	,	the ratio of dispersive power
of glasses used		1	F F • · · · ·
a) 2:3	b) 3 : 2	c) 4:9	d) 9 : 4
•	~,~ -	-, · ·	~ <i>y</i> ~ ^
A ray of hour strikes a tra	nsnarent rectangular slah (of refractive index $\sqrt{2}$) at	an angle of incidence of 45°,

d) 120°

a) 75°

25.

26.

27.

28.

29.

30.

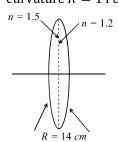
31.

32.

33.

34.

35.


36.

c) 105°

b) 90°

37.	What will be the colour	of sky as seen from the eart	h, if there were no atmo	sphere
	a) Black	b) Blue	c) Orange	d) Red
38.	A convex lens of focal le	ength $\frac{1}{3}$ m forms a real, inve	rted image twice in size	of the object. The distance of
	the object form the lens	is		
	a) 0.5 m	b) 0.166 m	c) 0.33 m	d) 1 m
39.	To get three images of a	single object, one should h	ave two plane mirrors at	an angel of
	a) 60°	b) 90°	c) 120°	d) 30°
40.	Chromatic aberration o	f lens can be corrected by		
	a) Reducing its aperatu	re		
	b) Proper polishing of it			
	c) Suitably combining i	t with another lens		
	d) Providing differents	uitable curvature to its two	surfaces	
41.	The least angle of devia	tion for a glass prism is equ	al to its refracting angle.	The refractive index of glass is
	1.5. Then the angle of pa	rism is		
	a) $2 \cos^{-1} \left(\frac{3}{4} \right)$	b) $\sin^{-1}\left(\frac{3}{4}\right)$	c) $2 \sin^{-1} \left(\frac{3}{2} \right)$	d) $\cot^{-1}(\frac{3}{2})$
42	\ 1/	(4)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	falls symmetrically on a glass
42.				the thickness of the glass slab
		idex n , then the divergence	-	_
	s cand the refractive in	idex n, then the divergence	angle of the emergent be	calli is
	\triangle			
	\int_{α}^{α}			
	<i>i</i>	< 1	>	
		131	_	
	' n ' t ₩	~		
	a) Zero	b) α	c) $\sin^{-1}(1/n)$	d) $2 \sin^{-1}(1/n)$
43.	A medium shows relation	on between i and r as show	n. If speed of light in the	medium is nc then value of n is
	sin r ↑ ↑	CIPLUS EDU	CAHON	
	' /			
	30°			
	$\sin i \longrightarrow$			
	a) 1.5	b) 2	c) 2^{-1}	d) $3^{-1/2}$
44.	What is the angle of inc	idence for an equilateral pri	sm of refractive index $$	$\overline{3}$ so that the ray is parallel to
	the base inside the prisi	m?		
	a) 30°	b) 45°	c) 60°	d) Either 30° or 60°
45.	Image formed by a conv	ex mirror is		
	a) Virtual	b) Real	c) Enlarged	d) Inverted
46.	How much water shoul	d be filled in a container 21	cm in height, so that it a	ppears half filled when viewed
	from the top of the cont	tainer (given that $_a\mu_\omega=4/3$	3)	
	a) 8.0 <i>cm</i>	b) 10.5 <i>cm</i>	c) 12.0 <i>cm</i>	d) None of the above
47.	Fraunhoffer spectrum is	S		
	a) Line absorption spec	trum	b) Band absorption sp	pectrum
	c) Line emission spectr	um	d) Band emission spe	ctrum
48.		_		listance when viewed through
			m the opposite face is 0.	04 m. The actual distance of the
	bubble from the second	face of the cube is		
	a) 0.06 m	b) 0.17 m	c) 0.05 m	d) 0.04 m
49.	Emission spectrum of C	'Ω- σ2¢		

- a) Is a line spectrum
- c) Is a continuous spectrum
- 50. "Lux" is a unit of
 - a) Luminous intensity of a source
 - c) Transmission coefficient of a surface
- b) Is a band spectrum
- d) Does not fall in the visible region
- b) Illuminance on a surface
- d) Luminous efficiency of source of light
- 51. A bi-convex lens is formed with two thin plano-convex lenses as shown in the figure. Refractive index n of the first lens is 1.5 and that of the second lens is 1.2. Both the curved surfaces are of the same radius of curvature R = 14 cm. For this bi-convex lens, for an object distance of 40cm, the image distance will be

- a) -280.0cm
- b) 40.0 cm
- c) 21.5 cm
- d) 13.3 cm
- 52. In a given direction, the intensities of the scattered light by a scattering substance for two beams of light are in the ratio of 256:81. The ratio of the frequency of the first beam to the frequency of the second beam is
 - a) 64: 127
- b) 4:3

- c) 64:27
- d) 2 : 1
- 53. Figure shows a cubical room ABCD with the wall CD as a plane mirror. Each side of the room is 3m. We place is camera at the midpoint of the wall AB. At what distance should the camera be focused to photograph an object placed at A

a) 1.5 m

b) 3 m

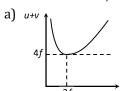
c) 6 m

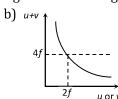
d) More than 6 m

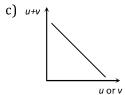
- 54. In a compound microscope, the intermediate image is
 - a) Virtual erect and magnified

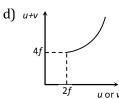
b) Real, erect and magnified

c) Real, inverted and magnified


- d) Virtual, erect and reduced
- 55. In the visible region the dispersive powers and the mean angular deviations for crown and flint glass prisms are ω , ω' and d, d' respectively. The condition for getting deviation without dispersion when the two prisms are combined is
 - a) $\sqrt{\omega d} + \sqrt{\omega' d'} = 0$
- b) $\omega' d + \omega d' = 0$
- c) $\omega d + \omega' d' = 0$
- d) $(\omega d)^2 = (\omega' d')^2 = 0$
- \dot{D} 56. The separation between two microscopic particles is measured P_A and P_B by two different lights of wavelength 2000 Å and 3000 Å respectively, then
 - a) $P_A > P_B$
- b) $P_A < P_B$
- c) $P_A < 3/2P_B$
- d) $P_A = P_B$
- 57. If the critical angle for total internal reflection from a medium to vacuum is 30°, the velocity of light in the medium is
 - a) $3 \times 10^8 \, m/s$
- b) $1.5 \times 10^8 \, m/s$
- c) $6 \times 10^8 \, m/s$
- d) $\sqrt{3} \times 10^8 \, m/s$
- 58. Sun subtends an angle of 0.5° at the centre of curvature of a concave mirror of radius of curvature 15 m. The diameter of the image of the sum formed by the mirror is
 - a) 8.55 cm
- b) 7.55 cm
- c) 6.55 cm
- d) 5.55 cm


- 59. The chromatic aberration in lenses becomes due to
 - a) Disimilarity of main axis of rays
 - b) Disimilarity of radii of curvature


60.	c) Variation of focal length of lenses with wavelength d) None of these At the time of total solar eclipse, the spectrum of solar radiation would be a) A large number of dark Fraunhoffer lines b) A less number of dark Fraunhoffer lines c) No lines at all					
61.	_			e far objects. Then due to the		
	a) $\frac{10}{3}$ cm	b) 30 <i>cm</i>	c) 15 <i>cm</i>	d) $\frac{100}{3}$ cm		
62.	J	reflected at an angle of 90°.	-	J		
	a) 45°	b) 90°	c) 65°	d) 43.2°		
63.				d at an angle of 60° between		
	them. The ray then toucl incidence	nes the second mirror, gets r	reflected back to the first m	nirror, making an angle of		
	a) 50°	b) 60°	c) 70°	d) 80°		
64.	Glass has refractive inde	x μ with respect to air and the	he critical angle for a ray o	f light going from glass to		
	air is θ . If a ray of light is	incident from air on the gla	ss with angle of incidence	heta , the corresponding angle		
	of refraction is					
	a) $\sin^{-1}\left(\frac{1}{\sqrt{\mu}}\right)$	b) 90°	c) $\sin^{-1}\left(\frac{1}{\mu^2}\right)$	d) $\sin^{-1}\left(\frac{1}{\mu}\right)$		
65.	A leaf which contains on	ly green pigments, is illumin	ated by a laser light of way	velength 0.632 μm . It would		
	appear to be	74				
	a) Brown	b) Black	c) Red	d) Green		
66.	-	bjective and the eye-piece of	-			
	-	l at infinity and the length of	f the tube is 16 cm, then the	e magnifying power of		
	microscope will be	b) −3.75	c) 3.375			
	a) -337.5	-		d) 33.75		
67.		on a coin lying at the botton ould the water be poured int				
	index of water is $\frac{4}{3}$)					
	a) 1 <i>cm</i>	b) $\frac{4}{3}$ cm	c) 3 <i>cm</i>	d) 4 cm		
68.	As shown in figure positi	ion of an images <i>I</i> of an obje	$\operatorname{ct} O$ formed by lens. This is	s possible if		
	^					
	A					
	O t					
	a) A convex lens is place	d to the left of O	b) A concave lens is place	ed to the left of O		
	c) A convex lens is place	d between <i>O</i> and <i>I</i>	d) A concave lens is place	ed to the right of <i>I</i>		
69.	The hyper-metropia is a					
	a) Short-side defect		b) Long-side defect			
	c) Bad vision due to old	_	d) None of these			
70.	An object is placed 30 cr	n to the left of a diverging le	ns whose focal length is of	magnitude 20 cm. Which		
	_	ectly states the nature and p	position of the virtual imag	e formed?		
	•	istance from lens		_		
	a) Inverted, enlarged	b) Erect, diminished	c) Inverted, enlarged	d) Erect, diminished		
	60 cm to the right	12 cm to the left	60 cm to the left	12 cm to the right		


71	A concess misses offe calles the 100 cm is used to all		uhiah auhtan da an anala af
/1.	A concave mirror of focal length 100 <i>cm</i> is used to ob 30'. The diameter of the image of the sun will be	otain the image of the sun v	vnich subtenus an angle of
	a) 1.74cm b) 0.87cm	c) 0.435 <i>cm</i>	d) 100 <i>cm</i>
72.	In refraction, light waves are bent on passing from o		
, 2,	second medium	ne medium to the second i	neurum, because, m me
	a) The frequency is different	b) The coefficient of elast	icity is different
	c) The speed is different	d) The amplitude is small	-
73.	When a glass lens with $n = 1.47$ is immersed in a tro		
, 5.	the trough could be	rugii or riquiu, it rooks to be	alsappeared. The fiquid in
	a) Water b) Kerosene	c) Glycerin	d) Alcohol
74.	A beaker containing a liquid appears to be half when		,
/ 1.	liquid	it is accually two till a rull	is the terractive mack of
	a) 7/6 b) 6/5	c) 3/2	d) 4/3
75.	Which of the following diagrams shows correctly the		
75.	a) b) b	c)	d) \rangle
			uj
	R	R	
	R	V	\nearrow R
76	Two longer are placed in contact with each other are	d the feed length of combin	
76.	Two lenses are placed in contact with each other and	•	iation is 80 cm. If the focal
	length of one is 20 <i>cm</i> , then the power of the other w		J) 275 D
77	a) 1.66 <i>D</i> b) 4.00 <i>D</i>	c) -1.00 D	d) -3.75 <i>D</i>
//.	A 16 cm long image of an object is formed by a conv		
	screen, without changing the positions of the object	and the screen, a 9 cm long	image is formed again on
	the screen. The size of the object is) 12	D 42
70	a) 9 cm b) 11 cm	c) 12 cm	d) 13 cm
78.	The dispersion for a medium of wavelength λ is D , the dispersion for D .	-	=
70	a) D/8 b) D/4	c) D/2	d) <i>D</i>
79.	The resolving power of a telescope depends on	LV Carallanath af abianti	
	a) Focal length of eye lens	b) Focal length of objective	
00	c) Length of the telescope	d) Diameter of the object	
80.	A point object is placed at distance of 20 cm from a t	-	carrength 15 cm. The plane
	surface of the lens is now silvered. The image create	d by the system is at	
	20 cm		
	a) 60 cm to the left of the system		
	b) 60 cm to the right of the system		
	c) 12 cm to the left of the system		
01	d) 12 cm to the right of the system	././	
81.	A spectrum is formed by a prism of dispersive power	$r^*\omega$. If the angle of deviation	on is 'o', then the angular
	dispersion is	24/8	1) 0
00	a) ω/δ b) δ/ω	c) $1/\omega\delta$	d) $\omega\delta$
82.	When light travels from one medium to the other of	wnich the refractive index	is airrerent, then which of
	the following will change	1) [.1
	a) Frequency, wavelength and velocity	b) Frequency and wavele	_
00	c) Frequency and velocity	d) Wavelength and veloc	•
83.	The astronomical telescope consists of objective and	eye-piece. The focal length	n of the objective is
	a) Equal to that of the eye-piece		

- b) Greater than that of the eye-piece
- c) Shorter than that of the eye-piece
- d) Five times shorter than that of the eye-piece
- 84. If \hat{i} denotes a unit vector along incident light ray, \hat{r} a unit vector along refracted ray into a medium of refractive index μ and \hat{n} unit vector normal to boundary of medium directed towards incident medium, then law of refraction is
 - a) $\hat{\imath} \cdot \hat{n} = \mu(\hat{r} \cdot \hat{n})$
- b) $\hat{\imath} \times \hat{n} = \mu(\hat{n} \times \hat{r})$
- c) $\hat{\imath} \times \hat{n} = \mu(\hat{r} \times \hat{n})$
- d) $\mu(\hat{\imath} \times \hat{n}) = \hat{r} \times \hat{n}$
- 85. A combination of two thin lenses of the same material with focal length f_1 and f_2 , arranged on a common axis minimizes chromatic aberration. If the distance between them is
- b) $\frac{(f_1 + f_2)}{(f_1 + f_2)}$
- c) $(f_1 + f_2)$
- d) $2(f_1 + f_2)$
- 86. For a convex lens, if real image is formed the graph between (u + v) and u or v is as follows

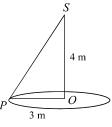
- 87. At what distance from a convex lens of focal length 30 cm, an object should be placed, so that the size of the image be $\frac{1}{2}$ th of the object?
 - a) 30 cm
- b) 60 cm
- c) 15 cm
- d) 90 cm
- 88. A beaker containing liquid is placed on a table, underneath a microscope which can be moved along a vertical scale. The microscope is focussed, through the liquid onto a mark on the table when the reading on the scale is a. It is next focused on the upper surface of the liquid and the reading is b. More liquid is added and the observations are repeated, the corresponding readings are c and d. The refractive index of the liauid is

- b) $\frac{b-d}{d-c-b+a}$ c) $\frac{d-c-b+a}{d-b}$ d) $\frac{d-b}{a+b-c-d}$
- 89. Which one of the following statements is true
 - a) An object situated at the principle focus of a concave lens will have its image formed at infinity
 - b) Concave mirror can give diminished virtual image
 - c) Given a point source of light, a convex mirror can produce a parallel beam of light
 - d) The virtual image formed in a plane mirror can be photographed
- 90. An object 2.5 cm high is placed at a distance of 10 cm from a concave mirror of radius of curvature 30 cm. The size of the image is
 - a) 9.2 cm
- b) 10.5 *cm*
- c) 5.6 cm
- d) 7.5 cm
- 91. In compound microscope, magnifying power is 95 and the distance of object from objective lens is $\frac{1}{3.8}$ cm.
 - The focal length of objective lens is $\frac{1}{4}$ cm. What is the magnification of eye piece?

- 92. Given a point source of light, which of the following can produce a parallel beam of light
 - a) Convex mirror

b) Concave mirror

c) Concave lens


- d) Two plane mirrors inclined at an angle of 90°
- 93. The refractive index of water is 1.33. The direction in which a man under water should look to see the setting sun is
 - a) 49° to the horizontal b) 90° with the vertical c) 49° to the vertical
- d) Along the horizontal
- 94. At Kavalur in India, the astronomers using a telescope whose objective had a diameter of one metre started using telescope of diameter 2.54 m. This resulted in
 - a) The increase in the resolving power by 2.54 times for the same λ
 - b) The increase in the limiting angle by 2.54 times for the sameλ

	c) Decrease in the resolvi	- -		
d) No effect on the limiting angle				
95. A compound microscope has two lenses. The magnifying power of one is 5 and the combined r				the combined magnifying
		ying power of the other le		
	a) 10	b) 20	c) 50	d) 25
96.		ens of radius of curvature	R and focal length f . If $f > f$	R, the refractive index μ of
	the material of the lens		13.7	
	, ,		b) Is greater than 1.5 but	less than 2.0
~ -	c) Is greater than one but		*	66 11 1
9/.			ngth 10 cm and an objective	~
	_		distance of 5 cm from the ob	ojective, so that final image
		ance of distinct vision 20 c		D 40
00	a) 12	b) 11	c) 10	d) 13
98.	must satisfy the inequality	•	of incidence i and the refrac	tive index μ of the medium
			.	D : ::
			c) $\sin i < \mu$	
99.	Two thin lenses of focal le	ength 20 cm and 25 cm are	in contact. The effective po	wer of the combination is
	a) 4.5 D	b) 18 D	c) 45 D	d) 9 D
100.	A vessel of height 2d is ha	alf-filled with a liquid of ref	fractive index $\sqrt{2}$ and the ot	her half with a liquid of
). Then the apparent depth (
	bottom of the vessel (negl	lecting the thickness of the	bottom of the vessel) will l	be
	n	$d(n+\sqrt{2})$	$\sqrt{2}n$	nd
	a) $\overline{d(n+\sqrt{2})}$	b) $\frac{\sqrt{1-y}}{n\sqrt{2}}$	c) $\frac{\sqrt{2}n}{d(n+\sqrt{2})}$	d) $\overline{(d+\sqrt{2n})}$
		"Name and the Control of the Control	ct with a plane mirror acts	
1011	length	igin 20 cm placea m conta	et with a plane militor deta	as a conveximitor of focal
		b) 40 cm	c) 60 cm	d) 20 cm
102.	The focal lengths of the ol	biective and the eve piece	c) 60 cm of telescope are 100 cm and	10 cm respectively. The
		cope when final image is fo		
	a) 0.1	b) 10	c) 100	d) ∞
103.		,	l image. Then the pencil of	•
	is			
	a) parallel	b) convergent	c) divergent	d) Any of these
104.	· •		een. When upper half of the	, ,
	opaque screen	<i>g.</i>	T	<i>y</i>
	a) Half the image will disa	appear		
	· -	e formed of same intensity		
	c) Half image will be form			
	_	e formed of decreased inte	nsity	
105.	·	angles of water and glass i	-	
	a) $C_{\omega} > C_g$	b) $C_{\omega} < C_{q}$	c) $C_{\omega} = C_{g}$	d) $C_{\omega} = C_g = 0$
106.	, ,	, ,	oncave mirror of 10 <i>cn</i> foca	-
1001	_	one end touches the rod. I		riengen saen enae ies mage
	a) 1	b) 2	c) 3	d) 4
107.	A fish, looking up through	the water sees the outside	e world contained in a circu	ılar horizon. If the refractive
	index of water is $4/3$ and	the fish is 12 cm below the	e surface of water, the radiu	s of the circle in centimetre
	is		10 5	
	a) $\frac{12 \times 3}{\sqrt{5}}$	b) $12 \times 3 \times \sqrt{5}$	c) $\frac{12 \times 3}{\sqrt{7}}$	d) $12 \times 3 \times \sqrt{7}$
	$\sqrt{5}$	~, 14 A J A V J	$\sqrt{7}$	~) 14 ∧ 3 ∧ V /

- 108. One of the refracting surfaces of a prism of angle 30° is silvered. A ray of light incident at an angle of 60° retraces its path. The refractive index of the material of prism is

b) 3/2

- 109. A source is at 4m height above the centre of a circular table of a circular table of radius 3m. The ratio of illuminance at O and P will be

a) $\frac{64}{125}$

b) $\frac{125}{64}$

c) 1

- 110. The sun's diameter is $1.4 \times 10^9 m$ and its distance from the earth is $10^{11} m$. The diameter of its image, formed by a convex lens of focal length 2m will be
 - a) 0.7 cm

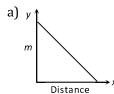
b) 1.4 cm

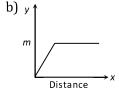
c) 2.8 cm

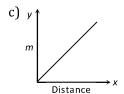
- d) Zero (i. e. point image)
- 111. A ray of light incident normally on one face of a right angled isosceles prism. It them grazes the hypotenuse. The refractive index of the material of the prism is
 - a) 1.33

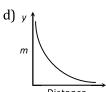
- b) 1414
- c) 1.5

- d) 1.732
- 112. Each quarter of a vessel of depth H is filled with liquids of the refractive indices n_1 , n_2 , n_3 and n_4 from the bottom respectively. The apparent depth of the vessel when looked normally is

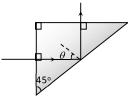

a)
$$\frac{H(n_1 + n_2 + n_3 + n_4)}{4}$$

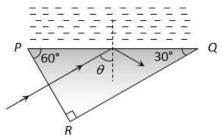

a)
$$\frac{H(n_1 + n_2 + n_3 + n_4)}{4}$$
 b) $\frac{H(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \frac{1}{n_4})}{4}$ c) $\frac{(n_1 + n_2 + n_3 + n_4)}{4H}$ d) $\frac{H(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \frac{1}{n_4})}{2}$


c)
$$\frac{(n_1 + n_2 + n_3 + n_4)}{4H}$$


d)
$$\frac{H\left(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \frac{1}{n_4}\right)}{2}$$

- 113. In the formation of primary rainbow, the sunlight rays emerge at minimum deviation from rain-drop after
 - a) One internal reflection and one refraction
 - b) One internal reflection and two refraction
 - c) Two internal reflection and one refraction
 - d) Two internal reflection and one refraction
- 114. Which of the following graphs is the magnification of a real image against the distance from the focus of a concave mirror



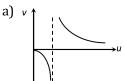


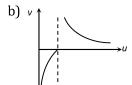
115. A triangular prism of glass is shown in the figure. A ray incident normally to one face is totally reflected, if $\theta = 5^{\circ}$. The index of refraction of glass is

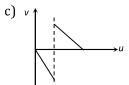
- a) Less than 1.41
- b) Equal to 1.41
- c) Greater than 1.41
- d) None of the above
- 116. PQR is a right angled prism with other angles as 60° and 30°. Refractive index of prism is 1.5. PQ has a thin layer of liquid. Light falls normally on the face PR. For total internal reflection, maximum refractive index of liquid is

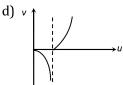
a) 1.4

b) 1.3


c) 1.2


- d) 1.6
- 117. Which one of the following is not associated with total internal reflection
 - a) The mirage formation


b) Optical fiber communication


c) The glittering of diamond

- d) Dispersion of light
- 118. As the position of an object (u) reflected from a concave mirror is varied, the position of the image (v) also varies. By letting the u changes from 0 to $+\infty$ the graph between v versus u will be

- 119. Dispersive power depends on the following
 - a) Material of the prism
 - c) Size of the prism

- b) Shape of the prism
- d) Size, shape and material of the prism
- 120. The communication using optical fibres is based on the principle of
 - a) Total internal reflection

b) Brewster angle

c) Polarization

- d) Resonance
- 121. A monochromatic beam of light passes from a denser medium into a rarer medium. As a result
 - a) Its velocity increases

b) Its velocity decreases

c) Its frequency decreases

- d) Its wavelength decreases
- 122. In an astronomical telescope in normal adjustment, a straight blackline of length L is drawn on the objective lens. The eyepiece forms a real image of this line. The length of this image is l. The magnification of the telescope is

a)
$$\frac{L}{l}$$

b)
$$\frac{L}{l} + 1$$

c)
$$\frac{L}{l} - 1$$

$$d) \frac{L+l}{L-l}$$

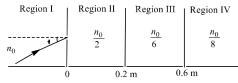
- 123. A microscope is focused on an ink mark on the top of a table. If we place a glass slab of 3 cm thick on it, how should the microscope be moved to focus the ink spot again? The refractive index of glass is 1.5.
 - a) 2 cm upwards
- b) 2 cm downwards
- c) 1 cm upwards
- d) 1 cm downwards
- 124. With respect to air critical angle in a medium for light of red colour (λ_1) is θ . Other facts remaining same, critical angle for light of yellow colour $[\lambda_2]$ will be
 - a) θ

- b) More than θ
- c) Less than θ
- 125. Total internal reflection of a ray of light is possible when the (i_c = critical angle, i = angle of incidence)
 - a) Ray goes from denser medium to rarer medium and $i < i_c$
 - b) Ray goes from denser medium to rarer medium and $i > i_c$
 - c) Ray goes from rarer medium to denser medium and $i > i_c$
 - d) Ray goes from rarer medium to denser medium and $i < i_c$
- 126. What is the time taken (in *seconds*) to cross a glass of thickness 4 mm and $\mu = 3$ by light
 - a) 4×10^{-11}
- b) 2×10^{-11}
- c) 16×10^{-11}
- 127. A compound microscope has an objective and eye-piece as thin lenses of focal lengths 1 cm and 5 cm respectively. The distance between the objective and the eye-piece is 20 cm. The distance at which the

object must be placed infront of the objective if the final image is located at 25 cm from the eye-piece, numerically	it
a) 95/6 cm b) 5 cm c) 95/89 cm d) 25/6 cm	
128. From which source a continuous emission spectrum and a line absorption spectrum are simultaneous	ly
obtained	,
a) Bunsen burner flame b) The sun	
c) Tube light d) Hot filament of an electric bulb	
129. In a thin prism of glass (refractive index 1.5), which of the following relations between the angle of	
minimum deviations δ_m and angle of refraction r will be correct	
a) $\delta_m = r$ b) $\delta_m = 1.5r$ c) $\delta_m = 2r$ d) $\delta_m = \frac{r}{2}$	
130. A person cannot see properly beyond 2 m. Power of the lens is	
a) 0.5 D b) 1.5 D c) -2.5 D d) -0.5 D	
131. A thin glass (refractive index 1.5) lens has optical power of -5 D in air. Its optical power in a liquid me	dium
with refractive index 1.6 will be	
a) 1 D b) -1 D c) 25 D d) -25 D	
132. A bi-convex lens made of glass (refractive index 1.5) is put in a liquid of refractive index 1.7. Its focal	
length will	
a) Decrease and change sign b) Increase and change sign	
c) Decrease and remain of the same sign d) Increase and remain of the same sign	
133. If luminous efficiency of a lamp is 2 lumen/watt and its luminous intensity is 42 candela, then power	of the
lamp is	
a) 62 W b) 76 W c) 1.38 W d) 264 W	
134. What cause chromatic aberration?	
a) Non-paraxial rays	
b) Paraxial rays	
c) Variation of focal length with colour	
d) Difference in radii of curvature of the bounding surface of the lens	
135. Two plane mirrors inclined to each other at an angle 72°, what is the number of image formed?	
a) 3 b) 5 c) 9 d) 7	
136. In an optics experiments, with the position of the object fixed, a student varies the position of a conve	X
lens and for each position, the screen is adjusted to get a clear image of the object. A graph between t	ıe
object distance u and the image distance v , from the lens, is plotted using the same scale for the two a	
A straight line passing through the origin and making an angle of 45° with the x-axis meets the	
experimental curve at P . The coordinates of P will be	
a) $(2f, 2f)$ b) $(\frac{f}{2}, \frac{f}{2})$ c) (f, f) d) $(4f, 4f)$	
a) $(2j,2j)$ b) $(\frac{1}{2},\frac{1}{2})$ c) (j,j) u) $(4j,4j)$	
137. The aperture of a telescope is made large, because	
a) To increase the intensity of image b) To decrease the intensity of image	
c) To have greater magnification d) To have lesser resolution	
138. Four convergent lenses have focal lengths 100 cm, 10 cm, 4 cm and 0.3 cm. For a telescope with maxim	num
possible magnification, we choose the lenses of focal length	
a) 100 cm,0.3 cm b) 10 cm,0.3 cm c) 10 cm,4 cm d) 100 cm,4 cm	
139. The focal length of a convex lens depends upon	
a) Frequency of the light ray b) Wavelength of the light ray	
c) Both (a) and (b) d) None of these	
140. A virtual image three times the size of the object is obtained with a concave mirror of curvature 36 cm	l.
The distance of the object from the mirror is	
The distance of the object from the mirror is a) $5 cm$ b) $12 cm$ c) $10 cm$ d) $20 cm$	

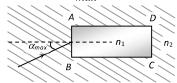
	a) Continuous spectrum		b) Line spectrum	
	c) Band spectrum		d) Absorption spectrum	
142.		n times magnified image of	an object on a screen. The	distance of the screen from
	the lens is			
	a) $\frac{f}{(m-1)}$	b) $\frac{f}{(m+1)}$	c) $f(m-1)$	d) $f(m+1)$
	, ,			uj) (+ 1)
143.		of power + 2 D.He is suffer		
	a) Myopia	b) Presbyopia	c) Astigmatism	
144.	-	of focal f is split into two ha		-
	_	een objectand image plane	_	_
	one of the half lens is 2. Fi	nd the focal-length of the le	ens and separation between	n the two halves
	0			
	1.8 m			
	a) 0.1 m	b) 0.4 m	c) 0.9 m	d) 1 m
145.	-	eal image is formed the grap	-	
	a) _{1/v} \	b) 1/v	c) 1/v \\	d) 1/v
		\longrightarrow		/
	1/ <i>u</i>	1/u	1/u	1/ <i>u</i>
146.	Rainbow is formed due to			
	a) Total internal reflection	n 🗇	b) Scattering	
	c) Refraction		d) Dispersion and total in	
147.				cal length f at a distance of
	4f. The length of the imag	ge will be	c) 4 <i>cm</i>	
	a) 2 cm			d) 1.2 <i>cm</i>
148.	· ·	on a plane mirror at an angl	e of 60°.The angle of devia	tion produced by the
	mirror is	1.3.200) (00	1) 000
4.40	a) 120°	b) 30°	c) 60°	d) 90°
149.		the final image is located at		
	a) $\frac{25}{f}$	b) $\frac{D}{26}$	c) $\frac{f}{25}$	d) $\frac{f}{D+1}$
150	,	26 f convex surface of a thin pl	23	D + 1
130.	material is 1.6. The power	-	ano-convexiens is 15 cm a	illu Terractive muex of its
	a) $+1D$	b) -2 <i>D</i>	c) +3 D	d) +4 D
151	The unit of focal power of	,	c) 13 <i>D</i>	uj 14 <i>D</i>
131.	a) Watt	b) Horse power	c) Dioptre	d) Lux
152	-	D and +5 D are in contact v	-	,
152.	a) -20 cm	b) -10 cm	c) +20 cm	d) +10 cm
153		m uses light of wavelength	•	•
100.	_	tars whose image is just res	_	ne milimum angulai
	a) $4 \times 10^{-4} rad$	b) $0.25 \times 10^{-6} rad$	c) $0.31 \times 10^{-6} rad$	d) $5.0 \times 10^{-3} rad$
15/		boundary between two tra	=	
エンゴ	becule A plane be the	boandary between two tra	noparent media Mediani	. III 2 _ U Has a l'ellactive

is

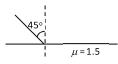

index of $\sqrt{2}$ and medium 2 with z < 0 has a refractive index of $\sqrt{3}$. A ray of light in medium 1 given by the $vector {\bf A} = 6\sqrt{3}\hat{\bf i} + 8\sqrt{3}\hat{\bf j} - 10\,\hat{\bf k}$ is incident on the plane of separation. The angle of refraction in medium 2

a) 45°

b) 60°


c) 75°

- d) 30°
- 155. A light beam is travelling from Region I to Region IV (refer figure). The refractive index in Region I, II, III and IV are $n_0, \frac{n_0}{2}, \frac{n_0}{6}$ and $\frac{n_0}{8}$, respectively. The angle of incidence θ for which the beam just misses entering Region IV is


- a) $\sin^{-1}\left(\frac{3}{2}\right)$

- d) $\sin^{-1}\left(\frac{1}{3}\right)$
- b) $\sin^{-1}\left(\frac{1}{8}\right)$ c) $\sin^{-1}\left(\frac{1}{4}\right)$ c) $\sin^{-1}\left(\frac{1}{4}\right)$ 156. A rectangular glass slab *ABCD*, of refractive index n_1 , is immersed in water of refractive index $n_2(n_1 > n_2)$. A ray of light in incident at the surface AB of the slab as shown. The maximum value of the angle of incidence α_{max} such that the ray comes out only from the other surface CD is given by

- a) $\sin^{-1} \left[\frac{n_1}{n_2} \cos \left(\sin^{-1} \frac{n_2}{n_1} \right) \right]$
- c) $\sin^{-1}\left(\frac{n_1}{n}\right)$

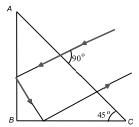
- b) $\sin^{-1}\left[n_1\cos\left(\sin^{-1}\frac{1}{n_2}\right)\right]$
- d) $\sin^{-1}\left(\frac{n_2}{n_1}\right)$
- 157. A vessel of depth 2d cm is half filled with a liquid of refractive index μ_1 and the upper half with a liquid of refractive index μ_2 . The apparent depth of the vessel seen perpendicularly is
 - a) $d\left(\frac{\mu_1\mu_2}{\mu_1 + \mu_2}\right)$
- b) $d\left(\frac{1}{\mu_1} + \frac{1}{\mu_2}\right)$
- c) $2d\left(\frac{1}{\mu_1} + \frac{1}{\mu_2}\right)$ d) $2d\left(\frac{1}{\mu_1\mu_2}\right)$
- 158. 1% of light of a source with luminous intensity 50 candela is incident on a circular surface of radius 10 cm. The average illuminance of surface is
 - a) 100 lux
- b) 200 lux
- d) 400 lux
- 159. If both the object and image are at infinite distance from a refracting telescope its magnifying power will be equal to
 - a) The sum of the focal lengths of the objective and the eyepiece
 - b) The different of the focal lengths of the two lenses
 - c) The ratio of the focal length of the objective and eyepiece
 - d) The ratio of the focal length of the eyepiece and objective
- 160. One side of a glass slab is silvered as shown. A ray of light is incident on the other side at angle of incidence $i = 45^{\circ}$. Refractive index of glass is given as 1.5, the deviation of the ray of light from its initial path when it comes out of the slab is

a) 90°

b) 180°

c) 120°

- d) 45°
- 161. The index of refraction of diamond is 2.0. The velocity of light in diamond is approximately
 - a) $1.5 \times 10^{10} \text{cms}^{-1}$
- b) $2 \times 10^{10} \text{cms}^{-1}$
- c) $3.0 \times 10^{10} \text{cms}^{-1}$
- d) $6 \times 10^{10} \text{cms}^{-1}$
- 162. Image formed by a convex lens is virtual and erect when the object is placed
 - a) At F


b) Between *F* and the lens

c) At 2F

- d) Beyond 2F
- 163. Dark lines on solar spectrum are due to

	b) Black body radiation				
	c) Absorption of certain wavelengths by outer layers				
	d) Scattering				
164.	Where should a person st	tand straight from the pole	of a convex mirror of focal	length 2.0 m on its axis so	
	that the image formed be	come half of his original he	ight?		
	a) -2.60m	b) -4.0m	c) -0.5m	d) -	
				2.0m	
165.	Three prisms 1, 2 and 3 h	have the prism angle $A = 60$)°, but their refractive indic	es are respectively 1.4, 1.5	
		eir respective angles of devi			
	a) $\delta_3 > \delta_2 > \delta_1$	b) $\delta_1 > \delta_2 > \delta_3$	c) $\delta_1 = \delta_2 = \delta_3$	d) $\delta_2 > \delta_1 > \delta_3$	
166.	The position of final imag	ge formed by the given lens	combination from the third	l lens will be at a distance	
	of $[f_1 = +10 \text{ cm}, f_2 = -$				
	†	, -			
	\wedge ∇	٨			
	v	V			
	30 cm 5 cm 10 cm	>			
	a) 15 cm	b) Infinity	c) 45 cm	d) 30 cm	
167.	The focal length of a conv	vex lens is $10cm$ and its ref	ractive index is 1.5. If the ra	adius of curvature of one	
	surface is 7.5 cm, the rad	ius of curvature of the seco	nd surface will be		
	a) 7.5 <i>cm</i>	b) 15.0 <i>cm</i>	c) 75 <i>cm</i>	d) 5.0 <i>cm</i>	
168.	A convex lens of focal len	gth f is placed some where	in between an object and a	screen. The distance	
	between object and scree	en is x . If numerical value of	magnification produced by	y lens is m , focal length of	
	lens is			_	
	a) $\frac{mx}{(m+1)^2}$	b) $\frac{mx}{(m-1)^2}$	$(m+1)^2$	$(m-1)^2$	
	$^{a)}(m+1)^2$	$^{0)}(m-1)^2$	$\frac{c_1}{m}$	$\frac{a}{m}$	
169.	An object of height 1.5 cm	n is placed on the axis of a c	onvex lens of focal length 2	25 <i>cm</i> . A real image is	
	formed at a distance of 7	5cm from the lens. The size	e of the image will be		
	a) 4.5 <i>cm</i>	b) 3.0 <i>cm</i>	c) 0.75 <i>cm</i>	d) 0.5 <i>cm</i>	
170.	An achromatic combinati	on of lenses is formed by jo	oining		
	a) 2 convex lenses		b) 2 concave lenses		
	c) 1 convex lens and 1 co	oncave lens	d) Convex lens and plane	mirror	
171.	A thin convex lens of foca	al length $10\ cm$ is placed in 6	contact with a concave lens	of same material and of	
	same focal length. The fo	cal length of combination w	rill be		
	a) Zero	b) Infinity	c) 10 <i>cm</i>	d) 20 <i>cm</i>	
172.	A thin equiconvex lens of	refractive index 3/2 and ra	ndius of curvature 30 m is p	out in water (refractive	
	index $=\frac{4}{3}$). Its focal length	ı is			
	a) 0.15 m	b) 0.30 m	c) 0.45 m	d) 1.20 m	
172	An astronaut in a spacesh	-	c) 0.45 m	u) 1.20 m	
1/3.	a) White	b) Black	c) Blue	d) Red	
174	-	e of incidence in the denser	-	•	
1/4.	medium is	e of incluence in the defiser	medium for winch the ang.	ie of reflection in rarei	
	a) 0°	b) 57°	c) 90°	d) 180°	
175	•	C(AB = BC) and travels a	•	•	
1/3.			s shown in figure. The min	mum remactive of the	
	prism material should be	;			

a) Lack of certain elements

a) $\frac{4}{3}$

b) $\sqrt{2}$

c) 1.5

d) $\sqrt{3}$

- 176. In the position of minimum deviation when a ray of yellow light passes through the prism, then its angle of incidence is
 - a) Less than the emergent angle
 - b) Greater than the emergent angle
 - c) Sum of angle incidence and emergent angle is 90°
 - d) Equal to the emergent angle
- 177. To increase the magnifying power of telescope (f_o = focal length of the objective and f_e = focal length of the eye lens)
 - a) f_o should be large and f_e should be small
 - b) f_o should be small and f_e should be large
 - c) f_o and f_e both should be large
 - d) f_o and f_e both should be small
- 178. A lens is placed between a source of light and a wall. It forms images of area A_1 and A_2 on the wall for its two different positions. The area of the source or light is

a)
$$\frac{A_1 + A_2}{2}$$

b) $\left[\frac{1}{A_1} + \frac{1}{A_2}\right]^{-1}$ c) $\sqrt{A_1 A_2}$ d) $\left[\frac{\sqrt{A_1} + \sqrt{A_2}}{2}\right]^2$

- 179. An achromatic combination of lenses produces
 - a) Images in black and white
 - b) Coloured images
 - c) Images unaffected by variation of refractive index with wavelength
 - d) Highly enlarged images are formed
- 180. A diminished virtual image can be formed only in
 - a) Plane mirror

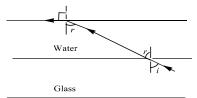
b) A concave mirror

c) A convex mirror

d) Concave-parabolic mirror

- 181. Venus looks brighter than other stars because
 - a) It has higher density than other stars
- b) It is closer to the earth than other stars

c) It has no atmosphere


- d) Atomic fission takes place on its surface
- 182. A ray of light travelling in water is incident on its surface open to air. The angle of incidence is θ , which is less than the critical angle. Then there will be
 - a) Only a reflected ray and no reflected ray
 - b) Only a reflected ray and no reflected ray
 - c) A reflected ray and a refracted ray and the angle between then would be less than $108^{\circ}-20$
 - d) A reflected ray and a refracted ray and the angle between then would be greater than $108^{\circ}-20$
- 183. If the focal length of objective and eye lens are 1.2 cm and 3 cm respectively and the object is put 1.25 cm away from the objective lens and the final image is formed at infinity. The magnifying power of the microscope is
 - a) 150

b) 200

c) 250

- d) 400
- 184. The refractive index of a piece of transparent quartz is the greatest for
 - a) Red light
- b) Violet light
- c) Green light
- d) Yellow light

185.	Refractive index for a m	aterial for infrared light is			
	a) Equal to that of ultrav	violet light	b) Less than for ultraviol	et light	
	c) Equal to that for red		d) Greater than that for u	ltraviolet light	
186.	In vacuum the speed of	_	•	_	
	a) Frequency		b) Wave length		
	c) Velocity of the source	e of light	d) None of these		
187	•	noves in a straight line parall		er a small nortion of the	
1071		line of movement of the sou			
	distance r from the sou		reel the manimumee at this	s por cion varies with this	
			1	1	
	a) $\propto \frac{1}{r}$	b) $\propto \frac{1}{r^2}$	c) $\propto \frac{1}{r^3}$	d) $\propto \frac{1}{r^4}$	
	•	placed horizontally on a leve	,	1	
100	-	l its image in the mirror subt	_		
	will be	res image in the imitor sub-	end an angle of 70° at the t	eyer the height of the tower	
		b) 60m	a) 00m	d) 120m	
100	a) $30m$,	c) 90 <i>m</i>	d) 120 <i>m</i>	
189.		al image formed by a convex		-	
	graph is plotted betwee	$n \nu$ and u . Which one of the f	following graphs is correct	<i>:</i>	
	↑ V	↑ ↑ \	A V	v_{lacksq}	
				. \	
	a) /	b) \	c) / /	d) \	
	u	u	u	<u> </u>	
190.	-	refractive index 1.5 and radiu			
	Now, this lens has been used to from the image of an object. At what distance from this lens, an object be				
	placed in order to have	a real image of the size of the	e object?		
	a) 20 cm	b) 30 cm	c) 60 cm	d) 80 cm	
191.	A double convex lens of	focal length $20~cm$ is made c	of glass of refractive index 3	3/2. When placed	
	completely in water (ak	$u_{\omega} = 4/3$), its focal length w	ill be		
	a) 80 <i>cm</i>	b) 15 <i>cm</i>	c) 17.7 <i>cm</i>	d) 22.5 <i>cm</i>	
192.	To a fish under water, v	iewing obliquely a fisherman	n standing on the bank of tl	he lake, the man looks	
	a) Taller than what he a	ictually is			
	b) Shorter that what he				
	c) The same height as h				
	d) Depends on the obliq				
193.		for a human eye is of the ord	der of		
	a) 1	b) 0.1	c) 0.01	d) 0.001	
194	=	luminous efficiency of a lam	3	-	
171.	of the lamp is	rammo do emicremey er a ram,	p and its familious interiore	y is as contracted the part of	
	a) 80 W	b) 176 <i>W</i>	c) 88 W	d) 36 W	
105		acuum is $C m/sec$, then the v	-		
	a) Is $1.5 \times C$	actumns 6 m/sec, then the v	b) Is <i>C</i>	ii of refractive maca 1,5	
			•		
	c) Is $\frac{c}{1.5}$		d) Can have any velocity		
196.	When sunlight is scatter	red by minute particles of atr	mosphere, the intensity of l	light scattered away is	
	proportional to				
		b) (frequency of light) ⁴	c) (wavelength of light) ²	d) (frequency of light) ²	
197.		at the glass-water interface			
	water, then the value of	_	5 5	• •	
		U			

a) (4/3) sin i

b) 1/ sin i

c) 4/3

198. The wavelength of light in air and some other medium are respectively λ_a and λ_m . The refractive index of medium is

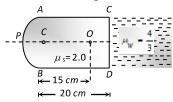
a) λ_a/λ_m

b) λ_m/λ_a

c) $\lambda_a \times \lambda_m$

d) None of these

199. The plane face of a planoconvex lens is silvered. If μ be the refractive index and R, the radius of curvature of curved surface, then the system will behave like a concave mirror of radius of curvature


a) μR

b) $\frac{R}{(\mu-1)}$

c) $\frac{R^2}{\Pi}$

d) $\left[\frac{(\mu+1)}{(\mu-1)}\right]R$

200. The slab of a material of refractive index 2 shown in figure has curved surface APB of radius of curvature 10 cm and a plane surface CD. On the left of APB is air and on the right of CD is water with refractive indices as given in figure. An object O is placed at a distance of 15 cm from pole P as shown. The distance of the final image of O from P, as viewed from the left is

a) 20 cm

b) 30 cm

d) 50 cm

201. A lens of refractive index n is put in a liquid of refractive index n'. If focal length of lens in air is f, its focal length in liquid will be

b) $\frac{f(n'-n)}{n'(n-1)}$

d) $\frac{fn'n}{n-n'}$

202. Spherical aberration in a len

a) Is minimum when most of the deviation is at the first surface

b) Is minimum when most of the deviation is at the second surface

c) Is minimum when the total deviation is equally distributed over the two surfaces

d) Does not depend on the above considerations

203. The frequency of light in air is 5×10^{14} Hz. What will be the frequency of light, when it enters in the water?

a) $2.5 \times 10^{14} \text{ Hz}$

b) $5 \times 10^{14} \text{ Hz}$

c) 10^{15} Hz

d) $2.5 \times 10^{12} \text{ Hz}$

204. The refractive index of water and glycerine are 1.33 and 1.47 respectively. What is the critical angle for a light ray going from the latter to the former?

a) 60°48′

b) 64°48′

c) 74°48′

d) None of these

205. Which of the following is a wrong statement?

a) D = 1/f where, f is the focal length and D is called the refractive power of a lens

b) Power is expressed in a diopter when *f* is in metre

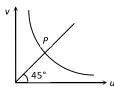
c) Power is expressed in diopter and does not depend on the system of unit used to measure f

d) *D* is positive for convergent lens and negative for divergent lens

206. A telescope has an objective of focal length 50 cm and an eye piece of focal length 5 cm. The least distance of distinct vision is 25 cm. The telescope is focussed for distinct vision on a scale 200 cm away. The separation between the objective and the eye-piece is

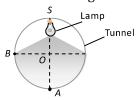
a) 75 cm

b) 60 cm


c) 71 cm

d) 74 cm

207.	07. A point object is placed at a distance of 25 cm from a convex lens of focal length 20 cm. If a glass slab of thickness t and refractive index 1.5 is inserted between the lens and the object, the image is formed at infinity. The thickness t is				
	a) 15 cm	b) 5 cm	c) 10 cm	d) 20 cm	
208.	A concavelens with unecommersed in a liquid of ra) It behave like a conver	qual radii a curvature made efractive index μ_l =2, then x lens of 80 cm focal length we lens of 20 cm focal length	e of glass ($\mu_{ m g}=1.5$) has a fo	=	
209.	A fish is a little away belo	ow the surface of a lake. If	the critical angle is 49°, the	n the fish could see things	
	above water surface with	nin an angular range of θ° v			
	a) $\theta = 49^{\circ}$	b) $\theta = 98^{\circ}$	c) $\theta = 24 \frac{1}{4}$ °	d) $\theta = 90^{\circ}$	
	him. The power of the sp a) $+0.5 D$ The focal length of a plan with its curved surface to	ectacle lens required to se b) $-1.0 D$ to convexlens is f and its i	e objects which lie between e a distant object is c) —10 <i>D</i> refractive index is 1.5. It is k lled by a liquid. As a result,	d) +4.0 <i>D</i> ept over a plane glass plate	
	a) 1.5	b) 2	c) 1.25	d) 1.33	
212.	The focal length of a con-	-	stance from the object to the t is		
	a) $\frac{f+x}{f}$	f	c) \int_{x}^{f}	d) $\frac{f^2}{r^2}$	
	f	b) $\frac{f}{x}$	$\frac{1}{x}$	$\frac{u}{x^2}$	
213.	central axis with high ve	2/3 part is coated with yell locity, then it will be seen a b) Brown	ow and 1/3 part is with blu as c) White		
214	a) Green	,	,	d) Violet	
Z14.	is $20 cm$. Then the focal l		ective of 5 mm focal length	is 400. The length of its tube	
	a) 200 <i>cm</i>	b) 160 <i>cm</i>	c) 2.5 <i>cm</i>	d) 0.1 <i>cm</i>	
215		-	ver of a microscope is given	-	
2101					
	a) $\frac{2\mu \sin \theta}{1.22 \lambda}$	b) $\frac{\mu \sin \theta}{\lambda}$	c) $\frac{2\mu\cos\theta}{1.22 \lambda}$	d) $\frac{2\mu}{\lambda}$	
216.	For a optical arrangemen	t shown in the figure. Find	l the position and nature of	images	
	μ=1 μ=1.33 1 cm 0 C				
	a) 32 cm	b) 0.6 cm	c) 6 cm	d) 0.5 cm	
217.	A concave mirror of foca	l length ' f_1 ' is placed at a d	istance of ' d ' from a convex	lens of focal length ' f_2 '. A	
	beam of light coming from	m infinity and falling on th	is convex lens-concave mirr	or combination returns to	


GPLUS EDUCATION

- a) $f_1 + f_2$
- b) $-f_2 + f_2$
- c) $2f_1 + f_2$
- d) $-2f_1 + f_2$
- 218. The graph shows variation of v with change in u for a mirror. Points plotted above the point P on the curve are for values of v

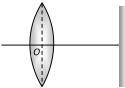
- a) Smaller then f
- b) Smaller then 2f c) Larger then 2f
- d) Larger then f
- 219. A glass convex lens ($\mu_g=$ 1.5) has a focal length of 8 cm when placed in air. What would be the focal length of the lens what it is immersed in water ($\mu_{\omega} = 1.33$)

- 220. An electric lamp is fixed at the ceiling of a circular tunnel as shown is figure. What is the ratio the intensities of light at base *A* and a point *B* on the wall

a) 1:2

- b) $2:\sqrt{3}$
- c) $\sqrt{3}:1$
- d) 1 : $\sqrt{2}$
- 221. A sitting sun appears to be at an altitude higher than it really is. This is because of
 - a) Absorption of light
- b) Refection of light
- c) Refraction of light
- d) Dispersion of light
- 222. A ray of light falls on the surface of a spherical glass paper weight making an angle α with the normal and is refracted in the medium at an angle β . The angle of deviation of the emergent ray from the direction of the incident ray
 - a) $(\alpha \beta)$
- b) $2(\alpha \beta)$
- c) $(\alpha \beta)/2$
- d) $(\beta \alpha)$
- 223. If a ray of light in a denser medium enters into a rarer medium at an angle of incidence i, the angle of reflection and reflection are respectively r and r'. If the reflected and refracted rays are at right angles to each other, the critical angle for the given pair of media is
 - a) $\sin^{-1}(\tan r')$
- b) $\sin^{-1}(\tan r)$
- c) $tan^{-1}(sin i)$
- 224. Material Ahas critical angle i_A , and material B has critical angle $i_B(i_b > i_A)$. Then which of the following is true?
 - (i) Light can be totally internally reflected when it passes from *B* to *A*
 - (ii) Light can be totally internally reflected when it passes from A to B
 - (iii) Critical angle for total internal reflection is

 - (iv) Critical angle between A and B is $\sin^{-1} \left(\frac{\sin i_A}{\sin i_B} \right)$
 - a) (i) and (iii)
- b) (i) and (iv)
- c) (ii) and (iii)
- d) (ii) and (iv)
- 225. If angle of incidence is twice the angle of refraction in a medium of refractive index μ , then angle of incidence is
 - a) $2 \cos^{-1} \left[\frac{\mu}{2} \right]$
- b) $2 \sin^{-1} \left[\frac{\mu}{2} \right]$
- c) $2 \cos^{-1}[\mu]$
- d) $2 \sin^{-1}[\mu]$
- 226. An object is at a distance of 0.5 m in front of a plane mirror. Distance between the object and image is
 - a) 0.5 m
- b) 1 m


- c) 0.25 m
- 227. A hollow double concavelens is made of very thin transparent material. It can be filled with air or either of two liquids L_1 and L_2 having refractive indices n_1 and n_2 respectively ($n_2 > n_1 > 1$). The lens will diverge a parallel beam of light if it is filled with
 - a) Air and placed in air

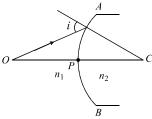
b) Air and immersed in L_1

c) L_1 and immersed in L_2

d) L_2 and immersed in L_1

228. The distance between a convex lens and a plane mirror is 10 *cm*. The parallel rays incident on the convex lens after reflection from the mirror form image at the optical centre of the lens. Focal length of lens will be

al	10	cm
u	10	CIII


b) 20 cm

c) 30 cm

- d) Cannot be determined
- 229. Which of the prism is used to see infrared spectrum of light
 - a) Rock salt
- b) Nicol

c) Flint

- d) Crown
- 230. A concave mirror is placed on a horizontal table with its axis directed vertically upwards. Let *O* be the pole of the mirror and *C* its centre of curvature. A point object is placed at *C*. It has a real image, also located at *C*. If the mirror is now filled with water, the image will be
 - a) Real and will remain at C
 - b) Real, and located at a point between C and ∞
 - c) Virtual and located at a point between $\it C$ and $\it O$
 - d) Real, and located at a point between C and O
- 231. A point object O is kept at a distance of OP = u. The radius of curvature of the spherical surface APB is CP = R. The refractive index of the media are n_1 and n_2 which are as shown in diagram. Then,

- (1) If $n_1 > n_2$, image is virtual for all values of u
- (2) If $n_2 = 2n_1$, image is virtual when R > u
- (3) The image is real for all values of $u_1 n_1$ and n_2 . Here, the correct statements is/are
- a) Only (2)
- b) Both (1) and (2)
- c) Only (1)
- d) (1), (2) and (3)
- 232. In a compound microscope, if the objective produces an image I_o and the eye piece produces an image I_e , then
 - a) I_o is virtual but I_e is real

b) I_o is real but I_e is virtual

c) I_o and I_e are both real

- d) I_o and I_e are both virtual
- 233. A Gallilean telescope has objective and eye-piece of focal lengths $200\ cm$ and $2\ cm$ respectively. The magnifying power of the telescope for normal vision is
 - a) 90

b) 100

c) 108

- d) 198
- 234. Angle of a prism is 30° and its refractive index is $\sqrt{2}$ and one of the surface is slivered. At what angle of incidence, a ray should be incident on one surface so that after reflection from the silvered surface, it retraces its path
 - a) 30°

b) 60°

c) 45°

- d) $\sin^{-1} \sqrt{1.5}$
- 235. A convex lens made of glass has focal length 0.15 m in air. If the refractive index of glass is $\frac{3}{2}$ and that of water is $\frac{4}{3}$, the focal length of lens when immersed in water is
 - a) 0.45 m
- b) 0.15 m
- c) 0.30 m
- d) 0.6 m
- 236. If sound travelling at 340 ms⁻¹ enters water where its speed becomes 1480 ms⁻¹, then critical angle for total internal reflection is
 - a) 13.3°
- b) 89.7°
- c) 86.7°

d) 10.3°

237.			ndius of curvature 20 m alo he speed of the object in kn	
	a) 3	b) 4	c) 5	d) 6
238.	,	power of a telescope is <i>M</i> ,	If the focal length of its eye	,
	a) $M/2$	b) 2 <i>M</i>	c) 3 <i>M</i>	d) 4 <i>M</i>
239.	The splitting of white light a) Refraction	t into several colours on pa b) Reflection	nssing through a glass prism c) Interference	n is due to d) Diffraction
240.	A ray of light propagates f	rom glass (refractive index	$x = \frac{3}{2}$) to water (refractive in	$1 \text{dex} = \frac{4}{7}$). The value of the
	critical angle is	8 (2'	3′
	•	/ [\		
	a) $\sin^{-1}\left(\frac{1}{2}\right)$	b) $\sin^{-1}\left(\sqrt{\frac{9}{8}}\right)$	c) $\sin^{-1}\left(\frac{8}{9}\right)$	d) $\sin^{-1}\left(\frac{5}{7}\right)$
241.	should be the height of the		ove the centre of a circular ble so that the intensity of li he source	
	a) $\frac{R}{2}$	b) $\frac{R}{\sqrt{2}}$	c) <i>R</i>	d) $\sqrt{2}R$
242.	A ray of light is incident or which makes an angle wit		e 57°. The resultant polariz	ed light vibrates in a plane
	a) 0°	b) 90°	c) 57°	d) 33°
243.		nses from a telescope of len	f focal length 2, 4, 6 and 8 c igth 10 cm and magnifying	m respectively are power 4. The objective and
	a) L_2 , L_3	b) <i>L</i> ₁ , <i>L</i> ₄	c) L_1 , L_2	d) L_4 , L_1
244.	A hypermetropic person hear point now is at		nce of 0.75 m puts on spect	cacles of power 2.5 D. The
	a) 0.75 m	b) 0.83 m	c) 0.26 cm	d) 0.26 m
245.	*		glass are 10° and 20° respe	•
	their colour deviation pov		0 1	,
	a) 1 : 1	b) 2:1	c) 4:1	d) 1 : 2
246.	=	=	-	ere is negligible absorption
	= :	lluminance on slide and scr		
	a) 100 : 1	b) 10 ⁴ : 1	c) 1:100	d) $1:10^4$
247.	=	•	n are used to make a telesc	•
		to obtain an image at infini		
	a) 0.35 cm	b) 0.25 cm	c) 0.175 m	d) 0.15 m
248.	-	-	$= \mu$ and supposing the angle	of prism A to be small) can
	be given by	•		•
	•		$\sin \frac{A+\delta}{2}$	1
	a) $\delta = (\mu - 1)A$	b) $\delta = (\mu + 1)A$	c) $\delta = \frac{\sin\frac{A+\delta}{2}}{\sin\frac{A}{2}}$	$d) \delta = \frac{\mu - 1}{\mu + 1} A$
				50 cm by using two lenses
		e dispersive power of A and		al lengths of the convex and
	a) 25 cm and 50 cm	b) 50 cm and 25 cm	c) 50 cm and 100 cm	d) 100 cm and 50 cm
250.		not correct regarding the ra		

a) It can not work at night

b) It can detect a very faint radio signal

- c) It can be operated even in cloudy weather
- d) It is much cheaper than optical telescope
- 251. The principal section of a glass prism is an isosceles triangle ABC with AB = AC. The face AC is silvered. A ray of light is incident normally on the face AB and after two reflections, it emerges from the base BC perpendicular to the base. Angle BAC of the prism is
 - a) 30°

b) 36°

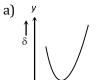
c) 60°

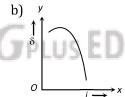
- d) 72°
- 252. Two thin lenses, one of focal length +60~cm and the other of focal length -20~cm are put in contact. The combined focal length is
 - a) + 15 cm
- b) -15cm
- c) + 30 cm
- d) -30 cm
- 253. A lamp is hanging at a height of 4m above a table. The lamp is lowered by 1m. The percentage increase in illuminance will be
 - a) 40%

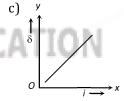
b) 64%

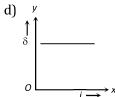
c) 78%

d) 92%

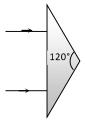

- 254. The light gathering power of a camera lens depends on
 - a) Its diameter only


- b) Ratio of diameter and focal length
- c) Product of focal length and diameter
- d) Wavelength of light used
- 255. If there had been one eye of the man, then
 - a) Image of the object would have been inverted
 - b) Visible region would have decreased
 - c) Image would have not been seen three dimensional
 - d) (b) and (c) both
- 256. Line spectra are due to
 - a) Hot solids


b) Atoms in gaseous state


c) Molecules in gaseous state

- d) Liquid at low temperature
- 257. A graph is plotted between angle of deviation (δ) and angle of incidence (i) for a prism. The nearly correct graph is



- 258. The ratio of the refractive index of red light to blue light in air is
 - a) Less than unity
 - b) Equal to unity
 - c) Greater than unity
 - d) Less as well as greater than unity depending upon the experimental arrangement
- 259. A man has a concave shaving mirror of focal length 0.2 m. How far should the mirror be held from his face in order to give an image of two fold magnification?
 - a) 0.1 m
- b) 0.2 m

- c) 0.3 m
- d) 0.4 m
- 260. An isosceles prism of angle 120° has a refractive index of 1.44. Two parallel monochromatic rays enter the prism parallel to each other in air as shown. The rays emerging from the opposite faces

	a) Are parallel to each other		b) Are diverging	
	c) Make an angle $2 \sin^{-1}(0)$	0.72) with each other	d) Make an angle $2\{\sin^{-1} \text{ other }$	(0.72) — 30°} with each
261.	Inverse square law for illu	ıminance is valid for		
	a) Isotropic point source		b) Cylindrical source	
	c) Search light		d) All type of sources	
262.	A person who can see thin	ngs most clearly at a distand	ce of 10 <i>cm</i> . Requires spec	tacles to enable to him to
	see clearly things at a dista	ance of 30 <i>cm</i> . What should	d be the focal length of the	spectacles
	a) 15 <i>cm</i> (Concave)	b) 15 <i>cm</i> (Convex)	c) 10 cm	d) 0
263.	A thin convex lens of crow	vn glass having refractive ir	ndex 1.5 has power 1 D. W	hat will be the power of
	similar convex lens refrac	tive index 1.6?		
	a) 0.6 D	b) 0.8 D	c) 1.2 D	d) 1.6 D
264.	A magnifying glass is to be magnified 5 <i>times</i> its foca	e used at the fixed object di Il length should be	stance of 1 <i>inch</i> . If it is to p	oroduce an erect image
	a) 0.2 <i>inch</i>	b) 0.8 <i>inch</i>	c) 1.25 <i>inch</i>	d) 5 <i>inch</i>
265.	For a telescope to have lar	rge resolving power the		
	a) Focal length of its object	ctive should be large		
	b) Focal length of its eye p	piece should be large		
	c) Focal length of its eye p	piece should be small		
	d) Aperture of its objectiv	e should be large		
266.	Angular resolving power of	of human eye is		
	a) 3.6×10^3	b) 3.6×10^2	c) 3.6×10^4	d) 3.6×10^6
267.	A small lamp is hung at a h	neight of 8 feet above the co	entre of a round table of di	ameter 16 feet. The ratio of
	intensities of illumination	at the centre and at points	on the circumference of th	ne table will be
	a) 1:1	b) 2:1	c) $2\sqrt{2}:1$	d) 3 : 2
268.	If the focal length of a dou	ble convex lens for red ligh	it is f_R , its focal length for t	the violet light is
	a) f_R	b) Greater than f_R		d) $2 f_R$
	-	e angle of a prism using a sp		
		er II : 140° 30′ and those of		
	Vernier II: 260° 24′. Then			,
	a) 59° 58′	b) 59° 56′	c) 60° 2′	d) 60° 4′
270.	The focal length of convex	clens is 30 <i>cm</i> and the size	of image is quarter of the o	object, then the object
	distance is			•
	a) 150 <i>cm</i>	b) 60 <i>cm</i>	c) 30 cm	d) 40 <i>cm</i>
271.	A car is fitted with a conve	ex side view mirror of focal	length 20 cm. A second ca	r 2.8 m behind the first car
	is overtaking the first car	is a relative speed of 15 m/	s. The speed of the image	of the second car as seen in
	the mirror of the first one	= :		
	a) $\frac{1}{15}$ m/s	b) 10 m/s	c) 15 m/s	n 1 ,
	$\frac{a}{15}$ m/s	,	,	$d)\frac{1}{10}\mathrm{m/s}$
272.		_		of the following statements
	describe the image of an o	bject placed infront of the	mirror	
	S1: Intensity of the image	will increase		
	S2: The image will show o	nly half of the object		
	S3: No change in the image	e		
	S4: Intensity of the image	will be reduced to half		
	a) S1 only	b) S2 only	c) S2 and S3	d) S4 only
273.	A concave mirror is used t	to focus the image of a flow	er on a nearby well 120 <i>cr</i>	$\it n$ from the flower. If a
	-	is desired, the distance of		r should be
	a) 8 <i>cm</i>	b) 12 <i>cm</i>	c) 80 <i>cm</i>	d) 120 <i>cm</i>

274.	Which of the following	spectrum have	e all the freque	ncies from high to	low frequenc	y range
	a) Band spectrum			b) Continuous s	pectrum	
	c) Line spectrum			d) Discontinuou	-	
275.	The working of which		g is similar to tl	hat of a slide proje	ector	
	a) Electron microscop	e		b) Scanning elec	tron microsco	ppe
	c) Transmission electr	_		d) Atomic force	•	
276.	A telescope has an obj		•	• •		•
			ll building at a	distance of $2 km$,	what is the he	ight of the image of the
	building formed by the	•				
	a) 5 <i>cm</i>	b) 10 <i>cm</i>		c) 1 <i>cm</i>	-	2 cm
277.	A prism of refractive in		=		viation positio	on. If the angle of
	minimum deviation is	_		s of μ is		
	$\sin -1 \left(\frac{\mu}{\mu} \right)$	b) sin ⁻¹	u-1	c) $2\cos^{-1}\left(\frac{\mu}{2}\right)$	D.	$\mu_{\text{res}}=1$ (μ)
	a) $\sin^{-1}\left(\frac{\mu}{2}\right)$	b) sin ⁻¹	2	c) $2\cos^{-1}\left(\frac{\pi}{2}\right)$	a) c	$\cos^{-1}\left(\frac{\mu}{2}\right)$
279	Ray optics is valid, wh			aro		
270.	a) Of the same order a			ai e		
	b) Much smaller than	_	•			
	c) Of the order of one	_	or right			
	d) Much larger than th		ıf light			
279	The maximum refracti	_	-	mits the nassage (of light throug	h it when the
<i></i>	refracting angle of the	_	isin which per	mics the passage (or light till oug	ir it, when the
				$\sqrt{3}$	5	3
	a) $\sqrt{3}$	b) $\sqrt{2}$	<41 ·	c) $\frac{\sqrt{3}}{2}$	d) 2	2
280.	An object 5 cm tall is p	laced 1 m from	a concave sph	erical mirror whic	ch has a radius	of curvature of 20 cm.
	The size of the image i					
	a) 0.11 cm	b) 0.50 cm		c) 0.55 cm	d) (0.60 cm
281.	The focal length of obj	ective and eye-	piece of a micr	oscope are 1 cm a	nd 5 cm respe	ctively. If the
	magnifying power for					
	a) 9 cm	b) 15 cm		c) 12 cm	d) (5 cm
282.	We use flint glass prisi	n to disperse p	olychromatic li	ight because light	of different co	olours
	a) Travel with same sp	eed				
	b) Travel with same sp	eed but deviat	e differently dı	ue to the shape of	the prism	
	c) Have different aniso	tropic propert	ies while trave	lling through the p	prism	
	d) Travel with differer	t speeds				
283.	A parallel beam of ligh		_	=		
	point image is produce	ed at the back o	f the sphere, th	ne refractive index	of the materia	al of sphere is
	a) 2.5	b) 1.5		c) 1.25	d) 2	2.0
284.	When light waves suff		the interface b	etween air and gla	ass, the change	e of phase of the
	reflected wave is equa					
	a) Zero	b) $\frac{\pi}{2}$		c) π	d) 2	2π
285	The maximum magnifi	_	he obtained w	rith a convey lens (of focal length	25 cm is (the least
203.	distance of distinct vis		be obtained w	itii a convexiens (or rocar length	2.5 cm is (the least
	a) 10	b) 0.1		c) 62.5	d) í	11
286	Monochromatic light i	-	n air into the ol		,	
200.	of incident and refract		an mico die gi	add diffilactive II	iden pi Tile Ta	as of the wavelength
	a) $1: \mu$	b) $1 : \mu^2$		c) $\mu : 1$	راب د	l:1
287			ces a virtual im	, ,	-	ct. Then the distance of
_5/1	the object from the len			J		

	a) $(n-1)f$	b) $(n+1)f$	c) $\left(\frac{n-1}{n}\right)f$	d) $\left(\frac{n+1}{n}\right)f$
288.	In a compound microscop	e, the focal length of the ol	jective and the eye lens ar	e 2.5 <i>cm</i> and 5 <i>cm</i>
	-	placed at 3.75 cm before the	-	
		e distance between two lens		
	a) 11.67 cm	b) 12.67 <i>cm</i>	c) 13.00 <i>cm</i>	d) 12.00 <i>cm</i>
289.	•	ngular magnification of a si	•	•
	a) The object size	0 0	b) The aperture of the ler	
	c) The focal length of the	lens	d) The power of the lens	
290.	,	nage of magnification 2 usi	, <u>.</u>	al length 20 cm, where
	should an object be placed	= =	0 0	,
	a) 50 <i>cm</i>	b) 30 <i>cm</i>	c) -50 <i>cm</i>	d) -30 <i>cm</i>
291.		rtual image is formed, the	•	
	a) ↑↑	b) ↑ ↑ .	c) ↑↑	d) ^ 1
	- m /			- m
		1	1	
	$\stackrel{\checkmark}{\longrightarrow}$	$\xrightarrow{f} u \xrightarrow{f}$	$\underbrace{\downarrow}$ $\underbrace{\qquad}$ $\underbrace{\qquad}$	$\stackrel{\smile}{\longrightarrow}$
292.	The magnifying power of	an astronomical telescope	is 10 and the focal length o	f its eye-piece is 20 cm. The
	focal length of its object w	-	C	
	a) 200 cm	b) 2 cm	c) 0.5 cm	d) 0.5×10^{-2} cm
293.	Two point white does are	1 mm apart on a black pap	er. They are viewed by eye	e of pupil diameter 3 mm.
		e maximum distance at wh		
	[Take wavelength of light			
	a) 5 m	b) 1 m	c) 6 m	d) 3 m
294.	A lamp is hanging at a hei	ght of 40 cm from the cent	re of the table. If its height i	is increased y 10 cm, the
	illuminance of the lamp w	ill decreased by		•
	a) 10%	b) 20%	c) 27%	d) 36%
295.	When seen in green light,	the saffron and green port	ions of our National Flag w	rill appear to be
	a) Black		b) Black and green respec	ctively
	c) Green		d) Green and yellow resp	ectively
296.	If the wavelength of light	in vacuum be λ , the wavele	ength in a medium of refrac	tive index n will be
	a) <i>nλ</i>	b) $\frac{\lambda}{}$	c) $\frac{\lambda}{n^2}$	d) $n^2\lambda$
		n	11	,
297.			<i>metre</i> and wavelength of li	ght is 6000 Å. Its resolving
	power would be approxin		_	
	a) $7.32 \times 10^{-6} rad$	b) $1.36 \times 10^6 rad$	c) $7.32 \times 10^{-5} rad$	d) $1.36 \times 10^5 rad$
298.			aced on its principal axis. If	the upper half of the lens is
	painted black, the image v	vill		
	a) Be shifted downwards		b) Be shifted upwards	
	c) Not be shifted		d) Shift on the principal a	
299.	_	fradii of curvature 10 <i>cm</i> ($(R_1 = R_2 = 10 \ cm)$ is cut in	a cylinder of glass ($\mu =$
	1.5). The focal length and	the nature of the lens is		
	Air Glass			

a) 15 cm, concave

c) ∞ , neither concave nor convex

b) 15 *cm*, convex

d) 0, concave

300. If a flint lens glass of dispersive power 0.0666 renders achromatic to a convex lens of crown glass of focal length 60 cm and dispersive power 0.033, then its focal length is a) -60 cm d) + 120 cmb) $+60 \, \text{cm}$ c) -120 cm 301. Two thin equiconvex lenses each of focal length 0.2 m are placed coaxially with their optic centers 0.5 m apart. Then the focal length of the combination is a) -0.4 m b) 0.4 m d) 0.1 m c) -0.1 m 302. Resolving power of a microscope depends upon a) The focal length and aperture of the eye lens b) The focal lengths of the objective and the eye lens c) The apertures of the objective and the eye lens d) The wavelength of light illuminating the object 303. Two convex lenses placed in contact form the image of a distant object at P. If the lens B is moved to the light, the image will a) Move to the left b) Move to the right c) Remain at P d) Move either to the left to right, depending upon focal length of the lenses 304. A ray of light passes from vacuum into a medium of refractive index µ, the angle of incidence is found to be twice the angle of refraction. The angle of incidence is d) $2 \sin^{-1} \left(\frac{\mu}{2}\right)$ a) $\cos^{-1}\left(\frac{\mu}{2}\right)$ b) $2 \cos^{-1} \left(\frac{\mu}{2}\right)$ c) $2\sin^{-1}(\mu)$ 305. A light ray travelling in glass medium is incident on glass-air interface at an angle of incidenceθ. The reflected (R) and transmitted (T) intensities, both as function of θ , are plotted. The correct sketch is d) b) c) a) 306. The wavelength of light diminishes μ times ($\mu = 1.33$ for water) in a medium. A diver from inside water looks at an object whose natural colour is green. He sees the object as a) Green b) Blue c) Yellow d) Red 307. If the luminous intensity of a 100 W unidirectional bulb is 100 candela, then total luminous flux emitted from the bulb is a) 861 lumen b) 986 lumen c) 1256 lumen d) 1561 lumen 308. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of prism is 30°. One of its refracting faces is polished. The incident beam of lift will retrace back for angle of incidence d) 90° a) 0° b) 45° 309. If the angle of minimum deviation is of 60° for an equilateral prism, then the refractive index of the material of the prism is a) 1.41 b) 1.5 c) 1.6 d) 1.73 310. An object is placed 12 cm to the left of a converging lens of focal length 8 cm. Another converging of 6 cm

b) A virtual enlarged image

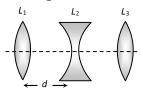
focal length is placed at a distance of 30 cm to the right of the first lens. The second lens will produce

a) No image

GPLUS EDUCATION

c) A real enlarged	O	d) A real smaller in	age	
311. Red colour is used	for danger signals because			
a) It causes fear		b) It undergoes leas	b) It undergoes least scattering	
c) It undergoes m	aximum scattering	d) It is in accordanc	d) It is in accordance with international convention	
312. The wavelength of	f sodium light in air is 5890Å	Å. The velocity of light in air	is 3×10^{-8} ms ⁻¹ . The wavelength	
	of refractive index 1.6 would		<u> </u>	
a) 5890Å	b) 3681Å	c) 9424Å	d) 15078Å	
•	•	•	ocal length 20 cm. The nature of	
image is			5	
•	ed and of same size	b) Virtual and erect	and of same size	
c) Real and erect a		•	ted and of same size	
•		•	of angle 75°. It passes through	
-	_		active index of the material of the	
	ngle of incidence on the first	~		
a) 30°	b) 45°	c) 60°	d) 0°	
•	•	,	,	
315. Under minimum deviation condition in a prism, if a ray is incident at an angle 30°, the angle between the emergent ray and the second refracting surface of the prism is				
a) 0°	b) 30°	c) 45°	d) 60°	
-	on the refracting face <i>BA</i> is r	,	,	
	_	_	=	
			e angle of prism $A = 60^{\circ}$ and the	
refractive index of	the material of prism is $\sqrt{3}$,	then the angle of deviation	of the ray is	
A				
60	√R			
Q				
	S	1		
	Aprilio FD	UCATION		
/ <u>L</u> P B		OCKLIOIA		
a) 60°	b) 45°	c) 30°	d) None of these	
317. The respective ang	gles of the flint and crown gl	ass prisms are A' and A . Th	ey are to be used for dispersion	
without deviation	, then the ratio of their angle	es A'/A will be		
a) $-\frac{(\mu_y - 1)}{(\mu_y ' - 1)}$	b) $\frac{(\mu_y'-1)}{(\mu_y-1)}$	a) (u / 1)	4) (11 1)	
a) $-\frac{1}{(\mu_{v}'-1)}$	$\overline{(\mu_{\nu}-1)}$	c) $(\mu_y' - 1)$	d) $(\mu_y - 1)$	
318. All of the following	g statements are correct exc	ept		
	of an astronomical telescop	-	ngths of its two lenses	
-	_		se the effect of the combination	
of the two lense		1 3		
	-	cope can be increased by de	creasing the focal length of the	
eye-piece				
	power of the refracting type	e of astronomical telescope	is the ratio of the focal length of	
	that of the eye-piece	· · · · · · · · · · · · · · · · · · ·		
·	oduces a magnification of			
a) Zero	b) -1	c) +1	d) Between 0 and +1	
•	approaching you at 10 cms [–]		-	
a) $+10 \text{ cms}^{-1}$	b) –10 cms ⁻¹	c) $+ 20 \text{ cms}^{-1}$	d) $-20 \mathrm{cm s}^{-1}$	
•		•	one part is used, the intensity of	
the image	the process per periore dial to	o and principal axis and only	, one pare is used, the intensity of	

	a) Remains same	b) $\frac{1}{2}$ times	c) 2 times	d) Infinite
322.	The distance between a po	2	reen which is 60 cm is inc	reased to 180 <i>cm</i> . The
	-	compared with the origina		
	a) (1/9) times	b) (1/3) times	c) 3 times	d) 9 times
323.	A plane convex lens is mad	de of refractive index 1.6. T	he radius of curvature of the	he curved surface is 60 cm.
	The focal length of the lens			
	a) 50 <i>cm</i>	b) 100 <i>cm</i>	c) 200 <i>cm</i>	d) 400 cm
324.	The refractive indices of the	ne crown glass for blue and	red light are 1.51 and 1.49	respectively and those of
			sceles prism of angle 6° is a	
	beam of white light is incid	dent at a small angle on thi	s prism. The other flint gla	ss isosceles prism is
	combined with the crown	glass prism such that there	e is no deviation of the inci	dent light
	(i)Determine the angle of	the flint glass prism		
	(ii)Calculate the net disper	rsion of the combined syst	em	
	a) -4°, 0.04°,	b) 4°, 0.04	c) 5°, 0.04	d) -5,0.04°
325.	The relative luminosity of	wavelength $600 \ nm$ is 0.6 .	Find the radiant flux of 60	0 <i>nm</i> needed to produce
	the same brightness sensa	tion as produced by 120 M	${\it V}$ of radiant flux at 555 nm	
	a) 50W	b) 72W	c) $120 \times (0.6)^2 W$	d) 200W
326.	Electromagnetic radiation	of frequency n , wavelengt	h λ , travelling with velocity	y v in air, enters a glass slab
	of refractive index μ . The f	requency, wavelength and	velocity of light in the glas	s slab will be respectively
	a) $\frac{n}{\mu}$, $\frac{\lambda}{\mu}$, $\frac{v}{\mu}$	$\frac{\lambda}{\lambda} \frac{v}{z}$	c) $n, \lambda, \frac{v}{\mu}$	$\frac{n}{\lambda}$
	F* F* F*	P' P'	•	r r
327.	White light is passed throu			_
	colour are respectively 1.6	and the second s	viation between the two co	olours will be
	a) 0.1 degree	b) 0.2 degree	c) 0.3 degree	d) 0.4 degree
328.	_		ngle θ. A ray of light is refle	cted first at one mirror and
	then at the other. The tota			
	a) 2θ	b) 240° – 2θ		d) 180° – θ
329.	If in a plano-convex lens, t			and the focal length of the
		ractive index of the materia		
	a) 1.5	b) 1.66	c) 1.33	d) 3
330.	A mark at the bottom of a	liquid appears to rise by 0.	1 m. The depth of the liquid	d is $1 m$. The refractive
	index of the liquid is	0	10	N 4 =
	a) 1.33	b) $\frac{9}{10}$	c) $\frac{10}{9}$	d) 1.5
221	A cut diamond sparkles be		9	
331.	a) Hardness	cause of its	b) High refractive index	
	c) Emission of light by the	diamond	d) Absorption of light by t	he diamond
332	A light wave has a frequen			
332.	refractive index of the med	-	avelenguloi 5 × 10 metr	es in a medium, The
	a) 1.5	b) 1.33	c) 1.0	d) 0.66
333	A convex lens	b) 1.33	c) 1.0	a) 0.00
0001	a) Converges light rays		b) Diverges light rays	
	c) Form real images always	/S	d) Always forms virtual ir	nages
334.	A ray of light from a dense		•	•
00 11	_		The angles of reflection an	
	respectively. The critical a	~	and of reflection an	
	a) $\sin^{-1}(\tan r')$	b) $\sin^{-1}(\tan r)$	c) $tan^{-1}(tan r')$	d) $tan^{-1}(tan i)$
335.	* *	, ,	, ,	on a wall at a distance of 10
	m from the lamp. The foca		-	


GPLUS EDUCATION

	a) 1.6 m	b) 2.67 m	c) 4.4 m	d) -1.6 m
336.	A real object is placed at a	distance f from the pole o	f a convex mirror, in front o	of the convex mirror. If
	focal length of the mirror	is f , then distance of the in	nage from the pole of the m	nirror is
	a) 2f	b) $\frac{f}{2}$	c) 4 <i>f</i>	d) $\frac{f}{4}$
		۷		T
337.	The length of the compou	nd microscope is 14 <i>cm</i> . Th	ne magnifying power for re	laxed eye is 25. If the focal
	length of eye lens is $5 cm$,	then the object distance fo	r objective lens will be	
	a) 1.8 <i>cm</i>	b) 1.5 <i>cm</i>	c) 2.1 <i>cm</i>	d) 2.4 <i>cm</i>
338.	Light takes t_1 second to tr	avel a distance $\it x$ in vaccun	${f n}$ and the same light takes ${f t}$	x_2 second to travel 10 x cm
	in a medium. Critical angle	e for corresponding mediu	m will be	
	/10 <i>t</i> -\		/10±.\	(t.)
	a) $\sin^{-1}\left(\frac{10t_2}{t_1}\right)$	b) $\sin^{-1}\left(\frac{t_2}{10t_1}\right)$	c) $\sin^{-1}\left(\frac{10t_1}{t_2}\right)$	d) $\sin^{-1}\left(\frac{t_1}{10t_2}\right)$
	$\langle \iota_1 \rangle$	$\left(\frac{10t_1}{10t_1}\right)$	$\langle \iota_2 \rangle$	$\langle 10t_2 \rangle$
339.	Sparking of diamond is du	ie to		
	a) Reflection		b) Dispersion	
	c) Total internal reflection	n	d) High refractive index o	f diamond
340.	The field of view is maxim	um for		
	a) Plane mirror	b) Concave mirror	c) Convex mirror	d) Cylindrical mirror
341.		-	lying at the bottom. The de	
			e image of the stone formed	
	Refractive index of water		0	,
	a) h/n	b) n/h	c) h	d) <i>hn</i>
342.	* *		f refractive indices n_1 , n_2 ar	,
	= = = = = = = = = = = = = = = = = = =		an angle i on the surface of	
	-		nto the medium B , the ray	=
		and C . Then, $\sin i$ equal to	into the median b, the ray	Stazes the sarrace of
		Entre Entre	ATION	
	n_1 n_2	IN EDUC	MITOIA	
	$A \nearrow B$	C		
	n_3	n_1	n_2	n_1
	a) $\frac{n_3}{n_1}$	b) $\frac{n_1}{n_2}$	c) $\frac{n_2}{n_2}$	d) $\frac{1}{n_2}$
343.	-	rariation of <i>u versus v</i> is gi	ven by	2
0 101	A v	A v	A v	↓ v
	a) /	b)	c) \	d) \
	$O \stackrel{\longrightarrow}{u}$	$O \qquad \qquad$	$O \longrightarrow u$	$O \xrightarrow{u}$
344.	A thick plane mirror show	s a number of images of th	e filament of an electric bu	lb. Of these, the brightest
	image is the	O		, 0
	a) First	b) Second	c) Fourth	d) Last
345.	•	ective lens of a compound	•	,
	a) Equal to the focal length	· -	b) Less than the focal leng	th of eve piece
	c) Greater than the focal le	* -	d) Any of the above three	Prooc
346.	_		re from his eyes. For corre	cting his eve sight so that
		1		G J

A man can see upto 100 cm of the distant object. The power of the lens required to see far objects will be

he can see an object at infinity, he requires a lens whose power is

- a) +0.5 D
- b) +1.0 D
- c) +2.0 D
- d) -1.0 D
- 347. Three lenses L_1, L_2, L_3 are placed co-axially as shown in figure. Focal length's of lenses are given 30 cm, 10 cm and 5 cm respectively. If a parallel beam of light falling on lens L_1 , emerging L_3 as a convergent beam such that it converges at the focus of L_3 . Distance between L_1 and L_2 will be

- a) 40 cm
- b) 30 cm
- c) 20 cm
- d) 10 cm
- 348. How will the image formed by a convex lens be affected, if the central portion of the lens is wrapped in blank paper, as shown in the figure

- a) No image will be formed
- b) Full image will be formed but is less bright
- c) Full image will be formed but without the central portion
- d) Two images will be formed, one due to each exposed half
- 349. As shown in figure, the liquid, L_1 , L_2 and L_3 have refractive indices 1.55, 1.50 and 1.20 respectively. Therefore, the arrangement corresponds to

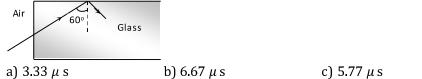

- a) Biconvex lens
- b) Biconcave lens
- c) Concave-convex lens

- d) Convexo-concave lens
- 350. For an angle of incidence θ on an equilateral prism of refractive index $\sqrt{3}$, the ray refracted is parallel to the base inside the prism. The value of θ is
 - a) 30°

b) 45°

c) 60°

- d) 75°
- 351. A small fish 0.4 m below the surface of a lake, is viewed through a simple converging lens of focal length 3 m. The lens is kept at 0.2 m above the water surface such that fish lies on the optical axis of the lens. The image of the fish seen by observer will be at $\left(\mu_{water} = \frac{4}{3}\right)$


- a) A distance of 0.2 m from the water surface
- b) A distance of 0.6 m from the water surface
- c) A distance of 0.3 m from the water surface
- d) The same location of fish
- 352. One face of a rectangular glass plate 6 *cm* thick is silvered. An object held 8 *cm* in front of the first face, forms an image 12 *cm* behind the silvered face. The refractive index of the glass is
 - a) 0.4

b) 0.8

c) 1.2

d) 1.6

				Opius Luucution
		of refractive index $\mu = 1.5$ $\frac{4}{3}$). Its new focal length is	has a focal length equals is	12 cm in air. It is now
a') 48 cm	b) 36 cm	c) 24 cm	d) 12 cm
354. T	he optical path a monoch efractive index of glass is	nromatic light is same if it g s 1.53, the refractive index o	oes through 4.0 cm of glass of the water is	s of 4.5 cm of water. If the
) 1.30	b) 1.36	c) 1.42	d) 1.46
th	he lens is			rface is $0.2 m$. The power of
a)) +10 dioptres	b) –10 dioptres	c) —5 dioptres	d) +5 <i>dioptres</i>
01	n a wall. A man walks in	s placed at a distance <i>L</i> in fr front of the mirror along a lace over which he can see th	line parallel to the mirror a	t a distance $2L$ from it as
↑ d ↓	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
a [']	d/2	b) <i>d</i>	c) 2 <i>d</i>	d) 3 <i>d</i>
,	, .	,		,
		a M_1 and M_2 is 1.5×10^8 m		
		o M_2 at an incidence angle ι	. If the ray suffers total inte	ernal reflection, the value of
ii				(2)
a)) Equal to $\sin^{-1}\left(\frac{2}{3}\right)$	< 1 3	b) Equal to or less than sin	$n^{-1}\left(\frac{3}{5}\right)$
c)) Equal to or greater than	$\sin^{-1}\left(\frac{3}{-}\right)$	b) Equal to or less than sind) Less than $\sin^{-1}\left(\frac{2}{3}\right)$	
		117	(8)	
358. F	ormula for dispersive po	wer is (where symbols hav	e their usual meanings)	
	the refractive indices of hen the dispersive power	or crown glass for red, yellow c of this glass would be	and violet colours are resp	pectively μ_r , μ_y and μ_v ,
2,	$\frac{\mu_v - \mu_v}{\mu_v}$	$\mu_v - \mu_r$	$(a) \frac{\mu_r - \mu_v}{\mu_r}$	$d) \frac{\mu_v - \mu_r}{1} = 1$
aj	$\mu_r - 1$	b) $\frac{\mu_v - \mu_r}{\mu_v - 1}$ ength of the objective and e	$\mu_v - \mu_r$	μ_v
359. If	f $\mathit{F_o}$ and $\mathit{F_e}$ are the focal le	ength of the objective and e	ye piece respectively of a te	elescope, then its
	nagnifying power will be			
a)) $F_o + F_e$	b) $F_o \times F_e$	c) F_o/F_e	$\mathrm{d})\frac{1}{2}\left(F_o+F_e\right)$
360. A	bility of the eye to see ob	jects at all distances is call	ed	
a)) Binocular vision	b) Myopia	c) Hypermetropia	d) Accommodation
361. T	he phenomena of total in	nternal reflection is seen wh		
) 90°		b) Greater than critical an	gle
a,				_
-) Equal to critical angle		d) 0°	

much time would it take to traverse the straight fibre of length 1 km

363. The refractive index of glass is 1.520 for red light and 1.525 for blue light. Let D_1 and D_2 be angles of minimum deviation for red and blue light respectively in a prism of this glass. Then ,

Air

d) $3.85 \mu s$

al	$D_1 < D_2$				
	$D_1 < D_2$ $D_1 = D_2$				
-	c) D_1 can be less than or greater than D_2 depending upon the angle of prism				
	$D_1 > D_2$	reater than 22 depending	apon ene angre er priem		
-	nen light is refracted fro	m air into glass			
	Its wavelength and freq	-			
-	b) Its wavelength increases but frequency remains unchanged				
_	•	es but frequency remains u	9		
-	Its wavelength and freq	= = =			
-		•	100 cm and magnifying pov	ver 50. The distance	
	tween the two lenses in		roo om ana magimij mg po t		
	98 cm	b) 100 cm	c) 150 cm	d) 200 cm	
-		•	ge half in size of the real ob	•	
	al objectis	O	,	,	
	20 cm	b) 30cm	c) 10cm	d) 60cm	
-		_	h a lens of power –1 <i>diopt</i>	•	
	have like	<u>r</u>	I I		
	A divergent lens of foca	llength 50 <i>cm</i>			
-	A convergent lens of fo	-			
-	A convergent lens of fo	_			
-	A divergent lens of foca	· ·			
-	_		e as a divergent lens if imm	ersed in	
	Water $(n = 1.33)$	< 1 3	b) In a medium of $n = 1.5$		
-	Carbon disulphide $n =$	1.66	d) It cannot act as a diver		
-	-	The second secon	convex lens is 10 cm. If the		
	=	oe (Refractive index = 1.5)		1 ,	
	10.5 cm	b) 10 cm	c) 5.5 <i>cm</i>	d) 5 <i>cm</i>	
370. Ra	dius of curvature of con	cave mirror is $40cm$ and t	he size of image is twice as	that of object, then the	
	ject distance is	21.102.100			
a)	60 cm	b) 20 <i>cm</i>	c) 40 cm	d) 30 cm	
371. Th	e resolving limit of heal	thy eye is about			
al	1' or $\left(\frac{1}{60}\right)^{0}$	b) 1"	c) 1°	d) $\frac{1}{60}$ "	
			c) i	60	
	• •	pe on the time when rising	and setting? It is due to		
-	Refraction	b) Reflection	c) Scattering	d) Dispersion	
	=	= :	f a concave mirror by the u		
-	, ·	• •	nce x from the pole P . The	•	
			er eye in line with PA. Whe	en the student shifts	
	· -	he image appears to the rigety) $f < x < 2f$		1) m > 2f	
-	x < f	,,	c) $x = 2f$	d) $x > 2f$	
			arts along the dotted line a	s snown in the figure. The	
TOC	cal length of each part w	ili be			
	√ f		2		
a) =	1			13. O. C	
,	2	b) <i>f</i>	c) $\frac{3}{2}f$	d) 2 <i>f</i>	

376.	respectively. The distance the eye-piece is at infinity	bjective and the eye-piece e between the objective and	b) Mercury vapour lamp d) The sun of a compound microscope d the eye-piece is 15.0 cm. The distances in cm of the orivelens are respectively	Γhe final image formed by
377.	a) 2.4 and 12.0 A ray of light is incident a	b) 2.4 and 15.0 at an angle of incidence <i>i</i> , or om the opposite face. If the all to	c) 2.3 and 12.0 n one face of a prism of angler refractive index of the prism	
	a) <i>μ A</i>	b) $\frac{\mu A}{2}$	c) <i>A</i> / <i>\mu</i>	d) $A/2\mu$
	b) A virtual, erect, same-s c) A virtual, erect, magnif d) A real, inverted, same- A ray of light is incident of	duced by a convex mirror i sized image can be obtained fied image can be formed u sized image can be formed on a plane mirror along the	l using a plane mirror sing a concave mirror using a convex mirror direction given by vector A	$= 2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}$. Find the
		d ray. Take normal to mirror $b) \frac{-94\hat{\imath} + 68\hat{\jmath} - 273\hat{k}}{49\sqrt{29}}$	or along the direction of vector $3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$	ctor $B = 3\hat{\imath} - 6\hat{\jmath} + 2\mathbf{k}$. d) None of these
380.	When a glass prism of ref		sed in a liquid its angle of n	ninimum deviation is 30°.
	a) 42°	b) 45°	c) 50°	d) 52°
381.	The power of a biconvex	lens is 10 dioptre and the r	adius of curvature of each	surface is 10 cm. Then the
	refractive index of the ma			
	a) 3/2	b) 4/3	c) 9/8	d) 5/3
382.			nat is the speed of his image	
	a) $7.5 m/s$	b) 15 <i>m/s</i>	c) 30 m/s	d) 45 <i>m/s</i>
383.	a) Focal length of the obje	into the camera depends u ective lens and diameter of the object		
	c) Distance of the object i	,		
	d) Aperture setting of the	e camera		
384.	The image formed by an o	objective of a compound m	icroscope is	
	a) Virtual and diminished		b) Real and diminished	
	c) Real and enlarged		d) Virtual and enlarged	
385.	For unit magnification, th		n a concave mirror of focal	length 20 <i>cm</i> will be
	a) 20 <i>cm</i>	b) 10 cm	c) 40 <i>cm</i>	d) 60 <i>cm</i>
386.				um and minimum distance
	•	rror such that the image is	· ·	
	a) 20 and ∞	b) f and $2f$	c) f and 0	d) None of these
387.			rs 1 <i>cm</i> from surface neare	est to eye when looked
		1.5, the distance of bubble		J) 1 (
200	a) 1.2 cm	b) 3.2 cm	c) 2.8 cm	d) 1.6 cm
აღც.	=		index 1.5 and its focal lengt liquid, the refractive index	
			<u>-</u>	
	a) $\frac{17}{8}$	b) $\frac{15}{8}$	c) $\frac{13}{8}$	d) $\frac{9}{8}$

389.	The combination of a co	nvex lens $(f = 18 cm)$ and	d a thin concave lens $(f =$	= 9 <i>cm</i>) is
	a) A concave lens $(f = 1)$		b) A convex lens $(f =$	
	c) A convex lens $(f = 6)$	cm)	d) A concave lens $(f \circ f)$	=6 cm)
390.	A convex lens is placed v	vith a mirror as shown in	figure. If the space betwe	en them is filled with water is
	power will			
	a) Decrease			
	b) Increase			
	c) Remain unchanged		,	
001		depending on the focal len	=	
391.	_		kness t . If the angle of inc	idence θis small,the emerging
	ray would be displaced s			
	(Take $n = \text{refractive inde}$		c) $t \theta n/(n-1)$	A) + Q(n + 1)/n
202	a) $t \theta n/(n+1)$	cm from a convex lens of		
392.	*	e placed such that image	<u> </u>	
	a) 19.3 cm	b) 18 cm	c) 33 cm	d) 22 cm
393				quid, it acts as a plane sheet of
0 7 0 1		he liquid must have refrac		quia, it dets as a plane sheet of
	a) Equal to that of glass	no nquiu must nave renae	b) Less than one	
	c) Greater than that of g	lass	d) Less than that of gl	lass
394.	,	erging lens in air and a di		
	material is			
	a) Equal to unity	7	b) Equal to 1.33	
	c) Between unity and 1.3	33	d) Greater than 1.33	
395.		vavelength 4700Å, 5400Å ometer. Which wavelength		ses through red glass before
	a) 6500 Å	b) 5400 Å	c) 4700 Å	d) All the above
396.	A plano convex lens is m	ade of glass of refractive i	ndex 1.5. The radius of c	urvature of its convex surface is
	R. Its focal length is			
	a) $\frac{R}{2}$	b) <i>R</i>	c) 2R	d) 1.5 <i>R</i>
207	7 2 The reason for shining o	•	,	,
37/.	a) Diffraction of light	Tall bubble ill water is	b) Dispersion of light	
	c) Scattering of light		d) Total internal refle	
398		cone the focal lengths of o	=	re f_o and f_e respectively, then
570.	magnification will be do		bject fells and cy c fells af	te jo and ję respectively, then
	a) $f_0 = f_e$	b) $f_o > f_e$	c) $f_o < f_e$	d) None of these
399.	J	=		A. The case corresponding to
	minimum deviation is	71 8	8 1 8	1 8
	(1)	2) (3)		
	a) 1	b) 2	c) 3	d) None of these
100	A candle placed 25 cm fr	roma lone forme an image	on a screen placed 75 ca	m on the other and of the lens

400. A candle placed 25 $\it cm$ from a lens, forms an image on a screen placed 75 $\it cm$ on the other end of the lens. The focal length and type of the lens should be

	a) +18.75 <i>cm</i> and conve	xlens	b) -18.75 cm and concar	velens	
	c) $+20.25 cm$ and convexlens d) $-20.25 cm$ and concavelens				
401	401. Finger prints on a piece of paper may be detected by sprinkling fluorescent powder on the paper and then				
	looking it into				
	a) Mercury light	b) Sunlight	c) Infrared light	d) Ultraviolet light	
402	. A neon sign does not pro	duce			
	a) Line spectrum		b) An emission spectrum	1	
	c) An absorption spectru		d) Photos		
403	403. A convex lens is made of 3 layers of glass of 3 different materials as in the figure. A point object is placed				
	on its axis. The number of images of the object are				
	a) 1	b) 2	c) 3	d) 4	
404	104. Which of the following is not the case with the image formed by a concave lens?				
	a) It may be erect or inverted				
	b) It may be magnified and diminished				
	c) It may be real or virtual				
	d) Real image may be between the pole and focus or beyond focus				
405. Image formed on retina of eye is proportional to					
	a) Size of object	b) Area of object	c) Size of object Size of image	d) $\frac{\text{Size of image}}{\text{Size of object}}$	
		~	•		
406	06. A concave and convex lens have the same focal length of 20 cm and are put into contact to form a lens				
	combination. The combination is used to view an object of $5 cm$ length kept at $20 cm$ from the lens				
	combination. As compared to the object, the image will be				
	a) Magnified and inverted				
	b) Reduced and erect				
	c) Of the same size as the object and erect				
407	d) Of the same size as the object but inverted				
407. A point object is moving on the principal axis of a concave mirror focal length 24 <i>cm</i> towards the mirror.					
	When it is at a distance of $60cm$ from the mirror, its velocity is $9cm/sec$. What is the velocity of the image				
	at that instant a) 5 <i>cm</i> / <i>sec</i> towards the	mirror	b) 4 <i>cm/sec</i> towards the	mirror	
	c) $4cm/sec$ away from the		d) $9cm/sec$ away from the		
408	If an object moves towards a plane mirror with a speed v at an angle θ to the perpendicular to the plane of				
100	the mirror, find the relative velocity between the object and the image				
	ΛV	ive velocity between the ob	geetana the mage		
	0 / / / / / / / / / / / / / / / / / / /				
	\overrightarrow{V}_{0}				
	$V_0 \longrightarrow X$				
	Į.				
	a) <i>v</i>	b) 2 <i>v</i>	c) $2v\cos\theta$	d) $2v \sin \theta$	
409	9. A prism ($\mu=1.5$) has the refracting angle of 30°. The deviation of a monochromatic ray incident normally				
	on its one surface will be $(\sin 48^{\circ} 36' = 0.75)$				
	a) 18°36′	b) 20° 30′	c) 18°	d) 22°1′	

410.	Monochromatic light of fr 1.5. It wavelength in the n	equency $5 imes 10^{14}\mathrm{Hz}$ travel nedium is	ling in vaccum enters a me	dium of refractive index
	a) 4000Å	b) 5000Å	c) 6000Å	d) 5500Å
411.		true for rays coming from it		
	a) Two images are formedb) Continuous image is foc) One image is formedd) None of the above	t rmed between focal points	of upper and lower lens	
412.		glasses of lenses used in an	achromatic pair are in the	ratio 5:3. If the focal length
	of the concave lens is 15 d	rm, then the nature and foca	al length of the other lens v	vould be
	a) Convex, 9 cm	b) Concave, 9 cm	c) Convex, 25 <i>cm</i>	d) Concave, 25 cm
413.	Light travels through a gla	ass plate of thickness $\it t$ and	having refractive index $\it n$. l	If c is the velocity of light in
	vacuum, the time taken by	the light to travel this thic	kness of glass is	
	a) $\frac{t}{nc}$	b) tnc	c) $\frac{nt}{c}$	d) $\frac{tc}{n}$
414.	For a real object, which of	the following can produced	d a real image?	
	a) Plane mirror	b) Concave lens	c) Convex mirror	d) Concave mirror
415.	The frequency of a light w	vave in a material is 2 $ imes$ 10	1 ¹⁴ Hz and wavelength is 50	000Å. The refractive index
	of material will be	- mile	4.777.00.51	
	a) 1.40	b) 1.50	c) 3.00	d) 1.33
416.		inimum deviation position,	= =	
	a) Becomes inverted	b) Becomes broader	c) Becomes distinct	d) Becomes intensive
	-	wers are $+2D$ and $-4D$ res	·	**
	•	~,	c) -4D	d) +4D
418.		t with concave lens. The ma	_	r focal length is 2/3. Their
		30 cm. What are their indiv	· ·	J) 15 10
<i>1</i> .10	a) -75, 50	b) -10, 15 length 15 <i>cm</i> forms an imag	c) 75,50	d) -15, 10
417.		when the image is virtual v	= =	annensions of the object.
	a) 22.5 <i>cm</i>	b) 7.5 <i>cm</i>	c) 30 <i>cm</i>	d) 45 <i>cm</i>
420		n air to glass, for which col		-
120.	a) Red	b) Yellow	c) Blue	d) Violet
421.	Check the correct stateme		c) Blue	d) violet
		responsible for the bluish a	appearance of sky	
		proportional to $1/\lambda^4$ when		uch less than λ
				engths are almost equal and
	so are generally white	(0)	, , ,	
		at sunset and sunrise due	to Rayleigh scattering	
	a) S1 only	b) S1 and S2	c) S2 and S3	d) S1, S2, S3 and S4
422.	Our eye is most sensitive	for which of the following v	vavelength	
	a) 4500 Å			

	b) 5500 Å			
	c) 6500 Å			
	d) Equally sensitive for	all wave lengths of vi	isible spectrum	
423.	Which of the following	element was discover	red by study of Fraunhoffer li	ne
	a) Hydrogen	b) Oxygen	c) Helium	d) Ozone
424	When a lens of refractiv	ve index n_1 is placed i	n a liquid of refractive index	n_2 , the lens looks to be
	disappeared only, if			
	a) $n_1 = n_2/2$	b) $n_1 = 3n_2/4$	c) $n_1 = n_2$	d) $n_1 = 5n_2/4$
425.	If the focal length of the	objective lens is incr	eased then	
	a) Magnifying power of	microscope will incr	ease but that of telescope wil	l decrease
	b) Magnifying power of	fmicroscope and teles	scope both will increase	
	c) Magnifying power of	microscope and teles	scope both will decrease	
	d) Magnifying power of	fmicroscope will deci	rease but that of telescope wi	ll increase
426	The diameter of the obj	ective of a telescope i	is a, its magnifying power is $\it r$	n and wavelength of light is λ .
	The resolving power of	the telescope is		
	a) $(1.22\lambda)/a$	b) $(1.22a)/\lambda$	c) $\lambda m/(1.22a)$	d) $a/(1.22\lambda)$
427.	The reason of seeing th	e Sun a little before th	ne sunrise is	
	a) Reflection of the ligh	t	b) Refraction of the	light
	c) Scattering of the ligh	t	d) Dispersion of the	elight
428	A convex lens of focal le	ength 30 $\it cm$ and a co	ncave lens of $10\ cm$ focal leng	gth are placed so as to have the
	same axis. If a parallel b	peam of light falling o	n convex lens leaves concave	lens as a parallel beam, then the
	distance between two l	enses will be		
	a) 40 <i>cm</i>	b) 30 <i>cm</i>	c) 20 <i>cm</i>	d) 10 <i>cm</i>
429.			e linear magnification of the	
	respectively, then magn		ompound microscope will be	
	a) $m_1 - m_2$	b) $\sqrt{m_1 + m_2}$	c) $(m_1 + m_2)/2$	d) $m_1 \times m_2$
430.	A convex mirror and a	concave mirror has ra	adii of curvature 10 cm each a	are placed 15 cm apart facing
	each other. An object is	placed midway betw	een them. If the reflection fir	st takes place in the concave
	mirror and then in conv	vex mirror, the position	on of the final image is	
	a) on the pole of the co	nvex mirror	b) on the pole of the	e concave mirror
	c) at a distance of 10 cr	n from convex mirror	d) at a distance of 5	cm from concave mirror
431.	A convergent beam of l	ight is incident on a c	onvex mirror so as to conver	ge to a distance 12 cm from the
	pole of the mirror. An in	nverted image of the	same size is formed coincider	nt with the virtual object. What is
	the focal length of the n	nirror		
	a) 24 <i>cm</i>	b) 12 <i>cm</i>	c) 6 <i>cm</i>	d) 3 <i>cm</i>
432.	The two surfaces of a b	iconvex lens has same	e radii of curvatures. This len	s is made of glass of refractive
	index 1.5 and has a foca	al length 10 cm in air.	The lens is cut into two equa	l halves along a plane
	perpendicular to its pri	nciple axis to yield tw	o plano-convex lenses. The t	wo pieces are glued such that the
	convex surfaces touch e	each other. If this com	ibination lens is immersed in	water (refractive index = $4/3$),
	its focal length (in cm)	is		
	a) 5	b) 10	c) 20	d) 40
433.	If the distance of the far	rpoint for a myopia p	atient is doubled, the focal le	ngth of the lens required to cure
	it will become			
	a) Half		b) Double	
	c) The same but a conv	exlens	d) The same but a c	oncave lens
434.	The head lights of a jee	p are 1.2 m apart. If th	ne pupil of the eye of an obsen	rver has a diameter of 2mm and
	light of wavelength 589	96 Å is used, what sho	uld be the maximum distance	e of the jeep from the observer if
	the two head lights are			
	a) 33.9 km	b) 33.9 m	c) 3.34 km	d) 3.39 m

435.	Which one of the following a) $i_1 = i_2$	ng alternative is FALSE for a b) $r_1 = r_2$	prism placed in a position c) $i_1 = r_1$	of minimum deviation d) All of these
436.	A square card of side leng	,	igh a magnifying lens of foo	cal length 10 cm. The card is
	a) 1 cm ²	b) 0.81 cm ²	c) 0.27 cm ²	d) 0.60 cm ²
437.	In a photometer, two sou	rces of light when placed at	30 cm and 50 cm respective	vely produce shadows of
		andle powers are in the ration		
	= = = = = = = = = = = = = = = = = = = =	-		,, 5
	a) $\frac{9}{25}$	b) $\frac{16}{25}$	c) $\frac{3}{5}$	d) $\frac{5}{3}$
438.	When a white light passes	s through a hollow prism, th	nen	_
	a) There is no dispersion	and no deviation		
	b) Dispersion but no devi			
	c) Deviation but no dispe			
	d) There is dispersion and			
439.	-	one refracting surface of a pi	rism of angle 60°, suffers a	deviation of 55°. What is
	the angle of emergence	0 1	0 ,	
	a) 95°	b) 45°	c) 30°	d) None of these
440.		on on a screen at a distance		
	luminous flux emitted by			
	a) 1256 lumen	b) 1600 lumen	c) 100 candela	d) 400 <i>lumen</i>
441.	•	rs are inclined at an angle o		•
	=	irst from one mirror and the		_
	a) 60°	b) 120°	c) 180°	d) 240°
442		length b lies along the axis a		,
1 12.		or. The size of the image is ϵ		riongen j' at a distance a
	(1. f) 1/2	$f \downarrow 1/2$	(y - f)	(f)
	a) $b\left(\frac{u-f}{f}\right)'$	b) $b\left(\frac{f}{u-f}\right)^{1/2}$	c) $b\left(\frac{a-f}{f}\right)$	d) $b\left(\frac{f}{f-u}\right)$
443.	Two point light sources a	re 24 $\it cm$ apart. Where shot	uld a convex lens of focal le	ngth 9 cm be put in
	between them from one s	source so that the images of	both the sources are form	ed at the same place
	a) 6 cm	b) 9 <i>cm</i>	c) 12 <i>cm</i>	d) 15 <i>cm</i>
444.	A wave has velocity u in 1	medium $\it P$ and velocity $\it 2u$ in	n medium $\it Q$.If the wave is i	ncident in medium P at an
	angle 30°, then the angle of	of refraction will be		
	a) 30°	b) 45°	c) 60°	d) 90°
445.	Line spectrum contains in	nformation about		
	a) The atoms of the prism	า	b) The atoms of the source	e
	c) The molecules of the so	ource	d) The atoms as well as m	olecules of the source
446.	A convex lens, a glass slab	o, a glass prism and a solid s	sphere all are made of the s	ame glass, the dispersive
	power will be			
	a) In the glass slab and pr	rism	b) In the lens and solid sp	here
	c) Only in prism		d) In all the four	
447.		ging towards a point $\it I$ on a $\it s$	screen. A plane glass plate	whose thickness in the
	=	r, refractive index = μ , is int		
	point is shifted by	•	•	<u> </u>
	-	b) $t\left(1+\frac{1}{\mu}\right)$ away	c) $t\left(1-\frac{1}{2}\right)$ nearer	d) $t\left(1+\frac{1}{2}\right)$ nearer
	'	'		•
448.		water. A ray of light making		snines on oil layer. The
		t ray in water is $(\mu_{oil} = 1.45)$		N 99 99
	a) 36.1°	b) 44.5°	c) 26.8°	d) 28.9°

449. A lens when placed on a plane mirror then object needle and its image coincide at 15 *cm*. The focal length

a) 15 cm

b) 30 cm

c) 20 cm

d) ∞

450. The focal length of the field lens (which is an achromatic combination of two lenses) of telescope is 90 *cm*. The dispersive powers of the two lenses in the combination are 0.024 and 0.036. The focal lengths of two lenses are

a) 30 cm and 60 cm

b) 30 cm and -45 cm

c) 45 *cm* and 90 *cm*

d) 15 cm and 45 cm

451. A ray is reflected in turn by three plane mirrors mutually at right angles to each other. The angle between the incident and the reflected rays is

a) 90°

b) 60°

c) 180°

d) none of these

452. A medium is said to be dispersive, if

a) Light of different wavelengths propagate at different speeds

b) Light of different wavelengths propagate at same speed but has different frequencies

c) Light is gradually bent rather than sharply refracted at an interface between the medium and air

d) Light is never totally internally reflected

453. When a glass slab is placed on a cross made on a sheet, the cross appears raised by 1 cm. The thickness of the glass is 3 cm. The critical angle for glass is

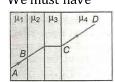
a) $\sin^{-1}(0.33)$

b) $\sin^{-1}(0.5)$

c) $\sin^{-1}(0.67)$

d) $\sin^{-1}(\sqrt{3}/2)$

454. A luminous object is placed at a distance of 30 *cm* from the convex lens of focal length 20 *cm*. On the other side of the lens, at what distance from the lens a convex mirror of radius of curvature 10 *cm* be placed in order to have an upright image of the object coincident with it


a) 12 cm

b) 30 cm

c) 50 cm

d) 60 cm

455. A ray of light passes through four transparent medium with refractive indices μ_1 , μ_2 , μ_3 and μ_4 as shown in the figure. The surfaces of all media are parallel. If the emergent ray CD is parallel to the incident ray AB. We must have

a) $\mu_1 = \mu_2$

b) $\mu_2 = \mu_3$

c) $\mu_3 = \mu_4$

d) $\mu_3 = \mu_1$

456. The nature of sun's spectrum is

a) Continuous spectrum with absorption lines

b) Line spectrum

c) The spectrum of the helium atom

d) Band spectrum

457. An object is placed infront of a convex mirror at a distance of 50 *cm*. A plane mirror is introduced covering the lower half of the convex mirror. If the distance between the object and plane mirror is 30 *cm*, it is found that there is no parallax between the images formed by two mirrors. Radius of curvature of mirror will be

a) 12.5 cm

b) 25 cm

c) $\frac{50}{3}$ cm

d) 18 *cm*

458. We wish to see inside an atom. Assuming the atom to have a diameter of $100 \ pm$, this means that one must be able to resolved a width of say $10 \ pm$. If an electron microscope is used, the minimum electron energy required is about

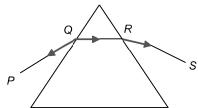
a) 1.5 keV

b) 15 keV

c) 150 *keV*

d) 1.5 *keV*

459. Two thin lenses of focal lengths f_1 and f_2 are placed in contact with each other. The focal length of the combination is


a) $\frac{f_1 + f_2}{2}$

b) $\sqrt{f_1}f_2$

c) $\frac{f_1 f_2}{f_1 + f_2}$

d) $\frac{f_1 f_2}{f_1 - f_2}$

460.		crown and flint glasses are focal length of flint glass le	= = =	
	a) $-20 cm$	b) $+20 cm$	c) $-10 cm$	d) $+10 cm$
461.	•	nedium with respect to vac	•	•
	a) $2 \times 10^8 \text{ ms}^{-1}$	b) $1.5 \times 10^8 \text{ ms}^{-1}$	c) $3 \times 10^8 \text{ ms}^{-1}$	d) $\sqrt{2} \times 10^8 \text{ ms}^{-1}$
462.	surface in contact with the to be 4 cm. If the lens is in	maximum thickness of 6 cree table surface, the apparer werted such that the plane	nt depth of the bottommost face of the lens is in contac	t point of the lens is found to that the surface of the
		of the centre of the plane f	ace is round to be $\left(\frac{-4}{4}\right)$ cm.	The radius of curvature of
	the lens is			
463.	a) 34 cmWhen white light passes ta) Only deviationc) Deviation and dispersion	b) 128 cm hrough the achromatic cor on	c) 75 cm nbination of prisms, then w b) Only dispersion d) None of the above	d) 68 cm hat is observed
464.	The sensation of vision in	the retina is carried to the	brain by	
	a) Ciliary muscles	b) Blind spot	c) Cylindrical lens	d) Optic nerve
465.	consists of several convex removed from the objecti refocus the image	is used to enlarge an object clenses in contact and has f ve, then by what distance t	Focal length 0.02 <i>m</i> . If a lense he eye-piece of the microso	s of focal length $0.1m$ is cope must be moved to
	a) 2.5 <i>cm</i>	b) 6 <i>cm</i>	c) 15 <i>cm</i>	d) 9 <i>cm</i>
466.	-	le of deviation of the emer		nd angle of prism a . At near
	a) $(\mu - 2)\alpha$	b) $(\mu - 1)\alpha$	c) $(\mu + 1)\alpha$	d) $(\mu + 2)\alpha$
467.	Stars are not visible in the a) Stars hide behind the s		ATION	
	b) Stars do not reflect sun	rays during day		
	c) Stars vanish during the	e day		
	d) Atmosphere scatters su visible	unlight into a blanket of ext	reme brightness through v	which faint stars cannot be
468.	sunlight falls normally on	d at the bottom of an empty the mirror, it is focussed a	t distance of 32 <i>cm</i> from th	e mirror. If the tank filled
	with water $\left(\mu = \frac{1}{3}\right)$ upto a	height of $20cm$, then the	sunlight will now get focus	sed at
	a) 16 cm above water leve	el	b) 9 cm above water leve	l
	c) 24 cm below water lev	el	d) 9 cm below water leve	l
469.		terial's slab at an angle of iner, the refractive index of t		d and refracted rays are
	a) $\frac{1}{\sqrt{3}}$	b) $\frac{1}{\sqrt{2}}$	c) √2	d) $\sqrt{3}$
470.	A ray of light is incident of which of the following is t		n placed on a horizontal tal	ole. For minimum deviation

- a) PQ is horizontal
- c) *RS* is horizontal

- b) *QR* is horizontal
- d) Either PQ or RS is horizontal
- 471. The angle of minimum deviation for an incident light ray on an equilateral prism is equal to its refracting angle. The refractive index of its material is
 - a) $\frac{1}{\sqrt{2}}$

b) √3

c) $\frac{\sqrt{3}}{2}$

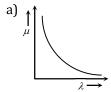
- d) $\frac{3}{2}$
- 472. A person sees his virtual image by holding a mirror very close to the face. When he moves the mirror away from his face, the image becomes inverted. What type of mirror he is using?
 - a) Plane mirror
- b) Convex mirror
- c) Concave mirror
- d) None of these

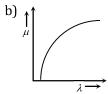
- 473. Which of the following statement is true
 - a) Velocity of light is constant in all media
 - b) Velocity of light in vacuum is maximum
 - c) Velocity of light is same in all reference frames
 - d) Laws of nature have identical form in all reference frames
- 474. Transmission of light to large distances through optical fibres is based on
 - a) Dispersion

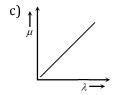
b) Refraction

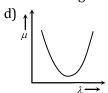
c) Total internal reflection

- d) Interference
- 475. Pick out the correct statements about optical fibres from the following
 - S1: Optical fibres are used for the transmission of optical signals only
 - S2: Optical fibres are used for transmitting and receiving electrical signals
 - S3: The intensity of light signals sent through optical fibres suffer very small loss
 - S4: Optical fibres effectively employ the principle of multiple total internal reflections
 - S5: Optical fibres are glass fibres coated with a thin layer of a material with lower refractive index
 - a) S1 and S2
- b) S2 and S3
- c) S3 and S4
- d) S2, S3, S4 and S5
- 476. Given the width of aperture = 3 mm and λ = 500 nm. For what distance ray optics is good approximation?
 - a) 18 m

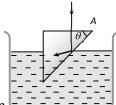

- b) 18 mm
- c) 18 Å


- d) 18 light years
- 477. A ray of light makes an angle of 10° with the horizontal above it and strikes a plane mirror which is inclined at an angle θ to the horizontal. The angle θ for which the reflected ray becomes vertical is
 - a) 40°


b) 50°


c) 80°

- d) 100°
- 478. Which of the following graphs show appropriate variation of refractive index μ with wavelength λ



- 479. A plano convex lens of (f = 20 cm) is silvered at plane surface. New f will be
 - a) 20 cm
- b) 40 cm
- c) 30 cm
- d) 10 cm
- 480. If h_1 and h_2 are the heights of the images in conjugate position of a convex lens, then the height of the object is
 - a) $h_1 + h_2$
- b) $h_1 h_2$
- c) h_1/h_2
- d) $\sqrt{h_1 h_2}$
- 481. A thin double convex lens has radii of curvature each of magnitude 40 cm and is made of glass with $\mu=1.65$. The focal length of the lens in nearly
 - a) 30 cm
- b) 31 cm
- c) 40 cm
- d) 41 cm

of 3 <i>m</i> . Foca	nn distinctly see the object of lens o	used respectively will b	e	
	-3.3 D b) $-5.8 cm$,			
-	ertain angles deviates the r		= -	-
•	deviates the red and blue ra		•	•
	iterials. The dispersive pow		-	
a) 5:6	b) 9:11	c) 6:5	d) 11	
magnificatio	focal lengths of objective a on for the given telescope is	equal to	-	_
a) $\frac{F_1}{F_2}$	b) $rac{F_2}{F_1}$ ndex of glass with respect to	c) $\frac{F_1 F_2}{F_1 + I}$	$\frac{F_1}{F_2}$ d) $\frac{F_1}{F_1}$	$\frac{+F_2}{F_1F_2}$
485. Refractive in	ndex of glass with respect to	o medium is $\frac{4}{3}$. If the diff	erences between veloc	ities of light in
	l glass is $6.25 \times 10^7 \text{ms}^{-1}$,			
	$^{18} \text{ms}^{-1}$ b) 0.125 \times			$\times 10^8 \text{ms}^{-1}$
486. A room (cub	oical) is made of mirrors. Ai	ո insect is moving alonք	the diagonal on the flo	or such that the
velocity of in celling mirro			·	
a) 10 cms ⁻²	b) 20 <i>cms</i> ⁻¹	c) $\frac{10}{\sqrt{2}}cm$	d) 10	$0\sqrt{2} cms^{-1}$
487. A convex mi	rror forms an image one-fo	ourth the size of the obj	ect. If object is at a dista	ance of 0.5 m from the
mirror, the f	focal length of mirror is			
a) 0.17 m	b) −1.5 m	c) 0.4 m	,	0.4 m
488. A man of ler	${f n}$ requires a mirror, to	see his own complete in	mage of length at least	equal to
a) h/4	b) h/3	c) h/2	d) <i>h</i>	
	c combination is made with		and dispersive power	ω with a lens having
dispersive p	ower of 2ω . The focal lengt	h of second will be		- 4
a) 2 <i>f</i>	b) $f/2$ er of moon is 3.5×10^3 km a	c) $-f/2$	n d) –	2 f
490. The diamete	r of moon is 3.5×10^3 km a	and its distance from the	e earth is 3.8×10^5 km	The focal length of
	e and eye-piece are 4 m and	l 10 cm respectively. Th	ie diameter of the imag	ge of the moon will be
approximate	5) 400	D = (20
a) 2°	•	c) 40°	d) 50	
	of a lens is convex and the	other is concave. If the	radii oi curvature are r	$_1$ and r_2 respectively,
	be convex, if b) $r_1 = r_2$	c) $r_1 < r$	d) r	$= 1/r_2$
a) $r_1 > r_2$	eam of monochromatic light	, <u>-</u>	_ , _	· -
incidence is	55° and angle of emergenc	e is 46°. The angle of m	inimum deviation will	be
a) Less than	* *	•	•	one of the above
	t is incident at an angle of 6	-	-	emerging out of the
-	s an angle of 30° with the in		ent ray is	
	o the face through which it	-		
=	at 30° to the face through w			
-	at 60° to the face through w	nich it emerges		
d) None of t	nese			

494. The refractive index of the material of the prism and liquid are 1.56 and 1.32 respectively. What will be

the value of θ for the following refraction

a)
$$\sin \theta \ge \frac{13}{11}$$

b)
$$\sin \theta \ge \frac{11}{13}$$

c)
$$\sin \theta \ge \frac{\sqrt{3}}{2}$$

d)
$$\sin \theta \ge \frac{1}{\sqrt{2}}$$

495. Convergence of concave mirror can be decreased by dipping in

- a) Water
- b) Oil

c) Both

d) None of these

496. If a parallel beam of white light is incident on a converging lens, the colour which is brought to focus nearest to the lens is

a) Violet

b) Red

c) The mean colour

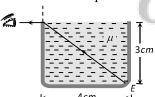
d) All the colours together

497. The critical angle for diamond (refractive index = 2) is

- a) About 20°
- b) 60°

c) 45°

d) 30°


498. Microscope is an optical instrument which

- a) Enlarges the object
- b) Increases the visual angle formed by the object at the eye
- c) Decreases the visual angle formed by the object at the eye
- d) Brings the object nearer

499. Circular part in the centre of retina is called

- a) Blind spot
- b) Yellow spot
- c) Red spot
- d) None of the above

500. When the rectangular metal tank is filled to the top with an unknown liquid, as observer with eyes level with the top of the tank can just see the corner *E*; a ray that refracts towards the observer at the top surface of the liquid is shown. The refractive index of the liquid will be

a) 1.2

b) 1.4

c) 1.6

d) 1.9

501. A double convex lens ($R_1 = R_2 = 100$ cm) having focal length equal to the focal length of a concave mirror. The radius of the concave mirror is

- a) 10 cm
- b) 20 cm
- c) 40 cm
- d) 15 cm

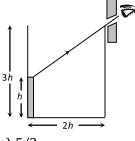
502. A bulb of 100 *watt* is hanging at a height of one meter above the centre of a circular table of diameter 4 m. If the intensity at a point on its rim is I_0 , then the intensity at the centre of the table will be

a) I_0

- b) $2\sqrt{5}I_0$
- c) $2I_0$

d) $5\sqrt{5}I_0$

503. A concave mirror and a converging lens (glass with $\mu=1.5$) both have a focal length of 3 cm when in air. When they are in water $\left(\mu=\frac{4}{3}\right)$, their new focal lengths are


a) $f_{\text{Lens}} = 12 \, cm$, $f_{\text{Mirror}} = 3 \, cm$

b) $f_{\text{Lens}} = 3 \, cm$, $f_{\text{Mirror}} = 12 cm$

c) $f_{\text{Lens}} = 3 \, cm$, $f_{\text{Mirror}} = 3 \, cm$

d) $f_{\text{Lens}} = 12 \, cm$, $f_{\text{Mirror}} = 12 \, cm$

504. An observer can see through a pin-hole the top end of a thin rod of height h, placed as shown in the figure. The beaker height is 3h and its radius h. When the beaker is filled with a liquid up to a height 2h, he can see the lower end of the rod. Then the refractive index of the liquid is

a) 5/2

b) $\sqrt{(5/2)}$

c) $\sqrt{(3/2)}$

d) 3/2

505. A lens made of glass whose index of refraction is 1.60 has a focal length of +20 cm in air. Its focal length in water, whose refractive index is 1.33, will be

a) Three times longer than in air

b) Two times longer than in air

c) Same as in air

d) None of the above

506. Which of the following is a correct relation

a) $a\mu_r = a\mu_\omega \times r\mu_\omega$ b) $a\mu_r \times r\mu_\omega = \omega \mu_a$

c) $_a\mu_r \times _r\mu_a = 0$ d) $_a\mu_r / _\omega\mu_r = _a\mu_\omega$

507. Which of the following colours suffers maximum deviation in a prism

a) Yellow

b) Blue

c) Green

d) Orange

508. f_v and f_r are the focal lengths of a convex lens for violet and red light respectively and F_v and F_r are the focal lengths of a concave lens for violet and red light respectively, then

a) $f_v < f_r$ and $F_v > F_r$

b) $f_v < f_R$ and $F_v < F_r$ c) $f_c > f_r$ and $F_v > F_r$ d) $f_v > f_r$ and $F_v < F_r$

509. Fraunhoffer lines are obtained in

a) Solar spectrum

b) The spectrum obtained from neon lamp

c) Spectrum from a discharge tube

d) None of the above

510. A point object is placed mid-way between two plane mirrors distance 'a' apart. The plane mirror forms an infinite number of images due to multiple reflection. The distance between the nth order image formed in the two mirrors is

511. The refractive indices of glass and quartz w.r.t. air are 3/2 and 12/5 respectively. The refractive index of quartz w.r.t. glass is

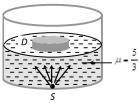
a) 8/5

b) 5/8

c) 5/18

d) 18/5

512. If an object is placed 10 cm infront of a concave mirror of focal length 20 cm, the image will be


a) Diminished, upright, virtual

b) Enlarged, upright, virtual

c) Diminished, inverted, real

d) Enlarged, upright, real

513. A point source of light S is placed at the bottom of a vessel containing a liquid of refractive index 5/3. A person is viewing the source from above the surface. There is an opaque disc D of radius 1 cm floating on the surface of the liquid. The centre of the disc lies vertically above the source S. The liquid from the vessel is gradually drained out through a tap. The maximum height of the liquid for which the source cannot be seen at all from above is

a) 1.50 cm

b) 1.64 cm

c) 1.33 cm

d) 1.86 cm

514. A ray of light is incident on a surface of glass slab at an angle 45° . If the lateral shift produced per unit thickness is $\frac{1}{\sqrt{3}}$ m, the angle of refraction produced is

on

				Gplus Education
	a) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$	b) $\tan^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$	c) $\sin^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$	d) $\tan^{-1}\left(\sqrt{\frac{2}{\sqrt{3}-1}}\right)$
515	_	ent doublet of two lenses i e ratio of the dispersive po b) 3:5	-	
516	will be		_	is 10 cm. The image formed
	a) Magnified and invertc) Reduced in size and	inverted	b) Magnified and erecd) Reduced in size and	l erect
517.	his right hand. In how r	many of the images will he	be seen using his right har	
E10	a) None The ray diagram could	b) 1	c) 2	d) 3
	n_1 n_2 Lens			
	a) If $n_1 = n_2 = n_3$		b) If $n_1 = n_2$ and $n_1 <$	n_g
	c) If $n_1 = n_2$ and $n_1 > n_2$	ι_g	d) Under no circumsta	ances
519	Refractive index of the	material of a prism is 1.5. I	$f \delta_m = A$, what will be a value	alue of angle of the given
	prism?	No.	2	
	(where $\delta_m = \min \max$	deviation; $A = $ angle of pr	ism)	
	a) 82.8°	b) 41.4°	c) 48.6°	d) 90°
520	Minimum deviation is o	bserved with a prism havi	ng angle of prism A , angle	of deviation δ , angle of
	incidence i and angle of a) $i > e$	f emergence e . We then have b) $i < e$	ve generally c) $i = e$	d) $i = e = \delta$
521	An astronomical telesco			44 <i>cm</i> . The focal length of the
	objective is	b) 40 <i>cm</i>	c) 44 <i>cm</i>	d) 440 <i>cm</i>
EDD	a) 4 cm	,	,	,
344	minimum raised are	placed on a word with let	ters of different colours. 1	ne letters which appear
		h) Croon	a) Vallour	d) Violat
Faa	a) Red	b) Green	c) Yellow	d) Violet
523	•	refractive index 1.5, has be n of refractive index 1.75, it		s of curvature R. On
	a) Convergent lens of fo	ocal length 3.5 <i>R</i>	b) Convergent lens of	focal length 3.0 <i>R</i>
	c) Divergent lens of foc	al length 3.5 R	d) Divergent lens of fo	ocal length 3.0 <i>R</i>
524	A man's near point is 0.	5 m and far point is 3 m. P	•	_
	(i) reading purposes	•		
	(ii) seeing distant object	cts, respectively		
	a) -2 D and $+3$ D		b) $+2$ D and -3 D	
	c) +2 D and – 0.33 D		d) $-2 D and + 0.33D$	

526. Large aperture of telescope are used for

wall at a minimum distance from lamp will be

a) Large image b) Greater resolution

b) 4.69 lux

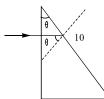
c) Reducing lens aberration

d) Ease of manufacture

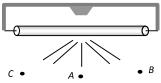
c) 6.94 lux

a) 9.64 lux

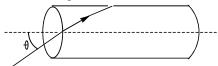
525. A lamp of 250 candela power is hanging at a distance of $6\,\mathrm{m}$ from a wall. The illuminance at a point on the


d) None of these

527.	The angle of minimum dindex of prism material		orism is 30° and the angle	e of prism is 60°. The refractive
	a) $\sqrt{2}$	b) 2	c) 3/2	d) 4/3
528.	A cube of side $2 m$ is pla	ced in front of a concave m of $5 m$ from the mirror. The	irror focal length $1m$ wit	hits face P at a distance of 3 m
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	a) 1 m, 0.5 m, 0.25 m	b) 0.5 m, 1 m, 0.25 m	c) 0.5 m, 0.25 m, 1 m	d) 0.25 m, 1 m, 0.5 m
529.	A ray of light passes thro	ough an equilateral prism s	uch that the angle of inci	dence and the angle of
	emergence are both equ	al to 3/4th of the angle of p	orism. The angle of minim	num deviation is
	a) 15°	b) 30°	c) 45°	d) 60°
530.	The refractive index of v	water, glass and diamond a	re 1.33,1.50,2.40 respecti	vely. The refractive index of
	diamond relative to wat	er and of glass relative to d	iamond, respectively are	nearly
	a) 1.80, 0.625	b) 0.554, 0.625	c) 1.80, 1.6	d) 0.554, 1.6
531.	· •	•	•	the object, 30 cm from the
		nage, for what distance mus	•	
	a) 20 cm	b) 60 cm	c) 80 cm	d) 40 cm
532.	The radius of curvature distance is	of concave mirror is 24 cm	and the image is magnifi	ed by 1.5 times. The object
	a) 20 cm	b) 8 cm	c) 16 cm	d) 24 cm
533.	If the focal length of the	eye piece of a telescope is o	double, its magnifying po	wer m_1 will be
	a) 2 <i>m</i>	b) 3 <i>m</i>	c) $\frac{m}{2}$	d) 4 <i>m</i>
534.	-	made up of glass of refracti	ve index 1.5 and the radi	us of the curvature of its
		What is the power of the len		
	a) + 0.5 D	b) -0.5 D	c) -2 D	d) +2 D
535.		pth 8 meter is full of water		
5 0.6	a) 6 m	b) 8/3 <i>cm</i>	c) 8 <i>cm</i>	d) 10 <i>cm</i>
536.	•	reased from violet to red, t		
	a) Continuously increase		b) Continuously decre	
- 27	c) Increases then decrea		d) Decreases then incr	
53/.				n submarines. If one of the
		igle θ , the reflected light wi	_	
- 20	a) 2θ	b) 0°	c) θ	d) 4θ
538.	combination is	length 20 cm and 25 cm are		-
	a) 9 D	b) 2 D	c) 3 D	d) 7 D
539.	= = =	maximum for the material		
	a) Flint glass	b) Crown glass	c) Mixture of both	d) None of the above
540.		er is at a depth of $12\ m$ belower, directly above his eyes. F		${f a}$ bird is at a height of $18m$ appears to be a distance from
	the surface of water equ	al to (Refractive Index of w	vater is $\frac{4}{2}$)	
	a) 24 m	b) 12 <i>m</i>	c) 18 m	d) 9 <i>m</i>
	•	,	,	,


541. Parallel beam containing light of $\lambda = 400$ nm and 500 nm is incident on a prism as shown in figure. The refractive index μ of the prism is given by the relation

$$\mu(\lambda) = 1.20 + \frac{0.8 \times 10^{-14}}{\lambda^2}$$

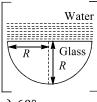

Which of the following statement is correct?

- a) Light of $\lambda = 400$ nm undergoes total internal reflection
- b) Light of $\lambda = 500$ nm undergoes total internal reflection
- c) Neither of two wavelength undergoes total internal reflection
- d) Both wavelengths undergoes total internal reflection
- 542. Figure shows a glowing mercury tube. The illuminances at point *A*, *B* and *C* are related as

- a) B > C > A
- b) A > C > B
- c) B = C > A
- d) B = C < A
- 543. Lenses of power 3 D and -5 D are combined to from a compound lens. An object is placed at a distance of 50 cm from this lens. Its image will be formed at a distance from the lens, will be
 - a) 25 cm
- b) 20 cm
- c) 30 cm
- d) 40 cm
- 544. The dispersive power of the material of lens of focal length 20 cm is 0.08. The longitudinal chromatic aberration of the lens is
 - a) 0.08 cm
- b) 0.08/20 cm
- c) 1.6 cm
- d) 0.16 cm
- 545. When sunlight is incident on a prism, it produces a spectrum due to
 - a) Interference of light
 - b) Diffraction of light
 - c) Total internal reflection
 - d) Variation in speeds of different colours of light in the prism
- 546. Why is refractive index in a transparent medium greater than one?
 - a) Because the speed of light in vacuum is medium
 - b) Because the speed of light in vacuum is always greater than speed in a transparent medium
 - c) Frequency of wave changes when it crosses medium
 - d) None of the above
- 547. A transparent solid cylindrical rod has a refractive index of $\frac{2}{\sqrt{3}}$. It is surrounded by air. A light ray is incident at the mid-point of one end of the rod as shown in the figure.

The incident angle θ for which the light ray grazes along the wall of the rod is

- a) $\sin^{-1}\left(\frac{1}{2}\right)$
- b) $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ c) $\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$ d) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$

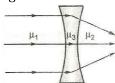

- 548. The two lenses of an achromatic doublet should have
 - a) Equal powers
 - b) Equal dispersive powers

- c) Equal ratio of their power and dispersive power
- d) Sum of the product of their powers and dispersive power equal to zero
- 549. The focal lengths of the objective and eyelenses of a microscope are 1.6 cm and 2.5 cm respectively. The distance between the two lenses is 21.7 cm. If the final image is formed at infinity, the distance between the object and the objective lens is
 - a) 1.8 cm
- b) 1.70 cm
- c) 1.65 cm
- d) 1.75 cm
- 550. A beaker contains water up to a height h_1 and kerosene of height h_2 above water so that the total height of (water +kerosene) is $(h_1 + h_2)$. Refractive index of water is u_1 and that of kerosene is u_2 . The apparent shift in the position of the bottom of the beaker when viewed from above is
 - a) $\left(1 \frac{1}{11}\right)h_2 + \left(1 \frac{1}{11}\right)h_1$

b) $\left(1 + \frac{1}{u_1}\right)h_1 + \left(1 + \frac{1}{u_2}\right)h_2$

c) $\left(1 - \frac{1}{u_1}\right)h_2 + \left(1 - \frac{1}{u_2}\right)h_2$

- $d \left(1 + \frac{1}{u_1}\right) h_2 \left(1 + \frac{1}{u_2}\right) h_1$
- 551. A ray of light travelling in glass $\left(\mu = \frac{3}{2}\right)$ is incident on a horizontal glass air surface at the critical angle θ_c . If thin layer of water $\left(\mu = \frac{4}{3}\right)$ is now poured on the glass air surface, the angle at which the ray emerges into air the water-air surface is


a) 60°

b) 45°

- d) 180°
- 552. An object is placed first at infinity and then at 20 cm from the object side focal plane of the convex lens. The two images thus formed are 5 cm apart. The focal length of the lens is

- b) 10 cm
- c) 15 *cm*
- d) 20 cm
- 553. Two lenses of power +12 and -2 dioptres are placed in contact. What will the focal length of combination
 - a) 10 cm
- b) 12.5 cm
- c) 16.6 cm
- d) 8.33 cm
- 554. When objects at different distances are seen by the eye, which of the following remains constant
 - a) The focal length of the eye lens

- b) The object distance from the eye lens
- c) The radii of curvature of the eye lens
- d) The image distance from the eye lens
- 555. A convex and a concave lens separated by distance d are then put in contact. The focal length of the combination
 - a) Decreases
- b) Increases
- c) Becomes zero
- d) Remains the same
- 556. Four lenses of focal length +15 cm, +20 cm, +150 cm and +250 cm are available for making an astronomical telescope. To produce the largest magnification, the focal length of the eye-piece should be
 - a) +15 cm
- b) +20 cm
- c) +150 cm
- d) +250 cm
- 557. What is the relation between refractive indices μ_1 , μ_2 , and μ_3 if the behavior of light rays is as shown in

- a) $\mu_3 < \mu_2, \mu_2 = \mu_1$
- b) $\mu_2 < \mu_1$, $\mu_2 = \mu_3$
- c) $\mu_3 < \mu_2 < \mu_1$
- d) $\mu_3 > \mu_2 > \mu_1$
- 558. A person is in a room whose ceiling and two adjacent walls are mirrors. How many images are formed
 - a) 5

b) 6

c) 7

d) 8

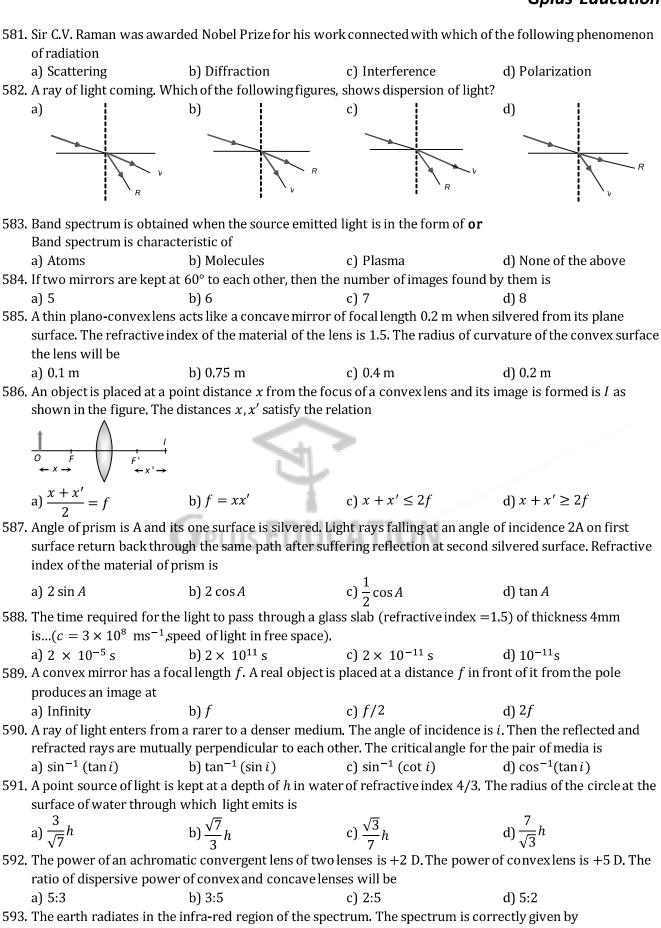
	=	ng angle 3° and refractive in oduce dispersion without do b) 4°		
560.	The slit of a collimator is i	illuminated by a source as sing lens L is equal to the foo	hown in the adjoining figu	res. The distance between
		3		
	a) 1	b) 3	c) 2	d) None of the figures
	-	d by a physician to view the	-	-
	principle of	J 1 J	1 3	O .
	a) Refraction		b) Reflection	
	c) Total internal reflectio	n	d) Dispersion	
562.	The magnifying power of power is	-	llength of the eye-piece is	halved, then its magnifying
	a) 2m	b) $\frac{m}{2}$	c) $\frac{1}{2m}$	d) 4 <i>m</i>
		4	4116	
		scattering of two light wave		
	a) 1: 2	b) $\sqrt{2}:1$	c) 1: $\sqrt{2}$	d) 1 : 1
564.		r spectrum during solar ecl		
	a) Planck's law	b) Kirchoff's law	c) Boltzmann's law	d) Solar disturbances
		is 36 <i>cm</i> . The focal lengths		1) 00 6
			TO ARE THE STATE OF THE STATE O	d) -30 cm, 6 cm o see his entire height right
		a plane mirror kept at a dis	tance of $1m$ from him. The	minimum length of the
	plane mirror required is	h) 00 am	a) 0F am	d) 170 am
E 6 7	a) 180 <i>cm</i>	b) 90cm	c) 85cm	d) 170cm
	nature of the image	ed 15 cm in front of a conc	_	
	a) 4 cm, real	b) 4 cm, virtual	c) 1.0 cm, real	d) None of these
568.		fcrown glass for red, yellow glass these are 1.6434, 1.64 It glass are respectively		
	a) 0.034 and 0.064	b) 0.064 and 0.034	c) 1.00 and 0.064	d) 0.034 and 1.0
569.	=	ive lens of $10\ cm$ diameter at ance between these two o		e of one kilometer from two ed by the telescope, when
	the mean wavelength of li	ight is 5000 Å, is of the orde	er of	
	a) 0.5 m	b) 5 <i>m</i>	c) 5 mm	d) 5 <i>cm</i>
570.	A spherical mirror forms	diminished virtual image of	f magnification 1/3. Focal l	ength is 18 cm. The
	distance of the object is			
	a) 18 cm	b) 36 cm	c) 48 cm	d) Infinite
571.	9	of D below the surface of ware the bulb. The bulb is not a		<u> </u>
	Refractive index of water			•
		•	c) $R < \frac{D}{\sqrt{n^2 - 1}}$	$d) R = D\sqrt{n^2 - 1}$

572. Immiscible transparent liquids A, B, C, D and E are placed in a rectangular container of glass with the liquids making layers according to their densities. The refractive index of the liquids are shown in the adjoining diagram. The container is illuminated from the side and small piece of glass having refractive index 1.61 is gently dropped into the liquid layer. The glass piece as it descends downwards will not be visible in

1.51
1.53
1.61
1,52
1.65
9

- a) Liquid A and B only
- b) Liquid *C* only
- c) Liquid D and E only
- d) Liquid A, B, D and E
- 573. The angular magnification of a simple microscope can be increased by increasing
 - a) Focal length of lens
- b) Size of object
- c) Aperture of lens
- d) Power of lens

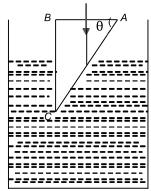
- 574. The twinkling effect of star light is due to
 - a) Total internal reflection
 - b) High dense matter of star
 - c) Constant burning of hydrogen in the star
 - d) The fluctuating apparent position of the star being slightly different from of the star being different from the actual position of the star
- 575. The mean distance of sun from the earth is $1.5 \times 10^8 Km$ (nearly). The time taken by the light to reach earth from the sun is
 - a) 0,12 min
- b) 8.33 min
- c) 12.5 min
- d) 6.25 min
- 576. A layered lens as shown in figure is made of two types of transparent materials indicated by different shades. A point object is placed on its axis. The object will form


- a) 1 image
- b) 2 images
- c) 3 images
- d) 9 images
- 577. A double convex thin lens made of glass (refractive index $\mu = 1.5$) has both radii of curvature of magnitude 20 cm. Incident light rays parallel to the axis of the lens, will converge at a distance L such that
 - a) $L = \frac{20}{3}$ cm
- b) L = 40 cm
- c) L = 20 cm
- d) L = 10 cm
- 578. A boy is trying to start a fire by focusing Sunlight on a piece of paper using an equiconvex lens of focal length 10 cm. The diameter of the Sun is 1.39×10^9 m and its means distance from the earth is 1.5×10^{11} m. What is the diameter of the Sun's image on the paper
 - a) $6.5 \times 10^{-5} m$
- b) $12.4 \times 10^{-4} m$
- c) $9.2 \times 10^{-4} m$
- d) $6.5 \times 10^{-4} m$
- 579. A screen receives 3 *watt* of radiant flux of wavelength 6000 Å. One lumen is equivalent to 1.5×10^{-3} *watt* of monochromatic light of wavelength 5550 Å. If relative luminosity for 6000 Å is 0.685 while that for 5550 Å is 1.00, then the luminous flux of the source is
 - a) $4 \times 10^{3} lm$
- b) $3 \times 10^{3} lm$
- c) $2 \times 10^{3} lm$
- d) $1.37 \times 10^3 lm$

- 580. Which has more luminous efficiency
 - a) A 40 W bulb

b) A 40 W fluorescent tube

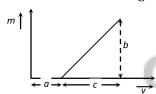
c) Both have same


d) Cannot say

b) Planck's of law of radiation

a) Rayleigh Jeans law

c) Stofan's law of radiation	nn.	d) Wion's law	
c) Stefan's law of radiation594. An astronomical telescop		d) Wien's law	objective of focal longth 90
-	e is formed at the least dista	9	
the two lenses is	e is formed at the least distar	ince of distillet vision (23 c)	in), the separation between
a) 75.0 cm	b) 80.0 cm	c) 94.2 cm	d) 95.0 cm
-	•	c) 84.2 cm	d) 85.0 cm
595. The number of lenses in a		a) Farm	4) C:
a) Two	b) Three	c) Four	d) Six
596. For a prism, its refractive	e index is $\cos \frac{1}{2}$. Then minim	um angle of deviation is	
a) 180° – A	b) 180° – 2 <i>A</i>	c) 90° – A	d) $\frac{A}{2}$
			4
597. With diaphragm of the ca		rrect exposure time is 1/1	oos. Then with diaphragm
set at $f/8$, the correct ex		. 4 /000	D 4 5 /4 0 0
a) 1/100 s	b) 1/400 s	c) 1/200 s	d) 16/100 s
598. It is necessary to illumina			_
_	ertical. At what angle β to th	_	_
a) 70°	b) 20°	c) 50°	d) 40°
599. The diameter of the object resolution of this telesco		.0 <i>m</i> and wavelength of ligl	nt is 6000 A. The limit of
a) 0.03 <i>sec</i>	b) 3.03 <i>sec</i>	c) 0.06 <i>sec</i>	d) 0.15 <i>sec</i>
600. A slab of glass, of thickne	ess 6 cm and refractive index	x 1.5, is placed in front of a	concave mirror, the faces of
the slab being perpendic	ular to the principal axis of t	the mirror. If the radius of	curvature of the mirror is
40~cm and the reflected i	mage coincides with the obj	ect, then the distance of th	e object from the mirror is
a) 30 <i>cm</i>	b) 22 <i>cm</i>	c) 42 cm	d) 28 cm
601. A biconvex lens has a rad	lius of curvature of magnitu	de 20 <i>cm</i> . Which one of the	following options describe
best the image formed of	an object of height 2 cm pla	aced 30 <i>cm</i> from the lens	
a) Real, inverted, height	= 1 cm	b) Virtual, upright, height	
c) Virtual, upright, heigh	t = 0.5 cm	d) Real, inverted, height =	= 4 <i>cm</i>
602. To focal length of a conca	ave mirror is 12 cm. Where s	should an object length 4 c	m be placed so that an
image 1 cm long is forme	d?		•
a) 48 cm	b) 3 cm	c) 60 cm	d) 15 cm
603. When a ray of light emer	ges from a block of glass, the	e critical angle is	
a) Equal to the angle of r	eflection		
b) The angle between the	e refracted ray and the norm	nal	
c) The angle of incidence	e for which the refracted ray	travels along the glass-air	boundary
d) The angle of incidence	· ·		
604. A point source of light is	kept below the surfaces of v	vater in a pond	
a) Light emerges from ev	very point of the surface of t	he pond	
b) No light is transmitted	from the surface of the por	nd	
c) All the light emitted by	y the source emerges from a	circular region of the pon	d
d) Some of the light emit	ted by the source emerges f	rom a circular region of po	nd
605. The angular resolution o	f a 10 <i>cm</i> diameter telescop	e at a wavelength of 5000 .	Å is of the order
a) $10^6 rad$	b) 10^{-2} rad	c) 10^{-4} rad	d) 10^{-6} rad
606. If the refractive indices o	f a prism for red, yellow and	l violet colours be 1.61, 1.6	3 and 1.65 respectively,
then the dispersive powe	er of the prism will be		-
		1.65 – 1.61	$_{13}$ 1.65 $-$ 1.63
a) $\frac{1.65 - 1.62}{1.61 - 1}$	b) $\frac{1.62 - 1.61}{1.65 - 1}$	$\frac{1.63-1}{1.63-1}$	$\frac{1.61-1}{1.61}$
607. A man runs towards a mi	rror at a speed 15 m/s . The		e to the man is
a) $15 ms^{-1}$	b) $30 ms^{-1}$	c) $35 ms^{-1}$	d) $20 ms^{-1}$
608. A glass prism of refractiv	re index 1.5 is immersed in v	vater $\left(\mu = \frac{4}{3}\right)$. Refer figure.	


A light beam incident normally on the face AB is totally reflected to reach the face BC if

- a) $2/3 < \sin \theta < 8/9$
- b) $\sin \theta \le 2/3$
- c) $\cos \theta \ge 8/9$
- d) $\sin \theta > 8/9$
- 609. The resolving power of an astronomical telescope is 0.2 seconds. If the central half portion of the objective lens is covered, the resolving power will be
 - a) 0.1 sec
- b) 0.2 sec
- c) 1.0 sec
- d) 0.6 sec
- 610. A boy 1.5 m tall with his eye level at 1.38 m stands before a mirror fixed on a wall. The minimum length of mirror required to view the complete image of boy is
 - a) 0.75 m
- b) 0.06 m
- c) 0.69 m
- d) 0.12 m
- 611. The refractive index of a prism for a monochromatic wave is $\sqrt{2}$ and its refracting angle is 60°. For minimum deviation, the angle of incidence will be
 - a) 30°

b) 45°

c) 60°

- d) 75°
- 612. The graph shows how the magnification m produced by a convex thin lens varies with image distance v. What was the focal length of the used lines

a) b/c

b) *b/ca*

c) bc/a

- d) c/b
- 613. Least distance of distinct vision is 25 cm. Magnifying power of simple microscope of focal length 5 cm is

.us EDUCATION

a) 1/5

b) 5

c) 1/6

d) 6

- 614. Retina of eye acts like of camera
 - a) Shutter
- b) Film

c) Lens

- d) None of these
- 615. The radius of curvature of the convex face of a planoconvex lens is 15 cm and the refractive index of the material is 1.4. Then the power of the lens in diopter is
 - a) 1.6

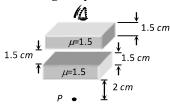
b) 1.66

c) 2.6

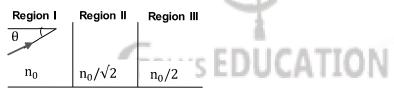
- d) 2.66
- 616. The refractive index of a material of a planoconcave lens is 5/3, the radius of curvature is 0.3 m. The focal length of the lens in air is
 - a) -0.45 m
- b) -0.6 m
- c) -0.75 m
- d) -1.0 m
- 617. What should be the angle between two plane mirrors so that whatever be the angle of incidence, the incident ray and the reflected ray from the two mirrors be parallel to each other
 - a) 60°

b) 90°

- d) 175°
- 618. The exposure time of a camera lens at the $\frac{f}{2.8}$ setting is $\frac{1}{200}$ second. The correct time of exposure at $\frac{f}{5.6}$ is


- b) 0.02 s
- c) 0.002 s
- 619. The focal lengths of the lenses of an astronomical telescope are 50 cm and 5 cm. The length of the telescope when the image is formed at the least distance of distinct vision is
 - a) 45cm
- b) 55 cm
- c) $\frac{275}{6}$ cm
- d) $\frac{325}{6}$ cm

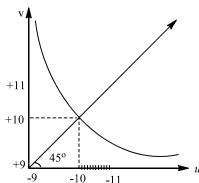
- 620. The focal length of a concave mirror is 20 cm. Where an object must be placed to form an image magnified two times when the image is real?
 - a) 30 cm from the mirror


b) 10 cm from the mirror

c) 20 cm from the mirror

- d) 15 cm from the mirror
- 621. In a compound microscope, the focal lengths of two lenses are 1.5 *cm* and 6.25 *cm* An object is placed at 2 *cm* form objective and the final image is formed is 25 *cm* from eye lens. The distance between the two lenses is
 - a) 6.00 *cm*
- b) 7.75 cm
- c) 9.25 cm
- d) 11.00 cm
- 622. The image of point *P* when viewed from top of the slabs will be

- a) 2.0 *cm* above *P*
- b) 1.5 *cm* above *P*
- c) 2.0 *cm* below *P*
- d) 1 cm above P
- 623. In order to increase the magnifying power of a compound microscope
 - a) The focal lengths of the objective and the eye piece should be small
 - b) Objective should have small focal length and the eye piece large
 - c) Both should have large focal lengths
 - d) The objective should have large focal length and eye piece should have small
- 624. A beam of light is travelling from region II to region III (see the figure). The refractive index in region I, II and III are n_0 , $\frac{n_0}{\sqrt{2}}$, and $\frac{n_0}{2}$ respectively. The angle of incidence θ for which the beam just misses entering region III is



a) 30

b) 45°

c) 60°

- d) $\sin^{-1}(\sqrt{2})$
- 625. The graph between object distance u and image distance v for lens is given below. The focal length of the lens is

- a) 5 ± 0.1
- b) 5 ± 0.05
- c) 0.5 ± 0.1
- d) 0.5 ± 0.05
- 626. The length of an astronomical telescope for normal vision (relaxed eye) (f_o = focal length of objective lens and f_e = focal length of eye lens) is
 - a) $f_o \times f_e$
- b) $\frac{f_o}{f_e}$

- c) $f_o + f_e$
- d) $f_o f_e$
- 627. The magnifying power of a simple microscope is 6. The focal length of its lens in metres will be, if least distance of distinct vision is 25 cm

	a) 0.05	b) 0.06	c) 0.25	d) 0.12
628.	A concave mirror gives an	image three times as large	e as the object placed at a d	istance of 20 <i>cm</i> from it.
	For the image to be real, t		· •	
	a) 10 <i>cm</i>	b) 15 <i>cm</i>	c) 20 cm	d) 30 cm
629.	The spectrum of iodine ga	as under white light will be		
	a) Only violet		b) Bright lines	
	c) Only red lines		d) Some black bands is co	ntinuous spectrum
630.	The power of a thin conve	ex lens ($_{a}n_{\rm g} = 1.5$) is + 0.5	D. When it is placed in a lie	quid of refractive index $_an_{l_s}$
		ave lens of focal length 100		
	a) 5/3	b) 4/3	c) $\sqrt{3}$	d) 5/4
631.	A person 6 feet in length of	can see his full size erect im		ngth. This mirror has to be
	a) Plane or convex		b) Plane or concave	
	c) Necessarily convex		d) Necessarily concave	
632.		has its face AC silvered. A	•	ngle of 45° at the face AB
			-	tive index of the material of
	the prism is			
	Ą			
	\wedge			
	Silvered			
	45° C:			
	В С		. =	
	a) 1.5	b) $3/\sqrt{2}$	c) $\sqrt{2}$	d) 4/3
633.	The focal length of the len	s of refractive index $(\mu = 1$	5) in air is 10 cm. If air is 1	replaced by water of $\mu = \frac{4}{3}$,
	its focal length is			
621	a) 20 cm	b) 30 cm	c) 40 cm	d) 25 cm
054.		b) 30 cm ater is 1.33. What will be th		d) 25 cm
034.				d) 25 cm d) $1.33 \times 10^8 \text{ m/s}$
	The refractive index of war a) $3 \times 10^8 \ m/s$	ater is 1.33. What will be th	e speed of light in water c) $4 \times 10^8 \ m/s$	
	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long	ater is 1.33. What will be th b) $2.25 \times 10^8 \ m/s$	e speed of light in water c) $4 \times 10^8 m/s$ via) is or	d) $1.33 \times 10^8 \ m/s$
	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long	eter is 1.33. What will be the background by $2.25 imes 10^8 \ m/s$ sightedness (hypermetropy sypermetropia requires wh	e speed of light in water c) $4 \times 10^8 m/s$ via) is or	d) $1.33 \times 10^8 \ m/s$
	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h	eter is 1.33. What will be the background by $2.25 imes 10^8 \ m/s$ sightedness (hypermetropy sypermetropia requires wh	e speed of light in water c) $4 \times 10^8 m/s$ via) is or ich type of spectacle lenses	d) $1.33 \times 10^8 \ m/s$
635.	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h a) Concave lens c) Convexo-concave lens	ter is 1.33. What will be the best of the	e speed of light in water c) $4 \times 10^8 m/s$ via) is or ich type of spectacle lenses b) Plano-concave lens d) Convex lens	d) $1.33 \times 10^8 \ m/s$
635.	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h a) Concave lens c) Convexo-concave lens	ter is 1.33. What will be the best of the	e speed of light in water c) $4 \times 10^8 m/s$ via) is or ich type of spectacle lenses b) Plano-concave lens d) Convex lens	d) $1.33 \times 10^8 \ m/s$
635.	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h a) Concave lens c) Convexo-concave lens Focal length of a convex lens	ter is 1.33. What will be the best of the	e speed of light in water c) $4 \times 10^8 m/s$ via) is or ich type of spectacle lenses b) Plano-concave lens d) Convex lens	d) $1.33 \times 10^8 \ m/s$
635. 636.	The refractive index of wa a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h a) Concave lens c) Convexo-concave lens Focal length of a convex le of refractive index of 1.25 a) $10 cm$	ter is 1.33. What will be the by $2.25 \times 10^8 \ m/s$ is sightedness (hypermetropy ypermetropia requires where of refractive index 1.5 is will be by $2.5 \ cm$	e speed of light in water c) $4 \times 10^8 m/s$ via) is or ich type of spectacle lenses b) Plano-concave lens d) Convex lens n 2 cm . Focal length of lens c) $5 cm$	d) $1.33 \times 10^8 \ m/s$ when immersed in a liquid
635. 636.	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h a) Concave lens c) Convexo-concave lens Focal length of a convex lens of refractive index of 1.25 a) $10 cm$ A thin lens made of glass of	ter is 1.33. What will be the by $2.25 \times 10^8 \ m/s$ is sightedness (hypermetropy ypermetropia requires where of refractive index 1.5 is will be by $2.5 \ cm$	e speed of light in water c) $4 \times 10^8 m/s$ via) is or ich type of spectacle lenses b) Plano-concave lens d) Convex lens n 2 cm . Focal length of lens c) 5 cm front surface $+11 D$ power	d) $1.33 \times 10^8 \ m/s$ when immersed in a liquid d) $7.5 \ cm$ er and back surface $-6 \ D$. If
635.636.637.	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h a) Concave lens c) Convexo-concave lens Focal length of a convex lens of refractive index of 1.25 a) $10 cm$ A thin lens made of glass of this lens is submerged in a a) $-0.5 D$	the term is 1.33. What will be the best of the best o	e speed of light in water c) $4 \times 10^8 m/s$ via) is or ich type of spectacle lenses b) Plano-concave lens d) Convex lens n 2 cm. Focal length of lens c) 5 cm front surface +11 D power 1.6, the resulting power of c) -0.625 D	d) $1.33 \times 10^8 \ m/s$ when immersed in a liquid d) $7.5 \ cm$ er and back surface $-6 \ D$. If the lens is d) $+0.625 \ D$
635.636.637.	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h a) Concave lens c) Convexo-concave lens Focal length of a convex lens of refractive index of 1.25 a) $10 cm$ A thin lens made of glass of this lens is submerged in a a) $-0.5 D$	the term is 1.33. What will be the best of the best o	e speed of light in water c) $4 \times 10^8 m/s$ via) is or ich type of spectacle lenses b) Plano-concave lens d) Convex lens n 2 cm. Focal length of lens c) 5 cm front surface +11 D power 1.6, the resulting power of c) -0.625 D	d) $1.33 \times 10^8 \ m/s$ when immersed in a liquid d) $7.5 \ cm$ er and back surface $-6 \ D$. If the lens is d) $+0.625 \ D$
635.636.637.	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h a) Concave lens c) Convexo-concave lens Focal length of a convex lens of refractive index of 1.25 a) $10 cm$ A thin lens made of glass of this lens is submerged in a a) $-0.5 D$ A plane mirror makes an a between mirror and reflective index of $1.25 m$ and $1.25 m$ and $1.25 m$ and $1.25 m$ are the submerged in a convex lens in a submerged in a convex lens is submerged in a convex lens is submerged in a convex lens in	ater is 1.33. What will be the b) $2.25 \times 10^8 \ m/s$ is sightedness (hypermetropy ypermetropia requires where sof refractive index 1.5 is will be b) $2.5 \ cm$ of refractive index 1.5 has a liquid of refractive index b) $+0.5 \ D$ angle of 30° with horizontacted ray	e speed of light in water c) $4 \times 10^8 m/s$ via) is or ich type of spectacle lenses b) Plano-concave lens d) Convex lens n 2 cm. Focal length of lens c) 5 cm front surface $+11 D$ power 1.6, the resulting power of c) $-0.625 D$ via If a vertical ray strikes the	d) $1.33 \times 10^8 \ m/s$ when immersed in a liquid d) $7.5 \ cm$ er and back surface $-6 \ D$. If the lens is d) $+0.625 \ D$ he mirror, find the angle
635.636.637.638.	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h a) Concave lens c) Convexo-concave lens Focal length of a convex lens of refractive index of 1.25 a) $10 cm$ A thin lens made of glass of this lens is submerged in a a) $-0.5 D$ A plane mirror makes an a between mirror and reflect a) 30°	the term is 1.33. What will be the behalf of the behalf o	e speed of light in water c) $4 \times 10^8 m/s$ via) is or ich type of spectacle lenses b) Plano-concave lens d) Convex lens n 2 cm. Focal length of lens c) 5 cm front surface +11 D power 1.6, the resulting power of c) -0.625 D Il. If a vertical ray strikes the	d) $1.33 \times 10^8 \ m/s$ when immersed in a liquid d) $7.5 \ cm$ er and back surface $-6 \ D$. If the lens is d) $+0.625 \ D$ the mirror, find the angle d) 90°
635.636.637.638.	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h a) Concave lens c) Convexo-concave lens Focal length of a convex lens of refractive index of 1.25 a) $10 cm$ A thin lens made of glass of this lens is submerged in a a) $-0.5 D$ A plane mirror makes an abetween mirror and reflect a) 30° A ray of light is incident of	ater is 1.33. What will be the b) $2.25 \times 10^8 \ m/s$ is sightedness (hypermetropy ypermetropia requires where sof refractive index 1.5 is will be b) $2.5 \ cm$ of refractive index 1.5 has a liquid of refractive index b) $+0.5 \ D$ angle of 30° with horizontacted ray b) 45° in the hypotenuse of a right	e speed of light in water c) $4 \times 10^8 m/s$ sia) is or ich type of spectacle lenses b) Plano-concave lens d) Convex lens n $2 cm$. Focal length of lens c) $5 cm$ a front surface $+11 D$ power 1.6, the resulting power of c) $-0.625 D$ sl. If a vertical ray strikes the c) 60° -angled prism after travelling	d) $1.33 \times 10^8 \ m/s$ when immersed in a liquid d) $7.5 \ cm$ er and back surface $-6 \ D$. If the lens is d) $+0.625 \ D$ the mirror, find the angle d) 90° ang parallel to the base
635.636.637.638.	The refractive index of war a) $3 \times 10^8 m/s$ Lens used to remove long A person suffering from h a) Concave lens c) Convexo-concave lens Focal length of a convex lens of refractive index of 1.25 a) $10 cm$ A thin lens made of glass of this lens is submerged in a a) $-0.5 D$ A plane mirror makes an abetween mirror and reflect a) 30° A ray of light is incident of	the term is 1.33. What will be the behalf of the behalf o	e speed of light in water c) $4 \times 10^8 m/s$ sia) is or ich type of spectacle lenses b) Plano-concave lens d) Convex lens n $2 cm$. Focal length of lens c) $5 cm$ a front surface $+11 D$ power 1.6, the resulting power of c) $-0.625 D$ sl. If a vertical ray strikes the c) 60° -angled prism after travelling	d) $1.33 \times 10^8 \ m/s$ when immersed in a liquid d) $7.5 \ cm$ er and back surface $-6 \ D$. If the lens is d) $+0.625 \ D$ the mirror, find the angle d) 90° ang parallel to the base

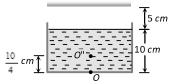
640. A square wire of side 1 cm is placed perpendicular to the principle axis of a concave mirror of focal length 15 cm at a distance of 20 cm. The area enclosed by the image of the wire is

c) $\sin^{-1}\left(\frac{\mu-1}{\mu}\right)$

a) $\sin^{-1}\left(\frac{1}{\mu}\right)$

b) $\tan^{-1}\left(\frac{1}{\mu}\right)$

d) $\cos^{-1}\left(\frac{1}{\mu}\right)$


	a) 4 cm ²	b) 6 cm ²	c) 2 cm ²	d) 9 cm ²
641.	The cross-section of a gla	ass prism has the form of a	n isosceles triangle. One of	the refracting faces is
	_	——————————————————————————————————————	efracting face. After being re	_
		orism perpendicular it. The	0	,
	a) 54°,54°,72°	b) 72°,72°,36°	c) 45°,45°,90°	d) 57°, 57°, 76°
642	-		s, each with focal length f a	
042.	=	=		= =
			ens. The distance from the o	optical centre at which an
	·	obtain the image same as t	the size of object is	
	a) $\frac{f}{4}$	b) $\frac{f}{2}$	c) <i>f</i>	d) 2 <i>f</i>
	T	4	toval muioma lagrat in ita mainin	daviation modition it is
043.				num deviation position, it is
			ttne prism itseif. The refrac	ctive index of the material of
	the prism for the wavele	=		
	a) $\sqrt{3}$	b) $\frac{\sqrt{3}}{2}$	c) 2	d) $\sqrt{2}$
	•	L		
644.	-		What is the wavelength an	d speed of this colour in
	glass of refractive index			
	a) 500 nm and 2×10^{10} c	cms ⁻¹	b) 400 nm and 2×10^8 m	s^{-1}
	c) 300 nm and 3 $\times 10^9$ c	ms ⁻¹	d) 700 nm and 1.5×10^9	ms ⁻¹
645.	Magnification of a compo	ound microscope is 30. Foc	al length of eye-piece is 5 ca	m and the image is formed
	at a distance of distinct v	rision of 25 $\it cm$. The magnif	ication of the objective lens	sis
	a) 6	b) 5	c) 7.5	d) 10
646.	The human eye has a len	s which has a	>	-
	a) Soft portion at its cent		b) Hard surface	
	c) Varying refractive ind		d) Constant refractive in	dex
647.			-	en area. Luminous intensity
	is defined as			
		tted by the source per seco		
		d by source per unit solid a	that the first the same of the	
	-	per unit area of a given sur	_	
	, ,			
(10	=	g per unit area of an illumin		Airealre Amathan maine af tha
048.				tively. Another prism of the
	_		nd 14° respectively. The pri	_
		• •	of the materials of the prisi	
	a) 5 : 6	b) 9: 11	c) 6:5	d) 11 : 9
649.		_	g lens. Having passed throu	_
	•	• •	osite side. If the lens is remo	oved the point where the
		n closer to the lens. The foo	callength of the lens is	
	a) −30 <i>cm</i>	b) 5 <i>cm</i>	c) -10 <i>cm</i>	d) 20 <i>cm</i>
650.	A person is suffering from	m myopic defect. He is able	to see clear objects placed	at 15 cm. What type and of
	what focal length of lens	he should use to see clearly	y the object placed $60\ cm$ a	way
	a) Concave lens of 20 cm	ı focal length	b) Convex lens of 20 cm	focal length
	c) Concave lens of 12 cm	focal length	d) Convex lens of 12 cm	focal length
651.	A point objectOis placed	in front of a glass rod havi	ng spherical end of radius o	f curvature 30cm. The
	image would be formed	at		
	O Air Glass	1		
	15 cm 30 cm	>		
	\ 300111			

a) 30 cm left b) Infinity	c) 1 cm to the right	d) 18 cm to the left
652. For normal vision, what is distance of object fr		d) 40 am
a) 30 cm b) 25 cm	c) Infinite	d) 40 cm
653. Three prisms of crown glass, each have angle		_
direct vision spectroscope. What will be the an glass is 1.53	igle of finit glass prisms if μ for	Time is 1.60 and μ for crown
a) 11.9° b) 16.0°	c) 15.3°	d) 9.11°
654. When light enters water from the vacuum, the		uj 5.11
a) Decreases b) Increases	c) Remain constant	d) Becomes zero
655. A thin prism P_1 with angle 4° made from a glass		
prism P_2 made from glass of refractive index 1		
the prism P_2 is	2 to produce dispersion with	out deviation. The angle of
a) 5.33° b) 4°	c) 3°	d) 2.6°
656. Which one of the following spherical lenses do		
surfaces of the lenses are as given in the diagram		radir of carvacare of the
a) b)	c) /	d) \
	R	R ∞
R_1 R_2 R_2	(" / ["
$R_1 \neq R_2$		
657. Focal length of a plane mirror is		
a) Zero b) Infinite	c) Very less	d) Indefinite
658. A convex lens of focal length 10 cm and image	formed by it, is at least distanc	e of distinct vision then the
magnifying power is		22.4.4
a) 3.5 b) 2.5	c) 1.5	d) 1.4
659. A small plane mirror placed at the centre of a		_
mirror. If the mirror makes n revolution per s	econd, the speed of light on the	screen after reflection from
the mirror will be a) $4\pi nR$ b) $2\pi nR$	UCALION	m D
		a) nr
a) $4\pi nR$ b) $2\pi nR$	c) $\frac{nR}{2\pi}$	u)
	c) ${2\pi}$	d) $\frac{nR}{4\pi}$
660. On heating a liquid, the refractive index gener	c) ${2\pi}$	$\frac{d}{4\pi}$
660. On heating a liquid, the refractive index general a) Decreases	c) $\frac{1}{2\pi}$ ally	$\frac{dJ}{4\pi}$
660. On heating a liquid, the refractive index general a) Decreases b) Increases or decreases depending on the ra	c) $\frac{1}{2\pi}$ ally	$\frac{4\pi}{4\pi}$
660. On heating a liquid, the refractive index generala) Decreasesb) Increases or decreases depending on the racc) Does not change	c) $\frac{1}{2\pi}$ ally	$\frac{d}{4\pi}$
660. On heating a liquid, the refractive index generala) Decreasesb) Increases or decreases depending on the racc) Does not changed) Increases	c) $\frac{2\pi}{2\pi}$ ally te of heating	$\frac{dJ}{4\pi}$
 660. On heating a liquid, the refractive index general a) Decreases b) Increases or decreases depending on the race) Does not change d) Increases 661. The spectrum obtained from a sodium vapour 	c) $\frac{2\pi}{2\pi}$ ally te of heating lamp is an example of	
 660. On heating a liquid, the refractive index general a) Decreases b) Increases or decreases depending on the racc) Does not change d) Increases 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectrum 	c) $\frac{c}{2\pi}$ ally te of heating lamp is an example of um c) Continuous spectrum	n d) Band spectrum
 660. On heating a liquid, the refractive index general a) Decreases b) Increases or decreases depending on the rac) Does not change d) Increases 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectrum 662. Two parallel pillars are 11 km away from an objective formula. 	c) $\frac{c}{2\pi}$ ally te of heating lamp is an example of um c) Continuous spectrum	n d) Band spectrum
 660. On heating a liquid, the refractive index general a) Decreases b) Increases or decreases depending on the race) Does not change d) Increases 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectrum 662. Two parallel pillars are 11 km away from an othey can be seen separately will be 	c) $\frac{c}{2\pi}$ ally te of heating lamp is an example of um c) Continuous spectrum bserver. The minimum distanc	n d) Band spectrum e between the pillars so that
 660. On heating a liquid, the refractive index general a) Decreases b) Increases or decreases depending on the racc) Does not change d) Increases 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectrum 662. Two parallel pillars are 11 km away from an othey can be seen separately will be a) 3.2 m b) 20.8 m 	c) $\frac{c}{2\pi}$ ally te of heating lamp is an example of um c) Continuous spectrum bserver. The minimum distanc c) 91.5 m	n d) Band spectrum ${ m e}$ between the pillars so that ${ m d}$) 183 ${ m \it m}$
 660. On heating a liquid, the refractive index generally a pecreases b) Increases or decreases depending on the race) Does not change d) Increases 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectrum 662. Two parallel pillars are 11 km away from an othey can be seen separately will be a) 3.2 m b) 20.8 m 663. The wavelength of red light from He-Ne laser 	c) $\frac{c}{2\pi}$ ally te of heating lamp is an example of um c) Continuous spectrum bserver. The minimum distanc c) 91.5 m is 633nm in air but 474 nm in t	n d) Band spectrum ${ m e}$ between the pillars so that ${ m d}$) 183 ${ m \it m}$
 660. On heating a liquid, the refractive index generally a pecreases b) Increases or decreases depending on the race) Does not change d) Increases 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectrum 662. Two parallel pillars are 11 km away from an of they can be seen separately will be a) 3.2 m b) 20.8 m 663. The wavelength of red light from He-Ne laser eye ball. Then the speed of red light through the 	c) $\frac{c}{2\pi}$ ally te of heating lamp is an example of um c) Continuous spectrum bserver. The minimum distanc c) 91.5 m is 633nm in air but 474 nm in the aqueous humor is	n d) Band spectrum e between the pillars so that d) 183 <i>m</i> he aqueous humor inside the
 660. On heating a liquid, the refractive index generally a pecreases b) Increases or decreases depending on the race) Does not change d) Increases 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectrum a) Absorption spectrum b) Emission spectrum bo Emission spectrum b) Emission spectrum a) 3.2 m b) 20.8 m 663. The wavelength of red light from He-Ne laser eye ball. Then the speed of red light through the a) 3 × 108 ms⁻¹ b) 1.34 × 108 ms⁻¹ 	c) $\frac{c}{2\pi}$ ally te of heating lamp is an example of um c) Continuous spectrum bserver. The minimum distanc c) 91.5 m is 633nm in air but 474 nm in the aqueous humor is c) 2.25 × 10^8 ms ⁻¹	and d) Band spectrum between the pillars so that d) 183 m he aqueous humor inside the d) $2.5 \times 10^8 \text{ms}^{-1}$
 660. On heating a liquid, the refractive index generally a pecreases b) Increases or decreases depending on the race) Does not change d) Increases 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectrum 662. Two parallel pillars are 11 km away from an of they can be seen separately will be a) 3.2 m b) 20.8 m 663. The wavelength of red light from He-Ne laser eye ball. Then the speed of red light through the 	c) $\frac{c}{2\pi}$ ally te of heating lamp is an example of the composition of the composit	n d) Band spectrum e between the pillars so that d) $183 m$ he aqueous humor inside the d) $2.5 \times 10^8 \text{ms}^{-1}$ image to be formed at a
 660. On heating a liquid, the refractive index generally as a possible process. b) Increases or decreases depending on the race; Does not change d) Increases. 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectrum a) Absorption spectrum b) Emission spectrum b(662). Two parallel pillars are 11 km away from an of they can be seen separately will be a) 3.2 m b) 20.8 m 663. The wavelength of red light from He-Ne laser eye ball. Then the speed of red light through the convex lensured as a simple convex lensured as a	c) $\frac{c}{2\pi}$ ally te of heating lamp is an example of the composition of the composit	n d) Band spectrum e between the pillars so that d) $183 m$ he aqueous humor inside the d) $2.5 \times 10^8 \text{ms}^{-1}$ image to be formed at a
 660. On heating a liquid, the refractive index general a) Decreases b) Increases or decreases depending on the race) Does not change d) Increases 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectre 662. Two parallel pillars are 11 km away from an of they can be seen separately will be a) 3.2 m b) 20.8 m 663. The wavelength of red light from He-Ne laser eye ball. Then the speed of red light through the a) 3 × 10⁸ ms⁻¹ b) 1.34 × 10⁸ ms⁻¹ 664. The focal length of a simple convex lens used a distance of distinct vision (D = 25 cm), the or 	c) $\frac{c}{2\pi}$ ally te of heating lamp is an example of the composition of the composit	and d) Band spectrum be between the pillars so that d) 183 m he aqueous humor inside the d) $2.5 \times 10^8 \text{ms}^{-1}$ image to be formed at a anthe lens at a distance of d) 16.16 cm
 660. On heating a liquid, the refractive index generally a pecreases b) Increases or decreases depending on the race) Does not change d) Increases 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectrum 662. Two parallel pillars are 11 km away from an of they can be seen separately will be a) 3.2 m b) 20.8 m 663. The wavelength of red light from He-Ne laser eye ball. Then the speed of red light through the a) 3 × 10⁸ ms⁻¹ b) 1.34 × 10⁸ ms⁻¹ 664. The focal length of a simple convex lens used a distance of distinct vision (D = 25 cm), the orange of the period of the p	c) $\frac{c}{2\pi}$ ally te of heating lamp is an example of the composition of the composit	and d) Band spectrum be between the pillars so that d) 183 m he aqueous humor inside the d) $2.5 \times 10^8 \text{ms}^{-1}$ image to be formed at a anthe lens at a distance of d) 16.16 cm
 660. On heating a liquid, the refractive index generally a pecreases b) Increases or decreases depending on the race) Does not change d) Increases 661. The spectrum obtained from a sodium vapour a) Absorption spectrum b) Emission spectrum 662. Two parallel pillars are 11 km away from an of they can be seen separately will be a) 3.2 m b) 20.8 m 663. The wavelength of red light from He-Ne laser eye ball. Then the speed of red light through the a) 3 × 10⁸ms⁻¹ b) 1.34 × 10⁸ms⁻¹ 664. The focal length of a simple convex lens used a distance of distinct vision (D = 25 cm), the of a) 0.5 cm b) 7.14 cm 665. A watch shows time as 3 : 25 when seen through 	ally te of heating lamp is an example of am c) Continuous spectrum bserver. The minimum distanc c) 91.5 m is 633nm in air but 474 nm in the aqueous humor is c) $2.25 \times 10^8 \text{ms}^{-1}$ as a magnifier is 10 cm . For the bject must be placed away from c) 7.20 cm agh a mirror, time appeared with c) $7:35$	n d) Band spectrum e between the pillars so that d) $183 m$ he aqueous humor inside the d) $2.5 \times 10^8 \text{ms}^{-1}$ image to be formed at a anthe lens at a distance of d) 16.16 cm ll be d) $8:25$

a) $\tan^{-1}\left(\frac{t_1}{t_2}\right)$	b) $\sin^{-1}\left(\frac{t_1}{t_2}\right)$	c) $\sin^{-1}\left(\frac{10t_1}{t_2}\right)$	d) $\tan^{-1}\left(\frac{10t_1}{t_2}\right)$		
667. The wavelength of li	ght in two liquids x' and y'	is 3500 Å and 7000 Å, then	the critical angle of x relative		
a) 60°	b) 45°	c) 30°	d) 15°		
668. Brilliance of diamon	•	c) 30	4) 13		
a) Shape	a is due to	b) Cutting			
c) Reflection		d) Total internal reflec	ction		
669. A film projector mag	gnifies a $100~cm^2$ film strip o	•			
magnified film on th		2	D 2		
a) $1600 \ cm^2$	b) $400 \ cm^2$	c) 800 <i>cm</i> ²	d) $200 \ cm^2$		
			int on the face of a rectangular		
•	ning out on the opposite par	_	rays emerge from		
	gating in two different non-				
	gating in two different parall				
	ating in two different direct	ions			
	ating in the same direction				
	t passing from glass of water				
a) Red colour	b) Green colour	c) Yellow colour	d) Violet colour		
672. When light emitted l light will show	эу a white hot solid is passed	d through a sodium flame, tl	ne spectrum of the emergent		
a) The D_1 and D_2 bri	ght yellow lines of sodium				
b) Two dark lines in	the yellow region	2			
c) All colours from v	riolet to red				
d) No colours at all					
673. An object is approac	hing a plane mirror at 10 cn	$^{-1}$. A stationary observer	sees the image. At what speed		
will the image appro	ach the stationary observer	CATION			
a) 10 cms ⁻¹	ach the stationary observer b) 5 cms ⁻¹	c) 20 cms ⁻¹	d) 15 cms ⁻¹		
	nt glass (refractive index = 1		rsed in a liquid of refractive		
index 1.25, the focal	length				
a) Increase by a fact	or of 1.25	b) Increases by a facto	or of 2.5		
c) Increases by a fac	tor of 1.2	d) Decreases by a fact	or of 1.2		
675. A convex lens forms	an image of an object placed	d 20 cm away from it at a dis	stance of 20 cm on the other		
side of the lens. If the	e object is moved 5 cm towa	ards the lens, the image will:	move		
a) 5 cm towards the	lens	b) 5 cm away from the	elens		
c) 10 cm towards th	e lens	d) 10 cm away from th	ne lens		
676. For a colour of light	the wavelength for air is 600	00 Å and in water the wavel	length is 4500 Å. Then the		
speed of light in wat					
a) $5.0 \times 10^{14} m/s$	b) $2.25 \times 10^8 \ m/s$	c) $4.0 \times 10^8 m/s$	d) Zero		
677. The focal lengths of	convex lens for red and blue	elight are $100cm$ and $96.8c$	m respectively. The dispersive		
power of material of	lens is				
a) 0.325	b) 0.0325	c) 0.98	d) 0.968		
678. A thin prism of angle	e 15° made of glass of refrac	tive index $\mu_1 = 1.5$ is combi	ined with another prism of		
glass of refractive index $\mu_2 = 1.75$. The combination of the prisms produces dispersion without deviation.					
The angle of the seco	ond prism should be				
a) 12°	b) 5°	c) 7°	d) 10°		
679. The velocity of light in a medium is half its velocity in air. If ray of light emerges from such a medium into					
air, the angle of incidence, at which it will be totally internally reflected, is					
a) 15°	b) 30°	c) 45°	d) 60°		

680.	The refractive index and the permeability of a mediu	m are respectively 1.5 and	$5 \times 10^{-7} Hm^{-1}$. The
	relative permittivity of the medium is nearly		
	a) 25 b) 15	c) 81	d) 6
681.	A light ray is incident by grazing one of the face of a		ray does not emerge out,
	what should be the angle of prism while critical angle		
	a) Equal to 2 <i>C</i> b) Less than 2 <i>C</i>	c) More than 2 <i>C</i>	d) None of the above
682.	A book can be read if it is placed at a distance of 50 c	m from a source of 1 cd. At	what distance should the
	book placed if the source is of 16 cd?		
	a) 8 m b) 4 m	c) 2 m	d) 1 m
683.	When diameter of the aperture of the objective of an		increased, its
	a) Magnifying power is increased and resolving pow		
	b) Magnifying power and resolving power both are i		
	c) Magnifying power remains the same but resolving	• •	
	d) Magnifying power and resolving power both are of		
684.	The index of refraction of diamond is 2.0, velocity of	= :	
	a) 6×10^{10} b) 3.0×10^{10}	c) 2×10^{10}	d) 1.5×10^{10}
685.	Astigmatism (for a human eye) can be removed by u	•	
	a) Concave lens b) Convex lens	c) Cylindrical lens	d) Prismatic lens
686.	A ray of light is incidenting normally on a plane mirr		
	a) 0° b) 90°	c) Will not be reflected	d) None of the above
687.	An astronaut is looking down on earth's surface from	-	-
	that the astronaut's pupil diameter is $5 mm$ and the	-	is $500 nm$. The astronaut
	will be able to resolve linear object of the size of abo		
	a) 0.5 m b) 5 m	c) 50 m	d) 500 m
688.	The power of the combination of a convex lens of foo	cal length 50 cm and concav	ve lens of focal length 40 cm
	is		
	a) +1 D b) -1 D	c) Zero	d) -0.5 D
689.	Image is formed for the short sighted person at	ALIUN	
	a) Retina	b) Before retina	
	c) Behind the retina	d) Image is not formed at	
690.	The magnification produced by the objective lens an		nd microscope are 25 and 6
	respectively. The magnification of this microscope is		D. o.o.o
	a) 25 b) 50	c) 150	d) 200
691.	The path of a refracted ray of light in a prism is para		
	a) Light is of a particular wavelength	b) Ray is incident normall	
	c) Ray undergoes minimum deviation	d) Prism is made of a min	
692.	Two lamps of luminous intensity of 8 <i>Cd</i> and 32 <i>Cd</i> in		
	other. Where should a screen be placed between two	o lamps such that its two fa	ces are equally illuminated
	due to two sources	12.40	
	a) 10 cm from 8 Cd lamp	b) 10 <i>cm</i> from 32 <i>Cd</i> lamp	
	c) 40 <i>cm</i> from 8 <i>Cd</i> lamp	d) 40 <i>cm</i> from 32 <i>Cd</i> lamp	•
693.	An object is placed at a distance of 10 cm from a con	cave mirror of radius of cui	rvature 0.6 m. Which of the
	following statements is incorrect?		
	a) The image is formed at a distance for 15 cm from	the mirror	
	b) The image formed is real		
	c) The image is 0.5 times the size of the object		
	d) The image is 1.5 times the size of the object		

694. Consider the situation shown in figure. Water $\left(\mu_w = \frac{4}{3}\right)$ is filled in a beaker upto a height of 10 cm. A plane mirror fixed at a height of 5 cm from the surface of water. Distance of image from the mirror after reflection from it of an object O at the bottom of the beaker is

_		
a١	15	cm

b) 12.5 cm

c) 7.5 cm

d) 10 cm

695. A simple telescope, consisting of an objective of focal length 60~cm and a single eye lens of focal length 5~cm is focussed on a distant object is such a way that parallel rays come out from the eye lens. If the object subtends an angle 2° at the objective, the angular width of the image

a) 10°

b) 24°

c) 50°

d) 1/6°

696. If aperture of lens is halved then image will be

a) No effect on size

b) Intensity of image decreases

c) Both (a) and (b)

d) None of these

697. Missing lines in a continuous spectrum reveal

a) Defects of the observing instrument

b) Absence of some elements in the light source

c) Presence in the light source of hot vapours of some elements

d) Presence of cool vapours of some elements around the light source

698. A lamp is hanging along the axis of a circular table of radius r. At what height should the lamp be placed above the table, so that the illuminance at the edge of the table is $\frac{1}{8}$ of that at its center r

a) $\frac{r}{2}$

b) $\frac{r}{\sqrt{2}}$

c) $\frac{r}{3}$

d) $\frac{r}{\sqrt{3}}$

699. A biconvex lens with equal radii curvature has refractive index 1.6 and focal length 10 *cm.* Its radius of curvature will be

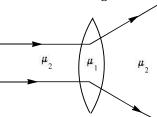
a) 20 cm

b) 16 cm

c) 10 cm

d) 12 cm

700. The plane faces of two identical plano-convex lenses each having focal length of 40 *cm* are pressed against each other to form a usual convex lens. The distance from this lens, at which an object must be placed to obtain a real, inverted image with magnification one is


a) 80 cm

b) 40 cm

c) 20 cm

d) 162 cm

701. A convex lens made up of a material of refractive index μ_1 is immersed in a medium of refractive index μ_2 as shown in the figure. The relation between μ_1 and μ_2 is

a) $\mu_1 < \mu_2$

b) $\mu_1 > \mu_2$

c) $u_1 = u_2$

d) $\mu_1 = \sqrt{\mu_2}$

702. Maximum lateral displacement of a ray of light incident on a slab of thickness t is

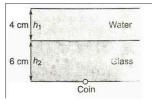
a) $\frac{t}{2}$

b) $\frac{t}{2}$

c) $\frac{\iota}{4}$

d) *t*

703. A simple magnifying lens is used in such a way that an image is formed at 25 cm away from the eye. In order to have 10 times magnification, the focal length of the lens should be


a) 5 cm

b) 2 cm

c) 25 mm

d) 0.1 mm

704. A 4 cm thick layer of water covers a 6 cm thick glass slab. A coin is placed at the bottom of the slab and is being observed from the air side along the normal to the surface. Find the apparent position of the coin from

a) 7.0 cm

b) 8.0 cm

c) 10 cm

d) 5 cm

705. If μ_0 be the relative permeability and K_0 the dielectric constant of a medium, its refractive index is given by

a)
$$\frac{1}{\sqrt{\mu_0 K_0}}$$

706. The focal lengths of the objective and of the eye-piece of a compound microscope are f_0 and f_e respectively. If L is the tube length and D, the least distance of distinct vision, then its angular magnification, when the image is formed at infinity, is

a)
$$\left(1 - \frac{L}{f_0}\right) \left(\frac{D}{f_e}\right)$$

b) $\left(1 + \frac{L}{f_0}\right) \left(\frac{D}{f_e}\right)$ c) $\frac{L}{f_0} \left(1 - \frac{D}{f_e}\right)$

707. A simple microscope consists of a concavelens of power -10D and a convex lens of power +20D in contact. If the image is formed at infinity, then the magnifying power CD = 25 cm is

a) 2.5

b) 3.5

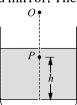
d) 3.0

708. The wavelength of sodium light in air is 5890 Å. The velocity of light in air is $3 \times 10^8 ms^{-1}$. The wavelength of light in a glass of refractive index 1.6 would be close to

a) 5890 Å

b) 3681 Å

c) 9424 Å

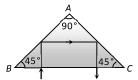

d) 15078 Å

709. A plano-convex lens when silvered in the plane side behaves like a concave mirror of focal length 30cm. However, when silvered on the convex side it behaves like a concave mirror of focal length 10 cm. Then the refractive index of its material will be

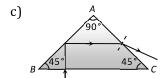
b) 2.0

d) 1.5

710. A plane mirror is placed at the bottom of a tank containing a liquid of refractive index μ . P is a small object at a height h above the mirror. An observer O- vertically above P outside the liquid sees P and its image in a mirror. The apparent distance between these two will be


a) $2 \mu h$


c) $\frac{2h}{\mu - 1}$


d) $h(1+\frac{1}{1})$

711. The refractive index of a material of a prism of angles $45^{\circ} - 45^{\circ} - 90^{\circ}$ is 1.5. The path of the ray of light incident normally on the hypotenuse side is shown in

a)

d)

712. How many images are formed by the lens shown, if an object is kept on its axis?

a) 1

b) 2

c) 3

d) 4

713. The bottom of a container filled with liquid appear slightly raised because of

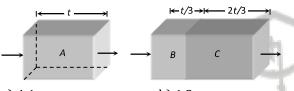
a) Refraction

b) Interference

c) Diffraction

d) Reflection

714. The magnifying power of a telescope is 9. When it is adjusted for parallel rays, the distance between the objective and the eye-piece is found to be 20 cm. The focal lengths of the lenses are


a) 18 cm, 2 cm

b) 11 cm, 9 cm

c) 10 cm, 10 cm

d) 15 cm, 5 cm

715. Two transparent slabs have the same thickness as shown. One is made of material A of refractive index 1.5. The other is made of two material B and C with thickness in the ratio 1:2. The refractive index C is 1.6. If a monochromatic parallel beam passing through the slabs has the same number of waves inside both, the refractive index of B is

a) 1.1

b) 1.2

c) 1.3

d) 1.4

716. A ray of light passes through an equilateral prism such that an angle of incidence is equal to the angle of emergence and the latter is equal to $\frac{3}{4}$ th the angle of prism. The angle of deviation is

a) 45°

b) 39°

c) 20°

d) 30°

717. An experiment is performed to find the refractive index of glass using a travelling microscope. In this experiment distance are measured by

a) A vernier scale provided on the microscope

b) A standard laboratory scale

c) A meter scale provided on the microscope

d) A screw gauge provided on the microscope

718. Convex lens made up of glass ($\mu_g = 1.5$) and radius of curvature R is dipped into water. Its focal length will be (Refractive index of water = 4/3)

a) 4R

b) 2R

c) R

719. An object is kept at a distance of 16 cm from a thin lens and the image formed is real. If the object is kept at a distance of 6 cm from the same lens, the image formed is virtual. If the sizes of the images formed are equal the focal length of the lens will be

a) 21 cm

b) 11 cm

c) 15 cm

d) 17 cm

720. Angle of minimum deviation for a prism of refractive index 1.5 is equal to the angle of the prism. The angle of the prism is (given $\cos 41^{\circ} - 24' - 36'' = 0.75$)

a) $82^{\circ} - 49' - 12''$

b) $72^{\circ} - 48' - 30''$

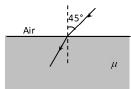
c) $41^{\circ} - 24' - 36''$

d) $31^{\circ} - 49' - 30''$

721. The instrument used by doctors for endoscopy works on the principle of

a) Total internal reflection

b) Reflection

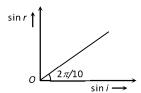

c) Refraction

d) None of the above

- 722. Refractive index of glass is $\frac{3}{2}$ and refractive index of water is $\frac{4}{3}$. If the speed of light in glass is 2.00 \times 108 m/s, the speed in water will be
 - a) $2.67 \times 10^8 \ m/s$
- b) $2.25 \times 10^8 \ m/s$
- c) $1.78 \times 10^8 \ m/s$
- d) $1.50 \times 10^8 \ m/s$
- 723. Critical angle for light going from medium (i) to (ii) is θ . The speed of light in medium (i) is ν then speed in medium (ii) is
 - a) $v(1-\cos\theta)$
- b) $v/\sin\theta$
- c) $v/\cos\theta$
- d) $v(1-\sin\theta)$
- 724. Monochromatic light of wavelength λ_1 travelling in medium of refractive index n_1 enters a denser medium of refractive index n_2 . The wavelength in the second medium is
- c) λ_1

d) $\lambda_1 \left(\frac{n_2 - n_1}{n_1} \right)$

- 725. In a compound microscope cross-wires are fixed at the point
 - a) Where the image is formed by the objective
 - b) Where the image is formed by the eye-piece
 - c) Where the focal point of the objective lies
 - d) Where the focal point of the eye-piece lies
- 726. Consider telecommunication through optical fibres. Which of the following statements is not true
 - a) Optical fibres may have homogeneous core with a suitable cladding
 - b) Optical fibres can be of graded refractive index
 - c) Optical fibres are subject to electromagnetic interference from outside
 - d) Optical fibres have extremely low transmission loss
- 727. In the figure shown, for an angle of incidence 45°, at the top surface, what is the minimum refractive index needed for total internal reflection at vertical face

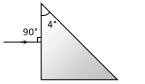

- a) $\frac{\sqrt{2} + 1}{1}$

- 728. Deviation of 5° is observed from a prism whose angle is small and whose refractive index is 1.5. The angle of prism is
 - a) 7.5°

b) 10°

c) 5°

- d) 3.3°
- 729. A photograph of the moon was taken with telescope. Later on, it was found that a housefly was sitting on the objective lens of the telescope. In photograph
 - a) The image of housefly will be reduced
 - b) There is a reduction in the intensity of the image
 - c) There is an increase in the intensity of the image
 - d) The image of the housefly will be enlarged
- 730. The graph between sine of angle of refraction $(\sin r)$ in medium 2 and sine of angle of incidence $(\sin i)$ in medium 1 indicates that $(\tan 36^{\circ} \approx \frac{3}{4})$



- a) Total internal reflection can take place
- b) Total internal reflection cannot take place

c) Any of (a) and (b)

d) Data is incomplete

731. A prism having an apex angle 4° and refraction index 1.5 is located in front of a vertical plane mirror as shown in figure. Through what total angle is the ray deviated after reflection from the mirror

a) 176°

b) 4°

c) 178°

- d) 2°
- 732. A person can see clearly only upto a distance of 25 *cm*. He wants to read a book placed at a distance of 50 *cm*. What kind of lens does he require for his spectacles and what must be its power

a) Concave, -1.0 D

b) Convex, +1.5 *D*

c) Concave, -2.0 D

d) Convex, +2.0 D

733. When a plane mirror is rotated through an angle θ then the reflected ray turns through the angle 2θ then the size of the image

a) Is doubled

b) Is halved

c) Remains the same

d) Becomes infinite

734. Two media having speeds of light 2×10^8 ms⁻¹ and 2.4×10^8 ms⁻¹, are separated by a plane surface. What is the angle for a ray going from medium I to medium II?

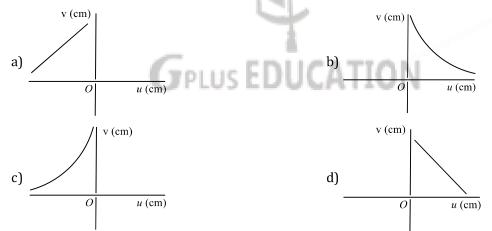
a) $\sin^{-1}\left(\frac{5}{6}\right)$

b) $\sin^{-1}\left(\frac{5}{12}\right)$

c) $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$

d) $\sin^{-1}\left(\frac{1}{2}\right)$

735. The ratio of angle of minimum deviation of a prism in air and when dipped in water will be ($_a\mu_g=3/2$ and $_a\mu_\omega=4/3$)


a) 1/8

b) 1/2

c) 3/4

d) 1/4

736. A student measures the focal length of a convex lens by putting an object pin at a distance u from the lens and measuring the distance v of the image pin. The graph between u and v plotted by the student should look like

737. A light moves from denser to rarer medium. Which of the following is correct?

a) Energy increases

b) Frequency increases

c) Phase changes by 90°

d) Velocity increases

738. If the apertaure of a telescope is decreased the resolving power will

a) Increase

b) Decrease

c) Remain same

d) Zero

739. A wire mesh consisting of very small squares is viewed at a distance of 8 cm through a magnifying converging lens of focal length 10cm, kept close to the eye. The magnification produced by the lens is

aj 5

b) 8

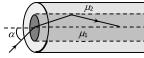
c) 10

d) 20

740. Light travels with a speed of $2 \times 10^8 \text{ms}^{-1}$ in crown glass of refractive index 1.5. Whatis the speed of light in dense flint glass of refractive index 1.8?

a) $1.33 \times 10^8 \text{ms}^{-1}$

b) $1.67 \times 10^8 \,\mathrm{ms^{-1}}$


c) $2.0 \times 10^8 \text{ms}^{-1}$

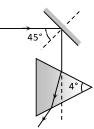
d) $3.0 \times 10^8 \,\mathrm{ms^{-1}}$

741. Focal length of a converging lens in air is *R*. If it is dipped in water of refractive index 1.33, then its focal length will be around (Refractive index of lens material is 1.5)

 742. A given ray of light suffers minimum deviation in an equilateral prism <i>P</i> Additional prisms <i>Q</i> and of identical shape and material are now added to <i>P</i> as shown in the figure. The ray will suffer a) Same deviation b) Greater deviation c) Total internal reflection d) No deviation 743. An electron microscope is superior to an optical microscope in a) Having better resolving power b) Being easy to handle c) Low cost d) Quickness of observation 744. If a thin prism of glass is dipped into water then minimum deviation (with respect to air) of light produced by prism will be left (a μ_g = ³/₂ and a μ_w = ⁴/₃) a) 1/2 b) 1/4 c) 2 d) 1/5 745. A diminished image of an object is to be obtained on a screen 1.0 m away from it. This can be achieved by approximately placing a) A convex mirror of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave mirror of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave lens of suitable focal length 746. A symmetric double convex lens is cut in two equal parts by a plane perpendicular to the principle axis. If the power of the original lens is 40, the power of a cut lens will be a) 2D b) 3D c) 4D d) 5D 747. A thin lens has focal length f₁ and its aperture has diameter d. It forms an image of intensity I. Now the central part of the aperture upto diameter ^d/₂ is blocked by an opaque paper. The focal length and image intensity will change to a) ½ and ½ d) f and ½ e) B f a		a) <i>R</i> b) 2 <i>R</i>	c) 4 <i>R</i>	d) <i>R</i> /2
a) Same deviation b) Greater deviation C) Total internal reflection d) No deviation d) Having better resolving power b) Being easy to handle c) Low cost d) Quickness of observation d) Quickness of observation d) Quickness of observation d) Quickness of observation d) $(a_1 \mu_w = \frac{3}{3})$ d) $(a_2 \mu_w = \frac{3}{3})$ d) $(a_3 \mu_w = \frac{3}{3})$ d) $(a_4 \mu_w = \frac{4}{3})$ d) $(a_5 \mu_w = \frac{3}{3})$ d) $(a_5 $	742.			
a) Same deviation () Total internal reflection () No deviation () No deviation () Total internal reflection () No deviation () No deviation () All nelectron microscope is superior to an optical microscope in (a) Halving better resolving power (b) Being easy to handle (c) Low cost (d) Quickness of observation () Quickness of observation () Quickness of observation () All thin prism of glass is dipped into water then minimum deviation (with respect to air) of light produced by prism will be left ($\alpha \mu_g = \frac{3}{2}$ and $\alpha \mu_w = \frac{4}{3}$) (a) $1/2$ (b) $1/4$ (c) 2 (d) $1/5$ (745. A diminished image of an object is to be obtained on a screen 1.0 m away from it. This can be achieved by approximately placing (a) A convex mirror of suitable focal length (c) A convex lens of focal length less than 0.25 m (d) A concave mirror of suitable focal length (c) A convex lens of focal length less than 0.25 m (d) A concave mirror of suitable focal length (c) A convex lens of focal length less than 0.25 m (d) A concave mirror of suitable focal length (c) A convex lens of focal length less than 0.25 m (d) A concave mirror of suitable focal length (c) A convex lens of focal length less is 4D, the power of a cut lens will be (a) 2D (b) 3D (c) 4D (d) 5D (d) 5D (d) 4D (d) 5D (d) 5D (d) 5D (d) 6D (d) 6D (d) 6D (d) 7D (d)			,	,
a) Same deviation (b) Greater deviation (c) Total internal reflection (d) No deviation (d) No deviation (d) No deviation (e) Low cost (e) Low cost (e) Quickness of observation (e) Low cost (e) Quickness of observation (fight produced by prism will be left ($a\mu_g = \frac{3}{2}$ and $a\mu_w = \frac{4}{3}$) (a) $1/2$ (b) $1/4$ (c) 2 (d) $1/5$ (745. A diminished image of an object is to be obtained on a screen 1.0 m away from it. This can be achieved by approximately placing (a) A convex mirror of suitable focal length (c) A convex lens of focal length (c) A convex lens of focal length (c) A convex lens of focal length (e) A convex lens of focal length (f) A convex lens of suitable foca				
c) Total internal reflection d) No deviation 743. An electron microscope is superior to an optical microscope in a) Having better resolving power b) Being easy to handle c) Low cost d) Quickness of observation 744. If a thin prism of glass is dipped into water then minimum deviation (with respect to air) of light produced by prism will be left $\binom{a}{\mu g} = \frac{2}{3}$ and $\frac{a}{4}w = \frac{4}{3}$ a) $\frac{1}{2}$ c) $\frac{1}{2}$ d) $\frac{1}{5}$ 745. A diminished image of an object is to be obtained on a screen 1.0 m away from it. This can be achieved by approximately placing a) A convex mirror of suitable focal length c) A convex lens of suitable focal length c) A concave mirror of suitable focal length c) A convex lens of suitable focal length c) A concave mirror of suitable focal length c		P		
c) Total internal reflection d) No deviation 743. An electron microscope is superior to an optical microscope in a) Having better resolving power b) Being easy to handle c) Low cost d) Quickness of observation 744. If a thin prism of glass is dipped into water then minimum deviation (with respect to air) of light produced by prism will be left $\binom{a}{\mu g} = \frac{2}{3}$ and $\frac{a}{4}w = \frac{4}{3}$ a) $\frac{1}{2}$ c) $\frac{1}{2}$ d) $\frac{1}{5}$ 745. A diminished image of an object is to be obtained on a screen 1.0 m away from it. This can be achieved by approximately placing a) A convex mirror of suitable focal length c) A convex lens of suitable focal length c) A concave mirror of suitable focal length c) A convex lens of suitable focal length c) A concave mirror of suitable focal length c				
743. An electron microscope is superior to an optical microscope in a) Having better resolving power b) Being easy to handle c) Low cost d) Quickness of observation (200 cost) and thin prism of glass is dipped into water then minimum deviation (with respect to air) of light produced by prism will be left $\left(a\mu_g = \frac{3}{2} \text{ and } a\mu_w = \frac{4}{3}\right)$ a) $1/2$ b) $1/4$ c) 2 d) $1/5$ 745. A diminished image of an object is to be obtained on a screen 1.0 m away from it. This can be achieved by approximately placing a) A convex mirror of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave lens of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave lens of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave lens of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave lens of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave lens of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave lens of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave lens of suitable focal length c) A convex lens of focal length less than 0.25 m d) A convex lens of focal length less than 0.25 m d) A convex lens of suitable focal length convex lens of focal length less than 0.25 m d) A convex lens of focal length less than 0.25 m d) A convex lens of suitable focal length convex lens of focal length less than 0.25 m d) A convex lens of focal length less than 0.25 m d) A convex lens of focal length less than 0.25 m d) A convex lens of focal length less than 0.25 m d) A convex lens of focal length less than 0.25 m d) A convex lens of focal length less than 0.25 m d) A convex lens of focal length less than 0.25 m d) A convex lens of focal length less than 0.25 m d) A convex lens of focal length less than 0.25 m d) A convex lens is $\frac{3}{4}$ and $\frac{1}{4}$ d) $\frac{3}{4}$ and $\frac{1}{4}$ d) $\frac{3}{4}$ and $\frac{1}{4}$ d) $\frac{3}{4}$		a) Same deviation	b) Greater de	viation
a) Having better resolving power c) Low cost d) Quickness of observation d) Quickness of observation c) Low cost d) $A = \frac{3}{2}$ and $a\mu_w = \frac{4}{3}$ a) $a = \frac{3}{2}$ and $a\mu_w = \frac{4}{3}$ and $a\mu_w = 4$		-	· · · · · · · · · · · · · · · · · · ·	on
c) Low cost d) Quickness of observation 744. If a thin prism of glass is dipped into water then minimum deviation (with respect to air) of light produced by prism will be left $\left(a\mu_g=\frac{3}{2}\text{ and }a\mu_w=\frac{4}{3}\right)$ a) $1/2$ c) 2 d) $1/5$ 745. A diminished image of an object is to be obtained on a screen 1.0 m away from it. This can be achieved by approximately placing a) A convex mirror of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave lens of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave lens of suitable focal length representation when the original lens is 4D, the power of a cut lens will be a) 2D b) 3D c) 4D d) 5D 747. A thin lens has focal length f_1 and its aperture has diameter d . It forms an image of intensity d . Now the central part of the aperture upto diameter $\frac{d}{d}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{f}{d}$ and $\frac{f}{d}$ c) $\frac{3f}{d}$ and $\frac{f}{d}$ d) f and $\frac{3f}{d}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance 60 cm when lenses are in contact. The position of this image shift by 30 cm towards the combination when two lenses are separated by 10 cm . The corresponding values of f_1 and f_2 are a) 30 cm , -60 cm b) 20 cm , -30 cm c) 15 cm , -20 cm d) 12 cm , -15 cm 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60°. The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) 1 b) $+1$ c) $2c^\circ$ d) $2c^$	743.			
744. If a thin prism of glass is dipped into water then minimum deviation (with respect to air) of light produced by prism will be left $\left(\frac{\alpha}{\mu}g\right) = \frac{3}{2}$ and $\frac{\alpha}{\mu}w = \frac{4}{3}\right)$ a) $1/2$ b) $1/4$ c) 2 d) $1/5$ 745. A diminished image of an object is to be obtained on a screen 1.0 m away from it. This can be achieved by approximately placing a) A convex mirror of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave mirror of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave lens of suitable focal length representations of the original lens is 4D, the power of a cut lens will be a) $2D$ b) $3D$ c) $4D$ d) $5D$ 747. A thin lens has focal length f_1 and its aperture has diameter d . It forms an image of intensity I . Now the central part of the aperture upto diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{f}{2}$ and $\frac{f}{2}$ b) f and $\frac{d}{4}$ c) $\frac{3f}{4}$ and $\frac{f}{2}$ d) f and $\frac{3I}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance 60 cm when lenses are in contact. The position of this image shift by $3D$ cm towards the combination when two lenses are separated by $1D$ cm. The corresponding values of f_1 and f_2 are a) $3D$ cm, $-6D$ cm b) $2D$ cm, $-3D$ cm c) 15 cm, $-2D$ cm d) 12 cm, -15 cm 749. The angle of minimum deviation for a prism is $4D$ ° and the angle of the prism is $6D$ °. The angle of incidence in this position will be a) $3D$ ° b) $6D$ ° c) $5D$ ° d) $1D$ ° 750. A plane mirror produces a magnification of a) -1 c) -1 crosportion of the prism is -1 d) -1 c) -1 crosportion of the prism is -1 d) -1 c) -1 crosportion of the prism is -1 d) -1 c) -1 crosportion of the prism is -1 d) -1 c) -1 compared to the prism is -1 d) -1 c) -1 compared to the prism is -1 d) -1 c) -1 compared to the prism is -1 convergence of a plano-c				
by prism will be left $\left(a\mu_g = \frac{3}{2} \text{ and } a\mu_w = \frac{4}{3}\right)$ a) $1/2$ b) $1/4$ c) 2 d) $1/5$ 745. A diminished image of an object is to be obtained on a screen 1.0 m away from it. This can be achieved by approximately placing a) A convex mirror of suitable focal length c) A convex lens of focal length less than 0.25 m d) A concave mirror of suitable focal length 746. A symmetric double convex lens is cut in two equal parts by a plane perpendicular to the principle axis. If the power of the original lens is 4D, the power of a cut lens will be a) 2D b) 3D c) 4D d) 5D 747. A thin lens has focal length f_1 and its aperture has diameter d_1 . It forms an image of intensity I . Now the central part of the aperture upto diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{I}{2}$ and $\frac{I}{2}$ b) f and $\frac{I}{4}$ c) $\frac{3I}{4}$ and $\frac{I}{2}$ d) f and $\frac{3I}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance 60 cm when lenses are in contact. The position of this image shift by 30 cm towards the combination when two lenses are separated by 10 cm . The corresponding values of f_1 and f_2 are a) 30 cm , -60 cm b) 20 cm , -30 cm c) 15 cm , -20 cm d) 12 cm , -15 cm 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) +1 c) 20 cm d) 20 cm and 20 cm d) 20 cm so 20 cm	711		* *	
a) $1/2$ b) $1/4$ c) 2 d) $1/5$ 745. A diminished image of an object is to be obtained on a screen 1.0 m away from it. This can be achieved by approximately placing a) A convex mirror of suitable focal length b) A concave mirror of suitable focal length c) A convex lens of focal length less than $0.25 \mathrm{m}$ d) A concave lens of suitable focal length 746. A symmetric double convex lens is cut in two equal parts by a plane perpendicular to the principle axis. If the power of the original lens is 4D, the power of a cut lens will be a) $2D$ b) $3D$ c) $4D$ d) $5D$ 747. A thin lens has focal length f_1 and its aperture has diameter d . It forms an image of intensity I . Now the central part of the aperture upto diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{f}{2}$ and $\frac{f}{2}$ b) f and $\frac{f}{4}$ c) $\frac{3f}{4}$ and $\frac{f}{2}$ d) f and $\frac{3f}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance $60 cm$ when lenses are in contact. The position of this image shift by $30 cm$ towards the combination when two lenses are separated by $10 cm$. The corresponding values of f_1 and f_2 are a) $30 cm$, $-60 cm$ b) $20 cm$, $-30 cm$ c) $15 cm$, $-20 cm$ d) $12 cm$, $-15 cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) $+1$ c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 cm$ and thickness at the centre is $3 mm$.	/44.			n (with respect to air) of light produced
745. A diminished image of an object is to be obtained on a screen 1.0 m away from it. This can be achieved by approximately placing a) A convex mirror of suitable focal length c) A concave mirror of suitable focal length c) A concave lens of focal length less than 0.25 m d) A concave lens of suitable focal length 746. A symmetric double convex lens is cut in two equal parts by a plane perpendicular to the principle axis. If the power of the original lens is 4D, the power of a cut lens will be a) 2D b) 3D c) 4D d) 5D 747. A thin lens has focal length f_1 and its aperture has diameter d_1 . It forms an image of intensity d_1 . Now the central part of the aperture upto diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{f}{2}$ and $\frac{f}{2}$ b) f and $\frac{f}{4}$ c) $\frac{3f}{4}$ and $\frac{f}{2}$ d) f and $\frac{3f}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance $60 \ cm$ when lenses are in contact. The position of this image shift by $30 \ cm$ towards the combination when two lenses are separated by $10 \ cm$. The corresponding values of f_1 and f_2 are a) $30 \ cm$, $-60 \ cm$ b) $20 \ cm$, $-30 \ cm$ c) $15 \ cm$, $-20 \ cm$ d) $12 \ cm$, $-15 \ cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) $+1$ c) -1 c) $-$				
approximately placing a) A convex mirror of suitable focal length c) A convex lens of focal length less than $0.25 \mathrm{m}$ d) A concave mirror of suitable focal length 746. A symmetric double convex lens is cut in two equal parts by a plane perpendicular to the principle axis. If the power of the original lens is 4D, the power of a cut lens will be a) 2D b) 3D c) 4D d) 5D 747. A thin lens has focal length f_i and its aperture has diameter d . It forms an image of intensity I . Now the central part of the aperture upto diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{f}{2}$ and $\frac{I}{2}$ b) f and $\frac{I}{4}$ c) $\frac{3f}{4}$ and $\frac{1}{2}$ d) f and $\frac{3I}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance $60 cm$ when lenses are in contact. The position of this image shift by $30 cm$ towards the combination when two lenses are separated by $10 cm$. The corresponding values of f_1 and f_2 are a) $30 cm$, $-60 cm$ b) $20 cm$, $-30 cm$ c) $15 cm$, $-20 cm$ d) $12 cm$, $-15 cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) +1 c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are $1.641 \text{and } 1.659 \text{respectively}$, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 cm$ and thickness at the centre is $3 mm$. If the speed of light in the material of the lens is $2 \times 10^8 m/s$, the focal length of the lens is $2 \times 10^8 m/s$, the focal length of the lens is $2 \times 10^8 m/s$, the focal length of the lens is $2 \times 10^8 $	- 4-	, ,	,	, , , , , , , , , , , , , , , , , , ,
c) A convex lens of focal length less than $0.25 \mathrm{m}$ d) A concave lens of suitable focal length 746. A symmetric double convex lens is cut in two equal parts by a plane perpendicular to the principle axis. If the power of the original lens is 4D, the power of a cut lens will be a) 2D b) 3D c) 4D d) 5D 747. A thin lens has focal length f_1 and its aperture has diameter d . It forms an image of intensity I . Now the central part of the aperture upto diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{I}{2}$ and $\frac{I}{2}$ d) f and $\frac{3I}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance $60 cm$ when lenses are in contact. The position of this image shift by $30 cm$ towards the combination when two lenses are separated by $10 cm$. The corresponding values of f_1 and f_2 are a) $30 cm$, $-60 cm$ b) $20 cm$, $-30 cm$ c) $15 cm$, $-20 cm$ d) $12 cm$, $-15 cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) $+1$ c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is 0.9° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 cm$ and thickness at the centre is $3 mm$. If the speed of light in the material of the lens is $2 \times 10^8 m/s$, the focal length of the lens is $2 \times 10^8 m/s$, the focal length of the lens is $2 \times 10^8 m/s$, the focal length of the lens is $2 \times 10^8 m/s$, the focal length of the lens is $2 \times 10^8 m/s$, the focal length of the lens is $2 \times 10^8 m/s$, the focal length of the lens	745.		be obtained on a screen 1.0 m	away from it. This can be achieved by
746. A symmetric double convex lens is cut in two equal parts by a plane perpendicular to the principle axis. If the power of the original lens is 4D, the power of a cut lens will be a) 2D b) 3D c) 4D d) 5D 747. A thin lens has focal length f_1 and its aperture has diameter d . It forms an image of intensity I . Now the central part of the aperture upto diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{f}{2}$ and $\frac{f}{2}$ b) f and $\frac{f}{4}$ c) $\frac{3f}{4}$ and $\frac{f}{2}$ d) f and $\frac{3f}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance $60 \ cm$ when lenses are in contact. The position of this image shift by $30 \ cm$ towards the combination when two lenses are separated by $10 \ cm$. The corresponding values of f_1 and f_2 are a) $30 \ cm$, $-60 \ cm$ b) $20 \ cm$, $-30 \ cm$ c) $15 \ cm$, $-20 \ cm$ d) $12 \ cm$, $-15 \ cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) +1 c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 \ cm$ and thickness at the centre is $3 \ mm$. If the speed of light in the material of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is $3 \ mm$. If the speed of light in the material of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is $3 \ mm$.			_	
the power of the original lens is 4D, the power of a cut lens will be a) 2D b) 3D c) 4D d) 5D 747. A thin lens has focal length f_1 and its aperture has diameter d . It forms an image of intensity I . Now the central part of the aperture upto diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{f}{2}$ and $\frac{I}{2}$ b) f and $\frac{I}{4}$ c) $\frac{3f}{4}$ and $\frac{I}{2}$ d) f and $\frac{3I}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance $60 \ cm$ when lenses are in contact. The position of this image shift by $30 \ cm$ towards the combination when two lenses are separated by $10 \ cm$. The corresponding values of f_1 and f_2 are a) $30 \ cm$, $-60 \ cm$ b) $20 \ cm$, $-30 \ cm$ c) $15 \ cm$, $-20 \ cm$ d) $12 \ cm$, $-15 \ cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) $+1$ c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 \ cm$ and thickness at the centre is $6 \ m$ and $6 \ m$ and $6 \ m$ and the lens is $6 \ m$ and thickness at the centre is $6 \ m$ and		, o		<u>o</u>
a) 2D b) 3D c) 4D d) 5D 747. A thin lens has focal length f_1 and its aperture has diameter d . It forms an image of intensity I . Now the central part of the aperture upto diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{f}{2}$ and $\frac{I}{2}$ b) f and $\frac{I}{4}$ c) $\frac{3f}{4}$ and $\frac{I}{2}$ d) f and $\frac{3I}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance $60 \ cm$ when lenses are in contact. The position of this image shift by $30 \ cm$ towards the combination when two lenses are separated by $10 \ cm$. The corresponding values of f_1 and f_2 are a) $30 \ cm$, $-60 \ cm$ b) $20 \ cm$, $-30 \ cm$ c) $15 \ cm$, $-20 \ cm$ d) $12 \ cm$, $-15 \ cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) +1 c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 \ cm$ and thickness at the centre is $3 \ mm$. If the speed of light in the material of the lens is $2 \times 10^8 m/s$, the focal length of the lens is a) $15 \ cm$ b) $20 \ cm$ c) $30 \ cm$ d) $10 \ cm$	746.	-		e perpendicular to the principle axis. If
747. A thin lens has focal length f_1 and its aperture has diameter d . It forms an image of intensity I . Now the central part of the aperture upto diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{1}{2}$ and $\frac{1}{2}$ b) f and $\frac{I}{4}$ c) $\frac{3f}{4}$ and $\frac{I}{2}$ d) f and $\frac{3I}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance $60 \ cm$ when lenses are in contact. The position of this image shift by $30 \ cm$ towards the combination when two lenses are separated by $10 \ cm$. The corresponding values of f_1 and f_2 are a) $30 \ cm$, $-60 \ cm$ b) $20 \ cm$, $-30 \ cm$ c) $15 \ cm$, $-20 \ cm$ d) $12 \ cm$, $-15 \ cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) $+1$ c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 \ cm$ and thickness at the centre is $3 \ mm$. If the speed of light in the material of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is $2 \times 10^8 \ m/s$.				D.FD.
central part of the aperture upto diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to a) $\frac{f}{2}$ and $\frac{f}{2}$ b) f and $\frac{f}{4}$ c) $\frac{3f}{4}$ and $\frac{f}{2}$ d) f and $\frac{3f}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance $60 \ cm$ when lenses are in contact. The position of this image shift by $30 \ cm$ towards the combination when two lenses are separated by $10 \ cm$. The corresponding values of f_1 and f_2 are a) $30 \ cm$, $-60 \ cm$ b) $20 \ cm$, $-30 \ cm$ c) $15 \ cm$, $-20 \ cm$ d) $12 \ cm$, $-15 \ cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) $+1$ c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 \ cm$ and thickness at the centre is $3 \ mm$. If the speed of light in the material of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is a) $15 \ cm$ b) $20 \ cm$ c) $30 \ cm$ d) $10 \ cm$	747	,		,
intensity will change to a) $\frac{f}{2}$ and $\frac{f}{2}$ b) f and $\frac{f}{4}$ c) $\frac{3f}{4}$ and $\frac{f}{2}$ d) f and $\frac{3f}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance $60\ cm$ when lenses are in contact. The position of this image shift by $30\ cm$ towards the combination when two lenses are separated by $10\ cm$. The corresponding values of f_1 and f_2 are a) $30\ cm$, $-60\ cm$ b) $20\ cm$, $-30\ cm$ c) $15\ cm$, $-20\ cm$ d) $12\ cm$, $-15\ cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) $+1$ c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6\ cm$ and thickness at the centre is $3\ mm$. If the speed of light in the material of the lens is $2\times 10^8 m/s$, the focal length of the lens is $3\ 0.0\ 0.0\ 0.0\ 0.0\ 0.0\ 0.0\ 0.0\ 0.$	/4/.		Section 1 and 1	
a) $\frac{f}{2}$ and $\frac{l}{2}$ b) f and $\frac{l}{4}$ c) $\frac{3f}{4}$ and $\frac{l}{2}$ d) f and $\frac{3l}{4}$ 748. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance $60\ cm$ when lenses are in contact. The position of this image shift by $30\ cm$ towards the combination when two lenses are separated by $10\ cm$. The corresponding values of f_1 and f_2 are a) $30\ cm$, $-60\ cm$ b) $20\ cm$, $-30\ cm$ c) $15\ cm$, $-20\ cm$ d) $12\ cm$, $-15\ cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) +1 c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6\ cm$ and thickness at the centre is $3\ mm$. If the speed of light in the material of the lens is $2\times 10^8 m/s$, the focal length of the lens is a) $15\ cm$ b) $20\ cm$ c) $30\ cm$ d) $10\ cm$	2			
 748. A combination of two thin lenses with focal lengths f1 and f2 respectively forms an image of distant object at distance 60 cm when lenses are in contact. The position of this image shift by 30 cm towards the combination when two lenses are separated by 10 cm. The corresponding values of f1 and f2 are a) 30 cm, -60 cm b) 20 cm, -30 cm c) 15 cm, -20 cm d) 12 cm, -15 cm 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60°. The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) +1 c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5°. If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is 6 cm and thickness at the centre is 3 mm. If the speed of light in the material of the lens is 2 × 108 m/s, the focal length of the lens is a) 15 cm b) 20 cm c) 30 cm d) 10 cm 		intensity will change to	2 f	21
at distance $60\ cm$ when lenses are in contact. The position of this image shift by $30\ cm$ towards the combination when two lenses are separated by $10\ cm$. The corresponding values of f_1 and f_2 are a) $30\ cm$, $-60\ cm$ b) $20\ cm$, $-30\ cm$ c) $15\ cm$, $-20\ cm$ d) $12\ cm$, $-15\ cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) $+1$ c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6\ cm$ and thickness at the centre is $3\ mm$. If the speed of light in the material of the lens is $2\times 10^8 m/s$, the focal length of the lens is a) $15\ cm$ b) $20\ cm$ c) $30\ cm$ d) $10\ cm$		a) $\frac{7}{2}$ and $\frac{7}{2}$ b) f and $\frac{7}{4}$	c) $\frac{3}{4}$ and $\frac{7}{2}$	d) f and $\frac{3f}{4}$
combination when two lenses are separated by $10 \ cm$. The corresponding values of f_1 and f_2 are a) $30 \ cm$, $-60 \ cm$ b) $20 \ cm$, $-30 \ cm$ c) $15 \ cm$, $-20 \ cm$ d) $12 \ cm$, $-15 \ cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) $+1$ c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 \ cm$ and thickness at the centre is $3 \ mm$. If the speed of light in the material of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is a) $15 \ cm$ b) $20 \ cm$ c) $30 \ cm$ d) $10 \ cm$	748.	A combination of two thin lenses with	n focal lengths f_1 and f_2 respe	ctively forms an image of distant object
a) $30 cm, -60 cm$ b) $20 cm, -30 cm$ c) $15 cm, -20 cm$ d) $12 cm, -15 cm$ 749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60° . The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) +1 c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 cm$ and thickness at the centre is $3 mm$. If the speed of light in the material of the lens is $2 \times 10^8 m/s$, the focal length of the lens is a) $15 cm$ b) $20 cm$ c) $30 cm$ d) $10 cm$				
749. The angle of minimum deviation for a prism is 40° and the angle of the prism is 60°. The angle of incidence in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) +1 c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5°. If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is 6 cm and thickness at the centre is 3 mm. If the speed of light in the material of the lens is 2 × 108 m/s, the focal length of the lens is a) 15 cm b) 20 cm c) 30 cm d) 10 cm				
in this position will be a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) +1 c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5°. If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convexlens is $6 \ cm$ and thickness at the centre is $3 \ mm$. If the speed of light in the material of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is a) $15 \ cm$ b) $20 \ cm$ c) $30 \ cm$ d) $10 \ cm$				
a) 30° b) 60° c) 50° d) 100° 750. A plane mirror produces a magnification of a) -1 b) +1 c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5° . If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 \ cm$ and thickness at the centre is $3 \ mm$. If the speed of light in the material of the lens is $2 \times 10^8 \ m/s$, the focal length of the lens is a) $15 \ cm$ b) $20 \ cm$ c) $30 \ cm$ d) $10 \ cm$	749.	_	prism is 40° and the angle of	the prism is 60°. The angle of incidence
750. A plane mirror produces a magnification of a) -1 b) +1 c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5°. If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is 6 cm and thickness at the centre is 3 mm. If the speed of light in the material of the lens is 2 × 10 ⁸ m/s, the focal length of the lens is a) 15 cm b) 20 cm c) 30 cm d) 10 cm			a) F00	J) 1000
a) -1 b) +1 c) Zero d) Infinite 751. White light is incident on one of the refracting surfaces of a prism of angle 5°. If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is 6 cm and thickness at the centre is 3 mm. If the speed of light in the material of the lens is 2 × 10 ⁸ m/s, the focal length of the lens is a) 15 cm b) 20 cm c) 30 cm d) 10 cm	750	,	•	a) 100°
751. White light is incident on one of the refracting surfaces of a prism of angle 5°. If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is 6 cm and thickness at the centre is 3 mm . If the speed of light in the material of the lens is $2 \times 10^8 m/s$, the focal length of the lens is a) $15 cm$ b) $20 cm$ c) $30 cm$ d) $10 cm$	/50.			d) Infinite
red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6\ cm$ and thickness at the centre is $3\ mm$. If the speed of light in the material of the lens is $2\times 10^8 m/s$, the focal length of the lens is a) $15\ cm$ b) $20\ cm$ c) $30\ cm$ d) $10\ cm$	751	,	•	
when they emerge out of the prism is a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6 \ cm$ and thickness at the centre is $3 \ mm$. If the speed of light in the material of the lens is $2 \times 10^8 m/s$, the focal length of the lens is a) $15 \ cm$ b) $20 \ cm$ c) $30 \ cm$ d) $10 \ cm$	/ 31.	_	-	-
a) 0.9° b) 0.09° c) 1.8° d) 1.2° 752. Diameter of a plano-convex lens is $6\ cm$ and thickness at the centre is $3\ mm$. If the speed of light in the material of the lens is $2\times 10^8 m/s$, the focal length of the lens is a) $15\ cm$ b) $20\ cm$ c) $30\ cm$ d) $10\ cm$			oo y respectively, the angular	separation seem sen these eme corours
material of the lens is $2 \times 10^8 m/s$, the focal length of the lens is a) $15 cm$ b) $20 cm$ c) $30 cm$ d) $10 cm$			c) 1.8°	d) 1.2°
a) 15 cm b) 20 cm c) 30 cm d) 10 cm	752.	Diameter of a plano-convex lens is 6 of	cm and thickness at the centre	e is 3 mm. If the speed of light in the
		material of the lens is $2 \times 10^8 m/s$, the	e focal length of the lens is	
		a) 15 cm b) 20 cm	c) 30 <i>cm</i>	d) 10 <i>cm</i>
753. Two plane mirrors are perpendicular to each other. A ray after suffering reflection from the two mirrors will be	753.		to each other. A ray after suf	ering reflection from the two mirrors
a) Perpendicular to the original ray b) Parallel to the original ray			h) Parallel to	the original ray
c) Parallel to the first mirror d) At 45° to the original ray			_	

754. An optical fibre consists of core of μ_1 surrounded by a cladding of $\mu_2 < \mu_1$. A beam of light enters form air at an angle α with axis of fibre. The highest α for which ray can be travelled through fibre is

a)
$$\cos^{-1} \sqrt{\mu_2^2 - \mu_1^2}$$


b)
$$\sin^{-1} \sqrt{\mu_1^2 - \mu_2^2}$$

c)
$$\tan^{-1} \sqrt{\mu_1^2 - \mu_2^2}$$

a)
$$\cos^{-1} \sqrt{\mu_2^2 - \mu_1^2}$$
 b) $\sin^{-1} \sqrt{\mu_1^2 - \mu_2^2}$ c) $\tan^{-1} \sqrt{\mu_1^2 - \mu_2^2}$ d) $\sec^{-1} \sqrt{\mu_1^2 - \mu_2^2}$

755. The angel of prism is 5° and its refractive indices for red and violet colours are 1.5 and 1.6 respectively. The angular dispersion produced by the prism is

756. A ray of light strikes a plane mirror M at an angle of 45° as shown in the figure. After reflection, the ray passes through a prism of refractive index 1.5 whose apex angle is 4°. The total angle through which the ray is deviated is

a) 90°

b) 91°

757. Wavelength of light used in an optical instrument are $\lambda_1=4000\,\text{Å}$ and $\,\lambda_2=5000\,\text{Å}$, then ratio of their respective resolving powers (corresponding to λ_1 and λ_2) is

758. An equiconvex lens of glass of focal length 0.1 metre is cut along a plane perpendicular to principal axis into two equal parts. The ratio of focal length of new lenses formed is

a) 1:1 b) 1:2 c) 2:1 d) $2:\frac{1}{2}$ 759. The focal lengths of the objective and eye lenses of a telescope are respectively 200 cm and 5 cm. The minimum magnifying power of the telescope will be

a)
$$-40$$

c)
$$-60$$

d) -100

760. The time required for making a print a distance of 0.25 m from a 60 W lamp is 5 s. If the distance is increased to 40 cm, the time required in second to make a similar print is

d) 16

761. An opera glass (Gallilean telescope) measures 9 cm from the objective to the eyepiece. The focal length of the objective is 15 cm. Its magnifying power is

b) 2/5

c) 5/3

d) 0.4

762. A point source of 3000 lumen is located at the center of a cube of side length 2m. The flux through one side

a) 500 *lumen*

b) 600 lumen

c) 750 lumen

d) 1500 lumen

763. A convex mirror is used to form the image of an object. Then which of the following statements is wrong

a) The image lies between the pole and the focus

b) The image is diminished in size

c) The image is erect

d) The image is real

764. The light ray is incidence at angle of 60° on a prism of angle 45°. When the light ray falls on the other surface at 90°, the refractive index of the material of prism μ and the angle of deviation δ are given by

a)
$$\mu = \sqrt{2}, \delta = 30^{\circ}$$

b)
$$\mu = 1.5, \delta = 15^{\circ}$$

c)
$$\mu = \frac{\sqrt{3}}{2}, \delta = 30^{\circ}$$

a)
$$\mu = \sqrt{2}, \delta = 30^{\circ}$$
 b) $\mu = 1.5, \delta = 15^{\circ}$ c) $\mu = \frac{\sqrt{3}}{2}, \delta = 30^{\circ}$ d) $\mu = \sqrt{\frac{3}{2}}, \delta = 15^{\circ}$

765.	The spectrum of an oil flana)	-	h) Continuous amission s	aectrum	
	c) Line absorption spectrum		•	b) Continuous emission spectrum	
766			d) Band emission spectrum and n_3 are fixed together with the same of the s		
700.			without suffering any deviat		
	snown in rigure. If a ray pa	asses through the prishs w	inout surfering any deviat	ion, then	
	n ₂				
	n ₁	<i>n</i> ₃			
	a) $n_1 = n_2 = n_3$	b) $n_1 = n_2 \neq n_3$	c) $1 + n_1 = n_2 + n_3$	d) $1 + n_2^2 = n_1^2 = n_3^2$	
767.	The radius of curvature fo		or each surface. Its refractiv		
	length will be				
	a) 40 <i>cm</i>	b) 20 <i>cm</i>	c) 80 cm	d) 30 cm	
768.	A white screen illuminated	d by green and red light ap	pears to be	,	
	a) Green	b) Red	c) Yellow	d) White	
769.	A terrestrial telescope is r	nade by introducing an ere	cting lens of focal length f	between the objective and	
	=		auses the length of the teles	·	
	a) <i>f</i>	b) 2 <i>f</i>	c) 3 <i>f</i>	d) 4 <i>f</i>	
		dium is 60°. The refractive	, -		
				d) $\frac{\sqrt{3}}{2}$	
	a) $\frac{2}{\sqrt{3}}$	b) $\frac{\sqrt{2}}{3}$	c) $\sqrt{3}$	d) $\frac{\sqrt{3}}{2}$	
771.	The magnifying power of			2	
		-piece have short focal leng	th		
	•	-piece have long focal lengt			
	•		 piece has a short focal lengt	h	
			piece has a long focal lengt		
772			\mathbf{x} mirror of focal length f p		
, , 2.	erect, diminished and virt		, in the control of t	rounde mar is	
	a) Only when $2f > u > f$	aar	b) Only when $u = f$		
	c) Only when $u < f$		d) Always		
773		from the following	a) mways		
, , 5.	773. Pick the correct statement from the following a) Primary rainbow is a virtual image and secondary rainbow is a real image				
		eal image and secondary ra	-		
	•	ndary rainbows are virtual	_		
		ndary rainbows are virtual ndary rainbows are real im	_		
774	• •	•	of refraction $n(A)$ passes a	across an interface into	
, , 1.			f incidence is greater than		
			Then which of the following		
	a) $v(A) > v(B)$ and $n(A)$		b) $v(A) > v(B)$ and $n(A)$		
	c) $v(A) < v(B)$ and $n(A)$		d) $v(A) > v(B)$ and $n(A)$		
775	Solar spectrum is an exam		$u_j v(n) < v(b) \text{ and } n(n)$	$\langle n(B) \rangle$	
773.			b) I in abcomption anactm	um	
	a) Band absorption spectr		b) Line absorption spectro		
776	c) Line emission spectrun		d) Continuous emission sp		
//0.			ue light in a convex lens, its	rocariengui wiii	
	a) Does not depend on co	iour of light	b) Increase		
777	c) Decrease		d) Remain same		
///.	Speed of light is maximum		a) Class	d) Diamond	
	a) Water	b) Air	c) Glass	d) Diamond	

778.	In a grease spot photomet distance 10 cm from the g obtain a balance again. Th a) 64%	rease spot. On clea	aring the o	lirty chimney	, the point so	ource is mo	ved 2 cm to
779.	The objective lens of a comagnification of 100 whe	mpound microscop	oe produce at 25 <i>cm</i> f	es magnificat From the eye,		order to ge	
	a) 4 <i>cm</i>	b) 10 <i>cm</i>		c) $\frac{25}{9}$ cm		d) 9 <i>cm</i>	
780.	When white light passes t emergent beam, the ray w			ets spectrum	on the other	side of the	prism. In the
	or Deviation by a prism is lo	west for					
	a) Violet ray	b) Green ray		c) Red ray		d) Yellow	rav
781.	The ratio of thickness of passing through them, the	olates of two transp en refractive index	arent me	diums A and		ight takes	-
	a) 1.4	b) 1.5		c) 1.75		d) 1.33	
782.	The sky would appear red a) Atmospheric particles s b) Atmospheric particles s c) Atmospheric particles s d) The sun was much hott	scatter blue light m scatter all colours o scatted red light m	equally	-			
783.	If the refractive index of a		teral nricr	n is $\sqrt{3}$ then	angle of mini	mum devi	ation of the
, 00.	prism is	material of equila	terai prisi	ii is v s, then	angle of min	mam acvi	ation of the
	a) 30°	b) 45°		c) 60°		d) 75°	
784.	An astronomical telescope	e has a magnifying	power 10	, the focal ler	ngth of the ey	e-piece is ?	20 cm.The focal
	length of the objective is		SILE	ATTO	NT.		
	a) $\frac{1}{200}$ cm	b) $\frac{1}{2}$ cm	JUC	c) 200 cm	M	d) 2 cm	
785.	A boat has green light of v	vavelength $\lambda = 50$	00 nm on	the mast. Wh	at wavelengt	h would be	e measured and
	what colour would be obs boat?	served for this light	as seen b	y a diver sub	merged in w	ater by the	side of the
	Given, $n_w = \frac{4}{3}$.						
	a) Green of wavelength 37			b) Red of wa	0		
5 0.6	c) Green of wavelength 50			d) Blue of wa	_		
786.	A substance is behaving a	s convex lens in air					X IS
	a) Smaller than airc) Greater than air but les	a than water		b) Greater th d) Almost eq		na water	
787	Two thin lenses when in o					they are () 25 m apart the
707.	power reduces to $+6D$. The	=		=	$\pm 10 D$. When	i tiley are t	5.25 <i>III</i> apart, the
	a) 0.125 and 0.5	b) 0.125 and 0.12		c) 0.5 and 0.	75	d) 0.125 a	and 0.75
788.	The graph between u and	•		,		,	
	a) $f = \underbrace{\qquad \qquad }_{f} v$ u	b) f	-·f → u	c)	f u	d) _f	vf → u

789. Two plane mirrors A and B are aligned parallel to each other, as shown in the figure. A light ray is incident at an angle of 30° at a point just inside one end of A. The plane of incidence coincides with the plane of the

figure. The maximum number of times the ray undergoes reflection (including the first one) before it emerges out is 2,3m 0.2ma) 28 c) 32 d) 34 790. A ball is dropped from a height of 20m above the surface of water in a lake. The refractive index of water $is\frac{4}{3}$. A fish inside the lake, in the line of fall of the ball, is looking at the ball. At an instant, when the ball is 12.8 m above the water surface, the fish sees the speed of ball as a) 9 ms^{-1} b) 12 ms^{-1} c) 16 ms^{-1} d) 21.33 ms^{-1} 791. The no. of wavelengths in the visible spectrum a) 4000 b) 6000 c) 2000 d) Infinite 792. A 60 watt bulb is hung over the center of a table $4 m \times 4 m$ at height of 3 m. The ratio of the intensities of illumination at a point on the centre of the edge and on the corner of the table is a) $(17/13)^{3/2}$ b) 2/1c) 17/13 d) 5/4793. If the space between the lenses in the lens combination shows were filled with water, what would happen to the focal length and power of the lens combination? Focal Length **Power** a) Decreased c) Increased d) Increased b) Decreased Increased Unchanged Unchanged Decreased 794. A lamp is hanging 1 m above the centre of a circular table of diameter 1m. The ratio of illuminaces at the centre and the edge is b) $\left(\frac{5}{3}\right)^{\frac{3}{2}}$ a) $\frac{1}{2}$ d) $\frac{4}{5}$ 795. The spectrum obtained from an electric lamp or red hot heater is a) Line spectrum b) Band spectrum c) Absorption spectrum d) Continuous spectrum 796. The separation between the screen and a plane mirror is 2r. An isotopic point source of light is placed exactly mid way between the mirror and the screen. Assume that mirror reflects 100% of incident light. Then the ratio of illuminance on the screen with and without the mirror is a) 10:1 b) 2:1 c) 10:9 d) 9:1 797. The minimum distance between the object and its real image for concave mirror is d) Zero b) 2*f* c) 4f 798. In human eye the focussing is done by a) To and fro movement of eye lens b) To and fro movement of the retina c) Change in the convexity of the lens surface d) Change the refractive index of the eye fluids 799. When the length of a microscope tube increases, its magnifying power a) Decreases b) Increases

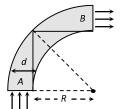
c) Does not change

d) May decrease or increase

800. An object 15 cm high is placed 10 cm from the optical the optical centre on the same side of the lens as the a) 2.5 cm b) 0.2 cm		•
801. For a convex lens the distance of the object is taken of axis, the nature of the graph so obtained is	*	
a) Straight line b) Circle	c) Parabola	d) Hyperbola
802. A virtual image larger than the object can be obtained	ed by	
a) Concave mirror b) Convex mirror	c) Plane mirror	d) Concave lens
803. A glass lens is placed in a medium in which it is foun medium will be	d to behave like a glass pla	te. Refractive index of the
a) Greater than the refractive index of glassb) Smaller than the refractive index of glass		
c) Equal to refractive index of glass		
d) No case will be possible from above		
804. An object has image thrice of its original size when k length of the lens is	_	n a convex lens. Focal
a) 8 <i>cm</i>	b) 16 <i>cm</i>	
c) Between 8 cm and 16 cm	d) Less than 8 cm	
805. An object 1 <i>cm</i> tall is placed 4 <i>cm</i> infront of a mirror.	In order to produce an upr	right image of 3 <i>cm</i> height
one needs a		
a) Convex mirror of radius of curvature 12 <i>cm</i>		
b) Concave mirror of radius of curvature 12 cm		
c) Concave mirror of radius of curvature 4 cm		
d) Plane mirror of height 12 cm	loss as sampared with air	
806. When the convergent nature of a convex lens will be a) In water b) In oil	c) In both (a) and (b)	d) None of these
807. A person can see objects clearly only upto a maximu		
corrective lens and its focal length are respectively	in distance of 50 cm. mis cy	e derect, fideare of the
a) Myopia, concave, 50 cm	b) Myopia, convex, 50 cm	<u> </u>
c) Hypermetropia, concave, 50 cm	d) Catract, convex, 50 cm	
808. A convex lens makes a real image 4 cm long on a scr	een. When the lens is shifte	ed to a new position without
disturbing the object, we again get a real image on the must be	ne screen which is 16 $\it cm$ ta	ill. The length of the object
a) 1/4 <i>cm</i> b) 8 <i>cm</i>	c) 12 <i>cm</i>	d) 20 <i>cm</i>
809. Two beams of red and violet colours are made to pas	ss separately through a pris	sm (angle of the prism
is 60°).In the position of minimum deviation, the ang	gle of refraction will be	
a) 30° for both the colours	b) Greater for the violet c	olour
c) Greater for the red colour	Equal but not 30° for b	ooth the
	d) colours	
810. A beam of monochromatic blue light of wavelength	4200 Å in air travels in wat	ter of refractive index 4/3.
Its wavelength in water will be		
a) 4200 Å b) 5800 Å	c) 4150 Å	d) 3150 Å
811. What is the ratio of luminous intensity of two source	=	of equal intensities at
distance 25 cm and 50 cm from the photometer scre		D 6.4
a) 1:4 b) 4:1	c) 1:2	d) 2:1
812. In Huygen's eyepiece		
a) The cross wires are outside the eyepiece		
b) Condition for achromatism is satisfied		

813.	c) Condition for minimum spherical aberration is n d) The image formed by the objective is a virtual im Blue colour of sea water is due to a) Interference of sunlight reflected from the water	nage	
	b) Scattering of sunlight by the water moleculesc) Image of sky in water		
814.	d) Refraction of sunlight The refractive index of the material of a double con	vex lens is 1.5 and its focal l	ength is 5 cm. If the radii of
011.	curvature are equal, the value of the radius of curva		
	a) 5.0 b) 6.5	c) 8.0	d) 9.5
815.	Light from sodium lamp is passed through cold sod of	ium vapours, the spectrum	of transmitted light consists
	a) A line at 5890 Å b) A line at 5896 Å	c) Sodium doublet lines	d) No spectral features
816.	Given figures show the arrangements of two lenses, same. The ratio of the equivalent focal length of cor		l the curved surfaces are
	$(P) \qquad \qquad (Q) \qquad \qquad (R)$		
0.4 =	a) 1:1:1 b) 1:1:-1	c) 2:1:1	d) 2 : 1 : 2
817.	In the given figure, what is the angle of prism?	>	
	GPLUS EDU	CATION	
	a) <i>A</i> b) <i>B</i>	c) <i>C</i>	d) <i>D</i>
818.	An eye specialist prescribes spectacles having a corcontact with a concave lens of focal length 25 cm . Ta a) +1.5 b) -1.5		_
819.	For which of the following colour, the magnifying p	•	
	a) White colour b) Red colour	c) Violet colour	d) Yellow colour
820.	A point objects is placed at the centre of a glass sph distance of the virtual image from the surface of the		ctive index 1.5. The
	a) 2 cm b) 4 cm	c) 6 cm	d) 12 cm
821.	A boy stands straight infront of a mirror at a distance		sees his erect image whose
	height is 1/5 th of his real height. The mirror he is us a) Plane mirror b) Convex mirror	sing is c) Concave mirror	d) Plano-convex mirror
822.	A point object O is placed on the principal axis of a		
	to the left of it. The diameter of the lens is 10 <i>cm</i> . If	_	
	distance h below the principal axis, then the maxim	· -	-
	a) 0 b) 5 cm	c) 2.5 <i>cm</i>	d) 10 <i>cm</i>
823.	A person cannot see distinctly at the distance less the should use to read a book at a distance of 25 <i>cm</i>	han one metre. Calculate the	e power of the lens that he

a) 130D	b) 10125 D	a) 20D	d) 140 D
a) $+3.0 D$ 824. Near and far points	b) $+0.125 D$	c) -3.0 <i>D</i>	d) +4.0 <i>D</i>
a) 25 cm and infinite	-	c) 25 cm and 50 cm	d) 0 cm and 25 cm
	angle θ produce 5 images of a	_	
decreased to 30° is	ingle o produce 5 images of a	point, The number of images	produced when o is
a) 9	b) 10	c) 11	d) 12
826. A lens of focal power	•	c) 11	u) 12
a) A convex lens of		b) A concave lens of foc	allength 0.5 m
c) A convex lens of	_	d) A concave lens of foc	S
-	onvex lenses A and B are $8 di$	· ·	_
<u>-</u>	cope, the magnification of	operes and Tutoperes respe	ctively. If they are to be used
a) <i>B</i> will be greater		b) A will be greater than	$\sim R$
c) The information		d) None of the above	
_	5) of thickness 6 m is placed of	-	t in the shift in the letters?
a) 4 cm	b) 2 cm	c) 1 cm	d) None of the above
•	m the sun fall on a convex lens	•	-
	all colours is the same	s along a un ection parallel to	ones axis
	violet colour is the shortest		
	yellow colour is the longest		
	colour is the shortest		
,	and violet light are falling on	the refracting face of a prism	n all at the same angle of
_	ngles of deviation are $ heta_1$, $ heta_2$ ar		ii, an at the same angle of
	b) $\theta_1 < \theta_2 < \theta_3$		d) $\theta_0 > \theta_t > \theta_0$
	are inclined to each other such		
_	are inclined to each other such	if that a ray of light including	
narallal to the secon	nd is reflected from the second	d mirror parallel to the first r	nirror The angel between
=	nd is reflected from the second	d mirror parallel to the first i	nirror. The angel between
the two mirrors is	i i		
the two mirrors is a) 30°	b) 45°	c) 60°	d) 75°
the two mirrors is a) 30° 832. Two lenses have fo	b) 45° cal lengths f_1 and f_2 and their	c) 60°	d) 75°
the two mirrors is a) 30° 832. Two lenses have fo together from an ac	b) 45° cal lengths f_1 and f_2 and their thromatic combination if	c) 60° dispersive powers are ω_1 an	d) 75° ad ω_2 respectively. They will
the two mirrors is a) 30° 832. Two lenses have fo together from an ac a) $\omega_1 f_1 = \omega_2 f_2$	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$	d) 75° and ω_2 respectively. They will d) $\omega_1-f_1=\omega_2-f_2$
the two mirrors is a) 30° 832. Two lenses have fo together from an ad a) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ 50 cm) forms the image of a c	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$	d) 75° and ω_2 respectively. They will d) $\omega_1-f_1=\omega_2-f_2$
the two mirrors is a) 30° 832. Two lenses have fo together from an ac a) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ 50 cm) forms the image of a ce size of the image	c) 60° dispersive powers are ω_1 and $c) \ \omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend	d) 75° and ω_2 respectively. They will d) $\omega_1-f_1=\omega_2-f_2$ s an angle of 1 $milliradian$ at
the two mirrors is a) 30° 832. Two lenses have fo together from an ac a) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is tha) $5 \ mm$	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ 50 cm) forms the image of a ce size of the image b) $1 \ mm$	c) 60° dispersive powers are ω_1 and c) $\omega_1+f_1=\omega_2+f_2$ distant object which subtend c) $0.5\ mm$	d) 75° and ω_2 respectively. They will d) $\omega_1-f_1=\omega_2-f_2$
the two mirrors is a) 30° 832. Two lenses have for together from an act a) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 \ mm$ 834. At sun rise or sunse	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ 50 cm) forms the image of a ce size of the image b) $1 \ mm$ et, the sun looks more red than	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 \ mm$ at mid-day because	d) 75° and ω_2 respectively. They will d) $\omega_1-f_1=\omega_2-f_2$ s an angle of 1 $milliradian$ at d) $0.1~mm$
the two mirrors is a) 30° 832. Two lenses have for together from an act a) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 \ mm$ 834. At sun rise or sunse a) The sun is hotter	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ 50 cm) forms the image of a ce size of the image b) $1 \ mm$ et, the sun looks more red than at at these times	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 \ mm$ at mid-day because b) Of the scattering of light constants c	d) 75° and ω_2 respectively. They will d) $\omega_1-f_1=\omega_2-f_2$ s an angle of 1 $milliradian$ at d) $0.1~mm$
the two mirrors is a) 30° 832. Two lenses have for together from an act a) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 \ mm$ 834. At sun rise or sunse a) The sun is hottes c) Of the effect of results of the sun is hottes.	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ $50 \ cm$) forms the image of a ce size of the image b) $1 \ mm$ et, the sun looks more red than st at these times	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 \ mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffractions d	d) 75° and ω_2 respectively. They will d) $\omega_1-f_1=\omega_2-f_2$ is an angle of 1 $milliradian$ at d) $0.1mm$
the two mirrors is a) 30° 832. Two lenses have for together from an aca) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 \ mm$ 834. At sun rise or sunse a) The sun is hottes c) Of the effect of results at an acceptance of the sun is a sun acceptance.	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ 50 cm) forms the image of a ce size of the image b) $1 mm$ et, the sun looks more red than at these times efraction ingle of incidence in a transpar	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffraction rod of refractive index n	d) 75° and ω_2 respectively. They will d) $\omega_1-f_1=\omega_2-f_2$ is an angle of 1 $milliradian$ at d) $0.1mm$ ght action . For what value of the
the two mirrors is a) 30° 832. Two lenses have for together from an aca a) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 \ mm$ 834. At sun rise or sunse a) The sun is hottes c) Of the effect of results and a refractive index of the sun is a sun and the sun is a sun and the sun is hottes and a sun and the sun is hottes and a sun and the sun is hottes at an and the sun is hottes and the sun is hottes and the sun is hottes at an analysis and the sun is hottes at an analysis at a sun is hottes at a sun is h	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ 50 cm) forms the image of a ce size of the image b) 1 mm et, the sun looks more red than at at these times efraction ngle of incidence in a transparthe material of the rod the light	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffraction rent rod of refractive index m at once entered into it will not	d) 75° and ω_2 respectively. They will d) $\omega_1-f_1=\omega_2-f_2$ is an angle of 1 $milliradian$ at d) $0.1mm$ ght action . For what value of the
the two mirrors is a) 30° 832. Two lenses have for together from an aca a) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 mm$ 834. At sun rise or sunse a) The sun is hottes c) Of the effect of reference whatsoever be	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ $50 \ cm$) forms the image of a ce size of the image b) $1 \ mm$ et, the sun looks more red than st at these times efraction ngle of incidence in a transparthe material of the rod the light the value of angle of incidence	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffraction rod of refractive index m at once entered into it will not d	d) 75° and ω_2 respectively. They will d) $\omega_1 - f_1 = \omega_2 - f_2$ is an angle of 1 <i>milliradian</i> at d) $0.1 \ mm$ ght ction . For what value of the it leave it through its lateral
the two mirrors is a) 30° 832. Two lenses have for together from an aca) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 \ mm$ 834. At sun rise or sunse a) The sun is hottes c) Of the effect of results of the sun is hottes at an arefractive index of face whatsoever be a) $n > \sqrt{2}$	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ 50 cm) forms the image of a ce size of the image b) 1 mm et, the sun looks more red than at at these times efraction ngle of incidence in a transparthe material of the rod the light the value of angle of incidence b) $n=1$	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffraction rent rod of refractive index m at once entered into it will not c	d) 75° and ω_2 respectively. They will d) $\omega_1 - f_1 = \omega_2 - f_2$ is an angle of 1 $milliradian$ at d) $0.1 mm$ ght action and the stream of the stream of the stream of the $milliradian$ at d) $n = 1.3$
the two mirrors is a) 30° 832. Two lenses have for together from an aca) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 \ mm$ 834. At sun rise or sunse a) The sun is hottes c) Of the effect of results and a refractive index of face whatsoever be a) $n > \sqrt{2}$ 836. A ray of light suffer	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ $50 \ cm$) forms the image of a ce size of the image b) $1 \ mm$ et, the sun looks more red than st at these times efraction ngle of incidence in a transparthe material of the rod the light the value of angle of incidence	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffraction rent rod of refractive index m at once entered into it will not c	d) 75° and ω_2 respectively. They will d) $\omega_1 - f_1 = \omega_2 - f_2$ is an angle of 1 $milliradian$ at d) $0.1 mm$ ght action and the stream of the stream of the stream of the $milliradian$ at d) $n = 1.3$
the two mirrors is a) 30° 832. Two lenses have for together from an aca) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 \ mm$ 834. At sun rise or sunse a) The sun is hotter c) Of the effect of results of the effect of results and a refractive index of the face whatsoever be a) $n > \sqrt{2}$ 836. A ray of light suffer incidence is	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ 50 cm) forms the image of a decrease size of the image b) $1 mm$ et, the sun looks more red than at at these times defraction angle of incidence in a transparthe material of the rod the light the value of angle of incidence b) $n=1$ s minimum deviation when in	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffraction rod of refractive index n at once entered into it will not c	d) 75° and ω_2 respectively. They will d) $\omega_1 - f_1 = \omega_2 - f_2$ s an angle of 1 $milliradian$ at d) $0.1 mm$ ght ection . For what value of the et leave it through its lateral d) $n = 1.3$ tive index $\sqrt{2}$. The angle of
the two mirrors is a) 30° 832. Two lenses have for together from an aca) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 mm$ 834. At sun rise or sunse a) The sun is hottes c) Of the effect of reference whatsoever be a) $n > \sqrt{2}$ 836. A ray of light sufferincidence is a) $\sin^{-1}(0.8)$	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ 50 cm) forms the image of a ce size of the image b) $1 mm$ et, the sun looks more red than at these times refraction ingle of incidence in a transparthe material of the rod the lighthe value of angle of incidence b) $n=1$ is minimum deviation when in	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffraction rent rod of refractive index n at once entered into it will not e c) $n = 1.1$ cident at 60° prism of refractional c 0 c 1.	d) 75° and ω_2 respectively. They will d) $\omega_1 - f_1 = \omega_2 - f_2$ is an angle of 1 <i>milliradian</i> at d) $0.1 \ mm$ ght ction . For what value of the it leave it through its lateral d) $n = 1.3$ tive index $\sqrt{2}$. The angle of d) 30°
the two mirrors is a) 30° 832. Two lenses have for together from an aca a) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 mm$ 834. At sun rise or sunse a) The sun is hottes c) Of the effect of results of the face whatsoever be a) $n > \sqrt{2}$ 836. A ray of light suffer incidence is a) $\sin^{-1}(0.8)$ 837. The focal length of	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ $50 \ cm$) forms the image of a ce size of the image b) $1 \ mm$ et, the sun looks more red than st at these times refraction ingle of incidence in a transparthe material of the rod the lighthe value of angle of incidence b) $n = 1$ s minimum deviation when in b) 60° objective and eye lens of an as	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffraction are not once entered into it will not e c) $n = 1.1$ cident at 60° prism of refractional control a 0 a 1.	d) 75° and ω_2 respectively. They will d) $\omega_1 - f_1 = \omega_2 - f_2$ is an angle of 1 <i>milliradian</i> at d) $0.1 mm$ ght ction if the original is forwhat value of the original is the original d) $n = 1.3$ tive index $\sqrt{2}$. The angle of d) 30° is spectively 2 m and 5 cm. Final
the two mirrors is a) 30° 832. Two lenses have for together from an aca) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is than a) $5 \ mm$ 834. At sun rise or sunse a) The sun is hotted c) Of the effect of reflective index of face whatsoever be a) $n > \sqrt{2}$ 836. A ray of light suffer incidence is a) $\sin^{-1}(0.8)$ 837. The focal length of image is format at (b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ 50 cm) forms the image of a ce size of the image b) $1 mm$ et, the sun looks more red than at at these times efraction ngle of incidence in a transparthe material of the rod the light the value of angle of incidence b) $n = 1$ s minimum deviation when in b) 60° objective and eye lens of an as (1) least distance of distinct vi	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffraction rent rod of refractive index n at once entered into it will not c c c c d	d) 75° and ω_2 respectively. They will d) $\omega_1 - f_1 = \omega_2 - f_2$ is an angle of 1 <i>milliradian</i> at d) $0.1 mm$ ght ction . For what value of the at leave it through its lateral d) $n = 1.3$ tive index $\sqrt{2}$. The angle of d) 30° spectively 2 m and 5 cm. Final powers in two cases will be
the two mirrors is a) 30° 832. Two lenses have for together from an aca a) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is the a) $5 mm$ 834. At sun rise or sunse a) The sun is hottes c) Of the effect of results and a refractive index of face whatsoever be a) $n > \sqrt{2}$ 836. A ray of light suffer incidence is a) $\sin^{-1}(0.8)$ 837. The focal length of image is format at (a) -48 , -40	b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ $50 \ cm$) forms the image of a desize of the image b) $1 \ mm$ et, the sun looks more red than st at these times refraction ingle of incidence in a transparathe material of the rod the light the value of angle of incidence b) $n = 1$ is minimum deviation when in b) 60° objective and eye lens of an as (1) least distance of distinct virting (1) b) (1)	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffraction are not once entered into it will not e c) $n = 1.1$ cident at 60° prism of refractional control a 0 a 1.	d) 75° and ω_2 respectively. They will d) $\omega_1 - f_1 = \omega_2 - f_2$ is an angle of 1 <i>milliradian</i> at d) $0.1 mm$ ght ction if the original is forwhat value of the original is the original d) $n = 1.3$ tive index $\sqrt{2}$. The angle of d) 30° is spectively 2 m and 5 cm. Final
the two mirrors is a) 30° 832. Two lenses have for together from an aca) $\omega_1 f_1 = \omega_2 f_2$ 833. A lens (focal length the lens. What is than a) $5 \ mm$ 834. At sun rise or sunse a) The sun is hotted c) Of the effect of reflective index of face whatsoever be a) $n > \sqrt{2}$ 836. A ray of light suffer incidence is a) $\sin^{-1}(0.8)$ 837. The focal length of image is format at (b) 45° cal lengths f_1 and f_2 and their chromatic combination if b) $\omega_1 f_2 + \omega_2 f_1 = 0$ $50 \ cm$) forms the image of a desize of the image b) $1 \ mm$ et, the sun looks more red than st at these times refraction ingle of incidence in a transparathe material of the rod the light the value of angle of incidence b) $n = 1$ is minimum deviation when in b) 60° objective and eye lens of an as (1) least distance of distinct virting (1) b) (1)	c) 60° dispersive powers are ω_1 and c) $\omega_1 + f_1 = \omega_2 + f_2$ distant object which subtend c) $0.5 mm$ at mid-day because b) Of the scattering of light d) Of the effect of diffraction rent rod of refractive index n at once entered into it will not c c c c d	d) 75° and ω_2 respectively. They will d) $\omega_1 - f_1 = \omega_2 - f_2$ is an angle of 1 <i>milliradian</i> at d) $0.1 mm$ ght ction . For what value of the at leave it through its lateral d) $n = 1.3$ tive index $\sqrt{2}$. The angle of d) 30° spectively 2 m and 5 cm. Final powers in two cases will be


000		1.6	76.1	COL 1 1 1 1	
839.	9. Light takes 8 min 20 s to reach from sun on the earth. If the whole atmosphere is filled with water, the light will take the time ($_a\mu_\omega=4/3$)				
	a) 8 min 20 s	b) 8 <i>min</i>	c) 6 min 11 s	d) 11 min 6 s	
840.	Velocity of light in glass w	hose refractive index with	respect to air is 1.5 is 2×1	$0^8 m/s$ and in certain	
	liquid the velocity of light is	found to be $2.5 \times 10^8 \ m/s$.	The refractive index of the	liquid with respect to air	
	a) 0.64	b) 0.80	c) 1.20	d) 1.44	
841.	Magnifying power of a sim	,	•	,	
011.					
	a) $\frac{D}{f}$	b) $1 + \frac{D}{f}$	c) $1 + \frac{7}{D}$	d) $1 - \frac{1}{f}$	
842.	minute is $(n_1 = refractive)$	is being drained out at a co- index of air, $n_2 =$ refractiv	onstant rate. The amount o	f water drained in c . c . per	
		b) $x \pi R^2 n_2/n_1$	c) $2 \pi R n_1/n_2$	-	
843.	A prism of angle 30° is silvered surface. The refra		ght incident at an angle 45	° is reflected back from the	
	a) $\sqrt{2}$	b) $2\sqrt{2}$	c) $\sqrt{3}$	d) $5\sqrt{3}$	
844.	The distance between an o	object and the screen is 100	ocm. A lens produces an in	nage on the screen when	
	placed at either of the posi	ition $40cm$ apart. The pow	er of the lens is		
	a) ≈ 3 dioptres	b) $\approx 5 dioptres$	c) \approx 7 dioptres	d) $\approx 9 dioptres$	
845.	A man with defective eyes	cannot see distinctly object	ct at the distance more than	n 60 <i>cm</i> from his eyes. The	
	power of the lens to be use				
	a) +60 D	b) -60 <i>D</i>	c) -1.66 D	d) $\frac{1}{1.66}$ D	
846.	A parallel beam of light em	nerges from the opposite su	urface of the sphere when a	a point source of light lies	
	•	e. The refractive index of th			
	a) $\frac{3}{2}$	b) $\frac{5}{3}$	c) 2	d) $\frac{5}{2}$	
	4		.64 1 13.713	4	
847.				ass surface XY. Its position	
		h a glass slab is shown also		\mathbf{W} at A and D . The	
	refractive index of glass w	ith respect to air $(\mu = 1)$ w	fill be equal to		
	В				
	1/0	D			
	$X \xrightarrow{A} \phi \phi'$	<u>√</u> γ			
		7			
	c				
	aire ()	sin A	oin Al	A D	
	a) $\frac{\sin \theta}{\sin \theta'}$	b) $\frac{\sin \theta}{\sin \phi'}$	c) $\frac{\sin \phi'}{\sin \theta}$	d) $\frac{AB}{CD}$	
848	544. 0	, , ,	Sili o		
	A diver at a depth of 12m i			angie	
	\3/	(3)	c) $\sin^{-1}\left(\frac{3}{4}\right)$	d) 90°	
849.	The plane surface of a plan	no-convex lens of focal leng	•		
	a) Plane mirror	f	b) Convex mirror of focal	Iength 2 <i>f</i>	
	c) Concave mirror of focal	l length ½	d) None of the above		

				•
850.	A large glass slab $\left(\mu = \frac{5}{3}\right)$	of thickness 8 cm is place	d over a point source of ligh	nt on a plane surface. It is
	seen that light emerges o	ut of the top surface of the	slab from a circular area of	fradius R cm. What is the
	value of R?			
	a) 6 cm	b) 7 cm	c) 8 cm	d) 9 cm
851.		_	an the radius of curvature	of any of the surfaces. Then
	the refractive index of the			.1 2.0
	a) Greater than zero but l		•	
852	c) Greater than 2.0 but le		d) Greater than 2.5 but le ency when it propagates in	
032.	index 1.5, will be	ay is 6 × 10 ⁻¹ Hz. its frequ	ency when it propagates in	a medium of refractive
		b) $9.10 \times 10^{14} Hz$	c) 6 × 10 ¹⁴ Hz	d) $4 \times 10^{14} Hz$
853.		not due to total internal re		a) 1 × 10 Hz
	a) Brilliance of diamond			
	b) Working of optical fibr	·e		
	c) Difference between ap	parent and real depth of a	pond	
	d) Mirage on hot summer			
854.	The diameter of objective	e of a telescope is 1 m. its re	esolving limit for the light o	of wavelength 4538 Å, will
	be			
	•	•	c) $6.54 \times 10^{-7} \text{ rad}$	-
855.			d inside a cell filled with a li	-
			active index 1.50. If the liqu	uid has refractive index
	1.60, the focal length of the	ie system is	>	
		Tell.		
	<u> </u>	7		
	Lens			
	<u>\</u>	Sour EDII/	MOTTAT	
	a) +80 <i>cm</i>	b) -80 <i>cm</i>	c) -24 <i>cm</i>	d) −100 <i>cm</i>
856.	_	_	air as shown in the figure. If	f green light is just totally
	internally reflected then	the emerging ray in air co	ntains	
	į			
	Air Green Glass			
	/			
	White			
	, I		1577 1	
	a) Yellow, orange, red		b) Violet,indigo,blue	
957	c) All colours For compound microscor	$pe f_s = 1 cm f = 25 cm$	d) All colours except gree	en nce 1.2 cm from object lens.
037.		microscope for normal ad		ice 1.2 cm i om object ichs.
	a) 8.5 cm	b) 8.3 cm	c) 6.5 cm	d) 6.3 cm
858.	-	•	sms $P_1(\mu_v = 1.523, \mu_r = 1.523)$	
			ve index. If the angle of the	
	angle of the prism P ₂ will			
	a) 5°	b) 7.8°	c) 10.6°	d) 20°
859.	In a movie hall, the distan	ce between the projector	and the screen is increased	by 1% illuminates on the
	screen is			
	a) Increased by 1%	b) Decreased by 1%	c) Increased by 2%	d) Decreased by 2%

860.			just be inspected on a micr	_
	O	0 0	h 4800Å is used, the limit	
061	a) 0.8 mm	b) 0.08 mm	c) 0.1 mm	d) 0.04 mm
801.		ounted at some distance a	part, the equivalent power	will always be negative, if
	the distance is	L) F = -1, -10	.) F	D.L. and the second
0.60	a) Greater than 40 cm	b) Equal to 10 cm	c) Equal to 10 cm	d) Less than 10 cm
862.		——————————————————————————————————————	hen they are separated by	a distance of 20 cm, their
	equivalent power become	es + $\frac{27}{5}$ D. Their individual	powers (in dioptre) are	
	a) 4, 5	b) 3, 6	c) 2, 7	d) 1, 8
863.	Following figure shows th	ne multiple reflections of a	light ray along a glass corr	idor where the walls are
	0 0	•	ne angle of incidence at poi	
		light ray at points Q, R, S	•	, , , , , , , , , , , , , , , , , , , ,
		ngneraj aepemas (j.n.,e c		
	R			
		T		
	Q S			
	´			
	a) 30°, 30°, 30°, 30°	b) 30°,60°,30°,60°	c) 30°,60°,60°,30°	d) 60°, 60°, 60°, 60°
864.	A ray is incident at an ang	$\mathfrak g$ le of incidence $\mathfrak i$ on one su	ırface of a prism of small an	gle A and emerges normally
	from the opposite surface	e. If the refractive index of	the material of the prism is	μ , the angle of incidence i is
	nearly equal to			
	a) A/μ	b) $A/2\mu$	c) μA	d) $\mu A/2$
865.	The sun (diameter d) sub	tends an angle θ radian a	t the pole of a concave mirr	or of focal length <i>f .</i> The
	diameter of the image of	sun formed by mirror is		
	a) θ <i>f</i>	b) $\frac{\theta}{2} f$	c) 20 <i>f</i>	d) $\frac{\theta}{\pi}$ f
			D A 100 F A 1	7.
866.	A glass hemisphere of rac	lius 0.04 m and $R.I.$ of the	material 1.6 is placed centi	ally over a cross mark on a
	paper (i) with the flat fac	e; (ii) with the curved face	in contact with the paper.	In each case the cross mark
	is viewed directly from al	oove. The position of the ir	nages will be	
	a) (i) 0.04 m from the fla	t face; (ii) $0.025\ m$ from th	e flat face	
	b) (i) At the same position	n of the cross mark; (ii) 0.0	025 m below the flat face	
	c) (i) 0.025 m from the fl	at face; (ii) $0.04~m$ from th	e flat face	
	d) For both (i) and (ii) 0.0	025~m from the highest po	int of the hemisphere	
867.	A plano convex lens fits e	xactly into a plano concav	e lens. Their plane surfaces	are parallel to each other. If
	the lenses are made of dif	ferent materials of refract	ive indices μ_1 and μ_2 and R	is the radius of curvature o
	the curved surface of the	lenses, then focal length o	f the combination is	
		_		2 D
	a) $\frac{R}{2(u_1 + u_2)}$	b) <i>R</i>	c) $\frac{\kappa}{2}$	d) $\frac{2R}{\sqrt{2R}}$
	$^{2}(\mu_{1} + \mu_{2})$	$\frac{1}{2(\mu_1 - \mu_2)}$	c) $\frac{R}{(\mu_1 - \mu_2)}$	$(\mu_2 - \mu_1)$
868.				ength 30 cm. The image will
	form at			
	a) Infinity		b) Pole	
	c) 15 cm behind the mirr	or	d) No image will be form	ed
869.	-		, ,	t of the person without the
237	glasses will be	position 210 Di The delec	is the eye and the fair point	- 1. mo person without the
	-	b) Farsighted, 50 cm	c) Nearsighted, 250 cm	d) Astigmatism, 50 cm
870	_	${\sf g}$ does the magnifying pow	_	aj risuginausin, 30 cm
U / U.	a) The focal length of the		or a rerescope depends	
	a, The rocarrengul of the	objective omy		

b) The diameter of apertu	,		
c) The focal length of the	objective and that of the ey	ye piece	
d) The diameter of apertu	ire of the objective and tha	it of the eye piece	
871. The wavelength of emissi	on line spectrum and abso	rption line spectrum of a s	ubstance are related as
a) Absorption has larger v	value	b) Absorption has smalle	er value
c) They are equal		d) No relation	
872. A ray of light is incident o	n the surface of separation	of a medium at an angle 4	15° and is refracted in the
medium at an angle 30°. V	What will be the velocity of	flight in the medium	
a) $1.96 \times 10^8 \ m/s$	b) $2.12 \times 10^8 \ m/s$	c) $3.18 \times 10^8 \ m/s$	d) $3.33 \times 18^8 \ m/s$
873. An achromatic prism is m	ade by crown glass prism	$(A_c = 19^\circ)$ and flint glass	prism ($A_F=6^\circ$). If $^C\mu_{v}=$
1.5 and $^{F}\mu_{v}=$ 1.66, then 1	resultant deviation for red	coloured ray will be	
a) 1.04°	b) 5°	c) 0.96°	d) 13.5°
874. Two plane mirrors are inc	clined at an angleθ. It is foι	und that a ray incident on o	one mirror at any angle is
rendered parallel to itself	after reflection from both	the mirrors. The value of	9 is
a) 30°	b) 60°	c) 90°	d) 120°
875. Two plano-concave lenses	s (1 and 2) of glass of refra	active index 1.5 have radii	of curvature 25 cm and 20
cm. They are placed in co	ntact with their curved sur	faces towards each other a	and the space between them
is filled with liquid of refr	active index $\frac{4}{3}$. Then the co	mbination is	
_	3		
[======]			
_=====	- A	~	
a) Convex of focal length	70 cm	b) Concave of focal lengt	h 70 cm
c) Concave of focal length		d) Convex of focal length	
876. What will be the height of	the image when an object	t of 2mm is placed at a dista	ance 20 cm in front of the
axis of a convex mirror of	radius of curvature 40 cm	and the first of t	
a) 20 mm	b) 10 mm	c) 6 mm	d) 1 mm
877. When a ray of light enters	•		
a) Its wavelength decreas			
b) Its wavelength increase	es		
c) Its frequency increase			
, e	nor its frequency changes		
878. A camera objective has ar	=	=	iameter $d/2$, the exposure
	litions of light should be m		
a) $\sqrt{2}$ fold	b) 2 fold	c) $2\sqrt{2}$ fold	d) 4 fold
879. A satisfactory photograph	nic print is obtained when	the exposure time is $10s$ a	at a distance of 2 $\it m$ from a 60 $\it m$
cd lamp. The time of expo	sure required for the same	e quality print at a distance	e of 4 m from a 120 cd lamp
is			
a) 5 <i>s</i>	b) 10 <i>s</i>	c) 15 <i>s</i>	d) 20 <i>s</i>
880. Lux is equal to			
a) 1 lumen/m²	b) $1 lumen/cm^2$	c) 1 candela/m²	d) 1 candela/cm²
881. Rising and setting sun app	pears to be reddish becaus	se	
a) Diffraction sends red r	ays to earth at these times		
b) Scattering due to dust j	particles and air molecules	s are responsible	
c) Refraction is responsib	le		
d) Polarization is respons	ible		

882.	Two parallel light rays ar angle between the emerg		a prism of refractive index	1.5 as shown in figure. The
	a) 19°	b) 37°	c) 45°	d) 49°
883	•	a prism, it gets split into its	•	,
000.	a) High density of prism		constituent colours, 1 ms is	auc to
	b) Because μ is different f			
	c) Diffraction of light	or unreveneze		
	d) Velocity changes for di	fferent frequencies		
884		ormally on one of the face of	of a priem of angle 30° and	refractive index $\sqrt{2}$ The
00 11	angle of deviation will be	of many on one of the face of	of a prism of angle 30° and	remactive muex v2. The
	a) 26°	b) 0°	c) 23°	d) 15°
005	-		-	have one more wavelength
003.		han in the same thickness is		nave one more wavelength
	a) $2 mm$	b) 2 <i>cm</i>	c) 2 m	d) 2 <i>km</i>
996	•	•	•	•
000.		side a rectangular glass blo		
	-	dence of 45°. The refractive	e index of air is 1. Under the	ese conditions the ray
	a) Will emerge into the ai	•		
	b) Will be reflected back:	into the glass		
	c) Will be absorbed			
007	_	ir with angle of refraction ed	_	
887.	• `	teristic of molecular specie		
000	a) Gaseous state	b) Liquid state	c) Solid state	d) All of three states
888.	=	and the second s		x 4/3 there is a small fish at
	a distance of 4 cm from the	ne centre L as shown in figu	ire. Where will the image o	f fish appear, if seen from E
	E	i i		
	/	EDILIC	ATION	
	4 cm	PLUS EDUC	ATION	
	a) 5.2 <i>cm</i>	b) 7.2 <i>cm</i>	c) 4.2 <i>cm</i>	d) 3.2 <i>cm</i>
889.	The intensity of direct sur	nlight on a surface normal t	to the rays is I_0 . What is the	intensity of direct sunlight
	on a surface, whose norm	nal makes an angle of 60° w	ith the rays of the sun	
	a) I	b) $I_0\left(\frac{\sqrt{3}}{2}\right)$	c) $\frac{I_0}{2}$	d) 2 <i>I</i> ₀
	a) I_0	$I_0\left(\frac{1}{2}\right)$	$\frac{1}{2}$	u) 21 ₀
890.	The focal length of an obj	ective of a telescope is 3 me	etre and diameter 15 cm. A	ssuming for a normal eye,
	= :	is 3 mm for its complete use		
	a) 6 cm	b) 6.3 <i>cm</i>	c) 20 cm	d) 60 cm
891.	A glass slab of thickness 3	3~cm and refractive index $3/c$	/2 of placed on ink mark or	a piece of paper. For a
		rk at a distance 5.0 <i>cm</i> abov		
	a) 3.0 <i>cm</i>	b) 4.0 <i>cm</i>	c) 4.5 <i>cm</i>	d) 5.0 <i>cm</i>
892.	A rod of glass ($\mu = 1.5$) a	nd of square cross section is	s bent into the shape show	n in the figure. A parallel
	beam of light falls on the	plane flat surface A as show	γ n in the figure. If d is the w	width of a side and R is the
	_	r for what maximum value o	,	
	emerges from the glass th		к	-
	amorpoo momente piaso ti			

``	4	
21	- 1	٠,

b) 0.5

c) 1.3

d) None of these

893. A ray of light falls on a transparent glass slab with refractive index (relative to air) of 1.62. The angle of incidence for which the reflected and refracted rays are mutually perpendicular is

a) $tan^{-1}(1.62)$

b) $\sin^{-1}(1.62)$

c) $\cos^{-1}(1.62)$

d) None of these

894. When a ray of light is incident normally on a surface, then

a) Total internal reflection takes place

b) It passes undeviated

c) It undergoes dispersion

d) It gets absorbed by the surface

895. The fine powder of a coloured glass is seen as

a) Coloured

b) White

c) That of the glass colour

d) Black

896. The image of a small electric bulb fixed on the wall of a room is to be obtained on the opposite wall 4 m away by means of a large convex lens. The maximum possible focal length of the lens required for this purpose will be

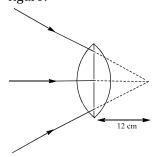
a) 0.5 m

b) 1.0 m

c) 1.5 m

d) 2.0 m

897. A convex lens *A* of focal length 20 cm and a concave lens *B* of focal length 56 cm are kept along the same axis with the distance *d* between them. If a parallel beam of light falling on *A* leaves *B* as a parallel beam, then distances *d* in cm will be


a) 25

 $^{\circ}$) 36

30

d) 50

898. If the focal length of the lens is 20 cm, what is the distance of the image from the lens in the following figure?

a) 5.5 cm

b) 7.5 cm

c) 12.0 cm

d) 20.0 cm

899. When a ray of light is incident normally on one refracting surface of an equilateral prism (Refractive index of the material of the prism = 1.5)

a) Emerging ray is deviated by $30^{\circ}\,$

b) Emerging ray is deviated by 45°

c) Emerging ray just grazes the second refracting surface

d) The ray undergoes total internal reflection at the second refracting surface

900. A parallel beam of light is incident on a converging lens parallel to its principal axis. As one moves away from the lens on the other side of the principal axis, the intensity of light

a) First decreases and then increases

b) Continuously increases

c) Continuously decreases

d) First increases and then decreases

901. The diameter of the eye-ball of a normal eye is about 2.5 *cm*. The power of the eye lens varies from

	a) 2 D to 10 D	b) 40 D to 32 D	c) 9 D to 8 D	d) 44 <i>D</i> to 40 <i>D</i>
902	A transparent plastic bag	filled with air forms a cond	cave lens. Now, if this bag is	completely immersed in
	water, then it behaves as			
	a) Divergent lens	b) Convergent lens	c) Equilateral prism	d) Rectangular slab
903	The focal length of a conv	ex mirror is 20 <i>cm</i> its radiu	us of curvature will be	
	a) 10 <i>cm</i>	b) 20 <i>cm</i>	c) 30 cm	d) 40 <i>cm</i>
904	With a concave mirror, an	object is placed at a distar	nce x_1 from the principal for	cus, on the principal axis.
	The image is formed at a	distance x_2 from the princi	pal focus. The focal length	of the mirror is
		$x_1 + x_2$	$\sqrt{\chi_1}$	<u></u>
	a) $x_1 x_2$	b) $\frac{x_1 + x_2}{2}$	c) $\frac{x_1}{x_2}$	d) $\sqrt{x_1x_2}$
			V	
905			irror at a distance of 60 cm	
			en focal length of the mirror	
	a) 15 <i>cm</i>	b) 30 <i>cm</i>	c) 60 <i>cm</i>	d) 120 <i>cm</i>
906		=	ach of focal length fare sep	arated by a distance 12 cn
		th (in cm) of the eyepiece is		
	a) 10.5	b) 12.0	c) 13.5	d) 15.5
907			gth 0.3 m and 0.1 m will ha	ve minimum spherical and
		the distance between them		
	a) 0.1 m	b) 0.2 m	c) 0.3 m	d) 0.4 m
908	-	the graph of 1/v versus 1/		
	$\oint \frac{1}{y}$	b) $o^{\frac{1}{y}}$	$\frac{1}{v}$	$\frac{1}{v}$
	a) V	h)	c) /	d) $\frac{1}{u}$
	1		1	
	$O \longrightarrow \frac{1}{u}$	$O \longrightarrow \frac{1}{u}$	$O \longrightarrow \frac{1}{u}$	$O^{\perp} \rightarrow \frac{1}{u}$
909	An electric bulb illuminate	es a plane surface. The inte	ensity of illumination on the	e surface at a point 2 m
	away from the bulb 5×1	0^{-4} phot (lumen cm ⁻²). Th	ne line joining the bulb to th	ne point makes an angle of
	60° with the normal to the	e surface. The intensity of t	the bulb in candela (candle	power) is
	a) 40×10^{-4}	b) 40	c) $40\sqrt{3}$	d) 20
910	The radius of the convex s	surface of plano-convex len	ns is $20cm$ and the refracti	ve index of the material of
	the lens is 1.5. The focal le	ength of the lens is		
	a) 30 <i>cm</i>	b) 50 <i>cm</i>	c) 20 <i>cm</i>	d) 40 <i>cm</i>
911	A man is suffering from co	olour blindness for green c	olour. To remove this defe	ct, he should use goggles o
	a) Green colour glasses	b) Red colour glasses	c) Smoky colour glasses	d) none of the above
912	A concave mirror of focal	length f (in air) is immerse	ed in water ($\mu = 4/3$). The	focal length of the mirror
	in water will be			
	a) f	b) $\frac{4}{3}f$	c) $\frac{3}{4}f$	d) $\frac{7}{3}f$
	a) <i>f</i>	3	T	3
913			90° prism and is totally int	_
	glass-air interface. If the a	ingle of reflection is 45°, w	e conclude that the refracti	ve index <i>n</i>
	↑			
	Д	7		

a) $n < \frac{1}{\sqrt{2}}$	b) $n > \sqrt{2}$	c) $n > \frac{1}{\sqrt{2}}$	d) $n < \sqrt{2}$
914. A double convex thin le	ns made of refractive index	1.6 has radii of curvature 1	5 cm each. The focal length
of this lens when immer	rsed in a fluid of refractive in	ndex 1.63, is	
a) 25 cm	b) 125 cm	c) 250 cm	d) -407.5 cm
915. If the angle of prism is 6	50° and the angle of minimu	m deviation is 40°, the angl	e of refraction will be
a) 30°	b) 60°	c) 100°	d) 120°
916. Dispersion can take place	ce for		,
	lly but not for longitudinal w	vaves	
-	only but not for transverse w		
c) Both transverse and	-		
d) Neither transverse n	_		
917. A diver inside water (µ		set at an angle of	
a) 60°	b) 90°	c) 0°	d) 49°
918. A point object is placed	,	ts real image is formed at a	distance of 20 <i>cm</i> from a
· · · · · · · · · · · · · · · · · · ·	bject is moved by $0.1cm$ tov	•	
a) $0.4 cm$ away from the	•	b) 0.4 <i>cm</i> towards the mi	•
c) $0.8 cm$ away from the		d) $0.8 cm$ towards the mi	
919. Velocity of light in a me			
a) 8	b) 6	c) 4	d) 2
920. In an experiment to find	,		
u and v . The graph look		ommora grapu io aravini	our con une magmende or
a)↑↑	b) 🔥	C) A1	d) 🔥
- v1 <u> </u>	2) v	~ V \) v1
$u \longrightarrow$	$u \longrightarrow$	$u \longrightarrow$	$u \longrightarrow$
921. Colour of the sky is blue	due to	CATION	
a) Scattering of light	OLTO2 FD 04	b) Total internal reflection	on
c) Total emission		d) None of the above	
922. A bucket contains some			rom above, the bottom
appears to be raised up	by 8 cm. The refractive inde	ex of the liquid is	
a) 5/4	b) 5	c) 4/5	d) 8/5
923. A fish rising vertically u	p towards the surface of wa	ter with speed $3 ms^{-1}$ obse	erves a bird diving vertically
down towards it with sp	peed 9 ms^{-1} . The actual velo	ocity of bird is	
A.			
A			
=			

924. A small piece of wire bent into an L shape with upright and horizontal portions of equal lengths, is placed with the horizontal portion along the axis of the concave mirror whose radius of curvature is 10 cm. If the bend is 20 cm from the pole of the mirror, then the ratio of the lengths of the images of the upright and horizontal portions of the wire is

a) 1:2

a) $4.5 \, ms^{-1}$

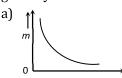
b) 3:1

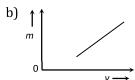
b) $5. ms^{-1}$

c) 1:3

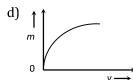
c) $3.0 \, ms^{-1}$

d) 2:1


d) $3.4 \, ms^{-1}$


925. The distance between an object and a divergent lens is m times the focal length of the lens. The linear magnification produced by the lens is

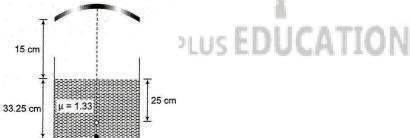
	a) <i>m</i>	b) 1/m	c) m + 1	d) $\frac{1}{m+1}$
926.		ex mirror of focal length 20		d and 1.6 m height is 6 cm
	•	he position of the second ca		
007	a) 19.35 cm	b) 17.45 cm	c) 21.48 cm	d) 15.49 cm
927.		ng spectacles work with a r	nicroscope	
	a) They cannot use the mi	-		
	b) They should keep on w	-		
	c) They should take off sp			
	d) (b) and (c) is both way			
928.	The minimum distance be	tween an object and its rea	al image formed by a conve	x lens is
	a) 1.5 <i>f</i>	b) 2 <i>f</i>	c) 2.5 <i>f</i>	d) 4 <i>f</i>
929.	•	index 1.414 and refractive the other refracting surface	•	fracting surfaces silvered. A angle of incidence is
	a) 45°	b) 60°	c) 30°	d) 0°
930.	A biconvex lens of focal le	ngth fforms a circular imag	ge of radius r of sun in foca	l plane. Then which option
	is correct?			
	a) $\pi r^2 \propto f$			
	b) $\pi r^2 \propto f^2$			
	-	ered by black sheet, then a	rea of the image is equal to	$\pi r^2 / 2$
	d) If <i>f</i> is doubled, intensity		ou or the made is equal to	, =
931	, ,	igh an equilateral prism suc	ch that the angle of inciden	ce is equal to the angle of
7011		is equal to $\frac{3}{4}$ the angle of pri		_
	a) 25°	b) 30°	c) 45°	d) 35°
932.	•	ane mirror may form a real		
	a) If the rays incident on t		0	
			ATTONI	
	c) If the object is placed v	the mirror are converging ery close to the mirror	AHON .	
	d) Under no circumstance	oc		
933		ong as the object is formed	hy a convey lens when the	object is 10 cm away from
755.	-	ong as the object will be for	=	
	~	-	-	d) 15 cm
024	•	b) 30 cm	•	., 20 0111
934.	-	o thin lenses of focal length of 0.5° at the objective. The	_	-
	a) 5°	b) 0.25°	c) 0.5°	d) 0.35°
935.	-	naterial of a planoconcave	-	-
	length of the lens in air is	•	, .	
	a) -0.45m	b) -0.6m	c) -0.75m	d) -1.0m
936.	•	re of a body at which it emi		-,
,,,,,	a) 1200°C	b) 1000°C	c) 500°C	d) 200°C
937		prism is Aand the refractive	•	
7371	angle of minimum deviati		mach of the material of th	e prisiii is cot(11/2).
	_	_	π	π
	a) $\pi + 2A$	b) $\pi - 2A$	c) $\frac{\pi}{2} + A$	d) $\frac{\pi}{2}$ – A
938.	If tube length of astronom the focal length of objectiv	_	nd magnifying power is 20	for normal setting, calculate
	a) 100 <i>cm</i>	b) 10 <i>cm</i>	c) 20 cm	d) 25 <i>cm</i>
	,	,	,	,


939.	, .	stance 20 cm from the pole	of a convex mirror of foca	llength 20 cm. The image is
	produced at	h) 20 am	a) 25 am	d) 10 am
040	a) 13.3 cm	b) 20 cm	c) 25 cm	d) 10 cm
940.		1.5) of focal length +10 cm	is immersed in water (µ =	= 1.33).The new focal
	length is	13.40		
	a) 20 cm	b) 40 cm	c) 48 cm	d) 12 cm
941.	5	of red, green and blue colo naterial of the prism for the	9	ingled prism <i>ABC</i> . The wavelengths are 1.39, 1.44
		e colour/colours transmitte	-	_
	A		or	p
	→			
	45° \	^		
	В	5		
	a) Red only	b) Red and green	c) All the three	d) None of these
942.	When the power of eye le	ns increases, the defect of v	rision is produced. The def	ect is known as
	a) Shortsightedness	b) Longsightedness	c) Colourblindness	d) None of the above
943.	When an object is kept at	a distance of 30 cm from a	concave mirror, the image	is formed at a distance of
	10 cm. If the object is mov	ved with a speed of 9 ms ⁻¹	, the speed with which ima	iges moved is
	a) 0.1ms^{-1}	b) 1 ms ⁻¹	c) 3 ms ⁻¹	d) 9 ms ⁻¹
944.	Wavelength of given light	waves in air and in a media	um are 6000 Å and 4000 Å	respectively. The critical
	angle is			
	(2)	b) $\sin^{-1}\left(\frac{2}{3}\right)$	(2)	\3/
945.		a thick plane mirror. When s of the plane mirror. Then	looked obliquely in the mi	rror, a number of images
	a) first image is brightest		b) second image is bright	est
	c) third image is brightest	t	d) all images beyond seco	
946.	A telescope using light ha	ving wavelength 5000 Å an	d using lenses of focal 2.5	and $30 cm$. If the diameter
	of the aperture of the objectively	ective is $10 cm$, then the res	colving limit and magnifyin	ng power of the telescope is
	a) $6.1 \times 10^{-6} rad$ and 12		b) $5.0 \times 10^{-6} rad$ and 12	
	c) $6.1 \times 10^{-6} rad$ and 8.3	× 10 ⁻²	d) $5.0 \times 10^{-6} rad$ and 8.3	× 10 ⁻²
947	•		,	ctive index 1.5. The speed of
<i>J</i> 17.		eienguruavening in vacuun	n enters a medium of ferra	ctive maex 1.5. The speed of
	light in the medium is a) $3 \times 10^8 \text{ms}^{-1}$	b) $2 \times 10^8 \text{ ms}^{-1}$	c) $1.5 \times 10^8 \text{ ms}^{-1}$	d) $6 \times 10^8 \text{ ms}^{-1}$
040		•		•
948.		t 60° on one face of a prism	_	9
		t ray is 30°. What is the ang	gie between the ray and the	e race from which its
	emerg?	13.000		12.000
0.40	a) 0°	b) 30°	c) 60°	d) 90°
949.		d in a liquid, whose refracti	ve index is equal to the ref	ractive index of the
	material of the lens. Then			
o = -	a) Decrease	b) Become zero	c) Become infinite	d) Increase
950.	Dispersive power depend	-		
	a) The shape of prism	b) Material of prism	c) Angle of prism	d) Height of the prism
951.	When a plane electromag	netic wave enters a glass sl	ab, then which of the follow	wing will not change?

- a) Wavelength
- b) Frequency
- c) Speed
- d) Amplitude
- 952. An object moving at a speed of 5 m/s towards a concave mirror of focal length f=1 mis at a distance of 9 m. The average speed of the image is
 - a) $\frac{1}{5}$ m/s
- b) $\frac{1}{10}$ m/s
- c) $\frac{5}{9}$ m/s
- d) $\frac{4}{10}$ m/s
- 953. The graph between the lateral magnification (m) produced by a lens and the distance of the image (v) is given by

- 954. The size of the image of an object, which is at infinity, as formed by a convex lens of focal length 30 cm is 2 cm. If a concave lens of focal length 20 cm is placed between the convex lens and the image at a distance of 26 cm from the convex lens, calculate the new size of the image
 - a) 1.25 cm
- b) 2.5 cm
- c) 1.05 cm
- d) 2 cm
- 955. The focal length (f) of a spherical (concave or convex) mirror of radius of curvature R is
 - a) $\frac{R}{2}$

b) *R*


c) $\left(\frac{3}{2}\right)R$

- d) 2*R*
- 956. In a compound microscope the objective of f_o and eyepiece of f_e are placed at distance L such that L equals
 - a) $f_o + f_e$

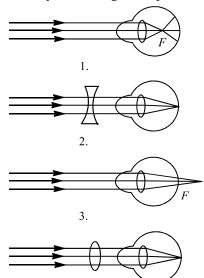
b) $f_o - f_e$

c) Much greater than f_o or f_e

- d) Much less than f_o or f_e
- 957. A container is filled with water ($\mu=1.33$) up to a height of 33.25 cm. A concave mirror is placed 15 cm above the water level and the image of an object placed at the bottom is formed 25 cm below the water level. The focal length of the mirror is

- a) 10 cm
- b) 15 cm
- c) 20 cm
- d) 25 cm
- 958. A ray of light falls on a transparent glass slab of refractive index 1.62. If the reflected ray and the refracted ray are mutually perpendicular, the angle of incidence is
 - a) $tan^{-1}(1.62)$
- b) $\tan^{-1} \left(\frac{1}{1.62} \right)$
- c) tan⁻¹(1.33)
- d) $\tan^{-1}\left(\frac{1}{1.33}\right)$
- 959. Monochromatic light of wavelength 589 nm is incident from air on a water surface. The refractive index of water is 1.33. The wavelength of the refracted light is
 - a) 589 nm
- b) 443 nm
- c) 333 nm
- d) 221 nm
- 960. A ray of light travels from an optically denser to rarer medium. The critical angle for the two media is C. The maximum possible deviation of the ray will be
 - a) $\left(\frac{n}{2} C\right)$
- b) 2*C*

- c) $\pi 2C$
- d) πC
- 961. The refractive index of a certain glass is 1.5 for light whose wavelength in vacuum is 6000 Å. The wavelength of this light when it passes through glass is
 - a) 4000 Å
- b) 6000 Å
- c) 9000 Å
- d) 15000 Å
- 962. The length of the tube of a microscope is $10 \, cm$. The focal lengths of the objective and eye lenses are $0.5 \, cm$ and $1.0 \, cm$. The magnifying power of the microscope is about


a) 5

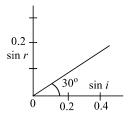
b) 23

c) 166

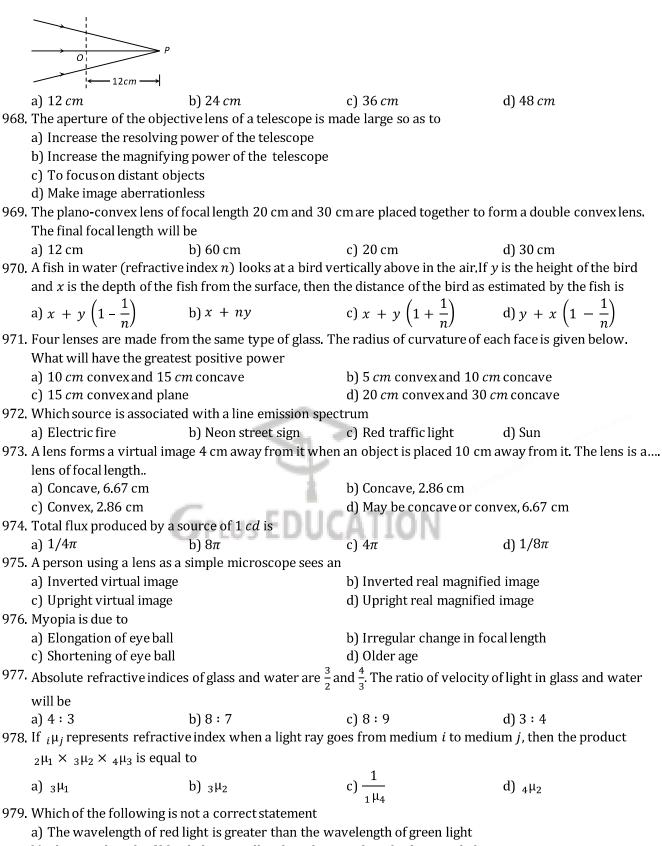
d) 500

963. Identify the wrong description of the below figures

a) 1 represents far-sightedness


b) 2 correction for short-sightedness

c) 3 represents far-sightedness


- d) 4 correction for far-sightedness
- 964. Light is incident from a medium X at an angle of incidence i and is refracted into a medium Y at angle of refraction r. The graph $\sin i \ versus \sin r$ is shown in figure. Which of the following conclusions would fit the situation?

PPLUS EDUCATION

- 1. Speed of light in medium *Y* is $\sqrt{3}$ times that in medium *X*
- 2. Speed of light in medium *Y* is $1/\sqrt{3}$ times that in medium *X*
- 3. Total internal reflection will occur above a certain i value

- a) 2 and 3
- b) 1 and 3
- c) 2 only
- d) 3 only
- 965. A diver in a swimming pool wants to signal his distress to a person lying on the edge of the pool by flashing his water proof flash light
 - a) He must direct the beam vertically upwards
 - b) He has to direct the beam horizontally
 - c) He has to direct the beam at an angle to the vertical which is slightly less than the critical angle of incidence for total internal reflection
 - d) He has to direction the beam at an angle to the vertical which is slightly more than the critical angle of incidence for the total internal reflection
- 966. For the myopic eye, the defect cured by
 - a) Convex lens
- b) Concave lens
- c) Cylindrical lens
- d) Toric lens
- 967. Figure given below shows a beam of light converging at point *P*. When a concave lens of focal length 16 *cm* is introduced in the path of the beam at a place *O* shown by dotted line such that *OP* becomes the axis of the lens, the beam converges at a distance *x* from the lens. The value *x* will be value to

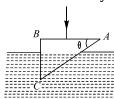
- b) The wavelength of blue light is smaller than the wavelength of orange light
- c) The frequency of green light is greater than the frequency of blue light
- d) The frequency of violet light is greater than the frequency of blue light
- 980. A ray of light travelling from glass to air (refractive index of glass=1.5). The angle of incidence is 50°. The deviation of the ray is

a) 0°

c)
$$50^{\circ} - \sin^{-1} \left[\frac{\sin 50^{\circ}}{1.5} \right]$$

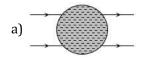
d)
$$\sin^{-1} \left[\frac{\sin 50^{\circ}}{1.5} \right] - 50^{\circ}$$

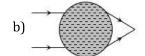
- 981. Two point sources A and B of luminous intensities 1 cd and 16 cd respectively are placed 100 cm apart. A grease spot screen is placed between the two sources. For the grease spot to become indistinguishable from both the sides, it should be placed at
 - a) 80 cm from 16 cd lamp and 20 cm from 1 cd
- b) 20 cm from the 16 cd and 80 cm from 1 cd
- c) $\frac{400}{3}$ cm from 16 cd and $\frac{100}{3}$ cm from 1 cd
- d) $\frac{100}{3}$ cm from 16 cd and $\frac{400}{3}$ cm from 1 cd
- 982. There is an equiconvex glass lens with radius of each face as R and $a\mu_g = 3/2$ and $a\mu_w = 4/3$. If there is water in object space and air in image space, then the focal length is
 - a) 2R

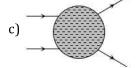

b) R

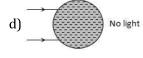
- c) 3R/2
- d) R^2
- 983. The sun makes 0.5° angle of earth surface. Its image is made by convex lens of 50 cm focal length. The diameter of the image will be
 - a) 5 mm
- b) 4.36 mm
- c) 7 mm
- d) None of these
- 984. Which mirror is to be used to obtain a parallel beam of light from a small lamp?
 - a) Plane mirror
- b) Convex mirror
- c) Concave mirror
- d) Any one of these
- 985. A object is placed at a distance of f/2 from a convex lens of focal length f. The image will be
 - a) At one of the foci, virtual and double its size
- b) Is greater than 1.5 but less than 2.0

c) At 2f, virtual and erect


- d) None of the above
- 986. In a pond of water, a flame is held 2 m above the surface of water. A fish is at depth of 4 m from water surface. Refractive index of water is $\frac{4}{3}$. The apparent height of the flame from the eyes of fish is
 - a) 5.5 m
- c) $\frac{8}{3}$ m


- 987. A glass prism ABC (refractive index 1.5), immersed in water (refractive index 4/3). A ray of light is incident normally on face AB. If it is totally reflected at face AC then




GPLUS EDUCATION

- a) $\sin \theta \ge \frac{8}{9}$
- b) $\sin \theta \ge \frac{2}{2}$
- c) $\sin \theta = \frac{\sqrt{3}}{2}$ d) $\frac{2}{3} < \sin \theta < \frac{8}{9}$
- 988. A water drop in air refractes the light ray is

- 989. 60° prism has $\mu = \sqrt{2}$. Angle of incidence for minimum deviation is

b) 30°

- d) 90°
- 990. The distance travelled by light in glass (refractive index = 1.5) in a nanosecond will be
 - a) 45 cm
- b) 40 cm
- c) 30 cm
- d) 20 cm
- 991. To an observer on the earth the starts appear to twinkle. This can be ascribed to
 - a) The fact that stars do not emit light continuously
 - b) Frequent absorption of star light by their own atmosphere
 - c) Frequent absorption of star light by the earth's atmosphere
 - d) The refractive index fluctuations in the earth's atmosphere
- 992. The phenomenon utilised in an optical fibre is
 - a) Refraction

b) Interference

c) Polarization

d) Total internal reflection

993. The focal length of the objective and eye-piece of a telescope are respectively 100 cm and 2 cm. The moon subtends an angle of 0.5° at the eye. If it is looked through the telescope, the angle subtended by the moon's image will be

a) 100°

b) 50°

c) 25°

994. Focal length of objective and eyepiece of telescope are 200 cm and 4 cm respectively. What is length of telescope for normal adjustment?

a) 196 cm

b) 204 cm

c) 250 cm

d) 225 cm

995. 'Mirage' is a phenomenon due to

a) Reflection of light

b) Refraction of light

c) Total internal reflection of light

d) Diffraction of light

996. *P* is a point on the axis of a convex mirror. The image of *P* formed by the mirror, coincides with *P*. A rectangular glass slab of thickness t and refractive index μ is now introduced between P and the mirror. For the image of *P* to coincide with *P* again, the mirror must be moves

a) Towards P by $(\mu - 1)t$

b) Away from P by $(\mu - 1)t$

c) Towards P by $t\left(1-\frac{1}{n}\right)$

d) Away from P by $t\left(1-\frac{1}{\mu}\right)$

997. An object placed 10 cm in front of a lens has an image 20 cm behind the lens. What is the power of the lens (in dioptres)

a) 1.5

b) 3.0

c) -15.0

998. The light takes in travelling a distance of 500 m in water. Given that μ for water is 4/3 and the velocity of light in vacuum is $3 \times 10^{10}~\rm cm s^{-1}$. Calculate equivalent optical path

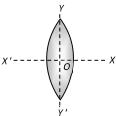
a) 566.64 m

b) 666.64 m

c) 586.45 m

d) 576.64 m

999. Two similar plano-convex lenses are combined together in three different ways as shown in the adjoining figure. The ratio of the focal lengths in three cases will be


a) 2:2:1

b) 1:1:1

100 An equiconvex lens is cut into two halves along (i) XOX' and (ii) YOY' as shown in the figure. Let f, f', f''

be the focal lengths of the complete lens, of each half in case (i), and of each half in case (ii), respectively.

Choose the correct statement from the following

a) f' = 2f, f'' = f b) f' = f, f'' = f c) f' = 2f, f'' = 2f d) f' = f, f'' = 2f

100 A biconvex lens of focal length 15 cm is in front of a plane mirror. The distance between the lens and the

mirror is 10 cm. A small object is kept at a distance of 30 cm from the lens. The final image is

a) Virtual and at a distance of 16 cm from the mirror

b) Real and at a distance of 16 cm from the mirror

c) Virtual and at a distance of 20 cm from the mirror

d) None of the above

100 A lamp rated at 100 cd hangs over the middle of a round table with diameter 3 m at a height of 2 m. It is

replaced by a lamp of 25 cd and the distance to the table is changed so that theillumination at the centre of the table remains as before. The illumination at edge of the table becomes X times the original. Then X is

al	1	/3

d) 1/9

100 A plano-convex lens has a thickness of 4 cm. When placed on a horizontal table, with the curved surface in

- 3. contact with it, the apparent depth of the bottom most point of the lens is found to be 3 cm. If the lens is inverted such that the plane face is in contact with the table, the apparent depth of the centre of the plane face is found to be 25/8 cm. Find the focal length of the lens. Assume thickness to be negligible
 - a) 85 cm
- b) 59 cm
- c) 75 cm

d) 7.5 cn

100 The focal lengths for violet, green and red light rays are f_V , f_G and f_R respectively. Which of the following is

4. the true relationship

a)
$$f_R < f_G < f_V$$

b)
$$f_V < f_G < f_R$$

c)
$$f_G < f_R < f_V$$

d)
$$f_G < f_V < f_R$$

100 If I_1 and I_2 be the size of the images respectively for the two positions of lens in the displacement method,

5. then the size of the object is given by

a)
$$I_1/I_2$$

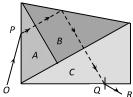
b)
$$I_1 \times I_2$$

c)
$$\sqrt{I_1 \times I_2}$$

d)
$$\sqrt{I_1/I_2}$$

100 Resolving power of a microscope depends upon

6.


- a) Wavelength of light used, directly
- b) Wavelength of light used, inversely

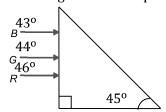
c) Frequency of light used

d) Focal length of objective

100 Three glass prisms *A*, *B* and *C* of same refractive index are placed in contact with each other as shown in

7. figure, with no air gap between the prisms. Monochromatic ray of light OP passes through the prism assembly and emerges as QR. The conditions of minimum deviation is satisfied in the prisms

a) A and C


b) B and C

c) A and B

d) In all prisms A, B and C

100 Figure shows a mixture of blue, green and red coloured rays incident normally on a right angled prism.

8. The critical angles of the material of the prism for red, green and blue are 46°, 44° and 43° respectively. The arrangement will separate

a) Red colour from blue and green

b) Blue colour from red and green

c) Green colour from red and blue

d) All the three colours

100 In Gallilean telescope, if the powers of an objective and eye lens are respectively +1.25 D and -20 D, then

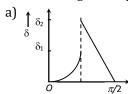
- 9. for relaxed vision, the length and magnification will be
 - a) 21.25 *cm* and 16
- b) 75 *cm* and 20
- c) 75 *cm* and 16
- d) 8.5 cm and 21.25

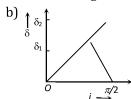
101 To remove myopia (short sightedness) a lens of power 0.66 $\it D$ is required. The distance point of the eye is

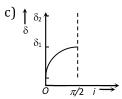
- 0. approximately
 - a) 100 cm
- b) 150 cm
- c) 50 *cm*
- d) 25 cm

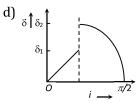
 $101\,$ An astronomical telescope has a large aperture to

1.

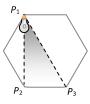

a) Reduce spherical aberration


b) Have high resolution


c) Increase span of observation

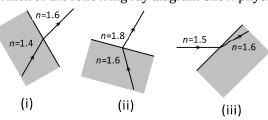

d) Have low dispersion

- 101 An object is immersed in a fluid. In order that the object becomes invisible, it should
- 2.
- a) Behave as a perfect reflector
- b) Absorb all light falling on it
- c) Have refractive index one
- d) Have refractive index exactly matching with that of the surrounding fluid
- 101 A ray of light travels from a medium of refractive index μ to air. Its angle of incidence in the medium is i,
- measured from the normal to the boundary, and its angle of deviation is $\delta . \delta$ is plotted against *i* which of the following best represents the resulting curve



- 101 A hypermetropic person has to use a lens of power +5 D to normalize his vision. The near point of the
- hypermetropic eye is
 - a) 1 m

- b) 1.5 m
- c) 0.5 m
- d) 0.66 m
- 101 A light source is located at P_1 as shown in the figure. All sides of the polygon are equal. The intensity of
- illumination at P_2 is I_0 . What will be the intensity of illumination at P_3



- a) $\frac{3\sqrt{3}}{9}I_0$

- 101 Correct exposure for a photographic print is 10 seconds at a distance of one metre from a point source of
- 20 candela. For an equal fogging of the print placed at a distance of 2 m from a 16 candela source, the necessary time for exposure is
 - a) 100 s
- b) 25 s

c) 50 s

- d) 75 s
- 101 A spherical mirror forms an image of magnification 3. The object distance, if focal length of mirror is 24
- cm, may be
 - a) 32 cm, 24 cm
- b) 32 cm, 16 cm
- c) 32 cm only
- d) 16 cm only
- 101 Which of the following ray diagram show physically possible refraction

b) (ii)

c) (iii)

- d) None of these
- 101 When light travels from glass to air, the incident angle is θ_1 and the refracted angle is θ_2 . The true relation 9. is
- a) $\theta_1 = \theta_2$
- b) $\theta_1 < \theta_2$
- c) $\theta_1 > \theta_2$
- d) Not predictable
- 102 To increase both the resolving power and magnifying power of a telescope 0.
- a) Both the focal length and aperture of the objective has to be increased

 - b) To focal length of the objective has to be increased

102	c) The aperture of the objective has to be increased d) The wavelength of light has to be decreased A focal length of a thin biconvex lens is 20 cm. When an object is moved from a distance of 25cm in front						
1.	of it to 50cm, the magnification of its image $% \left(1\right) =\left(1\right) \left(1\right) $	e changes from m_{25} to m_{50} .The ratio	$n \frac{m_{25}}{m_{50}}$ is				
	a) 6 b) 7	c) 8	d) 9				
102 2.	A beam of parallel rays is brought to focus by a plano-convex lens. A then concave lens of the same focal length is joined to the first lens. The effect of this is a) The focus shifts to infinity b) The focal point shifts towards the lens by a small distance c) The focal point shifts away from the lens by a small distance d) The focus remains undisturbed						
102 3.	The critical angle of a medium with respec	t to air is 45°. The refractive index o	of that medium will be				
	a) 1.72 b) 1.414	c) 2.12	d) 1.5				
102 4.	For a given lens, the magnification was found to be twice as large as when the object was $0.15\mathrm{m}$ distant from it as when the distance was $0.2\mathrm{m}$. The focal length of the lens is						
102 5.	a) 1.5 m b) 0.20 m Optical fibres are related with	c) 0.10 m	d) 0.05 m				
	a) Communication b) Light	c) Computer	d) None of these				
102	When a convergent beam of light is incident on a plane mirror, the image formed is						
6.	a) upright and realc) inverted and virtual	b) upright and virtual d) inverted and real					
102	An astronomical telescope has objective ar	nd eye-piece lenses of powers 0.5 D	and 20 D respectively. What				
7.	will be its magnifying power?						
400	a) 30 b) 10	c) 40	d) 20				
	A person's near point is 50 cm and his far	point is $3m$. Power of the lenses he	requires for				
8.	(i) reading and(ii) for seeing distant stars are						
	a) $-2 D$ and 0.33 D b) 2 D and -0.3	(33 D c) -2 D and 3 D	d) 2 <i>D</i> and −3 <i>D</i>				
102	A convex mirror of radius of curvature 1.6		-				
9.	formed at a distance of						
	a) 8/13 m in front of the mirror	b) 8/13 m behind the mi					
400	· ·	c) 4/9 m in front of the mirror d) 4/9 m behind the mirror					
0.	A spherical surface of radius of curvature R index 1.5). The centre of curvature is in the image Q in the glass. The line PQ cuts the R a) 5 R b) 3 R	e glass. A point object <i>P</i> placed in air	is found to have a real				
103 1.	A point source of light is placed 4 m below the surface of water of refractive index 5/3. The minimum diameter of a disc, which should be placed over the source, on the surface of water to cut-off all light coming out of water						
	a) Infinite b) 6 m	c) 4 m	d) 3m				
103 2.	Relative difference of focal lengths of object						
	a) It is equal in both	b) It is more in telescope					
102	c) It is more in microscope	d) It may be more in any	one				
103 3.	A person is suffering from the defect astign	nausiii, ius iiiain reason is					

PHONE NO: 8583042324 P a g e | 92

) Power of accommodation of the eye is decreased						
	An infinitely long rod lies along the axis of concave mirror of focal length f. The near end of the rod is at a						
4.	distance $x > f$ from the mirror. Then the length of the image of the rod is						
	a) $\frac{f^2}{x+f}$	b) $\frac{f^2}{r}$	c) $\frac{xf}{x-f}$	d) $\frac{f^2}{f}$			
	~ ' '	<i>7</i> .	,	,			
5.	The magnification of the image when an object is placed at a distance x from the principle focus of a mirror of focal length f is						
	a) $\frac{x}{f}$	b) $1 + \frac{f}{x}$	c) $\frac{f}{x}$	d) $1 - \frac{f}{x}$			
103	An object 2.4 m in front of	of a lens forms a sharp imag	ge on a film 12 <i>cm</i> behind t	he lens. A glass plate 1 cm			
6.	thick, of refractive index 1.50 is interposed between lens and film with its plane faces parallel to film. At						
	what distance (from lens) should object shifted to b	e in sharp focus on film				
	a) 7.2 <i>m</i>	b) 2.4 <i>m</i>	c) 3.2 <i>m</i>	d) 5.6 <i>m</i>			
103	For a prism of refractive	index 1.732, the angle of m	inimum deviation is equal	to the angle of prism. Then			
7.	the angle of the prism is						
	a) 50°	b) 60°	c) 70°	d) None of these			
103	•	entical plano-convex lenses	s each having a focal length	of 50 cm are placed against			
8.	each other to form a usual biconvex lens. The distance from this lens combination at which an object must						
		l, inverted image which has		•			
	a) 50 cm	b) 25 cm	c) 100 cm	d) 40 cm			
103 9.		of Na the missing waveleng	3				
J.	a) 589 nm	b) 589.6 <i>nm</i>	c) Both	d) None of these			
104		-		-			
	In fog, photographs of the objects taken with infrared radiations are more clear than those obtained						
0.	during visible light because						
	a) $I - R$ radiation has lesser wavelength than visible radiation						
	b) Scattering of $I - R$ light is more than visible light						
	c) The intensity of $I - R$ light from the object is less						
101	_	Scattering of $I - R$ light is less than visible light the red light is replaced by blue light illuminating object in a microscope the resolving power of the					
		a by blue light illuminating	object in a microscope the	resolving power of the			
1.	microscope	h) Ingganga	a) Cata halvad	d) Domaina unabanas d			
104	a) Decreases	,	c) Gets halved	_			
	-	n in water is viewed by an o	bserver on the bank of a fa	ke. To what height the			
2.	image of the fish is raised? (Refractive index of like water=4/3)						
	•		a) 2.0 av-	4) 2			
104	a) 9 cm	b) 12 cm	c) 3.8 cm	d) 3 cm			
	rocai length of a convex	lens will be maximum for					
3.	-) Dl l!-l-+	l-) W-111! -	-) C l'-l-t	1) D - 1 1: -1-4			
104	a) Blue light	b) Yellow light	c) Green light	d) Red light			
	1.04 The relation between n_1 and n_2 if the behavior of light ray is as shown in the figure						
4.							
	n_1 n_2						
	Lens						
	a) $n_2 > n_1$	b) $n_1 \gg n_2$	c) $n_1 > n_2$	d) $n_1 = n_2$			

WEB: WWW.GPLUSEDUCATION.ORG

GPLUS EDUCATION

a) Distance of the eye lens from retina is increasedb) Distance of the eye lens from retina is decreased

c) The cornea is not spherical

				opius zaucutiei			
104	If $arepsilon_0$ and μ_0 are respectively, the electric permittivity and the magnetic permeability of free space, $arepsilon$ and μ						
5.	the corresponding quant	he corresponding quantities in a medium, the refractive index of the medium is					
	a) $\sqrt{\frac{\mu\varepsilon}{\mu_0\varepsilon_0}}$	b) $\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}$	c) $\sqrt{\frac{\mu_0 \varepsilon_0}{\mu \varepsilon}}$	d) $\sqrt{\frac{\mu\mu_0}{\varepsilon\varepsilon_0}}$			
104	A ray of light incident normally on an isosceles right angled prism travels as shown in the figure. The least						
ó.	value of the refractive inc	lex of the prism must be					
	a) $\sqrt{2}$	b) $\sqrt{3}$	c) 1.5	d) 2.0			
104	Two beams of red and vi	olet colours are made to pa	ss separately through a pri	sm of $A = 60^{\circ}$ In the			
7.	minimum deviation posit	tion, the angle of refraction	inside the prism will be				
	a) Greater for red colour	- •	b) Equal but not 30° for b	oth the colours			
	c) Greater for violet colo	ur	d) 30° for both the colours				
104 3.	A defective eye cannot see close objects clearly because their image is formed						
	a) On the eye lens		b) Between eye lens and	retina			
	c) On the retina		d) Beyond retina				
104	The critical angle between	The critical angle between an equilateral prism and air is 45° . If the incident ray is perpendicular to the					
€.	refractive surface, then	the state of					
	a) After deviation it will emerge from the second refracting surface						
	b) It is totally reflected on the second surface and emerges out perpendicularly from third surface in air						
	 c) It is totally reflected from the second and third refracting surfaces and finally emerges out from the firs surface 						
	d) It is totally reflected fr	om all the three sides of pr	ism and never emerges out	<u>.</u>			
105	An object is placed asymmetrically between two plane mirrors inclined at an angle of 72°. The nu						
).	images formed is						
	a) 5	b) 4	c) 2	d) Infinite			
105	A monochromatic light is	naccod through a pricm	coloure chows minimu	m deviation			

c) Yellow

a) Red

b) Violet

d) Green