GPLUS EDUCATION

Dat Tin			CHEMISTRY					
Ma	chemical bonding and	MOLECULAR STR						
	Single Correct Answer Type							
1.	The hybrid state of S in SO ₃ is similar to that of							
	a) C in C_2H_2 b) C in C_2H_4	c) C in CH ₄	d) C in CO ₂					
2.	The hydration energy of Mg ²⁺ is larger than that of:							
	a) Al ³⁺ b) Na ⁺	c) Be ²⁺	d) None of these					
3.	Number of lone pair (s) in XeOF ₄ is/are							
	a) 0 b) 1	c) 2	d) 3					
4.	Van der Waals' forces between molecules depend up		N 411 6 1					
_	a) Number of electrons b) Charge on nucleus	c) Radius of atoms	d) All of these					
5.	XeF ₆ is:							
	a) Octahedral							
	b) Pentagonal pyramidal c) Planar							
	d) tetrahedral							
6.	The bond order in NO is 2.5 while that in NO ⁺ is 3.1	Which of the following stat	tements is true for these two					
0.	species?							
	a) Bond length in NO ⁺ is greater than in NO							
	b) Bond length in NO is greater than in NO ⁺							
	 c) Bond length in NO⁺ is equal to than in NO d) Bond length is unpredictable 	CATION						
7.	An atom with atomic number 20 is most likely to co	mbine chemically with the	atom whose atomic number					
	is:							
	a) 11 b) 16	c) 18	d) 10					
8.	Which has the largest distance between the carbon l							
_	a) Ethane b) Ethene	c) Ethyne	d) Benzene					
9.	Length of hydrogen bond ranges from 2.5Å to:	2068	1) 0 0 °					
10	a) 3.0 Å b) 2.75 Å	c) 2.6 Å	d) 3.2 Å					
10.	If $H - X$ bond length is 2.00 Å and $H - X$ bond has d	- -	^o C − m,					
	the percentage of ionic character in the molecule wi		d) 20%					
11	a) 10% b) 16% Which molecule is planar?	c) 18%	uj 20%					
11.	a) NH ₃ b) CH ₄	c) C ₂ H ₄	d) SiCl ₄					
12	From the molecular orbital theory, one can show that		-					
12.	a) 2 b) 1	c) 3	d) 4					
13.	Two ice cubes are pressed over each other until the	,	,					
	forces dominates for holding them together?	,						
	a) Dipole-dipole interaction	b) Van der Waals' forces						
	c) Hydrogen bond formation	d) Covalent attraction						
14.	Maximum number of covalent bonds between two li							
	a) Three b) Two	c) Four	d) One					
15.	When sodium and chlorine react, energy is:							
	a) Released and ionic bond is formed							

				opias Laacation
	b) Released and covalent			
	c) Absorbed and covalen			
	d) Absorbed and ionic bo			
16.	-		is a H ₂ O molecule can parti	•
	a) 1	b) 2	c) 3	d) 4
17.	_	st ionisation energy among	-	
		b) $1s^2$, $2s^22p^6$, $3s^1$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^5$
18.	Bond energies in NO, NO			
	•	•	c) $N0^+ > N0 > N0^-$	
19.			owing molecules? (X=S, Xe	
	a) SF ₄	b) XeF ₄	c) SF ₆	d) CF ₄
20.	_	two hybrid orbitals is 105°	The percentage of s-chara	icter of hybrid orbital is
	between			
	a) 50 – 55%	b) 9 – 12%	c) 22 – 23%	d) 11 – 12%
21.	Which is electron deficien	-		
	a) C_2H_4	b) B_2H_6	c) C ₂ H ₆	d) NaBH ₄
22.	•			
	a) CCl ₄ is non-polar and	•		
	b) Water is non-polar and			
	c) Water and CCl ₄ both a	re polar		
	d) None of the above			
23.			oroperties of ionic compour	ıds?
	•	high metling and boiling p		
	-	in aqueous medium is ver		
		_	lutions do not conduct elec	tricity
	d) They are highly solubl			
24.		l pi (π) bonds present in be		
25.	a) 12, 6 Which of the following is	b) 6, 6 not tetrahedral?	c) 6, 12	d) 12, 3
	a) BF ₄	b) NH ₄ ⁺	c) CO ₃ ²⁻	d) SO ₄ ²⁻
26.	In PCl ₅ molecule, P is:			
	a) sp^3 -hybridized	b) dsp^2 -hybridized	c) ds^3p -hybridized	d) sp^3d -hybridized
27.	The bond angle and % of	d-character in SF ₆ are		
	a) 120°, 20%	b) 90°, 33%	c) 109°, 25%	d) 90°, 25%
28.	Linear combination of tw	o hybridized orbitals, belo	nging to two atoms and eac	ch having one electron leads
	to:			
	a) Sigma-bond			
	b) Double bond			
	c) Coordinate covalent be	ond		
	d) Pi-bond			
29.	In allene structure, three	carbon atoms are joined by	y:	
	a) Three σ -and three π -b	onds		
	b) Two σ - and one π -bon	d		
	c) Two σ -and two π -bond	ds		
	d) Three π -bonds only			
30.	Geometry of SiO ₄ ⁴⁻ anion	is		
	a) Tetrahedral	b) Trigonal	c) Trihedral	d) Pentagonal
31.	The carbon atom in graph	hite is:		
	a) sp^2 -hybridized	b) sp^3 -hybridized	c) <i>sp</i> -hybridized	d) None of these
22	Roran cannot form which	one of the following anion	nc?	

G	n	lus	Ea	luc	ati	ัดท
U	$\boldsymbol{\nu}$	ıus	Lu	uc	uu	UII

			Gpius Eaucation
	a) BF ₆ ³⁻ b) BH ₄ ⁻	c) $B(OH)_4^-$	d) BO ₂
33.	If the ionic radii of K^+ and F^- are about 1.34 $\mbox{\normalfont\AA}$ each,	then the expected values o	f atomic radii of K and F
	should be respectively:		
	a) 1.34 and 1.34 Å b) 2.31 and 0.64 Å	c) 0.64 and 2.31 Å	d) 2.31 and 1.34 Å
34.	If Z -axis is the molecular axis, then π -molecular orbi	tals are formed by the over	lap of
	a) $s + p_z$ b) $p_x + p_y$	c) $p_z + p_z$	d) $p_x + p_x$
35.	Which one is the weakest bond?		
	a) Hydrogen b) Ionic	c) Covalent	d) Metallic
36.	The total number of valency electrons for PO_4^{3-} ion is	S:	
	a) 32 b) 16	c) 28	d) 30
37.	The ratio of σ and π -bonds in benzene is:		
	a) 2 b) 6	c) 4	d) 8
38.	The geometry of PF ₅ molecule is:		
	a) Planar b) Square planar	c) Trigonal bipyramidal	d) Tetrahedral
39.	Which one of the following linear structure?		
	$(I)I_3^- \qquad \qquad (II)NO_2^-$		
	$(III)I_3^+$ $(IV)SO_2$		
	$(V)N_3^-$		
	a) I, II and III b) I and V	c) II, III and IV	d) All of these
40.	According to MO theory, which of the following lists	ranks the nitrogen species	in terms of increasing bond
	order?		
	a) $N_2^- < N_2^{2-} < N_2$ b) $N_2^- < N_2 < N_2^{2-}$	c) $N_2^{2-} < N_2^- < N_2$	d) $N_2 < N_2^{2-} < N_2^{-}$
41.	The equilateral triangle shape has:		
	a) sp -hybridization b) sp^2 -hybridization	c) sp^3 -hybridization	d) sp^3d -hybridization
42.	Which of the following has fractional bond order?		
	a) O_2^{2+} b) O_2^{2-}	c) F ₂ ²⁻	d) H ₂
43.	For which of the following hybridization the bond ar	ngle is maximum?	
	a) sp^2 b) sp	c) sp^{3}	d) dsp^2
44.	Experiment shows that H ₂ O has a dipole moment wh	nereas, CO ₂ has not. Point o	ut the structures which
	best illustrate these facts:		
	a) $O=C=O, H-O-H$ b) \bigwedge_{O}^{C} , $H-O-H$	O	ОН
	a) $0=C=0, H=0=H$ b) \bigwedge	c) $0 = C = 0$.	a)
	0 0	τη U	Č=0,Ö-H
4 5		П	
43.	In TeCl ₄ , the central atom tellurium involves a) sp^3 hybridisation b) sp^3 d hybridization	c) $sp^3 d^2$ hybridisation	d) dam² hybridication
16	Stability of hydrides generally increases with:	c) sp a hybridisadon	uj usp ilybriuisation
40.	a) Increase in bond angle		
	b) Decrease in bond angle		
	c) Decrease in bond angle		
	d) None of these		
17	Which of the following is isoelectronic with CO_2 ?		
47.	a) NO_2 b) NO	a) N O	4) N O
40	, <u> </u>	c) N ₂ 0	d) N_2O_4
40.	Which can be described as a molecule with residual	-	d) RoCl
40	a) N ₂ b) CH ₄	c) NaCl	d) BeCl ₂
47.	Lattice energy of an ionic compound depends upon	h) Padring of ions only	
	a) Charge on the ion and size of the ion	b) Packing of ions only	
E0	c) Size of the ion only Identify the correct statement from below concerning	d) Charge on the ion only	— СН
50.	Identify the correct statement from below, concerning. The malogula is planer	-	_
	a) The molecule is planar	by one or the three (carbon atoms is in an-

sp^3 hybridised state

The molecule is non - planar with the two $-CH_2d$) All the carbon atoms are sp -hybridized

c) groups being in planes perpendicular to each other

- 51. (i) H C H angle in CH_4
 - (ii) Cl B Cl angle in BCl_3
 - (iii) F I F angle in IF_7 in a plane
 - (iv) I I I angle in I_3^-

Increasing order of above bond angles is

a) (i) < (ii) < (iii) < (iv)

b) (ii) < (i) < (iii) < (iv)

c) (iii) < (i) < (ii) < (iv)

- d) (iv) < (ii) < (i) < (iii)
- 52. Among the following elements, the most electronegative is:
 - a) Oxygen
- b) Chlorine
- c) Nitrogen
- d) Fluorine

- 53. Metallic bonds do not play a role in:
 - a) Brass
- b) Copper
- c) Germanium
- d) Zinc

54. Which p-orbitals overlapping would give the strongest bond?

- 55. H₂O boils at higher temperature than H₂S because it is capable of forming:
 - a) Ionic bonds
- b) Covalent bonds
- c) Hydrogen bonds
- d) Metallic bonds

- 56. When two atomic orbitals combine, they form:
 - a) One molecular orbitals
 - b) Two molecular orbitals
 - c) Two bonding molecular orbitals
 - d) Two antibonding molecular orbitals
- 57. The correct increasing covalent nature is:
 - a) NaCl < LiCl < BeCl₂
- b) BeCl₂ < NaCl < LiCl
 - c) $BeCl_2 < LiCl < NaCl$
- d) LiCl < NaCl < BeCl₂
- 58. IP₁ and IP₂ of Mg are 178 and 348 kcal mol⁻¹. The energy required for the reaction,

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$
 is:

- a) $+170 \, \text{kcal}$
- b) +526 kcal
- c) -170 kcal
- d) -526 kcal

59. The electronic configuration

$$(\sigma ls)^2 (\overset{*}{\sigma} ls)^2 (\sigma 2s)^2 (\overset{*}{\sigma} 2s)^2 (\sigma 2p_x)^2$$

$$(\pi 2p_y)^2(\pi 2p_z)^2(\pi 2p_y)^2(\pi 2p_z)^1$$

can be assigned to

a) O

b) 0₂⁺

c) 0_{2}^{-}

- d) 02⁻
- 60. Some of the properties of the two species, NO_3^- and H_3O^+ are described below. Which one of them is correct?
 - a) Dissimilar in hybridization for the central atom with different structure
 - b) Isostructural with same hybridization for the central atom
 - c) Isostructural with different hybridization for the central atom
 - d) Similar is hybridization for the central atom with different structure
- 61. 6, 6

Gplus Education	Gpi	us	Ea	ис	atic	าก
------------------------	-----	----	----	----	------	----

	a) 6, 6	b) 6, 6	c) 6, 6	d) 6, 6
62.	Greater the dipole mome	nt:		
	a) Greater is the ionic nat	ture		
	b) Lesser the polarity			
	c) Smaller the ionic natur	e		
	d) None of these			
63.	H-B-H bond angle in BH	I ₄ is:		
	a) 180°	b) 120°	c) 109°	d) 90°
64.	Which of the following me	olecular orbitals has two n	odal planes?	
	a) $\sigma 2p_x$	b) $\pi 2p_{y}$	c) $\pi^* 2p_y$	d) $\sigma^* 2p_x$
65.	The common feature amo	ong the species CN ⁻ , CO and	d NO ⁺ are:	
	a) Bond order three and	b) Bond order three and	c) Bond order two and π -	d) Isoelectronic and weak
	isoelectronic	weak field ligands	acceptors	field ligands
66.	Hydrogen bonding is max	_	•	<u> </u>
	a) C ₂ H ₅ OH	b) CH ₃ OCH ₃	c) $(CH_3)_2C = 0$	d) CH ₃ CHO
67.	The O—H bond distance	in water molecule is:		
	a) 1.0Å	b) 1.33 Å	c) 0.96 Å	d) 1.45 Å
68.	O_2^{2+} has a bond order of	•		
	a) 1	b) 2	c) 3	d) 4
69.	Which among the following	ng molecules/ ions is diam	agnetic?	
	a) Super oxide ion			
	b) Oxygen			
	c) Carbon molecule		>	
	d) Unipositive ion of N ₂ m	olecule		
70.	The enolic form of aceton	e contains		
	a) 9 sigma bonds, 1 pi bo	nd and two lone pairs		
	b) 8 sigma bonds, 2 pi bo	nd and two lone pairs		
	c) 10 sigma bonds, 1 pi b	ond and one lone pairs	TATION	
	d) 9 sigma bonds, 2 pi bo	nd and one lone pairs	27114011	
71.	Which of the following ar	e isoelectronic and isostru	ctural?	
	$NO_3^-, CO_3^{2-}, ClO_3^-,$	SO_3		
	a) NO_3^-, CO_3^{2-}	b) SO_3 , NO_3^-	c) ClO_3^-, CO_3^{2-}	d) CO_3^{2-} , SO_3
72.	Which of the following is	paramagnetic with bond or	rder 0.5?	
	a) F ₂	b) H ₂ ⁺	c) N ₂	d) 0_{2}^{-}
73.	Water has high heat of va	porization due to:		
	a) Covalent bonding	b) H-bonding	c) Ionic bonding	d) None of these
74.	The C – H bond distance i	s the longest in		
	a) C_2H_6	b) C_2H_2	c) $C_2H_2Br_2$	d) C_2H_4
75.			ns A and B is 2.0, then the p	ercentage of covalent
	character in the molecule			
	a) 54%	b) 46%	c) 23%	d) 72%
76.	Structure of ICl_2^- is:			
	a) Trigonal			
	b) Octahedral			
	c) Square planar			
	d) Distorted trigonal pyra			
77.	Polar covalent compound			
	a) Polar solvents	b) Non-polar solvents		d) All solvents
78.	N ₂ O is isoelectronic to CO	$ ho_2$ and $ m N_3^-$. Which of the foll	owing is the structure of N	20?

$\overline{}$,	_				
51	ומ	้นร	E	วน	ca	TI	on
_,	•		_			•••	

b) N - O - N

c) N - 0 - N

79. Which does not show hydrogen bonding?

b) Liquid NH₃

c) H_2O

d) Liquid HBr

80. All bond angles are exactly equal to 109° 28' in

a) Methyl chloride

b) Iodoform

c) Chloroform

d) Carbon tetrachloride

81. Which among the following has highest ionic radius?

b) B^{3+}

c) 0^{2}

d) Li⁺

82. Zero dipole moment is possessed by

a) PCl₃

c) ClF₃

d) NH₃

83. The number of electrons involved in the bond formation of N_2 molecule

b) 4

d) 10

84. Which one of the following orders is not in according with the property stated against it?

a) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity

b) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation energy

c) $F_2 > Cl_2 > Br_2 > I_2$: Oxidising power

d) HI > HBr > HCl > HF : Acidic property in water.

85. What is the dominant intermolecular force or bond that must be overcome in converting liquid CH₃OH to a gas?

- a) London dispersion force
- b) Hydrogen bonding
- c) Dipole-dipole interaction
- d) Covalent bonds

86. The incorrect statements regarding bonding molecular orbitals because:

- a) Bonding molecular orbitals possess less energy than combining atomic orbitals.
- b) Bonding molecular orbitals have low electron density between the two nuclei.
- c) Every electron in bonding molecular orbitals contributes to attraction between atoms.
- d) They are formed when the lobes of the combining atomic orbitals have same sign.
- 87. A coordinate bond is a dative covalent bond. Which of the below is true?
 - a) Three atom form bond by sharing their electrons b) Two atoms form bond by sharing their electrons
 - c) Two atoms form bond and one of them providesd) Two atoms form bond by sharing electrons both electrons obtained from third atom.

88. The bond length between C – C bond in sp^2 hybridised molecule is

b) 1.39 Å

d) 1.54 Å

89. The electronegativity values of C, H, O, N and S are 2.5, 2.1, 3.5, 3.0 and 2.5 respectively. Which of the following bonds is most polar?

a) C—H

c) S—H

d) 0—H

90. Which of the following has largest size?

b) Al⁺

c) Al²⁺

d) Al^{3+}

91. In which of the following, the bond length between hybridised carbon atom and other carbon atom is minimum?

a) Propyne

b) Propene

c) Butane

d) Propane

92. Which is expected to conduct electricity?

a) Diamond

b) Molten sulphur

c) Molten KCl

d) Crystalline NaCl

93. Metals are good conductors of electricity because they contain

a) Ionic bonds

b) A network structure d) Free electrons

c) Very few valence electrons 94. The species having pyramidal shape is

a) SO_3

c) SiO_3^{2-}

d) OSF₂

- 95. The attraction that non-polar molecules have for each other is primarily caused by:
 - a) Hydrogen bonding
 - b) Difference in electronegativities
 - c) High ionisation energy
 - d) Van der Waals' forces
- 96. In HCHO carbon atom has hybridisation:
 - a) sp

b) sp^2

c) sp^3

- d) None of these
- 97. Which of the following species has four lone pairs of electrons in its outer shell?
 - a) I

b) 0⁻

c) Cl

- d) He
- 98. For AB bond if per cent ionic character is plotted against electronegativity difference $(X_A X_B)$, the shape of the curve would look like

The correct curve is

a) A

b) *B*

c) (

- d) *D*
- 99. Chlorine atom, in its third excited state, reacts with fluorine to form a compound *X*. The formula and shape of *X* are
 - a) ClF₅, pentagonal
 - b) ClF₄, tetrahedral
 - c) ClF₄, pentagonal bipyramidal
 - d) ${\it ClF}_7$, pentagonal bipyramidal
- 100. The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as shown below,

$$O(g) + e \rightarrow O^{-}(g)$$
;

$$\Delta H = -142 \text{ kJ/mol}$$

$$0^{-}(g) + e \rightarrow 0^{2-}(g);$$

$$\Delta H = 844 \text{ kJ/mol}$$

This is because:

- a) 0⁻ ion has comparatively larger size than oxygen atom
- b) Oxygen has high electron affinity
- c) 0⁻ ion will lead to resist the addition of another electron
- d) Oxygen is more electronegative
- 101. In which of the following molecules are all the bonds not equal?
 - a) AlF₃

b) NF₃

c) ClF₃

d) BF_3

- 102. Which of the following compound is covalent?
 - a) Ha

b) KCl

c) Na₂S

- d) CaO
- 103. Which of the following molecular species has unpaired electron (s)?
 - a) N_2

b) F₂

c) 0_{2}^{-}

d) 0_2^{2-}

PHONE NO: 8583042324

- 104. The correct order of bond angles is:
 - a) $PF_3 < PCl_3 < PBr_3 < PI_3$
 - b) $PF_3 < PBr_3 < PCl_3 < PI_3$
 - c) $PI_3 < PBr_3 < PCl_3 < PF_3$
 - d) $PF_3 > PCl_3 < PBr_3 < PI_3$

105	TC .1 1 11 .1 11:		1 1 4254 144	Opius Luucution		
			nolecule are 1.25 A and 1.0	D respectively, what is the		
	per cent ionic character of					
	a) 10.66	b) 12.33	c) 16.66	d) 19.33		
		not exhibit dipole moment				
	a) NH ₃	b) CHCl ₃	c) H ₂ O	d) CCl ₄		
		overt into N_2^- , where this el	ectron goes?			
;	a) Antibonding π-molecul	ar orbital				
	b) Bonding π-molecular o	rbital				
	c) σ-bonding molecular o	rbital				
1	d) σ-antibonding molecula	ar orbital				
108.	The correct order of radii	is:				
;	a) N < Be < B	b) $F^- < O^{2-} < N^{3-}$	c) Na < Li < K	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$		
109.	The bond order is maximu	um in:				
;	a) H ₂	b) H ₂ ⁺	c) He ₂	d) He ₂ ⁺		
		oms has minimum covalent	· -	, 2		
	a) Si	b) N	c) C	d) B		
	The screening effect of d - ϵ	•		<i>a, 2</i>		
	a) Equal to the p -electron					
	b) Much more than p -elec					
	c) Same as f -electrons	ci ons				
	d) Less than <i>p</i> -electrons					
	•	stomontia umona?				
	Which of the following sta			1: - 4 - 1-1 -		
	a) The stability of hydrides increase from NH_3 to BiH_3 in group 15 of the periodic table.					
	b) Nitrogen cannot form a		,			
	· -	eaker than the single P—P b	ond.			
	d) N ₂ O ₄ has two resonance structure					
	113. The molecule having permanent dipole moment is:					
	a) SF ₄	b) XeF ₄	c) SiF ₄	d) BF ₃		
114.	114. Unusually high boiling point of water is result of					
;	a) Intermolecular hydrogen bonding b) Intramolecular hydrogen bonding					
	c) Both intra and inter mo	olecular hydrogen bonding	d) High specific heat			
115.	Which of the following is l	least ionic?				
;	a) CaF ₂	b) CaBr ₂	c) CaI ₂	d) CaCl ₂		
116.	What bond order does O_2^{2}	have?				
;	a) 1	b) 2	c) 3	d) 1/3		
		Yand Z atoms. The oxidation	on states of <i>X, Y</i> and <i>Z</i> are	+2, +2 and -2 respectively.		
	The possible formula of th		·			
	a) XYZ_2	b) $Y_2(XZ_3)_2$	c) $X_3(Y_4Z)_2$	d) $X_3(YZ_4)_3$		
	=	g is a non-polar molecule?	-)3(-4-)2	73(4/3		
	a) CCl ₄	b) CHCl ₃	c) CH ₂ Cl ₂	d) CH ₃ Cl		
		g has the regular tetrahedr		a) driger		
	(Atomic numbers $B = 5$, S	=	ai sti uctui e:			
		·	c) DC-	d) [Ni(CN) ₃] ²⁻		
	a) XeF ₄	b) SF ₄	c) BF ₄	· · · - -		
	=		re 0.43 D and 3.93 D, then	what is the expected dipole		
	moment of <i>p</i> -nitro toluend) 426 D	D = 20 D		
	a) 3.50 D	b) 2.18 D	c) 4.36 D	d) 5.30 D		
	Which of the following is i		5 21	21		
	a) Pb ²⁺	b) Ge ²⁺	c) Si ²⁺	d) Sn ²⁺		
	-	compound sp^2 hybridisatio				
	a) $CH_a = CH - CH = CH_a$		b) $CH = C - CH_a - CH_a$			

c) $CH_2 - CH = CH_2$

- d) $CH_2 = CH CH_2 CH_3$
- 123. Which one of the following pairs of species has the same bond order:
 - a) NO⁺ and CN⁺
- b) CN⁻ and NO⁺
- c) CN⁻ and CN⁺
- d) O_2^- and CN^-
- 124. Which of the following characteristics regarding halogens is not correct?
 - a) Ionization energy decreases with increase in atomic number.
 - b) Electronegativity decreases with increase in atomic number.
 - c) Electron affinity decreases with increase in atomic number.
 - d) Enthalpy of fusion increases with increase in atomic number.
- 125. The number of S S bonds in sulphur trioxide is
 - a) Three
- b) Two

c) One

d) Zero

- 126. The low density of ice compared to water is due to
 - a) Induced dipole induced dipole interactions
 - b) Dipole induced dipole interaction
 - c) Hydrogen bonding interactions
 - d) Dipole -dipole interaction
- 127. Consider the following molecules or ions
 - $(i)H_2O$
- $(ii)NH_4^+$
- $(iii)SO_4^{2-}$
- (iv)ClO₄
- $(v)NH_3$

 sp^3 hybridisation is involved in the formation of

a) (i), (ii) (v) only

b) (i), (ii) only

c) (ii) only

- d) (i), (ii), (iii), (iv) and (v)
- 128. Which of the following compounds has dipole moment approximately equal to that of chlorobenzene?
 - a) o-dichlorobenzene
 - b) *m*-dichlorobenzene
 - c) p-dichlorobenzene
 - d) *p*-chloronitrobenzene
- 129. Which of the following overlaps leads to bonding?

- 130. Which of the following is correct?
 - a) The number of electrons present in the valence shell of S in SF₆ is 12.
 - b) The rates of ionic reactions are very low.
 - c) According to VSEPR theory, SnCI₂ is a linear molecule.
 - d) The correct order of ability to form ionic compounds among Na⁺, Mg²⁺ and Al³⁺ is Al³⁺ > Mg^{2+} > Na^+ .
- 131. The number of sigma and pi bonds in peroxodisulphuric acid are respectively
 - a) 9 and 4
- b) 11 and 4
- c) 4 and 8
- d) 4 and 9

- 132. Which is not a paramagnetic species?
 - a) 0_2

b) 0_{2}^{+}

c) 0_{2}^{-}

d) 0_2^{2-}

133. In piperidine N—H, N atom has hybridization:

a) *sp*

b) sp^2

c) sp^3

d) dsp^2

- 134. Electron deficient species are known as:
 - a) Lewis acids
- b) Hydrophilic
- c) Nucleophiles
- d) Lewis bases

- 135. The molecule having three folds of axis of symmetry is:
 - a) NH₃

b) PCl₅

c) SO_2

d) CO₂

- 136. The structure of ICl_2^- is:
 - a) Trigonal
 - b) Octahedral
 - c) Square planar
 - d) Distorted trigonal bipyramid
- 137. Among the following the molecule with the highest dipole moment is
 - a) CH₃Cl
- b) CH₂Cl₂
- c) CHCl₃
- d) CCl₄

- 138. Which of the following is not isostructural with SiCl₄?
 - a) PO_4^{3-}

b) NH₄⁺

c) SCl₄

d) SO_4^{2-}

- 139. A molecule which cannot exist theoretically is:
 - a) SF₄

b) OF₂

c) OF₄

- d) 0_2F_2
- 140. An atom *X* has three valence electrons and atom *Y* has six valence electrons. The compound formed between them will have the formula
 - a) X_2Y_6

b) XY

c) X_2Y_3

d) X_3Y_2

- 141. Which one is polar molecule among the following?
 - a) CH₄

b) CCl₄

c) CO_2

d) H_2O

- 142. Shape of molecules is decided by:
 - a) Sigma bond
 - b) π -bond
 - c) Both sigma and π -bonds
 - d) Neither sigma nor π -bonds
- 143. The shape of carbon dioxide is
 - a) Pyramidal
- b) Tetrahedral
- c) Planar
- d) linear

- 144. The correct ionic radii order is:
 - a) $N^{3-} > 0^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$
 - b) $N^{3-} > Na^+ > 0^{2-} > F^- > Mg^{2+} > Al^{3+}$
 - c) $Na^+ > 0^{2-} > N^{3-} > F^- > Mg^{2+} > Al^{3+}$
 - d) $0^{2-} > F^- > Na^+ > N^{3-} > Mg^{2+} > Al^{3+}$
- 145. Which is not linear?
 - a) CO₂

b) HCN

c) C_2H_2

d) H_2O

- 146. Hybridisation of oxygen in diethyl ether is
 - a) *S*_i

b) *sp*⁴

c) sp^3

- d) sp^3d
- 147. What is the effect of more electronegative atom on the strength of ionic bond?
 - a) Increases
- b) Decreases
- c) Remains the same
- d) None of these

- 148. Which of the following two are isostructural?
 - a) XeF_2 , IF_2
- b) NH_3 , BF_3
- c) CO_3^{2-} , SO_3^{2-}
- d) PCl₅, ICl₅

- 149. NF₃ is:
 - a) Non-polar compound
 - b) Electrovalent compound
 - c) Having low value of dipole moment than NH₃
 - d) Having more dipole moment than NH₃
- 150. Molecular size of ICl and Br₂ is nearly same, but boiling point of ICl is about 40°C higher than Br₂. This

m	i	σh	t	he	du	e to
ш	ı	gп	ι	υc	uu	ี เบ

- a) I—Cl bond is stronger than Br—Br bond
- b) Ionisation energy of I < ionisation energy of Br
- c) ICl is polar where as Br2 is non-polar
- d) The size of I >size of Br
- 151. Which molecule is linear?
 - a) H₂S

b) NO₂

c) ClO_2

d) CO_2

152. Which of the following shows minimum melting point?

- a) Naphthalene
- b) Diamond
- c) NaCl

d) Mn

153. Which of the following does not have a lone pair on the central atom?

a) NH₃

b) PH₃

c) BF₃

d) PCl₃

154. Molecular orbital theory was given by

- a) Kossel
- b) Mosley
- c) Mulliken
- d) Werner

155. NH₃ has a net dipole moment, but boron trifluoride (BF₃) has zero dipole moment, because:

- a) B is less electronegative than N
- b) F is more electronegative than H
- c) BF₃ is pyramidal while NH₃ is planar
- d) NH₃ is pyramidal while BF₃ is trigonal planar
- 156. Proton plays an important role in...bonding.
 - a) Electrovalent
- b) Hydrogen
- c) Covalent
- d) Coordinate

157. Which represents a collection of isoelectronic species?

- a) Be, Al³⁺, Cl⁻
- b) Ca²⁺, Cs⁺, Br
- c) Na⁺, Ca²⁺, Mg²⁺
- d) N³⁻, F⁻, Na⁺

158. An electrovalent compound does not exhibit space isomerism due to:

- a) Presence of ions
- b) High melting point
- c) Strong electrostatic forces between constituent ions
- d) Non-directional nature of electrovalent bond
- 159. In which molecule Sulphur atom is not sp^3 -hybridized?
 - a) SO_4^{2-}

b) SF₄

c) SF₂

d) None of these

160. In which one of the following species, the central atom has the type of hybridization which is not the same as that present in other three?

a) SF₄

b) I:

- c) SbCl₅²
- d) PCl₅

161. The radii of F, F^- , O and O^{2-} are in the order of:

- a) $0^{2-} > F^{-} > F > 0$
- b) $F^- > 0^{2-} > F > 0$
- c) $0^{2-} > 0 > F^- > F$
- d) $O^{2-} > F^{-} > O > F$

162. The correct order of decreasing second ionisation enthalpy of Ti (22), V (23), Cr (24) and Mn (25) is:

- a) V > Mn > Cr > Ti
- b) Mn > Cr > Ti > V
- c) Ti > V > Cr > Mn
- d) Cr > Mn > V > Ti

163. How many σ and π -bonds are present in given compound?

$$Ph - CH = C - C_2H_5$$

$$CH_3$$

a) 19 σ and 4 π – bonds

b) 22 σ and 4 π – bonds

c) 25 σ and 4 π – bonds

d) 26 σ and 4 π – bonds

164. C – Cl bond is stronger than C – I bond, because

- a) C Cl bond is more ionic than C I
- b) C Cl bond is polar covalent bond
- c) C Cl bond is more covalent than C I
- d) C Cl bond length is longer than C I

165. The ICl molecule is:

- a) Purely covalent
- b) Purely electrovalent
- c) Polar with negative end on chlorine
- d) Polar with negative end on iodine

166 Military of the Callegation of	l		
166. Which of the following si			d) AaNO
a) AgClO₄167. Silicon has 4 electrons in	b) Ag ₂ SO ₄	c) AgF	d) AgNO ₃
a) It gains electrons	b) It losses electrons	c) It shares electrons	d) None of these
168. The shape of gaseous Sn	•	c) it shares electrons	d) None of these
a) Tetrahedral	b) Linear	c) Angular	d) T-shape
169. Chlorine atom tends to a	,	c) migulai	u) i shape
a) He	b) Ne	c) Ar	d) Kr
170. The d – orbital involved in		c) m	a) iii
a) $d_{x^2-y^2}$	b) d_{xy}	c) d_{z^2}	d) d_{zx}
171. When O_2 is converted in	•	$c_j u_{Z^2}$	u_{ZX}
	aracter and bond order inc	roseo	
		ilease	
b) Bond order decreases			
c) Paramagnetic charact	er decreases and the bond	ordor increases	
172. Intramolecular hydroger		order increases	
a) Water	b) <i>o</i> -nitrophenol	c) <i>p</i> -nitrophenol	d) methylamine
173. A pair of compounds wh			
a) NO and ClO ₂	b) COI and SO ₂	c) ClO_2 and CO	d) SO_2 and O_3
174. According to VSEPR the	-		
order	tory the repulsion betwee	ii different pair (fone of	bolla) of electrons obey the
a) <i>lp bp lp lp bp bp</i>		b) <i>lp bp bp bp lp lp</i>	
c) lp lp lp bp bp		d) bp bp lp lp lp bp	
175. The bond between two i	dentical non-metal atoms h		
a) Unequally shared bety	79	ad a pan or crock onc.	
b) Equally shared between			
c) Transferred fully from			
d) None of the above	TRALLIC EDILL	CATION	
176. The bond angle in AsH_3 i	s greater than that in	PHITOIA	
a) NH ₃	b) H ₂ O	c) BCl ₃	d) None of these
177. The correct order of incr	· -		•
a) Cu ≈ Fe < Mg	b) Fe < Cu < Mg	c) Fe < Mg < Cu	d) Cu < Fe < Mg
178. H—0—H bond angle in I	H_2O is 104.5° and not 109°	28' because of:	j
a) High electronegativity	-		
b) Bond pair-bond pair r			
c) Lone pair-lone pair re	pulsion		
d) Lone pair-bond pair re	epulsion		
179. The bond order in O_2^+ is	equal to bond order in:		
a) N ₂ ⁺	b) CN ⁻	c) CO	d) NO ⁺
180. The electron affinity for i	inert gases is likely to be:		
a) High	b) Small	c) Zero	d) Positive
181. The true statements from	n the following are		
1.PH ₅ and BiCl ₅ do not e	xist		
$2.p\pi-d\pi$ bond is presen	nt in SO ₂		
3.Electrons travel at the	speed of light		
4.SeF ₄ and CH ₄ have sam	ne shape		
5.I ₃ ⁺ has bent geometry			
a) 1,3	b) 1,2,5	c) 1,3,5	d) 1,2,4
182. 1,3-butadiene has:			
a) 6σ and 2π -bonds	b) 2σ and 2π -bonds	c) 9σ and 2π -bonds	d) 6σ and 2π -bonds

183. The bond between ator	ms of two elements of atomic	number 37 and 53 is:	
a) Covalent	b) Ionic	c) Coordinate	d) Metallic
184. In methane the bond a	ngle is		
a) 180°	b) 90°	c) 109°	d) 120°
185. One would expect the e	elemental form of Cs at room	temperature to be:	
a) A network solid	b) A metallic solid	c) Non-polar liquid	d) An ionic liquid
186. Which of the following	is false?		
a) Glycerol has strong l	hydrogen bonding		
b) Glycol is a poisonous	s alcohols		
	higher alcohols with higher a	cids	
d) Alkyl halides have h	igher b.p. than corresponding	galcohols	
187. Ionic radii are:			
1			
a) $\propto \frac{1}{\text{effective nuclear of}}$	charge		
b) $\propto \frac{1}{\text{(effective nuclear)}}$	charge) ²		
c) ∝ effective nuclear c	harge		
d) ∝ (effective nuclear	charge) ²		
188. Which of the following	statements is incorrect?		
a) He ₂ does not exist b	ecause its bond order is zero		
b) O_2 , O_2^- and O_2^+ are al	l paramagnetic		
c) Any two atomic orbi	itals can combine to form two	o molecular orbitals	
d) $\pi(2p_x)$ and $\pi(2p_y)$ a	re degenerate molecular orb	itals	
189. Which of the following	pairs will from the most stab	ole ionic bond?	
a) Na and Cl	b) Mg and F	c) Li and F	d) Na and F
190. Among NaF, NaCl NaBr	and NaI, the NaF has highest	melting point because:	
a) It has maximum ioni			
b) It has minimum ioni	c character	ΓΔΤΙΩΝ	
c) It has associated mo	lecules	SPELLOTT	
d) It has least molecula	ır weight		
191. The planar structure of	${\sf f}{\sf BF}_3$ can be explained by the	fact that BF ₃ is	
a) <i>sp</i> hybridized	b) sp^2 hybridised	c) sp^3 hybridised	d) $sp^3 d$ hybridized
192. The correct order of bo	ond order value among the fo	llowing is	
(i) NO ⁻ (i	ii) NO ⁺		
(iii)NO (i	v) NO ²⁺		
(v) NO ²⁻			
a) (i) $<$ (iv) $<$ (iii) $<$ ((ii) < (v)	b) $(iv) = (ii) < (i) < (v)$	< (iii)
c) $(v) < (i) < (iv) = (iv)$	(ii) < (ii)	d) (ii) $<$ (iii) $<$ (iv) $<$ (i) < (v)
193. The bond between chlo	orine and bromine in BrCl ₃ is	;	
a) Ionic			
b) Non-polar			
c) Polar with negative	end on Br [–]		
d) Polar with negative	end on Cl [–]		
194. Which of the following	has regular tetrahedral shap	e?	
a) $[Ni(CN)_4]^{2-}$	b) SF ₄	c) [BF ₄] ⁻	d) XeF ₄
195. Which of the following	will have large dipole mome	nt?	

- 196. PCl₅ exists but NCl₅ does not because:
 - a) Nitrogen has no vacant 2d-orbitals
 - b) NCl₅ is unstable
 - c) Nitrogen atom is much smaller than phosphorus
 - d) Nitrogen is highly mert
- 197. In which of the following pairs the two species are not isostructural?
 - a) PCl₄ and SiCl₄
- b) PF₅ and BrF₅
- c) AlF_6^{3-} and SF_6
- d) CO_3^{2-} and NO_3^{-}
- 198. The molecule having a pyramidal shape out of the following is
 - a) CO₂

b) BF₃

c) SF₄

- d) NH₃
- 199. If Na^+ ion is larger than Mg^{2+} ion and S^{2-} is larger than Cl^- ion, which of the following will be stable soluble in water?
 - a) Sodium chloride
- b) Sodium sulphide
- c) Magnesium chloride
- d) Magnesium sulphide
- 200. An atom of an element *A* has three electrons in its outermost orbit and that of *B* has six electrons in its outermost orbit. The formula of the compound between these two will be
 - a) A_3B

b) A_2B_3

c) A_3B_2

- d) A_2B
- 201. The energy of σ 2s-orbital is greater than σ * 1s orbital because:
 - a) σ 2s orbital is bigger than σ * 1s orbital
 - b) σ 2s orbital is a bonding orbital whereas, $\sigma * 1s$ is an antibonding orbital
 - c) σ 2s orbital has a greater value of n than $\sigma * 1s$ orbital
 - d) None of the above
- 202. The bond angle in ammonia molecule is
 - a) 90°3′
- b) 91°8′

E TOLLIC

- c) 106°45′
- d) 109°28′
- 203. The compound in which the number of d p bonds are equal to those present in ClO_4
 - a) XeF₄

- b) XeO₃
- c) XeO₄

- d) XeF.
- 204. The correct order of bond angles (smallest first) in H₂S, NH₃, BF₃and SiH₄ is
 - a) $H_2S < SiH_4 < NH_3 < BF_3$

b) $NH_3 < H_2S < SiH_4 < BF_3$

c) $H_2S < NH_3 < SiH_4 < BF_3$

- d) $H_2S < NH_3 < BF_3 < SiH_4$
- 205. A covalent molecule AB_3 has pyramidal structure. The number of lone pair and bond pair of electrons in the molecule are respectively.
 - a) 2 and 2
- b) 0 and 4
- c) 3 and 1
- d) 1 and 3

- 206. Be in BeCl₂ undergoes
 - a) Diagonal hybridisation

b) Trigonal hybridisation

c) Tetrahedral hybridisation

d) No hybridisation

- 207. Which statement is wrong?
 - a) Hybridisation is the mixing of atomic orbitals prior to their combining into molecular orbitals
 - b) sp^2 -hybrid orbitals are formed from two p-atomic orbitals and one s-atomic orbitals
 - c) dsp^2 -hybrid orbitals are all at 90° to one another
 - d) d^2sp^2 -hybrid orbitals are directed towards the corners of a regular tetrahedron
- 208. In the anion HCOO⁻ the two carbon-oxygen bonds are found to be of equal length. What is the reason for it?
 - a) Electronic orbits of carbon atom are hybridised
 - b) The C=0 bond is weaker than the C-0 bond

c) The anion HCOO ⁻ has t	wo resonating structures		
d) The anion is obtained b	y removal of a proton fron	n the acid molecule	
209. Which of the following mo	lecules has three fold axis	of symmetry?	
a) NH ₃	b) C ₂ H ₄	c) CO ₂	d) SO ₂
210. Oxygen and the oxide ion l	have the		
a) Same proton number		b) Same electronic configu	uration
c) Same electron number		d) Same size	
211. Valence bond theory of me	etallic bond was given by		
a) Dalton	b) Drudel	c) Fajan	d) Pauling
212. The correct order of secon	nd ionisation potential of ca	arbon, nitrogen, oxygen and	d fluorine is:
a) $C > N > 0 > F$	b) $0 > N > F > C$	c) $0 > F > N > C$	d) $F > 0 > N > C$
213. The molecule which has T	 shaped structure is 		
a) PCl ₃	b) ClF ₃	c) NH ₃	d) BCl ₃
214. As a result of resonance:			
a) Bond length decreases			
b) Energy of the molecules	s decreases		
c) Stability of the molecule	e increases		
d) All are correct			
215. The pair of species with th	e same bond order is:		
a) NO,CO	b) N ₂ , O ₂	c) O_2^{2-} , B_2	d) O_2^+ , NO^+
216. Which of the following mo	lecules has pentagonal bip	yramidal shape?	
a) PF ₅	b) SF ₆ I	c) XeF ₆	d) $[Fe(CN)_6]^{3-}$
217. The number of types of bo	nds between two carbon a	toms in calcium carbide is	
a) One sigma, two pi	b) One sigma, one pi	c) Two sigma, one pi	d) Two sigma, two pi
218. The bond angle between H	H—O—H in ice is closest to	:	
a) 115°	b) 109°28′	c) 110°	d) 90°
219. If a molecule MX_3 has zero	o dipole moment the sigma	bonding orbitals used by I	M (at. No. < 21) is:
a) Pure p	b) <i>sp-</i> hybrid	c) sp^2 -hybrid	d) sp^3 -hybrid
220. Which combination of ator	ms can form a polar covale	nt bond?	
a) H and H	b) H and Br	c) N and N	d) Na and Br
221. The bond strength in O_2^+ , O_2^+	O_2 , O_2^- and O_2^{2-} follows the	order:	
a) $0_2^{2-} > 0_2^- > 0_2 > 0_2^+$	b) $0_2^+ > 0_2 > 0_2^- > 0_2^{2-}$	c) $0_2 > 0_2^- > 0_2^{2-} > 0_2^+$	d) $0_2^- > 0_2^{2-} > 0_2^+ > 0_2$
222. The shape of XeF ₄ molecu			
a) Tetrahedral and sp^3		b) Square planar and dsp	2
c) Square planar and sp^3a	l^2	d) Octahedral and sp^3d^2	
223. In H_2^- ion, the bond order	is:		
a) Zero	b) 1/2	c) -1/2	d) 1
224. H-bonding is not present i	n:		
a) Glycerine	b) Water	c) H ₂ S	d) HF
225. In which of the following g	gaseous molecules, the ioni	c character of the covalent	bond is greatest?
a) HCl	b) HBr	c) HI	d) HF
226. The angle between the over	erlapping of one s-orbital a	and one p -orbital is:	
a) 180°	b) 120°	c) 109°28′	d) 120°60′
227. How many bonds are ther	e in?		
^ /			
a) 14 σ, 8π	b) 18 σ, 8π	c) 19 σ, 4π	d) 14 σ, 2π
228. Which is the correct stater		•	•

(i) π -bonding orbitals are un	ngerade		•
(ii) π -antibonding orbitals a	ire ungerade		
(iii) σ-antibonding orbitals a	are gerade		
a) (i) only b) (ii) and (iii) only	c) (iii) only	d) (ii) only
229. Among the following statem	nent, the correct statemen	nt about PH ₃ and NH ₃ is:	
NH ₃ is a better electron d	lonor because the lone pa	air of electron occupies spl	nerical s-orbital and is less
a) directional			
b) PH ₃ is a better electron d	onor because the lone pa	air of electron occupies sp^3	-orbital and is more
directional			
NH ₃ is a better electron d	lonor because the lone pa	air of electron occupies sp^3	³ -orbital and more
directional			
	onor because the lone pa	air of electron occupies sph	erical s-orbital and is less
directional			
230. Which is expected to have li		2	
	O) CO ₂	c) CO_3^{2-}	d) SO ₄ ²⁻
231. The bond angle in PH_3 is:			
a) Much lesser than NH ₃ b) Equal to that in NH ₃	Much greater than in	Slightly more than in
-		ип3	NH ₃
232. Carnallite in solution in water			D 17+ N 2+ GI= D =
a) K^+ , Mg^{2+} , Cl^- b	_	c) K^+ , Mg^{2+} , CO_3^{2-}	d) K ⁺ , Mg ²⁺ , Cl ⁻ , Br ⁻
233. A simple of a coordinate cov		•	D II CO
	o) NH ₃	c) C ₂ H ₂	d) H_2SO_4
234. In the series ethane, ethylen	The second of	H bond energy is:	
a) The same in all the three	compounds		
b) Greatest in ethanec) Greatest in ehtylene			
d) Greatest in acetylene			
235. In which molecule the van d	ler Waals' force is likely t	o he the most important in	determining the min and
b.p.?	ier waars force is likely t	to be the most important in	a determining the mip, and
	o) CO	c) H ₂ S	d) HCl
236. Identify the wrong statemen	•) 2	,
a) Atomic radius of the elem		oves down the first group o	of the periodic table
b) Atomic radius of the elem		<u> </u>	-
periodic table			
c) Amongst isoelectronic sp	ecies, smaller the positiv	e charge on the cation, sm	aller is the ionic radius
d) Amongst isoelectronic sp	ecies, greater the negativ	ve charge on the anion, larg	ger is the ionic radius
237. (I)1, 2-dihydroxy benzene			
(II) 1, 3-dihydroxy benzene			
(III) 1, 4-dihydroxy benzene	ė		
(IV) Hydroxy benzene			
The increasing order of boil	ing points of above ment	tioned alcohols is	
a) $I < II < III < IV$		b) $I < II < IV < III$	
c) $IV < I < II < III$		d) $IV < II < I < III$	
238. Dipole moment is shown by	•		
a) <i>cis</i> - 1, 2-dichloro ethane		b) <i>trans</i> -1, 2-dichloro eth	ane
c) <i>trans</i> -1 2-dichloro-2 pept		d) Both (a) and (c)	
239. Compounds formed by sp^3d	l ² -hybridization will hav	e configuration:	
a) Square planar			
b) Octahedral			
c) Trigonal bipyramidal			

			apius Luucution
d) Pentagonal bipyramida			
240. In which molecular are al			
a) PF_3	b) NH ₃	c) BF ₃	d) CH ₄
241. The AsF ₅ molecule is trig			_
a) $d_{x^2-y^2}$, d_{z^2} , s, P_x , P_y	b) d_{xy} , s , P_x , P_z	c) $s, P_x, P_y, P_z, d_{z^2}$	d) $d_{x^2-y^2}$, s, P_x , P_y
242. The bond order of N_2^+ is	13.0.0) o =	N 0 0
a) 1.5	b) 3.0	c) 2.5	d) 2.0
243. CO ₂ is isostructural with	1) a ar) NO	D.M. O.
a) C_2H_2	b) SnCI ₂	c) NO ₂	d) MgCI ₂
244. The compound with the n	=		d) Carda ara kakur alalari'da
a) <i>p</i> -dichlorobenzene	b) <i>m</i> -dichlorobenzene	c) o-dichlorobenzene	d) Carbon tetrachloride
245. Which of the following bo	_	= -	
a) H—H bond in H ₂	b) C—H bond in CH ₄	c) $N \equiv N$ bond in N_2	d) $0 = 0$ bond in 0_2
246. The sequence that correction or anion is	cuy describes the relative	bond strength pertaining	to oxygen molecule and its
a) $0_2^{2-} > 0_2^- > 0_2^+ > 0_2^+$		b) $0_2 > 0_2^+ > 0_2^- > 0_2^{2-}$	
c) $0_2^+ > 0_2^- > 0_2^- > 0_2^-$		d) $0_2^+ > 0_2^- > 0_2^-$ d) $0_2^+ > 0_2^- > 0_2^-$	
247. The type of hybridisation	in YoF is	$u_1 u_2 > u_2 > u_2 > u_2$	
a) dsp^2	b) sp^3d	c) sp^3d^2	d) $sp^{3}d^{3}$
248. What bond order does Li ₂	, .	$c_j s_p u$	$a_j s p a$
a) 3	b) 1	c) 2	d) 0
249. Which have zero dipole m	•	o) -	a) o
a) 1,1-dichloroethene		5	
b) <i>Cis-</i> 1, 2-dichloroethen	e		
c) trans-1, 2-dichlorothe			
d) None of the above	2		
250. Strongest bond is formed	by the head on overlapping	g of:	
a) $2s$ -and $2p$ -orbitals	b) $2p$ - and $2p$ -orbitals	c) 2s- and 2s- orbitals	d) All of these
251. Hybridization state of I in	ICl ₂ is:	27114011	
a) dsp^2	b) <i>sp</i>	c) sp^2	d) sp^3
252. Arrange the following cor	_	ing dipole moment:	
Toluene (I)			
o-dichlorobenzene (III)	• • • • • • • • • • • • • • • • • • • •		
a) $I < IV < II < III$	b) $IV < I < II < III$	c) $IV < I < III < II$	d) $IV < II < I < III$
253. Which has maximum cova			
a) SiCl ₄	b) MgCl ₂	c) NaCl	d) AlCl ₃
254. Which species does not ex		\ (a a) \ \?_	12 (2) 21 22-
a) $(SnCl_6)^{2-}$	b) (GeCl ₆) ²⁻	c) (CCl ₆) ²⁻	d) (SiCl ₆) ^{2–}
255. Among the following which	-		1) NL P
a) CsI	b) CsF	c) LiF	d) NaF
256. The dipole moment of H	Br is 1.6×10^{-30} cm and i	nter – atomic spacing is 1	A. The % ionic character of
HBr is	L) 10	a) 1F	J) 27
a) 7	b) 10	c) 15	d) 27
257. When an element of very	iow ionisation potential is	anowed to react with an ele	ement of very high electron
affinity, we get: a) A weak ionic bond	b) A strong ionic bond	c) A polar covalent bond	d) No hand
258. Ionization potential is lov		c) A polar covalent bond	a) No bona
a) Halogens	b) Inert gases	c) Alkaline earth metals	d) Alkali metals
259. The orbitals of same ener		•	aj mikan metais
a) sp^3-sp^3	b) <i>sp</i> - <i>sp</i>	c) sp^2 - sp^2	d) All of these
~) ~P	~, ~, ~,	-, 56 56	,

26	-	HCl has the polar character		•	
	a) The electronegativity of hydrogen is greater than that of chlorine				
	b) The electronegativity of hydrogen is equal to than that of chlorine				
		of chlorine is greater than t	hat of hydrogen		
	d) Hydrogen and chlorin	e are gases			
26	1. Identify the non-polar m	olecule in the set of compo	unds given		
	HCl, HF, H ₂ , HBr				
	a) H ₂	b) HCl	c) HF, HBr	d) HBr	
26	2. Which one of the followi	ng compounds has sp^2 hyb	ridisation?		
	a) CO ₂	b) SO ₂	c) N ₂ O	d) CO	
26	3. The increasing order of t	he ionic radii of the given is	soelectronic species is:		
	a) S ²⁻ , Cl ⁻ , Ca ²⁺ , K ⁺	b) Ca ²⁺ , K ⁺ , Cl ⁻ , S ²⁻	c) K ⁺ , S ^{2–} , Ca ²⁺ , Cl [–]	d) Cl ⁻ , Ca ²⁺ , K ⁺ , S ²⁻	
26	4. Which cannot exist on th	e basis of M.O. theory?			
	a) C ₂	b) He ₂ ⁺	c) H ₂ ⁺	d) He ₂	
26	5. Which of the following d	oes not involve covalent bo	nd?		
	a) PH ₃	b) CsF	c) HCl	d) H ₂ S	
26	6. $B_{10}C_2H_{12}$ is isoelectronic	with			
	a) B ₁₂ H ₁₂	b) B ₁₂ H ₁₂	c) $B_{12}H_{12}^+$	d) $B_{12}H_{12}^{2+}$	
26			·	nic character in $A - B$ bond	
	will be				
	a) 50%	b) 43%	c) 53.3%	d) 72.23%	
26	8. During the formation of a		,		
	•		nnb) Energy of the system d	oes not change	
	the nucleus-electron r	The same of the sa			
	c) Energy increases		d) Energy decreases		
26		ed when a molecule of K ₄ F			
	a) 4	b) 5	c) 6	d) 2	
27	•	entical shapes for molecules	the first state of the same of	-, -	
	a) CF ₄ , SF ₄	b) BF ₃ , PCl ₃	c) XeF ₂ ,CO ₂	d) PF ₅ , IF ₇	
27	1. An example of a polar co		-, 2, 2) 3, ,	
	a) KCl	b) NaCl	c) CCl ₄	d) HCl	
2.7	2. Which is not an exception	•	0) 0014	u) 1191	
	a) BF ₃	b) SnCl ₄	c) BeI ₂	d) ClO ₂	
27	3. The molecules having di		c)	u) dio 2	
	a) 2, 2-dimethylpropane				
	b) <i>Trans</i> -3-hexene				
	c) <i>Trans</i> -2-pentene				
	d) 2, 2, 3, 3-tetramethylb	uitane			
27		pecies has a bond order oth	er than 37		
۷,	a) CO	b) CN ⁻	c) NO ⁺	d) O ₂ ⁺	
27	5. Which of the following is		c) No	u) 0 ₂	
۷,	a) XeF ₂	b) XeO ₃ F	c) XeO ₂ F ₂	d) XeF ₄	
27		, ,	g same bond order CN^- , O_2^-	-	
41	a) CN^- and O_2^-	b) 0_2^- and NO ⁺	c) CN^- and NO^+	d) CN ⁻ and CN ⁺	
27	-	le moment of water respec	•	uj ch anu ch	
41	-	=	=	4) 102 Eº 1 E C D	
27	a) 109.5°, 1.84 D	b) 107.5°, 1.56 D	c) 104.5°, 1.84 D	d) 102.5°, 1.56 D	
41		easing bond angles in the fo		4) ClO= < Cl O < ClO	
27	a) $Cl_2O < ClO_2 < ClO_2$	·	cj 6120 < 6102 < 6102	d) $ClO_2^- < Cl_2O < ClO_2$	
۷/	9. Which compound shows a) RCH ₂ NHCH ₃	· -	c) C ₂ H ₆	d) HCl	
	a 1 11 011 21 11 1 0 1 1 2	DINGHIOHIU	U1 U2116	ujilli	

				Gplus Education
280.	Chlorine atom differs from chl	loride ion in the number	of:	
	a) Protons			
	b) Neutrons			
	c) Electrons			
	d) Protons and electrons			
281.	What is the reason for unusua	ıl high b.p. of water?		
	a) Due to the presence of H ⁺ a	and OH ⁻ ions in water	b) Due to dipole – dipole ir	nteractions
	c) Due to London forces		d) Strong London Forces	
282.	The increasing order of the fir	st ionization enthalpies	of the elements B, P, S and	F (lower first) is:
	a) $F < S < P < B$ b) F	P < S < B < F	c) $B < P < S < F$	d) B < S < P < F
283.	The IP ₁ , IP ₂ , IP ₃ , IP ₄ , and IP ₅ of a	an element are 7.1, 14.3,	, 34.5, 46.8, 162.2 eV respe	ctively. The element is
	likely to be:			
	a) Na b) S	Si	c) F	d) Ca
284.	Which of the following is para	magnetic?		
	a) B ₂ b) 0	C_2	c) N ₂	d) F ₂
285.	Ionization potential of Na wou	ıld be numerically the sa	ame as:	
	a) Electron affinity of Na ⁺			
	b) Electronegativity of Na ⁺			
	c) Electron affinity of He			
	d) Ionization potential of Mg			
286.	Which one of the following con	nversions involve chang	ge in both hybridisation an	d shape?
	a) $CH_4 \rightarrow C_2H_6$ b) N	$NH_3 \rightarrow NH_4^+$	c) $BF_3 \rightarrow BF_4^-$	d) $H_2O \rightarrow H_3O^+$
287.	According to MO theory,		b .	
	a) 0_2^+ is paramagnetic and bor	nd order greater than O ₂	2	
	b) O_2^+ is paramagnetic and bor	nd order less than ${\rm O_2}$		
	c) O_2^+ is diamagnetic and bond	d order is less than O_2		
	d) O_2^+ is diamagnetic and bond	d order is more than O_2		
288	If the molecule of HCl were to	otally polar, the expecte	ed value of dipole momen	t is 6.12 D (dbye), but the
	experimental value of dipole n	noment was 1.03 D. Cald	culate the percentage ionic	character
	a) 17 b) 8	83	c) 50	d) Zero
289.	The order of first electron affin	nity of O, S and Se is:		
	a) $0 > S > Se$ b) S	S > 0 > Se	c) Se > 0 > S	d) $Se > S > 0$
290.	The nodal plane in the π -bond	l of ethane is located in:		
	a) The molecular plane			
	b) A plane parallel to the mole	ecular plane		
	c) A plane perpendicular to th	ie molecular plane which	h bisects the carbon-carbo	n σ-bond at right angle
	d) A plane perpendicular to th	ie molecular plane which	h contains the carbon-carb	on σ-bond
291.	The correct electronegativity of	order is:		
	a) C, N, Si, P b) N	N, Si, C, P	c) Si, P, C, N	d) P, Si, N, C
292.	The pair of species having idea	ntical shapes for molecu	lles of both species is	
	a) CF ₄ , SF ₄ b) X	XeF_2 , CO_2	c) BF ₃ , PCl ₃	d) PF ₅ , IF ₅
293.	Amongst the following, the mo	olecule that is linear is		
	a) SO ₂ b) 0	CO_2	c) ClO ₂	d) NO ₂
294	Using MO theory predict which	h of the following specie	es has the shortest bond le	ngth?
	a) 0_2^{2+} b) 0	02+	c) 0^{-}_{2}	d) O ₂ ²
295.	The hybridisation of carbon at	tom in benzene is?		
	a) <i>sp</i> b) <i>s</i>	sp^2	c) sp^3	d) dsp^2
296.	Bond angle between two hybr	rid orbitals is 105°. Hybr	rid character orbital is:	
	a) Between 20-21% b) I	Between 19-20%	c) Between 21 - 22%	d) Between 22-23%
297.	KF combines with HF to form	KHF ₂ . The compound co	ontains the species:	

		Gplus Education
a) K^+ , F^- and H^+ b) K^+ , F^- and HF	c) K ⁺ and [HF ₂] ⁻	d) [KHF] ⁺ and F ⁻
298. <i>o</i> -hydroxy benzaldehyde, although contains enolic g	roup but does not give test	of group with FeCl ₃
because:		
a) It is steam volatile		
b) Of intermolecular H-bonding		
c) Of intramolecular H-bonding		
d) All of the above		
299. Iron is tougher than sodium because:		
a) Iron atom is smaller		
b) Iron atoms are more closely packed		
c) Metallic bonds are stronger in iron		
d) None of the above		
300. Correct order of bond angles in NH_3 , PCl_3 and BCl_3 is	S	
a) $PCl_3 > NH_3 > BCl_3$	b) $NH_3 > BCl_3 > PCl_3$	
c) $NH_3 > PCl_3 > BCl_3$	d) $BCl_3 > NH_3 > PCl_3$	
301. The number of π - bonds present in propyne is		
a) 4 b) 1	c) 3	d) 2
302. A bond with maximum covalent character between i	non-metallic elements is for	rmed:
a) Between identical atoms		
b) Between chemically similar atoms		
c) Between atoms of widely different electro-negative	vities	
d) Between atoms of the same size		
303. The compound in which underlined carbon uses only	y its sp^3 hybrid orbitals for	bond formation is
a) CH ₃ COOH b) CH ₃ CONH ₂	c) CH ₃ CH ₂ OH	d) $CH_2CH = CH_2$
304. Consider the following compounds		
(i) chloroethene (ii) benzene		
(iii) 1, 3-butadiene (iv) 1,3,5 – hexatriene		
All the carbon atoms are sp^2 hybridised in	'ATION	
a) (i), (iii), (iv) only b) (i), (ii) only	c) (ii), (ii), (iv) only	d) (i), (ii), (iii) and (iv)
305. When ionic compounds get dissolved in water:		
a) They involve heat changes		
b) Inter-ionic attraction is reduced		
c) Ions show dipole-ion attraction with water molec	ules	
d) All are correct		
306. Pick the odd one out (The one having zero dipole mo	oment):	
a) NH ₃ b) H ₂ O	c) BCl ₃	d) SO ₂
307. Which of the following shows minimum bond angle?		, 2
a) H ₂ O b) H ₂ Se	c) H ₂ S	d) H ₂ Te
308. Among the following isostructural compounds, ident		· -
a) LiF b) LiCl	c) NaCl	d) MgO
309. Which species is diamagnetic in nature?	,	, 0
a) He ₂ b) H ₂	c) H ₂ ⁺	d) H ₂
310. Which of the following compounds would have the h	· -	, 2
a) CH ₃ CH ₂ CH ₂ CH ₃ b) CH ₃ NH ₂	c) CH ₃ OH	d) CH ₂ F ₂
311. Hybridisation of central atom in NF ₃ is	, 3	, 2 2
a) sp^3 b) sp	c) sp^2	d) dsp^2
312. Which of the compounds has highest boiling point?	, .	, ,
a) Acetone b) Diethyl ether	c) Methanol	d) Ethanol
313. The number and type of bonds between two carbon	=	•
a) One sigma (σ) and one pi (π)-bond	-	

b) One sigma (σ) and two pi (π)-bonds		
c) One sigma (σ) and one and a half pi (π)-bond		
d) One sigma (σ) bond		
314. Which of the following hydrogen bonds are strong	gest in vapour phase?	
a) HFHF b) HFHCl	c) HCLHCl	d) HFHi
315. The bond angle and hybridization in ether (CH_3O^{-1})	CH ₃) is:	
a) $106^{\circ} 51'$, sp^3 b) $104^{\circ} 31'$, sp^3	c) 110° , sp^3	d) None of these
316. Which has the highest bond energy?		
a) Hydrogen bond b) Triple bond	c) Double bond	d) Single bond
317. Among the following compounds the one that is p	,	
a) H ₂ CO ₃ b) SiF ₄	c) BF ₃	d) HClO ₂
318. The incorrect statement among the following is:	-, 3	
a) The first ionization potential of Al is less than t	he first ionization notential	of Mø
b) The second ionization potential of Mg is greate	_	=
c) The first ionization potential of Na is less than		
d) The third ionization potential of Mg is greater t	•	•
319. The bond angle is smallest in	man the time formzation pot	children of th
a) H ₂ O b) H ₂ S	c) BeCl ₂	d) N ₂ O
320. The number of electrons in the valence shell of su	,	u) N ₂ O
		d) 11
a) 12 b) 10 321. Acetic acid exists as dimer in benzene due to:	c) 8	u) 11
a) Condensation reaction		
b) Hydrogen bonding	-	
c) Presence of carboxyl group	0	
d) Presence of hydrogen atom at α-carbon		
		NII [D.C. 12= DCl
322. The correct order of hybridization of the central a	tom in the following species	$\mathrm{NH_3}$, $[\mathrm{PtCl_4}]^{2-}$, $\mathrm{PCl_5}$ and
322. The correct order of hybridization of the central a BCl_3 is:		
322. The correct order of hybridization of the central a BCl_3 is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2		
322. The correct order of hybridization of the central a BCl_3 is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when?		
322. The correct order of hybridization of the central a BCl_3 is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed	c) dsp^2 , sp^2 , sp^3 , dsp^3	
 322. The correct order of hybridization of the central a BCl₃ is: a) dsp², dsp³, sp², sp³ b) sp³, dsp², dsp³, sp² 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsi 	c) dsp^2 , sp^2 , sp^3 , dsp^3	
 322. The correct order of hybridization of the central a BCl₃ is: a) dsp², dsp³, sp², sp³ b) sp³, dsp², dsp³, sp² 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic c) Forces of repulsion overcome forces of attraction 	c) dsp^2 , sp^2 , sp^3 , dsp^3 on	
 322. The correct order of hybridization of the central a BCl₃ is: a) dsp², dsp³, sp², sp³ b) sp³, dsp², dsp³, sp² 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic c) Forces of repulsion overcome forces of attraction d) Forces of attraction are equal to forces of repulsion 	c) dsp^2 , sp^2 , sp^3 , dsp^3 on on sion	
 322. The correct order of hybridization of the central a BCl₃ is: a) dsp², dsp³, sp², sp³ b) sp³, dsp², dsp³, sp² 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic c) Forces of repulsion overcome forces of attraction d) Forces of attraction are equal to forces of repulsing 324. NH₃ has higher boiling point than expected, because 	c) dsp^2 , sp^2 , sp^3 , dsp^3 on on sion	
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic c) Forces of repulsion overcome forces of attraction of the central and the contraction are equal to forces of repulsing Point than expected, because a) With water it forms NH ₄ OH	c) dsp^2 , sp^2 , sp^3 , dsp^3 on on sion	
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsi c) Forces of repulsion overcome forces of attracti d) Forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of repulsion overcome forces of repulsion overcome forces of attracti d) Forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of repulsion overcome forces of attraction are equal to forces of repulsion.	c) dsp^2 , sp^2 , sp^3 , dsp^3 on on sion	
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic; Forces of repulsion overcome forces of attraction d) Forces of attraction are equal to forces of repulsical S24. NH ₃ has higher boiling point than expected, because a) With water it forms NH ₄ OH b) It has strong intermolecular hydrogen bonds c) It has strong intermolecular covalent bonds	c) dsp^2 , sp^2 , sp^3 , dsp^3 on on sion	
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsi c) Forces of repulsion overcome forces of attracti d) Forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of repulsion overcome forces of repulsion overcome forces of attracti d) Forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of repulsion overcome forces of attraction are equal to forces of repulsion.	c) dsp^2 , sp^2 , sp^3 , dsp^3 on on sion	
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic; Forces of repulsion overcome forces of attraction d) Forces of attraction are equal to forces of repulsical S24. NH ₃ has higher boiling point than expected, because a) With water it forms NH ₄ OH b) It has strong intermolecular hydrogen bonds c) It has strong intermolecular covalent bonds	c) dsp^2 , sp^2 , sp^3 , dsp^3 on on sion ase:	
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic; c) Forces of repulsion overcome forces of attraction are equal to forces of repulsically. NH ₃ has higher boiling point than expected, because a) With water it forms NH ₄ OH b) It has strong intermolecular hydrogen bonds c) It has strong intermolecular covalent bonds d) Its density decreases in freezing	c) dsp^2 , sp^2 , sp^3 , dsp^3 on on sion use:	d) dsp^2 , sp^3 , sp^2 , dsp^3
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic; c) Forces of repulsion overcome forces of attraction are equal to forces of repulsically. NH ₃ has higher boiling point than expected, because a) With water it forms NH ₄ OH b) It has strong intermolecular hydrogen bonds c) It has strong intermolecular covalent bonds d) Its density decreases in freezing	c) dsp^2 , sp^2 , sp^3 , dsp^3 on on sion ase:	d) dsp^2 , sp^3 , sp^2 , dsp^3
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic) Forces of repulsion overcome forces of attraction of the forces of attraction are equal to forces of repulsion. With water it forms NH ₄ OH b) It has strong intermolecular hydrogen bonds c) It has strong intermolecular covalent bonds d) Its density decreases in freezing 325. Which of the following represents the Lewis structure. a) $\stackrel{\times}{\times} N = N \stackrel{\times}{\times} N \stackrel{\times}{=} N \stackrel{\times}{=} N \stackrel{\times}{\times} N \stackrel{\times}{=} N \stackrel{\times}{$	c) dsp^2 , sp^2 , sp^3 , dsp^3 on on sion use:	d) dsp^2 , sp^3 , sp^2 , dsp^3
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic c) Forces of repulsion overcome forces of attraction d) Forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction overcome forces of repulsion overcome forces of attraction overcome forces of repulsion overcome forces of attraction overcome	c) dsp^2, sp^2, sp^3, dsp^3 on on sion use: c) $\overset{\times}{N}\overset{\times}{\times} \frac{\times}{N}\overset{\times}{\times} \overset{\times}{N}\overset{\times}{\times} \overset{\times}{\times} \overset{\times}$	d) dsp^2, sp^3, sp^2, dsp^3 d) $\overset{\times}{\underset{\times}{\times}} = \overset{\times}{\underset{\times}{\times}} \overset{\times}{\underset{\times}{\times}}$
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic c) Forces of repulsion overcome forces of attraction are equal to forces of repulsically. NH ₃ has higher boiling point than expected, because a) With water it forms NH ₄ OH b) It has strong intermolecular hydrogen bonds c) It has strong intermolecular covalent bonds d) Its density decreases in freezing 325. Which of the following represents the Lewis structure a) $\stackrel{\times}{\times}$ N $\stackrel{\times}{=}$ N $\stackrel{\times}{=}$ N $\stackrel{\times}{\times}$ 326. Which of the following has a bond order of 1.75? a) ClO_3^- b) ClO_4^-	c) dsp^2 , sp^2 , sp^3 , dsp^3 on on sion use:	d) dsp^2 , sp^3 , sp^2 , dsp^3
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic c) Forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction overcome forces of repulsion overcome forces of attraction overcome forces of repulsion overcome forces of attraction overcome for	c) dsp^2, sp^2, sp^3, dsp^3 on on sion use: c) $\overset{\times}{N}\overset{\times}{\times} \frac{\times}{N}\overset{\times}{\times} \overset{\times}{N}\overset{\times}{\times} \overset{\times}{\times} \overset{\times}$	d) dsp^2, sp^3, sp^2, dsp^3 d) $\overset{\times}{\underset{\times}{\times}} = \overset{\times}{\underset{\times}{\times}} \overset{\times}{\underset{\times}{\times}}$
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic c) Forces of repulsion overcome forces of attraction d) Forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of repulsion ov	c) dsp^2, sp^2, sp^3, dsp^3 on on sion use: c) $\overset{\times}{N}\overset{\times}{\times} \frac{\times}{N}\overset{\times}{\times} \overset{\times}{N}\overset{\times}{\times} \overset{\times}{\times} \overset{\times}$	d) dsp^2, sp^3, sp^2, dsp^3 d) $\overset{\times}{\underset{\times}{\times}} = \overset{\times}{\underset{\times}{\times}} \overset{\times}{\underset{\times}{\times}}$
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic c) Forces of repulsion overcome forces of attraction d) Forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction overcome forces of attraction are equal to forces of repulsion overcome forces of attraction overcome forces of attraction overcome forces of attraction are equal to forces of attraction	c) dsp^2, sp^2, sp^3, dsp^3 on on sion use: c) $\overset{\times}{N}\overset{\times}{\times} \frac{\times}{N}\overset{\times}{\times} \overset{\times}{N}\overset{\times}{\times} \overset{\times}{\times} \overset{\times}$	d) dsp^2, sp^3, sp^2, dsp^3 d) $\overset{\times}{\underset{\times}{\times}} = \overset{\times}{\underset{\times}{\times}} \overset{\times}{\underset{\times}{\times}}$
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic c) Forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction overcome forces of repulsion overcome forces of repulsion overcome forces of attraction overcome forces of repulsion overcome forces of attraction overcome forces of repulsion overcome forces of attraction overcome forces of repulsion overcome forces of repulsion overcome forces of repulsion overcome forces of repulsion overcome forces of attraction overcome forces of attraction overcome forces of repulsion overcome forces of repulsion overcome forces of attraction overcome forces of repulsion overcome forces of attraction overcome forces of repulsion overcome forces of repulsion overcome forces of attraction overces of attraction overces of attr	c) dsp^2, sp^2, sp^3, dsp^3 on on sion use: c) $\overset{\times}{N}\overset{\times}{\times} \frac{\times}{N}\overset{\times}{\times} \overset{\times}{N}\overset{\times}{\times} \overset{\times}{\times} \overset{\times}$	d) dsp^2, sp^3, sp^2, dsp^3 d) $\overset{\times}{\underset{\times}{\times}} = \overset{\times}{\underset{\times}{\times}} \overset{\times}{\underset{\times}{\times}}$
322. The correct order of hybridization of the central a BCl ₃ is: a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2 323. Chemical bond formation takes place when? a) Energy is absorbed b) Forces of attraction overcome forces of repulsic c) Forces of repulsion overcome forces of attraction d) Forces of attraction are equal to forces of repulsion overcome forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction are equal to forces of repulsion overcome forces of attraction overcome forces of attraction are equal to forces of repulsion overcome forces of attraction overcome forces of attraction overcome forces of attraction are equal to forces of attraction	c) dsp^2, sp^2, sp^3, dsp^3 on on sion use: c) $\overset{\times}{N}\overset{\times}{\times} \frac{\times}{N}\overset{\times}{\times} \overset{\times}{N}\overset{\times}{\times} \overset{\times}{\times} \overset{\times}$	d) dsp^2, sp^3, sp^2, dsp^3 d) $\overset{\times}{\underset{\times}{\times}} = \overset{\times}{\underset{\times}{\times}} \overset{\times}{\underset{\times}{\times}}$

Gplu	s Educatio	n
F		

a) Na	b) Mg	c) C	d) F
329. Strongest bond is in:			
a) NaCl	b) CsCl	c) Both (a) and (b)	d) None of these
330. Which of the following	_		
a) $C_2 > C_2^{2-}$	b) $B_2^+ > B_2$	c) $\text{Li}_2^+ > \text{Li}_2$	d) $0_2 > 0_2^-$
331. The bond order in O_2^{2-1}			
a) 3	b) 2	c) 3/2	d) 1
332. Which is likely to have			
a) He	b) CsF	c) NH ₃	d) CHCl ₃
333. Which of the following			
•	s present on central atom c	an give rise to dipole mom	ent
b) Dipole moment is ve			
c) CO ₂ molecule has dip			
_	negativities of combining at	-	nent
334. In the formation of N_2^+			
a) a σ-orbital	b) a π - orbital	c) a σ^* -orbital	d) a π^* -orbital
335. Bond angle of 109°28′ i	s found in		
a) NH ₃	b) H ₂ O	c) ⊕ H ₅	d) $_{\mathrm{N}\ \mathrm{H}_{4}}^{ullet}$
	_	· ·	7
336. The half of the difference		lectrons in bonding molecu	llar orbitals and antibonding
molecular orbitals is kn			
a) Bond order	b) Proton order	c) Molecular order	d) Electron order
337. Which of the following			
a) SF ₄ , CH ₄ , NH ₃	b) NF ₃ , BCl ₃ , NH ₃	c) BF ₃ , NF ₃ , AlCl ₃	d) BF ₃ , BCl ₃ , BBr ₃
338. At ordinary temperatur		gens, the chlorine is a gas,	bromine is a liquid and
iodine is a solid. This is			
	the order $Cl_2 > Br_2 > I_2$		
	s among molecules of chlor	ine are the weakest and the	ose in iodine are the
strongest	ia I > Dn > Cl		
c) The order of density			
d) The order of stability			
339. Which of the following	_	a) MII	4) CII
a) BeF ₂	b) H ₂ 0	c) NH ₃	d) CH ₄
340. Which of the following			4) C II
a) C_6H_6	b) C ₂ H ₆	c) C ₂ H ₄	d) C_2H_2
341. Which one of the follow $C^2 = C^2 = C^2 = C^2$		_	1) N O= NO+ CO
a) C_2^{2-} , O_2^- , CO, NO	b) NO ⁺ , C ₂ ²⁻ , CN ⁻ , N ₂		d) N_2 , O_2^- , NO^+ , CO
342. The sp^3d^2 hybridisatio		rule would lead to	
a) Square planar geome			
b) Tetrahedral geometr	•		
c) Trigonal bipyramida	-		
d) Octahedral geometry			
343. Methanol and ethanol a	re miscible in water due to:		
a) Covalent character			
b) Hydrogen bonding cl			
c) Oxygen bonding char	racter		
d) None of the above			
344. The shape of ClF_3 is	1) 5	\ m	15
a) Distorted T- shape	b) Pyramidal	c) Tetrahedral	d) Trigonal planar
345. Which are true stateme	nts among the following?		

GPLUS EDUCATION	WEB: WWW.GPLUSEDU	CATION.ORG PHO	NE NO: 8583042324 Page 23		
a) CCl ₄	b) CH ₄	CJ Nn ₄	d) H ₂ O		
363. Which species has lo	=	c) NH ₄ +	4) H O		
a) Pauling	b) Mulliken	c) Thomson	d) Pauling and Slater		
	eory was developed mainly		d) Dayling and Clater		
a) Coordinate bond	b) Covalent bond	c) Hydrogen bond	d) Ionic bond		
	mines the secondary struc		12.1		
a) Li > K > Cs	b) B > Li > K	c) Cs > Li > B	d) Cs < Li < K		
-	ntial order for which set is				
	ution b) Fused NaCl	c) Graphite	d) KCl in solid state		
359. Which will not cond	•				
a) CHCl ₃	b) CH ₄	c) CHF ₃	d) CCl ₄		
358. Dipole moment is hi	ghest for:				
a) O ₂	b) CN ⁻	c) CO	d) NO ⁺		
357. Which of the following					
a) BeF ₂	b) BCl ₃	c) NH ₃	d) ClF ₃		
356. Which molecule is T	-shaped?				
a) 25%	b) 33%	c) 50%	d) 66%		
	•	, <u>-</u>	ter in the hybrid orbital is nearly		
a) O ₂	b) 0 ²⁻	c) 0_2^{2-}	d) O ₂		
354. Which is present in	- -				
	nts and low boiling points				
	ts and high boiling points	OPWITOIA			
·	nts and high boiling points	LICATION			
	ts and low boiling points	. 0			
		alent compounds generally	have:		
	re than O_2 and O_2^+ is diama				
	s than O_2 and O_2^+ is diamagn				
	re than O_2 and O_2^+ is parameter than O_2 and O_2^+ is parameter.				
	s than O_2 and O_2^+ is parama	ngnetic			
	llar orbital theory for O_2^+ :	a, risite of the above	-		
c) Absence of dipole	•	d) None of the above			
a) Difference in spin		b) Presence of more	electrons in orbitals		
$351. N_2$ is less reactive th	·	-, -, -, -, -, -, -, -, -, -, -, -, -, -	, -22-23		
	b) $H_2O_2 < O_3 < O_2$	~	d) $0_2 < H_2 0_2 < 0_3$		
, <u>-</u>		gth increases in the following			
a) Na ₂ S	b) AlCl ₃	c) NaH	d) MgCl ₂		
349. Which of the followi	==	, c, licetion anning	a, Lactice chergy		
Na ⁺ (g) + Cl ⁻ (g) \rightarrow a) Hydration energy		c) Electron affinity	d) Lattice energy		
	accompanying the process	given below is,			
a) LiF	b) NaF	c) CsI	d) CsF		
	st anion to cation size ratio		d) CoE		
a) Planar	b) Linear	c) V-shape	d) Tetrahedral		
346. The actual geometry		a) Walana	d) Taturah adurah		
a) 1, 3	b) 1, 2, 5	c) 1, 3, 5	d) 1, 2, 4		
(5) I_3^+ has bent geon					
(4) SeF ₄ and CH ₄ ha					
(3) Electrons travel					
(2) $p\pi$ — $d\pi$ bonds a	(2) $p\pi$ — $d\pi$ bonds are present in SO_2				
(1) PH_5 and $BiCl_5$ do	oes not exist				

36	64. In which of the following	·	-	
	a) SF ₄	b) SiF ₄	c) XeF ₄	d) BF ₄
36	55. Super octet molecule is:			
	a) F ₃ Cl	b) PCl ₃	c) NH ₃	d) None of these
36	66. The number of unpaired	electrons in a paramagneti	c diatomic molecule of an e	lement with atomic number
	16 is:			
	a) 4	b) 1	c) 2	d) 3
36	57. Which of the following st	atement is not correct?		
	a) Hybridisation is the m	ixing of atomic orbitals pri	or to their combining into n	nolecular orbitals
	b) sp^2 hybrid orbitals are	formed from two p -atomic	orbitals and one s-orbital	
	c) d^2sp^3 hydride orbitals	s are directed towards the o	corners of a regular octahed	dron
	d) dsp^3 hybrid orbitals ar	e all at 90° to one another		
36	8. Which statement is corre	ect?		
	a) Pi-bond always exists	with sigma-bond		
	b) Pi-bond can exist inde	pendently		
	c) Sigma-bond is weaker	than pi-bond		
	d) Pi-bond is less reactive	e than sigma-bond		
36	69. Which of the following pa	air has same structure?		
	a) PCl ₅ and SF ₆	b) SO ₂ and NH ₃	c) PH ₃ and BCl ₃	d) NH_4^+ and SO_4^{2-}
37	0. Which of the following ha	as dipole moment?		
	a) CO ₂	b) <i>p</i> -dichlorobenzene	c) NH ₃	d) CH ₄
37	1. Which one of the following	ng is highest melting halide	?	
	a) AgCl	b) AgBr	c) AgF	d) AgI
37	2. The hybridisation state o	f central atom in PCl ₅ is		
	a) sp^3d	b) $sp^{3}d^{2}$	c) sp^3	d) $d^2 s p^3$
37	3. The correct order of incr	easing bond angles in the fo	ollowing triatomic species i	S:
	a) $NO_2^- < NO_2 < NO_2^+$	b) $NO_2^+ < NO_2 < NO_2^-$	c) $NO_2^+ < NO_2^- < NO_2$	d) $NO_2^- < NO_2^+ < NO_2$
37	$^{7}4. \text{ K}^{+}, \text{Cl}^{-}, \text{Ca}^{2+}, \text{S}^{2-} \text{ ions are}$	e isoelectronic. The decreas	sing order of their size is:	
	a) $S^{2-} > Cl^{-} > K^{+} > Ca^{2}$	CALTO2 FD 64	25417-014	
	b) $Ca^{2+} > K^+ > Cl^- > S^2$!		
	c) $K^+ > Cl^- > Ca^{2+} > S^2$	-		
	d) $Cl^- > S^{2-} > Ca^{2+} > K$;+		
37	5. As the s-character of hyb	ridization orbitals increase	es, the bond angle:	
	a) Increases	b) Decreases	c) Does not change	d) Becomes zero
37	6. AlCl ₃ is covalent while Al	F ₃ is ionic. This fact can be	justified on the basis of	
	a) Valence bond theory	b) Crystal structure	c) Lattice energy	d) Fajan rule
37	7. Which one of the following	ng is a correct set with resp	ect to molecule, hybridisati	ion and shape?
	a) BeCl ₂ , sp^2 , linear		b) BeCl ₂ , sp^2 , triangular p	olanar
	c) BCl_3 , sp^2 , triangular pl	lanar	d) BCl_3 , sp^3 , tetrahedral	
37	'8. In BrF ₃ molecule, the lon	e pairs occupy equatorial p	oositions to minimize	
	a) Lone pair – bond pair			
	b) Bond pair – bond pair	repulsion only		
	c) Lone pair – lone pair r	epulsion and lone pair – bo	ond pair repulsion	
	d) Lone pair – lone pair r	epulsion only		
37	'9. The correct order of decr	easing polarity is		
	a) $HF > SO_2 > H_2O > NI$	=	b) $HF > H_2O > SO_2 > NF$	H_3
	c) HF $> NH_3 > SO_2 > H_2$		d) $H_2O > NH_3 > SO_2 > H$	
38	30. The process requiring the	e absorption of energy is:		
	a) F – F [–]	b) H → H ⁻	c) $Cl \rightarrow Cl^-$	d) $0 \to 0^{2-}$
38	31. In O_2^- , O_2 and O_2^{2-} molecu	ılar species, the total numb	er of antibonding electrons	respectively are

WEB: WWW.GPLUSEDUCATION.ORG

				Gplus Education
	a) 7, 6, 8	b) 1, 0, 2	c) 6, 6, 6	d) 8, 6, 8
382	sp^3 hybridisation is found	•	-, -, -, -	, -, -, -
	a) CO ₃ ²⁻	b) BF ₃	c) NO ₃	d) NH ₃
383	·	tals interatomic forces are p		3
	a) Cu	b) Ag	c) Zn	d) Hg
384	,	nenomenon will occur wher		, ,
	in orbitals approach each			
	a) Orbitals will overlap			
	b) Orbitals will not overla	ap		
	c) Bonding will take place	•		
	d) A diatomic molecule w			
385	=	cent ionic character, the bor	nd is:	
	a) Pure covalent	b) Partial covalent	c) Partial ionic	d) Coordinate covalent
386	•	ld result in the maximum di	•	mic molecule yxy?
	a) $\theta = 90^{\circ}$	b) $\theta = 120^{\circ}$	c) $\theta = 150^{\circ}$	d) $\theta = 180^{\circ}$
387	The species having bond	order different from that in	CO is	
	a) NO	b) NO ⁺	c) CN ⁻	d) N ₂
388	. The species having octah	edral shape is:	·	, <u>-</u>
	a) SF ₆	b) BF ₄	c) PCl ₅	d) BO ₃ ³
389	. The following compound	s have been arranged in ord	der of their increasing theri	mal stabilities. Identify the
	correct order:	_	_	-
	$K_2CO_3(I)$	MgCO ₃ (II)		
	CaCO ₃ (III)	BeCO ₃ (IV)	>	
	a) $I < II < III < IV$	b) $IV < II < III < I$	c) $IV < II < I < III$	d) $II < IV < III < I$
390	. Which of the following w	ill show least dipole momer	nt?	
	a) Ethane	b) Ether	c) Ethanol	d) Water
391	. Which has the minimum	bond energy?		
	a) H—Br	b) H—I	c) I—I	d) H—H
392	. The polarising ability of v	which one of the following is	s highest?	
	a) Small highly positive io	on		
	b) Large positive ion			
	c) Small highly negative i	ion		
	d) Large negative ion			
393	. Which is expected to sho			
	a) ClO ₂	b) SO ₂	c) CO ₂	d) SiO ₂
394	=	er is found in which of the f	=	
	a) CaF ₂	b) CaCl ₂	c) CaI ₂	d) CaBr ₂
395	. The molecule which has a			
	a) CH ₃ Cl	b) NF ₃	c) BF ₃	d) ClO ₂
396	. Hydrogen bond is strong			15 -
20-	a) S——HO	b) O——HS	c) FF	d) O——HN
397	. The only molecule having	g dipole moment is		
	a) 2,2-dimethylpropane			
	b) <i>trans</i> -2-pentene			

c) trans-3-hexene
d) 2,2,3,3-tetramethylbutane

398. Two lone pairs of electrons and two bond pairs are present in:
a) NH₃
b) BF₃
c) CO_3^{2-} d) NH₂

399. The lattice enthalpy and hydration enthalpy of four compounds are given below.

Compound
Lattice
Hydration

GPLUS EDUCATION WEB: WWW.GPLUSEDUCA

	enthalpy	enthalpy
	$(in kJ mol^{-1})$	(in kJ mol ⁻¹)
P	+780	-920
Q	+1012	- 812
R	+828	-878
S	+632	-600

The pair of compounds which is soluble in water is

- a) P and Q
- b) Q and R
- c) Rand S
- d) P and R

400. The increase in bond order results in:

- a) Decrease in bond length and increase in bond energy
- b) Decrease in bond length and bond energy
- c) Increase in bond length and bond energy
- d) None of the above
- 401. The correct stability order of the following resonance structure is

$$H_2C$$
 $\stackrel{+}{=}$ $\stackrel{-}{N}$ $\stackrel{-}{=}$ $\stackrel{-}{N}$ H_2C $\stackrel{-}{=}$ $\stackrel{-}{N}$ $\stackrel{+}{=}$ $\stackrel{-}{N}$ $\stackrel{-}{=}$ $\stackrel{-}{N}$ $\stackrel{-}{N}$ $\stackrel{-}{=}$ $\stackrel{-}{N}$

b) (I) > (III) > (IV)

c) (II) > (I) > (III) > (IV)

d) (III) > (I) > (IV) > (II)

402. Which is not characteristic of π -bond?

- a) π -bond is formed when a sigma bond already formed
- b) π -bond is formed from hybrid orbitals
- c) π -bond may be formed by the overlapping of p-orbitals
- d) π -bond results from lateral overlap of atomic orbitals

403. A molecule in which sp^2 -hybrid orbitals are used by the central atom in forming covalent bond is:

b) SO₂

404. Which species has the highest bond order?

b) 0^{2}

c) N_2

d) Both O_2 and O_2^{2-}

405. Molecular shapes of SF₄, CF₄, XeF₄ are

- a) The same with 2, 0 and 1 lone pair of electron respectively
- b) The same with 1, 1 and 1 lone pair of electrons respectively
- c) Different with 0, 1 and 2 lone pair of electrons respectively
- d) Different with 1, 0 and 2 lone pair of electrons respectively
- 406. The correct sequence of hybridisation of methane, ethene and acetylene is
 - a) sp, sp^2, sp^3
- b) sp^2 , sp^3 , sp
- c) sp^3 , sp^2 , sp
- d) sp^3 , sp, sp^2

407. The nature of the bond in diamond is

a) Ionic

- b) Covalent
- c) Metallic
- d) Coordinate covalent

408. The set representing the correct order of first ionization potential is:

- a) K > Na > Li
- b) Be > Mg > Ca
- c) B > C > N
- d) Ge > Si > C

409. Amongst the following, the molecule that is linear is

a) SO_2

- b) BeH₂
- c) ClO_2

d) NO_2

410. Which of the following species does not exist under normal conditions?

a) Be^{2+}

b) Be₂

c) B_2

d) Li₂

411. How many σ and π – bonds are present in toluene?

- a) $3\pi + 8\sigma$
- b) $3\pi + 10\sigma$
- c) $3\pi + 15\sigma$
- d) $6\pi + 3\sigma$

412. Octet rule is not valid for the molecule:

a) CO₂

b) H₂O

c) 0_2

d) CO

413. CO_2 has the same	_		
	$_2$, (C) SnCl ₄ , (D) C ₂ H ₂		
a) <i>A</i> and <i>C</i>	b) <i>B</i> and <i>D</i>	c) <i>A</i> and <i>D</i>	d) <i>C</i> and <i>D</i>
_	order in the molecular orbital th	neory depends on the number	er of electrons in the bonding
_	orbitals. The bond order:		
a) Can have a —ve			
b) Has always an i	=		
c) Is a non-zero q	-		
	y +ve value, including zero		
	and π -bonds in pent-4-en-1-yno		
a) 3, 10	b) 9, 4	c) 4, 9	d) 10, 3
	gle in 1, 1, 2, 2-tetrachloroether		
a) 109.5° and 900		c) 90° and 109.5°	d) 109.5° and 120°
	ongest tendency to form anions		
a) Ga, In, Te	b) Na, Mg, Al	c) N, O, F	d) V, Cr, Mn
	molecular orbital theory we ca	in give the electronic configu	ration of the singly positive
nitrogen molecula			
=	$2s^2$, σ^*2s^2 , $\pi 2p^4$, $\sigma 2p^1$	b) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, σ^*	
c) $\sigma 1s^2, \sigma^* 1s^2, \sigma 2$	$(s^2,\sigma^*2s^2,\sigma2p^3,\pi2p^2)$	d) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, σ^*	$(2s^2, \sigma 2p^2, \pi 2p^4)$
419. NH_3 has much hig	ther boiling point than PH_3 bec	ause	
a) NH ₃ has larger	molecular weight		
b) NH ₃ undergoes	umbrella inversion		
c) NH ₃ forms hyd	rogen bond		
d) NH ₃ contains ic	onic bonds whereas PH_3 contai	ns covalent bonds	
420. In a crystal, the at	oms are located at the position	s of:	
a) Maximum pote	ntial energy		
b) Minimum poter	ntial energy		
c) Zero potential e	energy al energy	ICATION	
d) Infinite potenti	al energy	CHILOIT	
421. Which substance l	has the greatest ionic character	r?	
a) Cl ₂ O	b) NCl ₃	c) PbCl ₂	d) BaCl ₂
422. The conductivity	of the metal decreases with inc	reases in temperature becau	se
a) The kinetic ene	rgy of the electron increases		
b) The movement	of electrons becomes haphaza	rd	
c) The kernels sta	rt vibrating		
d) The metal beco	mes hot and starts emitting ra	diations	
423. Which of the follo	wing when dissolved in water	forms a solution, <i>i.e.</i> , non-cor	nducting?
a) Chile salt petre		b) Potash alum	
c) Green vitriol		d) Ethyl alcohol	
424. Which bond is mo	re polar?		
a) Cl—Cl	b) N—F	c) C—F	d) O—F
425. The pairs of bases	in DNA are held together by:		
a) Hydrogen bond	ls b) Ionic bonds	c) Phosphate groups	d) Deoxyribose groups
· · · · · · · · · · · · · · · · · · ·	wing has highest bond angle?		
a) H ₂ O	b) H ₂ S	c) NH ₃	d) PH ₃
-	which carbon atom uses only s	, ,	-
a) HCOOH	b) NH ₂ CONH ₂	c) (CH ₃) ₃ COH	d) CH ₃ CHO
	eractions; (I) Covalent bond, (I		
· -	raction, which represents the o		
a) $(I) < (III) < (II)$		O .	•

		Gplus Education
b) (II) < (III) < (IV) < (I)		
c) (II) < (IV) < (III) < (I)		
d) (IV) < (II) < (III) < (I)		
429. If the ionization potential for hydrogen atom is 13.6	eV, then the ionization pot	ential for He ⁺ ion should
be:		
a) 72.2 eV b) 54.4 eV	c) 6.8 eV	d) 13.6 eV
430. The hydrogen bonding is strongest in:		
a) 0—H S b) S—H 0	c) F—H F	d) F—H O
431. The correct increasing order of polarising power is:		
a) $Ca^{2+} < Mg^{2+} < Be^{2+} < K^+$		
b) $Mg^{2+} < Be^{2+} < K^+ < Ca^{2+}$		
c) $Be^{2+} < K^+ < Ca^{2+} < Mg^{2+}$		
d) $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$		
432. Acetate ion contains:		
a) One C, O single bond and one C, O double bond		
b) Two C, O single bonds		
c) Two C, O double bonds		
d) None of the above		
433. Which one is paramagnetic and has the bond order	half (0.5)?	
a) F ₂ b) N ₂	c) 0 ₂	d) H ₂ ⁺
434. Which one is correct?		
a) Dinitrogen is paramagnetic		
b) Dihydrogen is paramagnetic	>	
c) Dioxygen is paramagnetic		
d) Dioxygen is diamagnetic		
435. IP is influenced by:		
a) Size of atom		
b) Charge on nucleus	CATION	
c) Electrons present in inner shells	81417-014	
d) All of the above		
436. The hybridization of atomic orbitals of nitrogen in N	NO_2^+ , NO_3^- and NH_4^+ are:	
a) sp, sp^3 and sp^2 respectively		
b) sp , sp^2 and sp^3 respectively		
c) sp^2 , sp and sp^3 respectively		
d) sp^2 , sp^3 and sp respectively		
437. The bond between carbon atoms (1) and (2) in com	$pound N \equiv C - CH = CH_2,$	
	(1) (2)	
involves the hybrid orbitals;		
a) sp^2, sp^3 b) sp, sp^2	c) sp, sp^3	d) <i>sp, sp</i>
438. Which of the following has lowest boiling point?		
a) NaCl b) CuCl	c) CuCl ₂	d) CsCl
439. When metals react with non-metals, the metal atom		
a) Share electrons b) Lose electrons	c) Gain electrons	d) None of the above
440. Which one has more tendency to form covalent com		
a) Ba b) Be	c) Mg	d) Ca
441. The order of melting point of <i>ortho, para, meta</i> -nitro		
a) $o > m > p$ b) $p > m > o$	c) $m > p > o$	d) $p > o > m$
442. Number of non-bonding electron pair on Xe in XeF_6		
a) 6, 4, 2 b) 1, 2, 3	c) 3, 2, 1	d) 0, 3, 2

_					
Gpi	liic	Fal	110	atı	nn
UD	us	Lu	46	ии	vii

. 2 2 12 2	. 2 2	2 2
a) sp^3, sp^2, sp b) sp^3, sp, sp^2	c) sp^2 , sp^3 , sp	d) sp, sp^3sp^2
444. The molecule, ion which is pyramidal in shape is		
a) NO ₃ b) PCl ₃	c) CO_3^{2-}	d) SO ₃
445. The number of lone pairs of Xe in XeF ₂ , XeF ₄ and Xe	eF ₆ respectively are	
a) 3, 2, 1 b) 2, 4, 6	c) 1, 2, 3	d) 6, 4, 2
446. The electronic structure of the four elements <i>A</i> , <i>B</i> , <i>C</i>	C and D are, $(A) = 1s^2$; (B)	$0 = 1s^2, 2s^2 2p^2; (C) =$
$1s^2, 2s^22p^5; (D) = 1s^2, 2s^22p^6.$		
The tendency to form electrovalent bond is maximu	ım in:	
a) <i>A</i> b) <i>B</i>	c) <i>C</i>	d) <i>D</i>
447. C — C bond order in benzene is		
a) 1 b) 2	c) Between 1 and 2	d) None of these
448. For the formation of covalent bond, the difference i	n the value of electronegat	ivities should be:
a) Equal to or less than 1.7		
b) More than 1.7		
c) 1.7 or more		
d) None of the above		
449. Which among the following elements has lowest va	lue of ionisation energy?	
a) Pb b) Sn	c) Si	d) C
450. In coordinate bond, the acceptor atoms must essen	tially contain in its valency	shell an orbitals:
a) With paired electron b) With single electron	c) With no electron	d) With three electrons
451. How many σ -and π -bonds are there in the molecule	e of tetracyanoethylene?	
$N \equiv C \setminus C \equiv N$		
C = C	>	
N≡C C≡N	-	
a) Nine σ - and nine π b) Five σ - and nine π	c) Nine σ - and seven π	d) Five σ- and eight π
452. Paramagnetism of oxygen is explained on the basis	· ·	
a) $(\pi^2 p_x)^1 (\pi^2 p_y)^1$ b) $(\pi^2 p_y)^1 (\pi^2 p_z)^1$	c) $(\sigma_{2s})^1 (\pi 2p_y)^1$	d) $(\sigma_{2s})^1 (\pi 2p_y)^1$
453. The compound possessing most strongly ionic natural a) SrCl ₂ b) BaCl ₂		d) CcCl
a) SrCl ₂ b) BaCl ₂ 454. The complex ion which has no 'd' electrons in the complex ion which has no 'd' electrons in the complex in the com	c) CaCl ₂	d) CsCl
a) $[MnO_4]^-$ b) $[Co(NH_3)_6]^{3+}$	c) [Fe(CN) ₆] ³⁻	d) $[Cr(H_2O)_6]^{3+}$
455. Which of the following species is least stable?	c) [re(GN) ₆]	u) [CI (H ₂ O) ₆]
	c) 0 ₂	d) O_2^{2-}
a) O_2 b) O_2^+ 456. The dipole moment of HBr is 1.6×10^{-30} C-m and in		
-	nteratomic spacing is 1A. I	ne % ionic character of HBr
is	a) 1F	4) 27
a) 7 b) 10	c) 15	d) 27
457. Which group of atoms have nearly same atomic rad		d) E Cl D _n I
a) Na, K, Rb, Cs b) Li, Be, B, C	c) Fe, Co, Ni, Cu	d) F, Cl, Br, I
458. Bond polarity of diatomic molecule is because of		
a) Difference in electron affinity of the two atoms		
b) Difference in electronegativities of the two atom	18	
c) Difference in ionisation potential		
d) All of the above		
459. The hybridization of P in PO ₄ ³⁻ is same as in:	a) N in NO	d) C : CO2=
a) I in ICl ₄ b) S in SO ₃	c) N in NO ₃	
460. AB is an ionic solid. The ionic radii of A^+ and proportional to	$_{o}$ are respectively r_{c} and	ar _a . Lattice energy of <i>AB</i> is
oronoruonalio		

_		•			Ε	_	٠	_	_	4	: _	
I 7	n		•	•	-	п	,,,	r	п	TI	n	r
v	\sim		и	•	_	u	u	·	u		v	

a) $\frac{r_c}{r_a}$	b) $(r_c + r_a)$	c) $\frac{r_a}{r_c}$	d) $\frac{1}{(r_c + r_a)}$
461. Which contains a coord	linate and covalent bond?	C	(10 1 10)
a) BaCl ₂	b) NH ₄ Cl	c) HCl	d) H ₂ O
462. Covalent radius of Li is		•	, 2
a) > 123 pm	b) < 123 pm	c) + 123 pm	$d) = \frac{123}{2} pm$
•	•	-	$\frac{\alpha}{2}$
463. Which of the following			D 11 0 1
a) BH ₄	b) NH ₄ +	c) CO_3^{2-}	d) H ₃ O ⁺
464. The bond order of C_2^+ is) 0 /0	1) 4 /0
a) 1	b) 2	c) 3/2	d) 1/2
465. With increasing bond o) D	13.34 6.1
a) Increases	b) Decreases	c) Remains unaltered	d) None of these
466. Molecular orbitals theo) M 1	15.56, 1101
a) Werner	b) Kossel	c) Moseley	d) Mullikan
167. The isoelectronic pair i			
a) Cl_2O , ICl_2	b) Cl ₂ , ClO ₂	c) IF_2^+, I_3^-	d) ClO_2^- , ClF_2^+
168. The compound 1,2-but			
a) sp, sp^2 and sp^3 hybr		b) Only sp^2 hybridised	
c) Only <i>sp</i> hybridised c		d) Only sp and sp^2 hybi	ridised carbon atoms
169. The correct order of ion			
a) $Fe > Fe^{2+} > Fe^{3+}$		c) $I^- > I > I^+$	d) All of these
170. The shape of sulphate i			
a) Square planar	b) Trigonal	c) Trigonal planar	d) Tetrahedral
171. Molecular shape of SF _{4.}	, CF ₄ and XeF ₄ are:	P	
a) The same with 2, 0 a	nd 1 lone pair of electrons	respectively	
	nd 1 lone pair of electrons		
	nd 2 lone pairs of electrons		
-	nd 2 lone pairs of electrons	s respectively.	
172. Which of the following	is sp^3 hybridised?		
a) NH ₃	b) BH ₃	c) PCl ₅	d) AlCl ₃
73. Sodium chloride is solu	ble in water but not in ber	nzene because	
$\Delta H_{ m hdydration}$		$\Delta H_{ m hdydration}$	
a) $< \Delta H_{\text{lattice energy in w}}$	$_{ m ater}$ and $\Delta H_{ m hdvdration}$	b) > $\Delta H_{\text{lattice energy in w.}}$	$_{ m ater}$ and $\Delta H_{ m hdvdration}$
$> \Delta H_{\text{lattice energy in be}}$		$<\Delta H_{\rm lattice\ energy\ in\ be}$	
$\Delta H_{ m hdydration}$		$\Delta H_{ m Hdydration}$	on the same of the
· · · · · · · · · · · · · · · · · · ·	and ΛH_{ij}	-	and ΛH_{max}
c) = $\Delta H_{\text{lattice energy in w}}$		d) $< \Delta H_{\text{lattice energy in w.}}$	
$<\Delta H_{\rm lattice\ energy\ in\ be}$		$= \Delta H_{\text{lattice energy in be}}$	enzene
174. The pair likely to form		_	20(1) (14)
a) H_2O_2 and H_2O_3	-	OH c) CH ₃ COOH and CH ₃ CO	JU(d) SiH ₄ and SiCl ₄
175. The number of sigma a	-	· ·	1) 0 10
a) 5σ and 5π	b) 6σ and 4π	c) 7σ and 3π	d) 8σ and 2π
176. Which is soluble in wat) A F	15. A. Y.
a) AgF	b) AgCl	c) AgBr	d) AgI
177. Which of the following			
a) CaF ₂	b) CaCl ₂	c) CaBr ₂	d) CaI ₂
$478. sp^3$ hybridisation is not			
a) H ₂ O	b) CH ₄	c) BCl ₃	d) NH ₃
479. Amongst H ₂ 0, H ₂ S, H ₂ S		highest boiling point is:	
a) H ₂ O because of hydr	ogen bonding		

			Gpius Eaucatio
	b) H ₂ Te because of higher molecular weight		
	c) H ₂ S because of hydrogen bonding		
	d) H ₂ Se because of lower molecular weight		
480	Which of the following is false?		
	a) Methane molecule is tetrahedral in shape		
	b) Nickel tetrachloride is square planar in shape		
	c) P ₂ O ₅ is like two pyramids joined at their apices		
	d) Acetylene is non-linear		
481	The pair of elements which on combination are mos	t likely to form an ionic com	ipound is:
	a) Na and Ca b) K and O ₂	c) O_2 and Cl_2	d) Al and I ₂
482	Among the following the maximum covalent charact	er is shown by the compou	nd.
	a) FeCl ₂ b) SnCl ₂	c) AlCl ₃	d) MgCl ₂
483	Dipole-dipole attractive forces are strongest betwee	n the molecules of:	
	a) He b) CH ₄	c) CO ₂	d) H ₂ O
484	The type of hybridization of sulphur atom present in	$1\mathrm{SO}_2$ and SO_3 is respectively	y:
	a) sp, sp^2 b) sp^2, sp^2	c) sp^2 , sp^3	d) sp, sp^3
485	The electrons used in bonding atoms:		
	a) Belong to outermost shell		
	b) Belong to penultimate shell		
	c) Belong to outermost shell and sometimes penulti	mate shell	
	d) Belong to penultimate shell and sometimes to out		
486	Given are O_2 , O_2^+ , O_2^{2+} and O_2^{2-} respectively. Find the		der
	a) $0_2 < 0_2^{2-} < 0_2^{2+} < 0_2^+$	b) $0_2^{2-} < 0_2 < 0_2^+ < 0_2^{2+}$	
	, , , , , , , , , , , , , , , , , , , ,		
	c) $O_2^2 - < O_2 < O_2^+ < O_2^2$	d) $0_2^+ < 0_2^{2-} < 0_2 < 0_2^{2+}$	
487	In a homonuclear molecule which of the following se	et of orbitals is degenerate?	
	a) $\sigma 2s$ and $\sigma 1s$ b) $\pi 2 p_x$ and $\pi 2 p_y$	c) $\pi 2n$ and $\sigma 2n$	d) $\sigma 2 p_z$ and $\pi 2 p_x$
	0 701110 61111	$c_j = \sum_{i=1}^{n} \sum_{j=1}^{n} c_j = \sum_{i=1}^{n} c_j$	$z p_z$ and $z p_x$
488	The electronegativity order of O, F, Cl and Br is:	SECTION	
	a) $F > 0 > Cl > Br$ b) $F > Cl < Br > 0$	c) $Br > Cl > F > 0$	d) F < Cl < Br < 0
489	Solid NaCl is a bad conductor of electricity because:		
	a) In solid NaCl there are no ions		
	b) Solid NaCl is covalent		
	c) In solid NaCl there is no velocity of ions		
	d) In solid NaCl there are no electrons		
490	The number of lone pairs is same in PCl ₃ and:		
	a) BCl ₃ b) NCl ₃	c) CCl ₄	d) PCl ₅
491	CaO and NaCl have the same crystal structure and ap	oproximately the same ionic	c radii. If U is the lattice
	energy of NaCl, the approximate lattice of CaO is		
	a) $\frac{U}{2}$ b) U	c) 2 <i>U</i>	d) 4 <i>U</i>
	2	,	u) 10
492	In the molecule $CH \equiv C - CH = CH_2$, the hybridisation		
	a) $sp^2 - sp$ b) $sp^3 - sp^3$	c) $sp^2 - sp^2$	d) $sp^3 - sp$
493	Shape and hybridisation of IF ₅ respectively are		
	a) Trigonal bipyramidal, sp^3d		
	b) Sea-saw, sp^3d		
	c) Square pyramidal, sp^3d^2		
	d) Pentagonal pyramidal, sp^3d^3		
494	Which of the following set of properties belong to PC	=	
	a) sp^3 , tetrahedral, 4 valence shell pairs of electrons		

			Gpius Education
	nal bipyramidal, 5 valence shell	=	
c) $sp^3 d^2$, octa	hedral, 6 valence shell pairs of	electrons	
	re planar, 4 valence shell pairs o		
495. In a polar mol	ecule, the ionic charge is 4.8 $ imes$ 1	0^{-10} esu. If the interionic dista	ance is 1 Å unit, then the dipole
moment is			
a) 0.48 debye	b) 4.18 debye	c) 4.8 debye	d) 41.8 debye
496. The double bo	nds between the two carbon at	oms in ethylene consists of:	
a) Two sigma	bonds at right angles to each ot	her	
b) One sigma-	bond and one pi-bond		
c) Two pi-bon	ds at right angles to each other		
d) Two pi-bon	ds at an angle of 60° to each oth	ier	
	bridisation of S in SF ₄ is		
a) sp^3 and has	s a lone pair of electron		
b) sp^2 and has	s tetrahedral structure		
c) sp^3d and h	as a trigonal bipyramidal struct	ure	
d) sp^3d^2 and l	nas an octahedral structure		
498. In OF ₂ , numbe	er of bond pair and lone pairs of	electrons are respectively:	
a) 2, 6	b) 2, 8	c) 2, 10	d) 2, 9
499. In which pair,	the first atom or ion is not large	r than the second?	
a) N, F	b) Cl ⁻ , Cl	c) O, S	d) Fe ²⁺ , Fe ³⁺
500. The maximum	number of hydrogen bonds tha	t a molecule of water can hav	e is
a) 1	b) 2	c) 3	d) 4
501. The isoelectro	nic species among the following	gare:	
I—CH ₃ ; II—N	H_2^+ ; III— NH_4^+ ; IV— NH_3		
a) I, II, III	b) II, III, IV	c) I, II, IV	d) II, I
502. Dipole momen	nt is exhibited by:	1	
a) 1, 4-dichlor	obenzene	LICATION	
b) 1, 2-dichlor	obenzene	UCATION	
-	-dichloroethene		
	dichloro-2-butene		
	stron atom, the energy of a 2 p -o	rbital is:	
	nat of 2s-orbital		
-	that of 2s-orbital		
	at of 2s-orbital		
d) Double that			
	cule the central atom does not t		_
a) NH ₂	b) BeF ₃	c) SO ₂ Cl ₂	d) SO ₄ ²
505. RbO ₂ is			
·	nd paramagnetic	b) Peroxide and diam	_
	and paramagnetic	d) Superoxide and dia	magnetic
	rgy of nitrogen is more than oxy	ygen because:	
•	s more attraction for electrons		
	o-orbitals are more stable		
c) Nitrogen at			
d) More penet			
_	ing point and insolubility in orga		
a) Simple ioni	-	c) Bipolar ionic	d) hexagonal
	ollowing does not have a coordi		DANAG
a) SO_2	b) H ₂ SO ₃	c) HNO ₂	d) HNO ₃
SILLY Which of the f	ollowing coguence regarding io	nication notantial of coinago n	natal is carract:

a) Cu > Ag > Au	b) Cu < Ag < Au	c) Cu > Ag < Au	d) Ag > Cu < Au
510. Which, molecule has a) HBr	b) AgI	c) PbSO ₄	d) H ₂ O
	ecule, while NCl ₃ is pyramida		u) 11 ₂ 0
	re covalent than B – Cl bond	ii, because	
•	smaller than boron atom		
	re polar than N – Cl bond		
	pair of electrons but NCl ₃ has	s a lone pair of electrons	
	underline atom changes in	a rone pair of electrons	
a) <u>A</u> lH ₃ changes to A		b) H ₂ O changes to H ₃ O)+
c) $\underline{N}H_3$ changes to N		d) In all cases	
513. Which molecule has	=	,	
a) CH ₄	b) CH ₃ COOH	c) GeH ₄	d) H ₂ Te
	l when a neutral gaseous ato		_
a) Ionization energy	=	c) Electronegativity	d) Electron affinity
	of bond pair and lone pair el	, , ,	,
a) 2, 2	b) 3, 1	c) 1, 3	d) 4, 8
516. Which has sp^2 -hybr		, ,	, ,
a) CO ₂	b) SO ₂	c) N ₂ O	d) CO
517. A sp^3 -hybrid orbita		, -	,
a) 1/4 s-character		c) 2/3 s-character	d) 3/4 s-character
	NO ⁺ from NO, the electron is		
a) a σ orbital	b) a π orbital	c) a σ^* orbital	d) a π^* orbital
519. The decreasing orde	er of the second ionization en	ergy of K, Ca and Ba is:	
a) K > Ca > Ba	b) Ca > Ba > K	c) Ba > K > Ca	d) K > Ba > Ca
520. The value of n in the	e molecular formula $\mathrm{Be}_n\mathrm{AI}_2\mathrm{S}$	i ₆ 0 ₁₈ is	
a) 1	b) 2	c) 3	d) 4
521. Compound X is anh	ydride of sulphuric acid. The	e number of σ bonds and th	e number of π - bonds present
in X are, respectivel		, -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
a) 3, 3	b) 4, 2	c) 2, 4	d) 4, 3
522. OF ₂ is:			
a) Linear molecule a			
=	ecule and sp^3 -hybridized		
c) Bent molecule an			
d) None of the above			
523. Which is not true in	case of ionic bond?		
a) It is linear bond			
b) It is 100% ionic		atura u a antimitur di Comana	
d) None of the above	een two atoms with large ele	ctronegativity difference	
•	e ing are possible resonating st	ructure of N O2	
		ructure of N ₂ O:	
HN==N==N	<u>N</u> —N ≡ 0:		
I I	II		
•	• • + • •		
:N <u> </u>	<u>N=0=N</u>		
III	IV		
a) I and II	b) I and III	c) I, II and III	d) All of these
	,	, ,	,
Jaj. The number of 6 an	d π – bonds in a molecule of a	acetonitrile are respectively	7

526. Sti	rongest hydrogen bond i	is present in		
a)	OF	b) S——HO	c) O——HS	d) FF
527. In	the cyanide ion, the forr	nal negative charge is on:		•
a)				
b)				
-	Both C and N			
-	Resonate between C and	d N		
-		geometry results from the l	nyhridisation	
		b) dsp^2 or sp^2d	c) d^2sp^3 or sp^3d^2	d) d^3p^2 or d^2p^3
	•	g molecules has the smalles		α, α ρ οι α ρ
	NH ₃	b) PH ₃	c) H ₂ O	d) H ₂ Se
530.	0	b) 1 113	c) 1120	4) 11250
330.				
Th	ie H H bond angle	e in $\rm H_2O$ is 104.5. This fact of	can be best explained with	the help of
a)	Valence shell electron	pair repulsion (VSEPR))b) Molecular orbital theor	У
	theory			
c)	Presence of hydrogen b	ond	d) Electronegativity diffe	rence between hydrogen
			and oxygen atoms	
531. W	hich of the two ions fron	n the list given below that l	nave the geometry that is e	xplained by the same
hy	bridization of orbitals, N	$10_{2}^{-}, N0_{3}^{-}, NH_{2}^{-}, NH_{4}^{+}, SCN^{-}$?	
a)	NO_2^- and NH_2^-	b) NO_2^- and NO_3^-	c) NH_4^+ and NO_3^-	d) SCN ⁻ and NH ₂
-	hich of the following is n		7 4 3	2
	SO_3	b) CO ₂	c) CS ₂	d) BeCl ₂
-	hich contains both coval		, 2	
	CCl ₄	b) KCN	c) CaCl ₂	d) H ₂ O
-	•	y combination of Na and Cl	-	
	Sodium and chlorine bo			
-	Sodium and chlorine bo			
_	Sodium loses but chlori		ΆΤΙΩΝ	
_	Sodium gains but chlori	_ 4	PULLIVIT	
	hich of the following has			
	CCl ₄	b) C_2H_4	c) C ₂ H ₂	d) SO ₂
-	-			orbitals (ii) one sigma bond
		_		ls. Which of the following is
101 X?		ontais and (m) one n bond i	for filed by p_x and p_z or bita	is. Which of the following is
		b) C II Cl	a) C II Cl	4) C II
-		b) C ₂ H ₃ Cl	c) C ₂ H ₂ Cl ₂	d) C ₂ H ₄
			th the electronic structure:	
-	-	b) $1s^2$, $2s^22p^5$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^6$, $3s^2$
	hich is correct in the foll	_	4 - 4 %	
_		9Å, while that of Cl ⁺ ion is		
_		9 Å, while that of Na atom i		
-		$0.95 \text{ Å, while that of Cl}^-$ io		
		95 Å, while that of Na ⁺ ion i	is 1.54 A	
	ow many unpaired electi	-		
a)		b) 2	c) 3	d) 4
		_	est bond angle in its molec	
-	SO_2	b) OH ₂	c) SH ₂	d) NH ₃
	hich of the following is is	-		
-	N_2O	b) NO ₂	c) N_2O_5	d) NO
	_		and $\it R$ are given in brackets	
L($1s^2, 2s^2, 2p^4), P(1s^2, 2s)$	2 , $2p^{6}$, $3s^{1}$), $Q(1s^{2}, 2s^{2}, 2p^{6})$	6 , $3s^{2}$, $3p^{5}$), $R(1s^{2}$, $2s^{2}$, $2p^{6}$	$(3s^2)$ The formula of ionic

compounds that can be formed between these elements are b) LP, RL, PQ and RQc) P_2L , RL, PQ and RQ_2 d) LP, R_2L , P_2Q , and RQa) L_2p , RL, PQ and R_2Q 543. In which of the following ionisation processes, the bond order has increased and the magnetic behaviour has changed? a) $C_2 \rightarrow C_2^+$ b) NO \rightarrow NO⁺ c) $0_2 \to 0_2^+$ d) $N_2 \rightarrow N_2^+$ 544. The size of ionic species is correctly given in the order: a) $Cl^{7+} > Si^{4+} > Mg^{2+} > Na^{+}$ b) $Na^+ > Mg^{2+} > Si^{4+} > Cl^{7+}$ c) $Na^+ > Mg^{2+} > Cl^{7+} > Si^{4+}$ d) $Cl^{7+} > Na^{+} > Mg^{2+} > Si^{4+}$ 545. Which of the following has the minimum bond length? b) 0⁺₂ c) 0_{2}^{-} d) 0_2^{2-} 546. In acetylene molecule, between the carbon atoms there are a) Three pi bonds b) One sigma and two pi bonds c) Two sigma and one pi bonds d) Three sigma bonds 547. The ionic radii of N^{3-} , O^{2-} and F^{-} are respectively given by: b) 1.36, 1.71, 1.40 a) 1.36, 1.40, 1.71 c) 1.71, 1.40, 1.36 d) 1.71, 1.36, 1.40 548. Bond order of 1.5 is shown by: a) 0_2^{2} b) 0₂ c) 0_2^+ d) 0_{2}^{-} 549. In which of the process, the bond order increases and magnetic behaviour changes? d) $0_2 \to 0_2^+$ a) $N_2 \rightarrow N_2^+$ b) $C_2 \rightarrow C_2^+$ c) $NO \rightarrow NO^+$ 550. Which involves a bond forming process? a) Stretching rubber b) Dissolution of sugar in water c) Rusting of iron d) Emission of γ-rays by radioactive iron 551. Which is paramagnetic? c) Cl₂O a) Cl_2O_6 b) Cl₂O₇ d) ClO_2 552. Which one of the following pairs of molecules will have permanent dipole moments for both members? a) SiF₄ and NO₂ b) NO_2 and CO_2 c) NO_2 and O_3 d) SiF₄ and CO₂ 553. The state of hybridization of boron and oxygen atom in boric acid (H_3BO_3) is respectively:

- - a) sp^3 , sp^3
- b) sp^2 , sp^3
- c) sp^3 , sp^2
- d) sp^2 , sp^2

- 554. The correct order towards bond angle is
 - a) $sp^3 < sp^2 < sp$
- b) $sp < sp^2 < sp^3$
- c) $sp < sp^3 < sp^2$
- d) $sp^2 < sp^3 < sp$
- 555. Which orbital is used by oxygen atom to form a sigma bond with other oxyen atom in O₂ molecule?
 - a) Pure *p*-orbital
- b) sp^2 -hybrid orbital
- c) sp^3 hybrid orbital
- d) sp- hybrid orbital

- 556. Which of the following is a linear molecule?
 - a) BeCl₂
- b) H_2O

c) SO_2

d) CH₄

- 557. Which involves breaking of covalent bond?
- a) Boiling H₂S
- b) Melting KCN
- c) Melting SiO₂
- d) Boiling CF₄

558. For $\overline{N}H_2$, the best three-dimensional view is

- 559. For the four successive transition elements (Cr, Mn, Fe and Co), the stability of +2 oxidation state will be there in which of the following order?
 - a) Cr > Mn > Co > Fe
 - b) Mn > Fe > Cr > Co

c) $Fe > Mn > Co > Cr$			
d) $(\text{At. no. Cr} = 24, \text{Mn} =$			
(At. no. $Cr = 24$, $Mn = 1$	25, Fe = 26, Co = 27)		
560. In PO_4^{3-} , the formal charge		tom and the $P-0$ bond or	der respectively are
a) -0.75, 0.6	b) -0.75, 1.0	c) -0.75, 1.25	d) -3, 1.25
561. An element X has 3 electron	ons in p -orbitals and also b	elongs to III period. Its mol	ecular formula should be:
a) <i>X</i>	b) <i>X</i> ₂	c) X_4	d) <i>X</i> ₅
562. Elements having six electr	ons in its outermost orbit a	generally form:	
a) Complex ion	b) Negative ion	c) Positive ion	d) Zwitter ion
563. Oxygen is divalent, but su	lphur exhibits variable vale	ency of 2, 4 and 6, because:	
a) Sulphur is less electron	egative than oxygen		
b) Sulphur is bigger atom	than oxygen		
c) Ionisation potential of s	sulphur is more than oxyge	n	
d) Of the presence of d -or	bitals in sulphur		
564. Of the following sets whic			
a) BO_3^{3-} , CO_3^{2-} , NO_3^{-}	b) SO_3^{2-} , CO_3^{2-} , NO_3^{-}	c) CN^- , N_2 , C_2^{2-}	d) PO_4^{3-} , SO_4^{2-} , ClO_4^-
565. In which of the following,	unpaired electrons are pre	sent?	
KO_2 , AlO_2^- , BaO_2 , NO_2^+			
a) NO_2^+ , BaO_2	b) KO_2 , AlO_2	c) Only KO ₂	d) Only BaO ₂
566. Which transition involves	maximum amount of energ	gy?	
a) $M^-(g) \rightarrow M(g) + e$			
b) $M^-(g) \rightarrow M^+(g) + 2e$			
c) $M^+(g) \rightarrow M^{2+}(g) + e$			
d) $M^{2+}(g) \to M^{3+}(g) + e$			
567. What is the nature of the h	oond between B and O in (0	$(C_2H_5)_2OBH_3$?	
a) Covalent	1	b) Coordinate covalent	
c) Ionic bond		d) Banana shaped bond	
568. Which does not use sp^3 -h	ybrid orbitals in its bondin	g?	
a) BeF -	b) OH ₃ +	c) NH ₄ ⁺	d) NF ₃
569. Hybridisation of C_2 and C_3	of		
$H_3C - CH = C = CH - CH$	₃ are		
a) sp, sp^3	b) sp^2 , sp	c) sp^2 , sp^2	d) <i>sp</i> , <i>sp</i>
570. Maximum covalence of an	atom of an element is equa	al to:	
a) Number of unpaired ele	ectrons in the s -and p -orbi	tals of valency shell	
b) Number of unpaired ele	ectrons in the p -orbitals of	valency shell	
c) Total number of electro	ons in the s -and p -orbitals ϕ	of valency shell	
d) Total number of electro	ons in the p -orbitals of vale	ncy shell	
571. Which main group elemer	nts have a different number	of outermost electrons tha	an their group number?
a) Alkali metals	b) Noble gases	c) Halogens	d) None of these
572. The forces present in the	crystals of naphthalene are	:	
a) Van der Waals' forces	b) Electrostatic forces	c) Hydrogen bonding	d) None of these
573. Which does not show iner	t pair effect?		
a) Al	b) Sn	c) Pb	d) Thallium
574. The electronic theory of b	onding was proposed by		,
a) Pauling	b) Lewis	c) Bronsted	d) Mullikan
575. The correct order of decre		•	,
a) $C > B > Be > Li$	b) C > Be > B > Li	c) B > C > Be > Li	d) Be $>$ Li $>$ B $>$ C
576. The hybridisation of orbit			-
a) sp, sp^2, sp^3	b) sp^2, sp, sp^3	c) sp, sp^3, sp^2	d) sp^2 , sp^3 , sp
577. Which of the following is a			- L · L · L

				Gplus Education	
	a) NaCl	b) KCl	c) MgCl ₂	d) CaCl ₂	
578.	The species showing $p\pi$ - a	$l\pi$ overlapping is:			
	a) NO_3^-	b) PO ₄ ³⁻	c) CO ₃ ²⁻	d) NO ₂	
579.	H ₂ O has a net dipole mon	nent, while BeF ₂ has zero di	ipole moment, because:		
	a) H ₂ O molecule as linear	while BeF ₂ is bent			
	b) BeF ₂ molecule is linear	-			
	c) Fluorine is more electr	onegative than oxygen			
	d) Be is more electronega				
580.	_	ch is the strongest oxidising	g agent?		
	a) Cl ₂	b) F ₂	c) Br ₂	d) I ₂	
581.	· · · · · ·			ectrons and one lone pair of	
	electrons?		•	•	
	a) NH ₃	b) H ₂ O	c) BF ₃	d) CO ₂	
582.	Which of the following sta	• =	, 0		
	-	onds contain a σ - bond and	one or more π - bonds		
	b) All carbon to hydrogen				
		bonds are hydrogen bonds	S		
	d) All carbon to hydrogen				
583.	Which of the following ha				
	a) C ₂ H ₆	b) C ₂ H ₄	c) BeCl ₂	d) C ₂ H ₂	
584.	· - ·	oonds in solids are in accord	, <u>-</u>	<i>J</i>	
	a) Heisenberg's uncertain		b) Bohr's theory		
	c) Ohm's law	71 1	d) Rutherford's atomic mo	odel	
585.		nfiguration is associated w			
	a) $1s^2$, $2s^22p^2$	b) $1s^2$, $2s^22p^6$, $3s^1$	c) $1s^2$, $2s^22p^6$, $3s^2$	d) $1s^2$, $2s^22p^1$	
586.	•	olecular forces in hydrogen		, _0 , _0 _p	
	a) Dipole-induced dipole interaction				
	b) Dipole-dipole interaction		ATION		
	c) Hydrogen bond interac		WITON		
	d) Dispersion interaction				
587.	Correct order of bond len	gth is			
	a) $CO_3^{2-} > CO_2 > CO$	8	b) $CO_2 > CO > CO_3^{2-}$		
	c) $CO > CO_2 > CO_3^{2-}$		d) None of these		
588		olecules has pyramidal shaj	•		
0001	a) PCl ₃	b) SO ₃	c) CO ₃ ²⁻	d) NO ₃	
589	The molecular electronic	, ,	c) do ₃	u) 1103	
507.		_	2 * * -	d) None of the above	
	a) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2p^2$	b) $KK\sigma 2S^2$	c) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2s^2$	a) None of the above	
590.		90° angles between bond រុ		is observed in	
	a) dsp^3 hybridisation		b) $sp^3 d$ hybridization		
	c) dsp^2 hybridisation		d) $sp^3 d^2$ hybridisation		
591.	In which of the following a) Increasing size : Al^{3+}	arrangement the order is n	ot correct according to pro	perty indicated against it?	
	a) mereasing size . m	1116 1114 1			

b) Increasing $IE_1: B < C < N < 0$ c) Increasing $EA_1: I < Br < F < CI$ d) Increasing metallic radius: Li < Na < K < Rb

592. Most covalent halide of aluminium is:
a) $AICI_3$ b) AII_3 c) $AIBr_3$ d) AIF_3 593. The bond order of individual carbon-carbon bonds in benzene is:

WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

a) One

b) Two			
c) Between 1 and 2			
d) One and two altern	ately		
594. In pyrophosphoric aci	d, $\rm H_4P_2O_7$, number of σ and σ	$d\pi-p\pi$ bonds are respective	ely
a) 8 and 2	b) 6 and 2	c) 12 and zero	d) 12 and 2
-	aracter of the hybrid orbitals	•	•
a) 25, 33, 50	b) 25, 50, 75	c) 50, 75, 100	d) 10, 20, 40
•	esent in CuSO ₄ · 5H ₂ O are on	•	uj 10, 20, 40
		ıy	
a) Electrovalent and o			
b) Electrovalent and c			
•	ent and co- ordinate covalen	t	
d) Covalent and co-ore			
597. Which pair represents	_		
a) CH_3^- amd CH_3^+	b) $\mathrm{NH_4^+}$ and $\mathrm{NH_3}$	c) SO_4^{2-} and BF_4^{-}	d) NH_2^- and BeF_2
598. In which of the follow	ing species, all the three type	s of hybrid carbons are pres	ent?
a) $CH_2 = C = CH_2$		b) $CH_3 - CH = CH - CH_2^+$	
c) $CH_3 - C \equiv C - CH_2^+$		d) $CH_3 - CH = CH - CH_2$	
599. Which statement is no		2	
	rter than a single bond.		
b) Sigma bond is weak	9		
, ,	nger than a sigma bond.		
	conger than hydrogen bond.		
•			
600. The pair having simila) P. F. H. O	D DCL DCL
a) BF ₃ , NH ₃	b) BF ₃ , AlF ₃	c) BeF ₂ , H ₂ O	d) BCl ₃ , PCl ₃
601. Which of the following			
a) Cl ⁻	b) S ²⁻	c) Na ⁺	d) F ⁻
602. The AsF ₅ molecule is t	rigonal bipyramidal. The hyb	orid orbitals used by the As a	itoms for bonding are
a) $d_{x^2-y^2}, d_{z^2}, s, p_x, p_y$	b) d_{xy} , s , p_x , p_y , p_z	c) $s, p_x, p_y, p_z, d_{z^2}$	d) $d_{x^2-y^2}$, s , p_x , p_y
603. Consider the following	g halogen containing compou	nds	
(A) CHCl ₃	(B) CCl ₄		
$(C) CH_2Cl_2$	(D) CH ₃ Cl		
(E)			
CI	CI		
The compounds with a	a net zero dipole moment are		
a) B and E only	b) C only	c) C and D only	d) A and D only
604. Alkali metals in each p	•	, ,	,
a) Largest size			
b) Lowest <i>IE</i>			
c) Highest <i>IE</i>			
d) Highest electronega	_	of W. M. Wheeler 4000's	
	l molecule, MX_6 the number		
a) Three	b) Two	c) Six	d) Four
606. Valency means:			
a) Combining capacity			
b) Atomicity of an eler	nent		
c) Oxidation number of	of an element		
d) None of the above			
607. Which does not form t			

Gplus Education

a) Na	b) Hg	c) Cu	d) Fe				
608. Which has the largest firs		\	12.701				
a) Li	b) Na	c) K	d) Rb				
	09. Polarization of electrons in acrolein may be written as:						
a) $\stackrel{\delta}{CH_2} = CH - \stackrel{\delta^+}{CH} = O$	b) $_{\text{CH}_2}^{\delta^-} = _{\text{CH}-\text{CH}=0}^{\delta^+}$	c) $CH_2 = CH - CH = O$	d) $_{\text{CH}_2}^{\delta^+}$ = CH-CH= $_{\text{O}}^{\delta^-}$				
610. Which bond has the higher	- -						
a) Coordinate bond	b) Sigma bond	c) Multiple bond	d) Polar covalent bond				
611. In which of the following		lls' forces is likely to be the	most important in				
determining the melting a	and boiling point?						
a) CO		b) H ₂ S					
c) Br ₂		d) HCl					
612. The higher values of spec	-	rison to other liquids is due	e to:				
a) High dielectric constan	t						
b) Polarity							
c) H-bonding							
d) None of the above							
613. Which contains both pola	r and non-polar covalent b	onds?					
a) NH ₄ Cl							
b) HCN							
c) H ₂ O ₂							
d) CH ₄	in half o						
614. How many – bonds are pr	The state of the s		1) 7				
a) 4	b) 5	c) 6	d) 7				
615. If the electron pair forming							
a) Polar bond	b) Single bond	c) π -bond	d) Non-polar bond				
616. Which of the following sp		ATTON	D 610=				
a) ICl ₂	b) I ₃	c) N_3	d) ClO ₂				
617. The bond order of CO mo		•	٦) 1				
a) Zero	b) 2	c) 3	d) 1				
618. Which one is the stronges		a) D., E	4) D., Cl				
a) Cl—F	b) F—F	c) Br—F	d) Br—Cl				
619. Which of the following co OH	mpound has maximum voi	atmty?					
	ÒН	ОН	СООН				
		COOH					
a) [b) ()	c)	d) (
	COOH	~	~				
соон							
620. In the following electron-	dot structure, calculate the	formal charge from left to	right nitrogen atom;				
N==N							
a) -1, -1, +1	b) -1, +1,-1	c) +1, -1, -1	d) +1, -1, +1				
621. Hybridisation shown by c	arbon and oxygen of - OH	group in phenol are respect	tively				
a) sp^2 , sp^2	b) sp^3 , sp^3	c) sp, sp^2	d) sp^2 , sp^3				
622. The molecule which has p	yramidal shape is:						
a) PCl ₃	b) SO ₃	c) CO ₃ ²⁻	d) NO ₃				
623. The correct increasing bo	nd angles order is:						

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 39

a) $BF_3 < NF_3 < PF_3 < ClF_3$

- b) $ClF_3 < PF_3 < NF_3 < BF_3$
- c) $BF_3 \approx NF_3 < PF_3 < ClF_3$
- d) $BF_3 < NF_3 < PF_3 > ClF_3$
- 624. Van der Waals' forces are applied to:
 - a) Inert gases only
 - b) Rare gases only
 - c) Mixture of gases
 - d) Elementary gases only
- 625. Which bond angle results in the minimum dipole moment for the triatomic molecule XY_2 shown below?

b) 120°

c) 150°

d) 180°

- 626. Which shows the least dipole moment?
 - a) CHCl₃
- b) CH₃CH₂OH
- c) CH₃COCH₃
- d) CCl₄

- 627. Which force is strongest?
 - a) Dipole-dipole forces
 - b) Ion-ion forces
 - c) Ion-dipole forces
 - d) Ion-induced dipole forces
- 628. Which molecule has linear structure?

b) H₂O

c) SO_2

- 629. Out of the compounds below the vapour pressure of (B) at a particular temperature is

a) Higher than that of (A)

- b) lower than that of (A)
- c) Higher or lower than (A), depending on the size ofd) Same as that of (A) the vessel
- 630. Which ion has a higher polarizing power?
 - a) Mg^{2+}

b) Al³⁺

c) Ca²⁺

- 631. Which of the following represent the given mode of hybridisation $sp^2 sp^2 sp sp$ from left to right?
 - a) $H_2C = CH C \equiv CN$

b) $HC \equiv C - CH_2 - C \equiv CH$

c) $H_2C = C = CH_2$

- d) $HC = C CH_2 C = CH$
- 632. The solubility of KCl is relatively more in (where D is dielectric constant):
 - a) $C_6H_6(D = 0)$
- b) $(CH_3)_2CO(D = 2)$
- c) $CH_3OH(D = 32)$
- d) $CCl_4(D=0)$
- 633. Elements have electronegativities 1.2 and 3.0, bond formed between them would be
 - a) Ionic

- b) Covalent
- c) Co-ordinate
- d) metallic
- 634. Among the following, the pair in which the two species are not isostructural, is
 - a) SiF₄ and SF₄
- b) 10_3^- and XeO_3
- c) BH₄ and NH₄⁺
- d) PF₆ and SF₆

- 635. Which has zero dipole moment?

b) PCl₃

c) SiF₄

- d) CFCl₃
- 636. Which of the following molecules is covalent and shows expanded octet in its formation?
 - a) HF

b) NF₃

c) BF₃

d) ClF₃

- 637. Which one of the following is a correct set?
- a) H_2O , sp^3 , angular

b) $BCl_3 sp^3$, angular

c) NH_4 , dsp^2 , square pl 638. Which property of halo		d) CH ₄ , dsp^2 , tetrahedral	
a) Electronegativity			
b) First ionization ener	gy		
c) Bond length in the m	olecule		
d) None of the above			
639. The total number of bo			
a) One	b) Two	c) Three	d) Five
640. The number of antibon		nolecular ion on the basis of	f molecular orbital theory is
(Atomic number of 0 is	·		
a) 5	b) 4	c) 3	d) 2
641. Variable valency is char	acteristic of:		
a) Noble gases			
b) Alkali metals			
c) Transition metals			
d) Non-metallic elemen			
642. In which molecule all at		-) DC	T) VIII
a) CH ₄	b) BF ₃	c) PF ₃	d) NH ₃
643. During change of O_2 to			
a) π* orbital	b) π orbital	c) σ* orbital	d) σ orbital
644. Bond energy of covalen a) Greater than bond en			
b) Equal to bond energ			
c) Less than bond energ		~	
d) None of the above	gy of flydrogen bond		
645. Which one of the follow	ring has a coordinate bond?		
a) NH ₄ Cl	b) AlCl ₃	c) NaCl	d) Cl ₂
646 . Which carbon is more ϵ		CATION	u) u.z
a) sp^3 hybridised carbo		PHITOIA	
b) <i>sp</i> – hybridised carb			
c) sp^2 hybridised carbo			
d) Always same irrespe	ctive of its hybrid state		
647. Among NH ₃ , BeCl ₂ , CO ₂		lecules are:	
a) BeCl ₂ and H ₂ O	b) BeCl ₂ and CO ₂	c) NH ₃ and H ₂ O	d) NH ₃ and CO ₂
648. Paramagnetism is exhib	oited by molecules:		
a) Not attracted into a i	nagnetic field		
b) Containing only pair	ed electrons		
c) Carrying a positive c	harge		
d) Containing unpaired			
649. Which molecule has the			
a) HF	b) HCl	c) HBr	d) HI
650. The intermolecular attr	· · · · · · · · · · · · · · · · · · ·	er:	
a) Water < alcohol < e			
b) Water > alcohol > e			
c) Alcohol > water < et			
d) Ether > water > alco			
651. Which of the following) NO=	1) 00
a) NO ₂ ⁺	b) 0 ₃	c) NO_2^-	d) SO ₂
652. The electronic configur $K = 1s^2$, $2s^22p^1$	ation of 4 elements K , L , M a $L = 1s^2$, $2s^22p^6$	na /v are,	

$$M = 1s^2$$
, $2s^22p^4$ $N = 1s^2$, $2s^22p^3$

$$N = 1s^2$$
, $2s^22p^3$

The element that would form a diatomic molecule with double bond is:

b) L

d) N

653. Which of the following will provide the most efficient overlap?

b) s - p

- d) sp sp

654. The state of hybridization of C₂, C₃, C₅ and C₆ of the hydrocarbon,

is in the following sequence:

- a) sp, sp^2, sp^3 and sp^2
- b) sp, sp^3, sp^2 and sp^3 c) sp^3, sp^2, sp^2 and sp
- d) sp, sp^2, sp^2 and sp^3
- 655. Four diatomic species are listed below in different sequences. Which of these represents the correct order of their increasing bond order?
 - a) $NO < C_2^{2-} < O_2^{-} < He_2^{+}$
 - b) $C_2^{2-} < He_2^+ < NO < O_2^-$
 - c) $He_2^+ < O_2^- < NO < C_2^{2-}$
 - d) $0_2^- < NO < C_2^{2-} < He_2^+$
- 656. Which one species has the longest bond length?

b) 0_{2}^{-}

c) 0^{+}_{2}

d) N₂⁺

657. The pair of molecules forming strongest hydrogen bonds are

$$\mathrm{CH_3} - \mathrm{C} - \mathrm{CH_3}$$
 and $\mathrm{CHCl_3}$

a) SiH₄ and SiF₆

b) Ш 0

$$H - C - OH$$
 and $CH_3 - C - OH$

- c)
- Ш 0

d) H₂O and H₂

658. Which one of the following has not triangular pyramidal shape?

b) NCl₃

c) PF₃

659. A covalent bond is formed between the atoms by the overlapping of orbitals containing:

- a) Single electron
- b) Paired electron
- c) Single electron with parallel spin
- d) Single electron with opposite spin
- 660. Which of the following bonds required the largest amount of bond energy to dissociate the atom concerned?
 - a) H H bond in H_2
- b) O = O bond in O_2
- c) $N \equiv N$ bond in N_2 d) C C bond in C_2H_6

661. The covalency of nitrogen in HNO₃ is:

- a) Zero
- b) 3
- c) 4
- d) 5
- 662. Which is distilled first?
 - a) Liquid H₂
- b) Liquid CO₂
- c) Liquid 0₂
- d) Liquid N₂

663. Which one of the following is a correct set?

a) H_2O , sp^3 , angular

b) H_2O , sp^2 , linear

c) NH_4^+ , dsp^2 , square planar

d) CH_4 , dsp^2 , tetrahedral

664. Which is correct order for electron gain enthalpy?

- a) S < 0 < Cl < F
- b) 0 < S < F < Cl
- c) Cl < F < S < 0
- d) F < Cl < 0 < S

			Opius Luucution
665. Which is a pyramidal str			15 - 4 -
a) Trimethylamine	b) Methanol	c) Acetylene	d) Water
666. Among the following mi			
a) Benzene and ethanol		b) Acetonitrile and aceton	
c) KCl and water	h - t	d) Benzene and carbon te	etrachioride
667. In dry ice there are in		a) IId	J) N C +1
a) Ionic bond	b) Covalent bond	c) Hydrogen bond	d) None of these
668. The dipole moment of o a) $o > p > m$			$d) \circ m > m$
, ,	, .	c) $m > o > p$	d) $o > m > p$
669. Which formulae does no	ot correctly represents the bo	onding capacity of the atom	i invoiveu?
$\begin{bmatrix} & \mathrm{H} & \end{bmatrix}^{\!$		0	
$\begin{array}{c} A \\ A \\ H \longrightarrow P \longrightarrow H \\ A \\ H \end{array}$	F F		0
a) H—P→H	b)	c) O←N H	d) $H-C=C$
	O	,0>	.0.
L H]			
670. Which has minimum ior			
a) N ^{3–}	b) K ⁺	c) Na ⁺	d) F ⁻
671. The bond order is maxim	mum in		
a) O ₂	b) 0 ₂ ⁺	c) 0_{2}^{-}	d) O_2^{2-}
672. PF ₃ molecule is:			
a) Square planar	b) Trigonal bipyramidal	c) Tetrahedral	d) Trigonal pyramidal
673. Resonance is due to:			
a) Delocalization of σ-el	ectrons		
b) Delocalization of π-el			
c) Migration of H atoms			
d) Migration of protons			
674. Which property is comm		t compound?	
a) High solubility in wat	ter TPLUS ELJUL	AHUN	
b) Low m.p.			
c) High electrical condu	ctivity		
d) High b.p.			
675. Which of the following i			
a) CH ₄	b) SiCl ₄	c) MgCl ₂	d) BF ₃
676. The decreasing values o	of bond angles from NH ₃ (10)	6°) to SbH $_3$ (101°) down gr	roup-15 of the periodic
table is due to:			
a) Increasing bp - bp rep			
b) Increasing <i>p</i> -orbital c	•		
c) Decreasing <i>lp</i> - <i>bp</i> rep			
d) Decreasing electrone			
677. The shape of ClO_3^- accor	•) m . 1 1 1	12.0
a) Planar triangle	b) Pyramidal	c) Tetrahedral	d) Square planar
678. Which metal has a great	•		12.0
a) Cr	b) Fe	c) Al	d) Ca
679. The charge/size ratio o			- -
	ng order of the polarising por		
a) $Mg^{2+} < Be^{2+} < K^+ <$		b) $Be^{2+} < K^+ < Ca^{2+} < I$	
c) $K^+ < Ca^{2+} < Mg^{2+} <$		d) $Ca^{2+} < Mg^{2+} < Be^{2+}$	
680. A <i>p</i> -block element in when the second of the second			_
a) As	b) Ga	c) No such element exist	иј пе

681. How many electron pairs are present in valence shell of oxygen in water molecule?

Gplus Education

a) 4

b) 1

c) 2

- d) 3
- 682. Number of electrons in a the valence orbit of nitrogen in an ammonia molecule is

b) 5

c) 6

d) 7

- 683. The number of valency electrons in carbon atom is:
 - a) Zero

b) 2

c) 6

d) 4

684. The structure of IF₅ can be best described as

d) None of these

- 685. The relationship between the dissociation energy and N₂ and N₂ is
 - a) dissociation energy of N_2 = dissociation energy of N_2^+
 - b) dissociation energy of $m N_2$ can either be lower or higher than the dissociation energy of $m N_2^+$
 - c) dissociation energy of $N_2 >$ dissociation energy of N_2^+
 - d) dissociation energy of $N_2^+ >$ dissociation energy of N_2
- 686. The bond angle in H₂S (for H—S—H)is:
 - a) Same as that of Cl—Be—Cl in BeCl₂
 - b) Greater than H—N—H bond angle in NH₃
 - c) Greater than H—Se—H and less than H—O—H
 - d) Same as Cl—Sn—Cl in SnCl₂
- 687. Which one among the following does not have the hydrogen bond?
 - a) Phenol
- b) Water
- c) Liquid NH₃
- d) Liquid HCl
- 688. Which of the following molecules/ions does not contain unpaired electrons.
 - a) 0^{2}

b) B₂

c) N_2^+

d) 0_2

- 689. The C − O − H bond angle in ethanol is nearly

- b) 104
- c) 120

- d) 180
- 690. Which one of the following does not have sp^2 hybridised carbon?
 - a) Acetone
- b) Acetic acid
- c) Acetonitrile

d) Acetamide

- 691. Among the following elements Ca, Mg, P and Cl the order of increasing atomic radius is:
 - a) Mg < Ca < Cl < P
- b) Cl < P < Mg < Ca
- c) P < Cl < Ca < Mg
- d) Ca < Mg < P < Cl

- 692. Which has a giant covalent structure?
 - a) PbO_2

c) NaCl

d) AlCl₃

- 693. Bond angles of NH₃, PH₃, AsH₃ and SbH₃ is in the order

- b) $SbH_3 > AsH_3 > PH_3 > NH_3$
- - a) $PH_3 > AsH_3 > SbH_3 > NH_3$ c) $SbH_3 > AsH_3 > NH_3 > PH_3$

- d) $NH_3 > PH_3 > AsH_3 > SbH_3$
- 694. Amongst the elements with following electronic configurations, which one of them may have the highest ionization energy?
 - a) $Ne[3s^23p^1]$
- b) Ne[$3s^23p^3$]
- c) Ne $[3s^23p^2]$
- d) $Ar[3d^{10}4s^24p^3]$
- 695. Based on VSEPR theory, the number of 90 degree F Br F angles in BrF_5 is

- d) 3
- 696. Which one of the following elements has lower value of ionisation energy?
 - a) Mg

b) Rb

c) Li

d) Ca

- 697. The lattice energy order for lithium halide is:
 - a) LiF > LiCl > LiBr > LiI
 - b) LiCl > LiF > LiBr > LiI
 - c) LiBr > LiCl > LiF > LiI
 - d) LiI > LiBr > LiCl > LiF
- 698. Among the species: CO_2 , CH_3COO^- , CO, $CO_3^2^-$, HCHO which has the weakest C-O bond?

a) CO	b) CO ₂	c) CO ₃ ²⁻	d) CH ₃ COO ⁻
699. Peroxide ion			
•	y filled antibonding mole	cular orbitals	
(ii) is diamagnetic			
(iii) has bond order of			
(iv) is isoelectronic v			
Which one of these is		2 (2) (12) 1 (11)	12 (1)
a) (ii) and (iii)	b) (i),(ii) and (iv)	c) (i),(ii) and (iii)	d) (i) and (iv)
700. Which is the weakest			D. H 1
a) Ionic bond	b) Covalent bond	c) Metallic bond	d) Hydrogen bond
		ons, the central atom has sp^2 -hy	
a) NO ₂ and NH ₃	b) BF ₃ and NO_2^-	c) NH_2^- and H_2O	d) BF ₃ and NH ₂
702. Bond length decrease			
a) Decrease in size of	the atom mber of bonds between th	ao atoma	
c) Decrease in bond		le atoms	
-	imber of bonds between t	ho atoms	
		ot contain unpaired electrons?	
a) O_2^{2-}	b) B ₂	c) N ₂ ⁺	d) O ₂
704. The structure of IF $_7$ i	· -	C) N ₂	$\mathbf{u}_{1}\mathbf{u}_{2}$
a) Square pyramid	5	b) Trigonal bipyramid	
c) Octahedral		d) Pentagonal bipyrami	д
705. The species C_2		uj i chtagonai bipyraini	u
a) Has one σ bond an	d one π bond	b) Has both π bonds	
c) Has both σ bonds	id one h bond	d) Does not exist	
706. In which of the follow	ving bond angle is maxim		
a) NH ₃	b) NH ₄ ⁺	c) PCl ₅	d) SCl ₂
		on can be determined by the par	, <u>-</u>
$\frac{1}{2}\Delta_{\text{diag}}H^{\circ}$	$\xrightarrow{\Delta_{\mathrm{EA}}^{H^{\circ}}} \mathrm{Cl}^{-}(\mathrm{g}) \xrightarrow{\Delta_{\mathrm{hyd}}^{H^{\circ}}} \mathrm{Cl}^{-}(aq)$	OCHITON	
$\frac{1}{2}\operatorname{Cl}_2(g) \xrightarrow{2 \text{ thiss}} \operatorname{Cl}(g)$	\xrightarrow{EA} $Cl^{-}(g) \xrightarrow{BG} Cl^{-}(ag)$	1)	
The energy involved	in the conversion of $\frac{1}{2}Cl_2$	(g) to $Cl^-(aq)$ (Using the data)	
$\Delta_{\mathrm{diss}^{H^{\circ}}\mathrm{Cl}_{2}} = 240 \text{ kJ mo}$	_		
$\Delta_{EA^{H^{\circ}}Cl} = -349 \text{ kJ m}$			
$\Delta_{\text{hyd}}^{H^{\circ}}\text{Cl} = -381 \text{ kJ}$			
a) $+152 \text{ kJ mol}^{-1}$	b) -610 kJ mol ⁻¹	c) -850 kJ mol ⁻¹	d) $+120 \text{ kJ mol}^{-1}$
708. The hybridisation of	,		u) +120 K) IIIOI
a) <i>sp</i> hybridized	b) sp^2 hybridised	c) $sp^2 d$ hybridized	d) sp^3 hybridised
709. Which of the followir	, , ,	• •	a) sp Hybriaisea
a) NCl ₃	b) NBr ₃	c) NH ₃	d) NI ₃
710. The molecule having		, ,	uj mig
a) CHl ₃	b) CH ₄	c) CHCl ₃	d) CCl ₄
	•	uld be stabilized by the remova	
a) C ₂	b) CN	c) N ₂	d) O ₂
712. Which of the following	•		u) 0 ₂
a) MgSO ₄	b) RaSO ₄	c) SrSO ₄	d) BaSO ₄
713. In which of the follow	-		··· <i>y</i> = ···- ~ 4
a) H ₂	b) Ice	c) Sulphur	d) Hydrocarbon
714. The correct order of	•		<i>y y</i>
a) Cl ⁻ , Br ⁻ , I ⁻ , F ⁻	b) F ⁻ , I ⁻ , Br ⁻ , Cl ⁻	c) I ⁻ , Br ⁻ , Cl ⁻ , F ⁻	d) F ⁻ , Cl ⁻ , Br ⁻ , I ⁻
-	-	-	*

715. Which is highest me	elting point halide?		•
a) NaCl	b) NaBr	c) NaF	d) NaI
716. Number of σ and π	bonds in acetylene are		
a) 3 and 2	b) 2 and 2	c) 2 and 3	d) 4 and 3
717. Which of the follow	ring halides is least stable and	has doubtful existence?	
a) CI ₄	b) GeI ₄	c) SnI ₄	d) PbI ₄
718. C — C bond length i	s maximum in		
a) Diamond	b) Graphite	c) Naphthalene	d) Fullerene
719. The electronegativi	ty difference between N and I	F is greater than that betwo	een N and H yet the dipole
moment of NH ₃ (1.	5 D) is larger than that of NF_3	(0.2D). This is because:	
a) In NH ₃ as well as	s NF ₃ the atomic dipole and bo	ond dipole are in opposite	directions.
In NH ₃ the atom	ic dipole and bond dipole are	in the opposite directions	whereas in NF ₃ these are in the
b) same direction.			
c) In NH ₃ as well as	s in NF $_3$ the atomic dipole and	l bond dipole are in the san	ne direction.
In NH ₃ the atom	ic dipole and bond dipole are	in the same direction when	reas in NF ₃ these are in
d) opposite direction	ons.		
720. Resonance is not sh	iown by:		
a) C ₆ H ₆	b) CO ₂	c) CO ₃ ² -	d) SiO ₂
721. The molecular shap	oes of SF ₄ , CF ₄ and XeF ₄ are		
a) Different with 1,	0 and 2 lone pairs of electron	is on the central atom, resp	ectively
b) Different with 0,	1 and 2 lone pairs of electron	is on the central atom, resp	ectively
c) The same with 1	, 1 and 1 lone pairs of electron	ns on the central atoms, re	spectively
d) The same with 2	, 0 and 1 lone pairs of electror	ns on the central atom, resp	pectively
722. The shape of IF_7 mo	olecule is	-	
a) Pentagonal bipyr	ramidal	🏓 b) Trigonal bipyramio	dal
c) Tetrahedral		d) Octahedral	
723. Decreasing order of	f C – C bond length is		
$(I)C_2H_4$	$(II)C_2H_2$	ICATION	
$(III)C_6H_6$	(II)C ₂ H ₂ (IV)C ₂ H ₆	VOPLITOIT	
a) $IV > III > I > II$	b) $I > II > IV > III$	c) $II > I > IV > III$	d) $IV > I > III > II$
724. In which of the follo	owing compounds, the bonds		e of ionic character:
a) H ₂ O	b) HF	c) IBr	d) N_2O_4
725. Oxygen and sulphu	r both are the member of sai	me group in Periodic Tabl	e but H ₂ O is liquid while H ₂ S is
gas because			
a) Molecular weigh			
	y of sulphur is more		
c) H ₂ S is weak acid			
	s are having strong hydrogen l	bonds between them	
726. The linear structure			
a) SnCl ₂	b) NCO ⁻	c) NO ₂ ⁺	d) CS ₂
		anges from sp^3 to sp^2 and f	finally to sp , the angle between
the hybridized orbi			
a) Decreases gradu	-		
b) Decreases consid	lerably		
c) Is not affected			
d) Increases progre	· · · · · · · · · · · · · · · · · · ·		
-	the maximum number of lone	=	
a) [ClO ₃]	b) XeF ₄	c) SF ₄	d) [I ₃]
	t explains that <i>o-</i> nitrophenol i	is more volatile than p -nitr	ophenol?
a) Resonance			

				opias Laacation
	b) Steric hinderance			
	c) Hydrogen bond			
720	d) Hyperconjugation		11-2	
/30		ron pairs are present in IF ₇		4) O
721	a) 6 . The comparatively high l	b) 7	c) 5	d) 8
/31	a) High reactivity of fluo	=		
	b) Small size of hydroger			
		n bonds and consequent as	sociation	
	d) High IE of fluroine	1		
732	, ,	ng species is diamagnetic ir	nature?	
	a) H ₂	b) H ₂ ⁺	c) H ₂	d) He ₂ ⁺
733	. The unequal sharing of b	onded pair of electrons bet	ween two atoms in a moled	cule gives rise to:
	a) Ionic bond			
	b) Polar covalent bond			
	c) Non-polar covalent bo	ond		
	d) None of the above		••	
734	_	process energy is liberated		12.0
725	a) $Cl \rightarrow Cl^+ + e$	b) $HCl \rightarrow H^+ + Cl^-$	c) $Cl + e \rightarrow Cl^-$	d) $0^- + e \rightarrow 0^{2-}$
/35	a) Li [–]	on amongst the following: b) Be ⁻	c) B-	4) C=
736		exist in the following bonds	,	d) C ⁻
730	a) C—C	b) N—N	c) H—H	d) 0—0
737	. Number of lone pair (s) i		c) II II	ujo o
, , ,	a) 0	b) 1	c) 2	d) 3
738	. Which one is electron de			
	a) NH ₃	b) ICl	c) BCl ₃	d) PCl ₃
739	. Which type of bond is pr	esent in H ₂ S molecule?	'ΔΤΙΩΝ	
	a) Ionic bond	OFLUS LDU	b) Covalent bond	
	c) Coordinate		d) All of three	
740	-	ond angles are exactly 109°		
	a) Chloromethane	b) Iodoform	c) Carbon tetrachloride	d) Chloroform
741	. The hybridisation of P in		3	12 1 2
742	a) sp^2	b) sp^3d	c) sp^3	d) dsp^2
742	. Pauling's electronegativi a) Polarity of bonds in m	ty values for elements are u	iserui in predicting:	
	b) Position of elements in			
	c) Coordination number	ii electi offiotive series		
	d) Dipole moment of var	ious molecules		
743		oon atoms in C—C single bo	ond of HC≡C—CH=CH ₂ is:	
	a) $sp^{3}-sp^{3}$	b) $sp^2 - sp^3$	c) $sp-sp^2$	d) $sp^3 - sp$
744	. It is thought that atoms o	combine with each other su	ch that the outermost orbit	acquires a stable
	configuration of 8 electro	ons. If stability were attaine	d with 6 electrons rather tl	nan with 8, what would be
	the formula of the stable			
	a) F ³⁺	b) F ⁺	c) F ⁻	d) F ²⁻
745		ing electrons pairs in O_2^{2-} o		
	a) 4	b) 3	c) 2	d) 5
746	. Which has triangular pla	_) II 0+	1) (10-
717	a) CH ₃ ⁺	b) ClO ₂	c) H ₃ 0 ⁺	d) ClO_3^-
/4/	. specify the coordination	geometry around and hybr	iuization of iv and b atoms	in a 1:1 complex of BF ₃ and

NH ₃ :			•
a) N : tetrahedral, sp^3 ;	B : tetrahedral, sp^3		
b) N : pyramidal, sp^3 ; E			
c) N : pyramidal, sp^3 ; E			
d) N : pyramidal, sp^3 ; E			
748. Which of the following		an aray?	
a) C – C	b) N – N	c) 0 – 0	d) F — F
-	•		u) r — r
749. The number of oxygen a			ار ر ا
a) 4	b) 3	c) 6	d) 5
750. Bond energies in NO,NO) NO - NO NO +	D NO+ > NO > NO-
· ·	b) $NO^{+} > NO^{-} > NO$	-	-
751. In XeF_6 , oxidation state			
a) +6, $sp^3 d^3$, distorted	octahedral	b) +4, $sp^3 d^2$, square pla	
c) $+6$, sp^3 , pyramidal		d) +6, sp^3d^2 , square pyr	amidal
752. Which one of the follow			
a) CN ⁻ and NO ⁺	b) CN ⁻ and CN ⁺	c) O_2^- and CN^-	d) NO ⁺ and CO
753. The bond length of spec		order of	
a) $0_2^+ > 0_2 > 0_2^-$	b) $0_2^- > 0_2 > 0_2^+$	c) $0_2 > 0_2^+ > 0_2^-$	d) $O_2 > O_2^- > O_2^+$
754. Which hybridization re	sults non-polar orbitals?		
a) <i>sp</i>	b) sp^2	c) sp^3	d) dsp^2
755. The d -orbital involed in	sp^3d hybridization is		
a) $d_{x^2-v^2}$	b) d_{xy}	c) d_{z^2}	d) d_{zx}
756. The element with stron		,	<i>y</i> 5 <i>x</i>
a) Cu	b) Cs	c) Cr	d) Ba
757. Which statement is cor		oj di	a, ba
a) X^+ ion is larger than			
b) X^- ion is larger in size			
c) X^+ and X^- have the	same size	CATION	
d) X^+ ion is larger in size	ye than Y atom	CHITOIA	
758. SF_2 , SF_4 and SF_6 have the		atom rospostivoly as	
a) sp^2, sp^3, sp^2d^2	b) sp^3 , sp^3 , sp^3d^2		d) an^3 and d^2 d^2 an^3
,	b) sp ² , sp ² , sp ² a ²	c) sp^{-} , $sp^{-}a$, $sp^{-}a^{-}$	d) sp^3 , spd^2 , d^2sp^3
759. Solid CH ₄ is:	137 ' 11) (IN NE
a) Molecular solid	b) Ionic solid	c) Covalent solid	d) Not exist
760. The bond angles of NH ₃	_		
	b) $NH_4^+ > NH_3 > NH_2^-$	c) $NH_3 > NH_2^- > NH_4^+$	d) NH $>$ NH $_4^+ >$ NH $_2^-$
761. sp^2 -hybridization is sho			
a) BeCl ₂	b) BF ₃	c) NH ₃	d) XeF ₂
762. $Cl - P - Cl$ bond angles	=		
a) 120 and 90	b) 60 and 90	c) 60 and 120	d) 120 and 30
763. Which one of the follow	ing pairs is isostructural (i.	<i>e</i> ., having the same shape a	and hybridization)?
a) [NF ₃ and BF ₃]	b) $[BF_4^-$ and $NH_4^+]$	c) [BCl ₃ and BrCl ₃]	d) $[NH_3$ and $NO_3^-]$
764. Which one of the follow	ring sets of ions represents a	a collection of isoelectronic	species?
a) K ⁺ , Cl ⁻ , Ca ²⁺ , Sc ³⁺	b) Ba ²⁺ , Sr ²⁺ , K ⁺ , Ca ²⁺	c) N ³⁻ , O ²⁻ , F ⁻ , S ²⁻	d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺
765. Which molecule has zer	o dipole-moment?		
a) HF	b) HBr	c) H ₂ O	d) CO ₂
766. Four diatomic species a	re listed below. Identify the	correct order in which the	bond order is increasing in
them:	•		
a) NO $< O_2^- < C_2^{2-} < H$	e ₂ ⁺		
b) $0^{-}_{2} < NO < C_{2}^{2-} < H$	_		
c) $C_2^{2-} < He_2^+ < O_2^- < N$	-		
0, 02 \ 1102 \ 02 \ 1			

d) $\operatorname{He}_2^+ < \operatorname{O}_2^- < \operatorname{NO} < \operatorname{C}_2^{2-}$ 767. Which one of the following compounds has bond angle as nearly 90° ? a) NH_3 b) $\operatorname{H}_2\operatorname{S}$ c) $\operatorname{H}_2\operatorname{O}$ d) CH_4 768. The hybrid state of sulphur in SO_3 molecule is a) sp^3d b) sp^3 c) sp^3d^2 d) sp^2 769. In which of the following pair both molecules do not possess same type of hybridisation? a) CH_4 and $\operatorname{H}_2\operatorname{O}$ b) PCl_5 and SF_4 c) SF_6 and XeF_4 d) BCl_3 and NCl_3 770. Which is the most covalent? a) $\operatorname{C} - \operatorname{F}$ b) $\operatorname{C} - \operatorname{O}$ c) $\operatorname{C} - \operatorname{S}$ d) $\operatorname{C} - \operatorname{Br}$ 771. The shape of NO_3^- is planar. It is formed by the overlapping of oxygen orbitals with orbitals of nitr a) sp^3 -hybridized b) sp^2 -hybridized c) Three p -orbitals d) None of these 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} c) Ca^{2+} d) Sr^{2+}	
a) NH_3 b) H_2S c) H_2O d) CH_4 768. The hybrid state of sulphur in SO_3 molecule is a) sp^3d b) sp^3 c) sp^3d^2 d) sp^2 769. In which of the following pair both molecules do not possess same type of hybridisation? a) CH_4 and H_2O b) PCI_5 and SF_4 c) SF_6 and XeF_4 d) BCI_3 and NCI_3 770. Which is the most covalent? a) $C - F$ b) $C - O$ c) $C - S$ d) $C - Br$ 771. The shape of NO_3^- is planar. It is formed by the overlapping of oxygen orbitals with orbitals of nitr a) sp^3 -hybridized b) sp^2 -hybridized c) Three p -orbitals d) None of these 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} c) Ca^{2+} d) Sr^{2+}	
768. The hybrid state of sulphur in SO_3 molecule is a) sp^3d b) sp^3 c) sp^3d^2 d) sp^2 769. In which of the following pair both molecules do not possess same type of hybridisation? a) CH_4 and H_2O b) PCl_5 and SF_4 c) SF_6 and XeF_4 d) PCl_5 and PCl_5	
a) sp^3d b) sp^3 c) sp^3d^2 d) sp^2 769. In which of the following pair both molecules do not possess same type of hybridisation? a) CH_4 and H_2O b) PCl_5 and SF_4 c) SF_6 and XeF_4 d) BCl_3 and NCl_3 770. Which is the most covalent? a) $C-F$ b) $C-O$ c) $C-S$ d) $C-Br$ 771. The shape of NO_3^- is planar. It is formed by the overlapping of oxygen orbitals with orbitals of nitrally sp^3 -hybridized b) sp^2 -hybridized c) Three p -orbitals d) None of these 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} c) Ca^{2+} d) Sr^{2+}	
769. In which of the following pair both molecules do not possess same type of hybridisation? a) CH_4 and H_2O b) PCl_5 and SF_4 c) SF_6 and XeF_4 d) BCl_3 and NCl_3 770. Which is the most covalent? a) $C - F$ b) $C - O$ c) $C - S$ d) $C - Br$ 771. The shape of NO_3^- is planar. It is formed by the overlapping of oxygen orbitals with orbitals of nitr a) sp^3 -hybridized b) sp^2 -hybridized c) Three p -orbitals d) None of these 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} c) Ca^{2+} d) Sr^{2+}	
a) CH_4 and H_2O b) PCl_5 and SF_4 c) SF_6 and XeF_4 d) BCl_3 and NCl_3 770. Which is the most covalent? a) $C-F$ b) $C-O$ c) $C-S$ d) $C-Br$ 771. The shape of NO_3^- is planar. It is formed by the overlapping of oxygen orbitals with orbitals of nitr a) sp^3 -hybridized b) sp^2 -hybridized c) Three p -orbitals d) None of these 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} c) Ca^{2+} d) Sr^{2+}	
770. Which is the most covalent? a) $C - F$ b) $C - O$ c) $C - S$ d) $C - Br$ 771. The shape of NO_3^- is planar. It is formed by the overlapping of oxygen orbitals with orbitals of nitr a) sp^3 -hybridized b) sp^2 -hybridized c) Three p -orbitals d) None of these 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} c) Ca^{2+} d) Sr^{2+}	
a) $C - F$ b) $C - O$ c) $C - S$ d) $C - Br$ 771. The shape of NO_3^- is planar. It is formed by the overlapping of oxygen orbitals with orbitals of nitr a) sp^3 -hybridized b) sp^2 -hybridized c) Three p -orbitals d) None of these 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} c) Ca^{2+} d) Sr^{2+}	
771. The shape of NO_3^- is planar. It is formed by the overlapping of oxygen orbitals with orbitals of nitral a) sp^3 -hybridized b) sp^2 -hybridized c) Three p -orbitals d) None of these 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} c) Ca^{2+} d) Sr^{2+}	
a) sp^3 -hybridized b) sp^2 -hybridized c) Three p -orbitals d) None of these 772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} c) Ca^{2+} d) Sr^{2+}	
772. Which of the ions has the largest ionic radius? a) Be^{2+} b) Mg^{2+} c) Ca^{2+} d) Sr^{2+}	ogen.
a) Be^{2+} b) Mg^{2+} c) Ca^{2+} d) Sr^{2+}	
773. A σ -bonded molecule MX_3 is T-shaped. The number non-bonding pairs of electron is	
a) 0	
b) 2	
c) 1	
d) Can be predicted only if atomic number of <i>M</i> is known	
774. Which of the following is not isoelectronic?	
a) NO $^-$ b) CN $^-$ c) N ₂ d) O ₂ ²⁺	
775. In which set of molecules are all the species paramagnetic?	
a) B_2, O_2, N_2 b) B_2, O_2, N_0 c) B_2, F_2, O_2 d) B_2, O_2, Li_2	
776. Which of the following has strongest hydrogen bonding?	
a) Ethylamine b) Ammonia c) Ethyl Alcohol d) Diethyl ether	
777. The bonds present in N_2O_5 are:	
a) Ionic	
b) Covalent and coordinate	
c) Covalent	
d) Ionic and covalent	
778. The angle between two covalent bonds is maximum in:	
a) CH_4 b) H_2O c) CO_2 d) SO_3 779. The pair having similar geometry is	
a) PCl ₃ , NH ₄ b) BeCl ₂ , H ₂ O c) CH ₄ , CCl ₄ d) IF ₅ , PF ₅ 780. In the electronic structure of acetic acid there are:	
a) 16 shared and 8 unshared valency electrons	
b) 8 shared and 16 unshared valency electrons	
c) 12 shared and 12 unshared valency electrons	
d) 18 shared and 6 unshared valency electrons	
781. Increasing order (lower first) of size of the various hybridised orbitals is:	
a) sp, sp^2, sp^3 b) sp^3, sp^2, sp c) sp^2, sp^3, sp d) sp^2, sp, sp^3	
782. Among the following, the compound that contains ionic, covalent and coordinate linkage is	
a) NH_3 b) NH_4Cl c) $NaCl$ d) CaO	
783. How many bridging oxygen atoms are present in P_4O_{10} ?	
a) 6 h) 4 c) 2 d) 5	
a) 6 b) 4 c) 2 d) 5 784 Consider the Born-Haber cycle for the formation of an ionic compound given below and ident	ify the
784. Consider the Born-Haber cycle for the formation of an ionic compound given below and ident compound (<i>Z</i>) formed.	ify the
784. Consider the Born-Haber cycle for the formation of an ionic compound given below and ident compound (<i>Z</i>) formed.	ify the
784. Consider the Born-Haber cycle for the formation of an ionic compound given below and ident	ify the

785. The bond length is maximum in:		·				
a) H ₂ S b) HF	c) H ₂ O	d) Ice				
786. N ₂ andO ₂ are converted into monocations,	N_2^+ and O_2^+ respectively. Which of	f the following is wrong?				
a) In N_2^+ , N – N bond weakens b) In O_2^+ , the O – O bond order increases						
c) In O_2^+ , paramagnetism decreases	d) N ₂ become diama	ignetic				
787. The number of nodal planes present in $^*_\sigma$.	s-antibonding orbitals is					
a) 1 b) 2	c) 0	d) 3				
788. Which of the following has maximum num	ber of lone pairs associated witl	ı Xe?				
a) XeO ₃ b) XeF ₄	c) XeF ₆	d) XeF ₂				
789. Which is most volatile compound?						
a) HI b) HCl	c) HBr	d) HF				
790. The calculated bond order in O_2^- ion is						
a) 1 b) 1.5	c) 2	d) 2.5				
791. A C \equiv C bond is:						
a) Weaker than C=C bond						
b) Weaker than C—C bond						
c) Longer than C—C bond						
d) Shorter than C=C bond						
792. In which of the following pairs bond angle	is 109°28′?					
a) [NH ₄ ⁺], [BF ₄ ⁻] b) [NH ₄ ⁺], [BF ₃]	c) [NH ₃], [BF ₄]	d) [NH ₃], [BF ₃]				
793. Which of the following molecules has thre	e-fold axis of symmetry?					
a) NH ₃ b) C ₂ H ₄	c) CO ₂	d) SO ₂				
794. In which of the following arrangements th	e sequence is not strictly accord	ing to the property written				
against it?	MI					
a) HF < HCl < HBr < HI : increasing acid strength						
b) $NH_3 < PH_3 < AsH_3 < SbH_3$: increasing	b) NH ₃ < PH ₃ < AsH ₃ < SbH ₃ : increasing basic strength					
c) $B < C < 0 < N$: increasing first ionizat	ion enthalpy					
d) $CO_2 < SiO_2 < SnO_2 < PbO_2$: increasing	oxidising power					
795. Which one of the following is paramagnet	ic?					
a) N ₂ b) NO	c) CO	d) O ₃				
796. Which of the following has largest ionic ra	dius?					
a) Na ⁺ b) K ⁺	c) Li ⁺	d) Cs ⁺				
797. Lattice energy of a solid increases if						
a) Size of ions is small	b) Charges of ions ar	e small				
c) Ions are neutral	d) None of the above	•				
798. Which one is most polar?						
a) CCl ₄ b) CHCl ₃	c) CH ₃ Cl	d) CH ₃ OH				
799. The high boiling point of water is due to:						
a) Weak dissociation of water molecules						
b) Hydrogen bonding among water molec						
	ules					
c) Its high specific heat	ules					
c) Its high specific heatd) Its high dielectric constant	ules					
, ,		Ω_3) are respectively				
d) Its high dielectric constant		(0_3) are respectively $(0,3)^3$ and $(0,3)^3$				
d) Its high dielectric constant 800. The states of hybridisation of boron and o	xygen atoms in boric acid (H_3B^0 c) sp^3 and sp^2 ave the similar geometry?	d) sp^3 and sp^3				
d) Its high dielectric constant 800. The states of hybridisation of boron and o a) sp^2 and sp^2 b) sp^2 and sp^3	xygen atoms in boric acid (${ m H_3B^0}$					
d) Its high dielectric constant 800. The states of hybridisation of boron and o a) sp^2 and sp^2 b) sp^2 and sp^3 801. In which pair of species, both species do h a) CO_2 , SO_2 b) NH_3 , BH_3 802. Which of the following is largest ion?	xygen atoms in boric acid (H_3B_0 c) sp^3 and sp^2 ave the similar geometry? c) CO_3^{2-} , SO_3^{2-}	d) sp^3 and sp^3				
d) Its high dielectric constant 800. The states of hybridisation of boron and o a) sp^2 and sp^2 b) sp^2 and sp^3 801. In which pair of species, both species do h a) CO_2 , SO_2 b) NH_3 , BH_3 802. Which of the following is largest ion? a) Na^+ b) Mg^{2+}	xygen atoms in boric acid (H_3B_0 c) sp^3 and sp^2 ave the similar geometry? c) CO_3^{2-} , SO_3^{2-}	d) sp^3 and sp^3				
d) Its high dielectric constant 800. The states of hybridisation of boron and o a) sp^2 and sp^2 b) sp^2 and sp^3 801. In which pair of species, both species do h a) CO_2 , SO_2 b) NH_3 , BH_3 802. Which of the following is largest ion?	xygen atoms in boric acid (H_3B_0 c) sp^3 and sp^2 ave the similar geometry? c) CO_3^{2-} , SO_3^{2-}	d) sp^3 and sp^3 d) SO_4^{2-} , ClO_4^-				

	b) Their reactivity			
	c) The formation of electr	ovalent compound NaCl		
	d) None of the above			
804.	sp^3 hybridisation is found	d in		
	a) $^+_{ m C~H_3}$	b) :C H ₃	c) ClO ₃	d) SO ₃
805.	Glycerol is more viscous t	han ethanol due to		
	a) High molecular weight		b) High boiling point	
	c) Many hydrogen bonds	per molecule	d) Fajan's rule	
806.	In the case of alkali metals	s, the covalent character de	ecreases in the order:	
	a) $MI > MBr > MCl > MF$			
	b) $MCl > MI > MBr > MF$			
	c) $MF > MCl > MBr > Ml$			
	d) MF $>$ MCl $>$ MI $>$ MBr			
807	Two nodal planes are pre			
007.				
	a) $\pi^{2}p_{x}$	b) $\sigma 2p_z$	c) $\pi 2p_x$	d) $\pi 2p_y$
808	H – bond is not present in			
000.	a) Water		b) Glycerol	
	c) Hydrogen fluoride		d) Hydrogen sulphide	
გიი	· · ·	naire moloculos havo hond	order three and are isoeled	rtronic?
009.	a) CN ⁻ , CO	b) CO , O_2^+	c) NO ⁺ , CO ⁺	
010	•		•	d) CN^-, O_2^+
810.		lides has maximum melting		1) N. I
011	a) NaF	b) NaCl	c) NaBr	d) NaI
811.		ways involved in sigma boi	= :	N 0
	a) s	b) <i>p</i>	c) <i>d</i>	d) <i>f</i>
812.			d sometimes as a non-meta	
	a) Hg	b) Cl	c) K	d) At
813.		_	aving the highest ionization	
	a) [Ne] $3s^23p^1$	b) [Ne] $3s^23p^3$	c) [Ne] $3s^23p^2$	d) [Ar] $3d^{10}4s^24p^3$
814.	Which of the following sp	ecies exhibits the diamagne	etic behaviour ?	
	a) 0_2^{2-}	b) 0 ₂ ⁺	c) 0 ₂	d) NO
815.	Which is a good solvent for	or ionic and polar covalent	compounds?	
	a) H ₂ 0	b) CH ₃ COOH	c) CCl ₄	d) Liquid NH ₃
816.	The following salt shows	maximum covalent charact	er	
	a) AlCl ₃	b) MgCl ₂	c) CsCl	d) LaCl ₃
817.	Each of the followings has	s non-zero dipole moment,	except:	
	a) C ₆ H ₆	b) CO	c) SO ₂	d) NH ₃
818.		esent in octahedral SF ₆ mol	ecule:	, ,
	a) 3	b) 4	c) 6	d) 5
819.	Resonance structures can		,	,
	a) 0 ₃	b) NH ₃	c) CH ₄	d) H ₂ O
820	Born-Haber cycle may be	, ,	5) 51.4	,
020.	a) Electronegativity	b) Mass number	c) Oxidation number	d) Electron affinity
821	, ,	of four elements A, B, C, D a	•	a) Dieceron anning
021	$(A)1s^2$ $(B)1s^2, 2$			
	$(C)1s^2, 2s^2, 2p^5$ $(D)1s^2, 3$	-		
		-		
		ctrovalent bond is largest ir b) <i>B</i>		4) D
ດລວ	a) A In which element shieldin	,	c) <i>C</i>	d) <i>D</i>
UZZ.	m wmen eiement Sineiall	iz chect is hot bossible:		

_		_ ,		
Gn	liic	Fdi	ıcatio	n
U			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

			Opius Luucutioi
a) H	b) Be	c) B	d) N
823. The hybridisation of or			
a) sp, sp^2, sp^3	b) sp^2 , sp , sp^3	c) sp, sp^3, sp^2	d) sp^2 , sp^3 , sp
824. Which of the following			
a) Na ⁺	b) Al ³⁺	c) 0^{2-}	d) N ⁺
825. Which of the following			
a) Polarization of an an	ion is maximum by high cha	arged cation	
b) Small sized cation m	inimises the polarization		
c) A small anion brings	about a large degree of pola	arisation	
d) A small anion under	goes a high degree of polari:	zation	
826. Among LiCl, BeCl ₂ , BCl ₃	and CCl ₄ , the covalent bond	d character follows the orde	er:
a) $LiCl > BeCl_2 > BCl_3$	> CCl ₄		
b) $LiCl < BeCl_2 < BCl_3$	< CCl ₄		
c) $LiCl > BeCl_2 > CCl_4$	$> BCl_3$		
d) $LiCl < BeCl_2 < BCl_3$	$> CCl_4$		
827. The value of bond orde	r in nitrogen and oxygen mo	olecule is:	
a) 3, 2	b) 4, 2	c) 2, 3	d) 1, 2
828. Pauling received Nobel	Prize for his work on:		
a) Photosynthesis	b) Atomic structure	c) Chemical bonding	d) Thermodynamics
829. With which of the giver	n pairs CO ₂ resembles?		
a) HgCl ₂ , C ₂ H ₂	b) C_2H_2 , NO_2	c) HgCl ₂ , SnCl ₄	d) N_2O , NO_2
830. The enhanced force of	cohesion in metals is due to		
a) The covalent linkage	s between atoms		
b) The electrovalent lin	kages between atoms		
c) The lack of exchange	e of valency electrons		
d) The exchange energ			
831. Among H X , the maximum			
a) HF	b) HCl	c) HBr	d) HI
832. Dative bond is present		CHITOIA	,
a) SO ₃	b) NH ₃	c) BaCl ₂	d) BF ₃
833. In which of the following	, ,		, ,
a) CH₄	b) SF ₄	c) BF ₄	d) NH ₄ ⁺
834. Which has an odd elect		, ,	·· <i>)</i> ···-4
a) NO	b) SO ₂	c) CO ₂	d) H ₂ O
835. Which ion is not isoeled		0) 002	a, 1120
a) N ³⁻	b) Na ⁺	c) F ⁻	d) Ti ⁺
836. Which species is param	•	c) I	u) 11
a) $0\frac{1}{2}$	b) CH ₃	c) CO	d) NO ⁺
837, Structure of ammonia i	, ,	c)	u) NO
a) Pyramidal	b) Tetrahedral	c) Trigonal	d) Trigonal pyramidal
838. The example of the <i>p-p</i>	-	, ,	uj Trigonai pyrainiuai
	-orbital overlapping is the re	of filation of:	
a) H ₂ molecule			
b) Cl ₂ molecule			
c) Hydrogen chloride			
d) Hydrogen bromide r		10	
839. In which of the following			1) 002-
a) NO ₃	b) SO ₃ ²	c) BO ₃ ³	d) CO ₃ ²
840. The shape of ClO_4^- ion i) m . 1 1 1	1) m + 11 +
a) Square planar	b) Square pyramidal	c) Tetrahedral	d) Trigonal bipyramidal
841 The critical temperatur	e at water is higher than the	at of Oa because HaO molec	ula haci

				opius zaucutio.
	a) Fewer electrons than O_2			
	b) Two covalent bonds			
	c) V-shape			
	d) Dipole moment			
842.	Compound formed by sp^3d -hybrid	ization will have s	structure:	
	a) Trigonal bipyramidal			
	b) T-shaped			
	c) Linear			
	d) Either of these depending on nur	mber of lone pair	of electrons of centra	l atom
843.	Which has the lowest bond angle?			
	a) NH ₃ b) BeF ₂		c) H ₃ O ⁺	d) CH ₄
844.	Assuming that Hund's rule is violat	ed, the bond orde	r and magnetic natur	e of the diatomic molecule B_2 is
	a) 1 and diamagnetic			
	b) 0 and diamagnetic			
	c) 1 and paramagnetic			
	d) 0 and paramagnetic			
845.	The energy of antibonding molecul	ar orbitals is:		
	a) Greater than the bonding M.O.			
	b) Smaller than the bonding M.O.			
	c) Equal to that of bonding M.O.			
	d) None of the above			
846.	The set representing the correct or	der of ionic radiu	s is:	
	a) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$		>	
	b) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$. 1		
	c) $Mg^{2+} > Be^{2+} > Li^+ > Na^+$			
	d) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$	-		
847.	Which of the following hydrogen be	onds is the strong	est?	
		re-E-F)U(c) O——HO	d) OF
848.	H ₂ O is dipolar, whereas BeF ₂ is not	. It is because	WILLIAM	•
	a) The electronegativity of F is grea	iter than that of C)	
	b) H ₂ O involves hydrogen bonding			
	c) H ₂ O is linear and BeF ₂ is angular	_		
	d) H ₂ O is angular and BeF ₂ is linear			
849.	Which of the following statements		affective nuclear charg	ge of an atom depends on:
	a) The atomic number of the atom			•
	b) The charge on the ion			
	c) The shielding effect			
	d) Both the actual nuclear charge as	nd the shielding e	effect	
850.	The total number of valency electron			
	a) 8 b) 9	•	c) 6	d) 14
851.	Phosphoric acid is syrupy in nature	due to	,	,
	a) Strong covalent bonding		b) Hydrogen bondin	g
	c) van der Waals' forces		d) None of the above	_
852.	The correct order of bond angles is	:	,	
	a) $H_2S < NH_3 < BF_3 < SiH_4$			
	b) $NH_3 < H_2S < SiH_4 < BF_3$			
	c) $H_2S < NH_3 < SiH_4 < BF_3$			
	d) $H_2S < SiH_4 < NH_3 < BF_3$			
853.	Metallic lusture is explained by			
	a) Diffusion of metal ions		b) Oscillation of loos	e electrons

c) Excitation of free pro	tons	d) Existence of bcc lattice	
854. Which of the following p	henomenon will occur when	n two atoms of same spin w	rill react?
a) Bonding will not occi	ır		
b) Orbital overlap will r	ot occur		
c) Both (a) and (b)			
d) None of the above			
855. The hybrid state of S in	SO_3 is similar to that of		
a) C in C_2H_2	b) C in C ₂ H ₄	c) C in CH ₄	d) C in CO ₂
856. Among the following th	e pair in which the two speci	es are not isostructural is	
a) IO $_3^-$ and XeO $_3$	b) PF_6^- and SF_6	c) BH_4^- and NH_4^+	d) SiF ₄ and SF ₄
857. Which of the following s	species contains three bond p	pairs and one lone pair arou	und the central atom?
a) NH ₂	b) PCl ₃	c) H ₂ O	d) BF ₃
858. Intramolecular hydroge	n bonding is found in:		
a) Salicyldehyde	b) Water	c) Acetaldehyde	d) Phenol
859. The type of bond forme	d between H $^+$ and NH $_3$ in NH	I ⁺ ion is:	
a) Ionic	b) Covalent	c) Dative	d) Hydrogen
860. Which of the following s	statements is correct about N	₂ molecule?	
a) It has a bond order o	f 3	b) The number of unpaire	ed electrons present in it is
		zero and hence, it is dia	amagnetic
The order of filling of	MOs is $\pi(2p_x) =$	d) All the above three stat	tements are correct
c) $\pi(2p_y), \sigma(2p_z)$			
861. Ice has an open structui	re compared to water due to	which it floats on water an	d occupies a greater
volume of space. The op	en structure of ice is due to:		
a) Solid state of ice	b) Its low density	c) Crystalline nature	d) Hydrogen bonding
862. Which of the following l	nas minimum melting point?		
a) CsF	b) HCl	c) HF	d) LiF
863. Geometry of ammonia r	nolecule and the hybridisation	on of nitrogen involved in it	are
a) sp^3 hyridisation and	tetrahedral geometry	'ΔΤΙΩΝ	
b) sp^3 hyridisation and	distorted tetrahedral geome	try	
c) sp^2 hyridisation and	triangular geometry		
d) None of the above			
864. The molecule having sm	allest bond angle is		
a) H ₂ O	b) H ₂ S	c) NH ₃	d) H ₂ Te
865. For a covalent solid, the	unite which occupy lattice n		
S. A.	units which occupy lattice p	oints are:	
a) Atoms	b) Ions	oints are: c) Molecules	d) Electrons
a) Atoms 866. Carbon suboxide (C_3O_2)	b) Ions	c) Molecules	
866. Carbon suboxide (C ₃ O ₂)	b) Ions	c) Molecules a component of the atmos	phere of Venus. Which of
866. Carbon suboxide (C ₃ O ₂)	b) Ions) has recently been shown as	c) Molecules a component of the atmos	phere of Venus. Which of
866. Carbon suboxide (C ₃ O ₂) the following formulation a) :0:C::C:C:0: 867. The ionization energy w	b) Ions) has recently been shown as on raepresents the correct gr b) :0::C::C::C::O:	c) Molecules a component of the atmos ound state Lewis structure c):Ö::C::C::Ö:	phere of Venus. Which of for carbon suboxide?
866. Carbon suboxide (C ₃ O ₂) the following formulation a):0:C::C:O:	b) Ions) has recently been shown as on raepresents the correct gr b) :0::C::C::C::O:	c) Molecules a component of the atmos ound state Lewis structure c):Ö::C::C::Ö:	phere of Venus. Which of for carbon suboxide?
866. Carbon suboxide (C ₃ O ₂) the following formulation a) :0:C::C:C:0: 867. The ionization energy w	 b) Ions c) has recently been shown as on raepresents the correct gr b) :0::C::C::C::0: vill be maximum for the proc b) Be → Be²⁺ 	c) Molecules a component of the atmos ound state Lewis structure c):Ö::C::C::C::Ö:	phere of Venus. Which of for carbon suboxide? d):0: C: C: C: O:
866. Carbon suboxide (C ₃ O ₂) the following formulation a) :0:C::C:C:0: 867. The ionization energy was a) Ba → Ba ²⁺	 b) Ions c) has recently been shown as on raepresents the correct gr b) :0::C::C::C::0: vill be maximum for the proc b) Be → Be²⁺ 	c) Molecules a component of the atmos ound state Lewis structure c):Ö::C::C::C::Ö:	phere of Venus. Which of for carbon suboxide? d):0: C: C: C: O:
866. Carbon suboxide (C ₃ O ₂) the following formulation a) :0:C::C:C:0: 867. The ionization energy was a) Ba → Ba ²⁺ 868. Born Haber cycle is use	 b) Ions has recently been shown as on raepresents the correct gr b) :0::C::C::C::0: vill be maximum for the proc b) Be → Be²⁺ d to determine: b) Electron affinity 	 c) Molecules a component of the atmos ound state Lewis structure c) : Ö::C::C::C:: Ö: ess: c) Cs → Cs⁺ c) Ionization energy 	phere of Venus, Which of for carbon suboxide? d):0: C: C: C: O: d) Li → Li ⁺ d) Either of them
 866. Carbon suboxide (C₃O₂) the following formulation a) :0:C::C:C:0: 867. The ionization energy wangle ionization energy wangle ionization energy wangle ionization. 868. Born Haber cycle is used a) Lattice energy 	 b) Ions has recently been shown as on raepresents the correct gr b) :0::C::C::C::0: vill be maximum for the proc b) Be → Be²⁺ d to determine: b) Electron affinity 	 c) Molecules a component of the atmos ound state Lewis structure c) : Ö::C::C::C:: Ö: ess: c) Cs → Cs⁺ c) Ionization energy 	phere of Venus, Which of for carbon suboxide? d):0: C: C: C: O: d) Li → Li ⁺ d) Either of them
 866. Carbon suboxide (C₃O₂) the following formulation a) :0:C::C:C:0: 867. The ionization energy water a) Ba → Ba²⁺ 868. Born Haber cycle is used a) Lattice energy 869. In which of the following 	b) Ions) has recently been shown as on raepresents the correct gr b) :0::C::C::C::O: vill be maximum for the proc b) Be → Be ²⁺ d to determine: b) Electron affinity g molecules/ions BF ₃ , NO ₂ -, N b) NO ₂ - and NH ₂ -	 c) Molecules a component of the atmos ound state Lewis structure c) :Ö::C::C::C::Ö: ess: c) Cs → Cs⁺ c) Ionization energy NH₂, and H₂O the central at 	phere of Venus, Which of for carbon suboxide? d):0: C: C: C: 0: d) $\text{Li} \rightarrow \text{Li}^+$ d) Either of them tom is sp^2 hybridized?
 866. Carbon suboxide (C₃O₂) the following formulation a) :0:C::C:C:0: 867. The ionization energy wangle in the second s	b) Ions) has recently been shown as on raepresents the correct gr b) :O::C::C:C::O: vill be maximum for the proc b) Be → Be ²⁺ d to determine: b) Electron affinity g molecules/ions BF ₃ , NO ₂ , N b) NO ₂ and NH ₂	 c) Molecules a component of the atmos ound state Lewis structure c) :Ö::C::C::C::Ö: ess: c) Cs → Cs⁺ c) Ionization energy NH₂, and H₂O the central at 	phere of Venus, Which of for carbon suboxide? d) :0: C: C: C: O: d) Li \rightarrow Li ⁺ d) Either of them tom is sp^2 hybridized? d) NO_2^- and H_2O
 866. Carbon suboxide (C₃O₂ the following formulation a) :0:C::C:C:0: 867. The ionization energy wan a) Ba → Ba²⁺ 868. Born Haber cycle is used a) Lattice energy 869. In which of the following a) BF₃ and NO₂ and NO₂ 870. sp³ d hybridisation rest 	b) Ions) has recently been shown as on raepresents the correct gr b) :0::C::C:C::O: vill be maximum for the proce b) Be → Be ²⁺ d to determine: b) Electron affinity g molecules/ions BF ₃ , NO ₂ , N b) NO ₂ and NH ₂ ults in ecule	c) Molecules a component of the atmos ound state Lewis structure c): Ö::C::C::C:: Ö: ess: c) Cs \rightarrow Cs ⁺ c) Ionization energy H_2^- , and H_2^- 0 the central at	phere of Venus, Which of for carbon suboxide? d):0: C: C: C: O: d) Li \longrightarrow Li ⁺ d) Either of them tom is sp^2 hybridized? d) NO_2^- and H_2O
 866. Carbon suboxide (C₃O₂) the following formulation a) :0:C::C:C:O: 867. The ionization energy wangle in the second of the second of the following and an energy wangle in the second of the following and BF₃ and NO₂ 870. sp³ d hybridisation resumangle in the second of the second of the second of the following and second of the second of the	b) Ions) has recently been shown as on raepresents the correct gr b) :0::C::C::C::O: vill be maximum for the proc b) Be → Be ²⁺ d to determine: b) Electron affinity g molecules/ions BF ₃ , NO ₂ , N b) NO ₂ and NH ₂ ults in ecule al molecule	 c) Molecules a component of the atmost ound state Lewis structure c):Ö::C::C::C::Ö: ess: c) Cs → Cs⁺ c) Ionization energy NH₂, and H₂O the central attactor c) NH₂ and H₂O b) An octahedron molecuted d) A tetrahedron molecule 	phere of Venus, Which of for carbon suboxide? d):0: C: C: C: O: d) Li \longrightarrow Li ⁺ d) Either of them tom is sp^2 hybridized? d) NO_2^- and H_2O
 866. Carbon suboxide (C₃O₂ the following formulation a) :0:C::C:C:O: 867. The ionization energy wan a) Ba → Ba²⁺ 868. Born Haber cycle is used a) Lattice energy 869. In which of the followind a) BF₃ and NO₂ and NO₂ 870. sp³ d hybridisation results a) A square planar mole c) A trigonal bipyramid 	b) Ions) has recently been shown as on raepresents the correct gr b) :0::C::C::C::O: vill be maximum for the proc b) Be → Be ²⁺ d to determine: b) Electron affinity g molecules/ions BF ₃ , NO ₂ , N b) NO ₂ and NH ₂ ults in ecule al molecule	 c) Molecules a component of the atmost ound state Lewis structure c):Ö::C::C::C::Ö: ess: c) Cs → Cs⁺ c) Ionization energy NH₂, and H₂O the central attactor c) NH₂ and H₂O b) An octahedron molecuted d) A tetrahedron molecule 	phere of Venus, Which of for carbon suboxide? d):0: C: C: C: O: d) Li \longrightarrow Li ⁺ d) Either of them tom is sp^2 hybridized? d) NO_2^- and H_2O

_					
Gn	liic	Ŀα	111	atio	n
- UD		Lu	uL	$\alpha \omega$	

			Gpius Eaucation
a) Boron	b) Carbon	c) Oxygen	d) Nitrogen
873. The bond length of	HCl molecule is 1.275 Å a	nd its dipole moment is 1.03	BD. The ionic character of the
molecule (in per cer	nt) (charge of the electron=	$= 4.8 \times 10^{-10}$ esu) is	
a) 100	b) 67.3	c) 33.66	d) 16.83
874. In a double bond co	nnecting two atoms there is	s a sharing of:	
a) 2 electrons	b) 4 electrons	c) 1 electron	d) All electrons
875. Number of P – O box	nds in P ₄ O ₁₀ is		
a) 17	b) 16	c) 15	d) 6
876. Elements whose ele	ctronegativities are 1.2 and	3.0 form:	
a) Ionic bond	b) Covalent bond	c) Coordinate bond	d) Metallic bond
877. Which of the follow	ing is correct?		
a) Decreases in bon	d length means increase in	bond strength	
	of carbon is less than that of		
c) Single bonds are	stronger than double bonds	5	
d) Fe (III) chloride (cannot exist in the dimeric f	orm Fe ₂ Cl ₆	
878. Which of the follow	ing is a favourable factor for	r cation formation?	
a) Low ionisation p	otential	b) High electron affinit	ty
c) High electronega	tivity	d) Small atomic size	
879. A number of ionic c	ompounds, e.g., AgCl, CaF ₂ , l	BaSO ₄ are insoluble in water.	This is because:
	do not dissolve in water		
b) Water has a high	dielectric constant		
c) Water is not a go	od ionizing solvent		
d) These molecules	have exceptionally high att	ractive forces in their lattice	
880. Ionisation potential	values of 'd' block element	s as compared to ionisation p	otential values of ' f ' block
elements are:			
a) Higher	b) Lower	c) Equal	d) Either of these
881. When a metal atom	combines with a non-metal	atom, the non-metal atom w	ill
a) Lose electrons ar	nd decrease in size	LICATION	
b) Lose electrons ar	nd increase in size	OCHITOIA	
c) Gain electrons ar	id decrease in size		
d) Gain electrons ar	id increase in size		
882. The hydration of ion	nic compounds involves:		
a) Evolution of heat	- -		
b) Weakening of att	ractive forces		
c) Dissociation into	ions		
d) All of the above			
883. Which of the follow	ing is diamagnetic?		
a) H ₂ ⁺	b) 0 ₂	c) Li ₂	d) Fe ₂ ⁺
884. Molecular orbital el	ectronic configuration for '2	X' anion is	
/~ \ ² /* \ ² /-2	$(p_x)^2 (\pi 2p_y)^2 (\sigma_2 p_z)^2 (\pi^2 p_x)^{\frac{1}{2}}$		
$KK(\sigma 2s)(\sigma 2s)(^{11}2s)$	(p_x) $(\pi^2 p_y)$ $(\sigma^2 p_z)$ $(\pi^2 p_x)$.		
The anion $'X'$ is			
a) N ₂	b) 0 ₂	c) N_2^{2-}	d) O ₂ ² –
885. According to Fajan's	s rule polarization is more v	vhen:	
a) Small cation and	large anion		
b) Small cation and	small anion		
c) Large cation and	large anion		
d) Large cation and			
886. Organic compounds	soluble in water contain:		
a) C, H. Cl	b) C, H	c) C, H, O	d) C, S

887. Atomic radii of fluorine and neon in angstrom unit	are respectively given by:	
a) 0.72, 1.60 b) 1.60, 1.60	c) 0.72, 0.72	d) 1.60, 0.72
888. The decreasing order of bond angle is		
a) $NO_2 > NO_2^+ > NO_2^-$	b) $NO_2^- > NO_2 > NO_2^+$	
c) $NO_2^+ > NO_2 > NO_2^-$	d) $NO_2^+ > NO_2^- > NO_2$	
889. The correct order of dipole moment is:	, , , , , , , , , , , , , , , , , , , ,	
a) $CH_4 < NF_3 < NH_3 < H_2O$		
b) $NF_3 < CH_4 < NH_3 < H_2O$		
c) $NH_3 < NF_3 < CH_4 < H_2O$		
d) $H_2O < NH_3 < NF_3 < CH_4$		
890. Which oxide of nitrogen is isoelectronic with CO ₂ ?		
a) NO ₂ b) N ₂ O	c) NO	d) N_2O_2
891. Which of the following molecules does not possess	•	
a) H ₂ S	F	
b) SO ₂		
c) SO ₃		
d) CS ₂		
892. Among O, C, F, Cl, Br the correct order of increasing	atomic radii is:	
a) $F < 0 < C < Cl < Br$ b) $F < C < 0 < Br < Cl$		d) C < 0 < F < Cl < Br
893. In which of the following diatomic molecules /ions	•	•
a) O_2^+ , NO_2 , NO_3^- b) CN^- , N_2^+ , N_2		d) O_2^+ , CN^- , N_2^+
894. What type of hybridisation takes place in the N atom		uj 02, GN , N2
a) sp^2 b) sp^3	c) dsp^2	d) <i>sp</i>
895. Identify the correct order of solubility of Na ₂ S, CuS		
a) CuS > ZnS > Na ₂ S b) ZnS > Na ₂ S > CuS	-	d) Na ₂ S > ZnS > CuS
896. In the following molecule, the two carbon atoms magnitudes $\frac{1}{2}$	= = = = = = = = = = = = = = = = = = =	
hybridized orbitals:	arked by asterisk (*) posses	ss the following type of
	CATION	
$H_3C - \overset{*}{C} \equiv \overset{*}{C} - CH_3$	LATION	
a) sp^3 -orbital b) sp^2 -orbital	c) <i>sp</i> -orbital	d) s-orbital
897. Debye an unit of dipole moment is of the order of:	c) op orbital	aj s orbitar
	c) 10 ⁻⁶ esu cm	d) 10 ⁻¹² esu cm
898. Which of the following is a favourable factor for cat		uj 10 csa cm
a) High electronegativity	b) High electron affinity	
c) Low ionisation potential	d) Smaller atomic size	
899. The paramagnetic molecule at ground state among	•	
a) H ₂ b) O ₂	c) N ₂	d) CO
900. The bond in the formation of fluorine molecule will	· -	u) co
a) Due to $s - s$ overlapping	b) Due to <i>s – p</i> overlappi	nα
c) Due to $p-p$ overlapping	d) Due to hybridisation	iig
	u) Due to hybridisation	
901. The diamagnetic molecules are:	a) C N E	J) D O M
a) B_2 , C_2 , N_2 b) O_2 , N_2 , F_2	c) C_2 , N_2 , F_2	d) B_2 , O_2 , N_2
902. The IP ₁ is maximum for:	-) D-	J) II.
a) K b) Na	c) Be	d) He
903. In the transition of Cu to Cu^{2+} , there is a decrease i		
a) Atamaia mumban	n:	
a) Atomic number	n:	
b) Atomic mass	n:	
b) Atomic mass c) Equivalent weight	n:	
b) Atomic mass		

a) N — H	b) O — H	c) F — H	Gplus Education d) S – H
905. The bond order of O_2^+ is the	ne same as in		
a) N ₂	b) CN ⁻	c) CO	d) NO ⁺
906. Structure of XeF_5^+ ion is			
	b) Square pyramidal	c) Octahedral	d) Pentagonal
907. The fHOMO in CO is			
a) π - bonding	b) π -antibonding	c) σ -antibonding	d) σ - bonding
908. Which of the following ha	s sp^3 -hybridization on ce	ntral atom?	
a) BF ₂	b) BCl ₃	c) SO ₃	d) CCl ₄
909. Which one has sp^3 hybrid	lisation?		
a) N ₂ O	b) CO ₂	c) SO ₂	d) CO
910. Coordinate compounds an	re formed by:		
a) Transfer of electrons			
b) Sharing of electrons			
c) Donation of electron pa	air		
d) None of the above			
911. In P ₄ O ₁₀ the			
a) Second bond in $P = 0$ i	s formed by $p\pi - d\pi$ back	k bonding	
b) $P = O$ bond is formed by	oy pπ – pπ bonding		
c) $P = 0$ bond is formed by	oy dπ — dπ bonding		
d) $P = O$ bond is formed by	by dπ – dπ – 3σ back bor	nding	
912. Allene (C_3H_4) contains			
a) One double bond, one t	criple bond and one single	bond	
b) One triple and two dou	ble bonds		
c) Two triple and one dou	ıble bond		
d) Two double and four si	ingle bond		
913. Which shows non-direction	onal bonding?		
a) BCl ₃ 914. Which one of the followin	b) CsCl g contains both ionic and	c) NCl ₃ covalent bonds?	d) BeCl ₃
a) C ₆ H ₅ Cl	b) H ₂ O	c) NaOH	d) CO ₂
915. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are i	· -		, 2
a) $Na^+ < Mg^{2+} < Al^{3+} <$			
b) $Na^+ > Mg^{2+} < Al^{3+} <$			
c) $Na^+ < Mg^{2+} > Al^{3+} >$			
d) $Na^+ > Mg^{2+} > Al^{3+} >$			
916. Which of the following do		and?	
a) Overlapping valence or			
b) Mobile valence electron			
c) Delocalized electrons			
d) Highly directed bonds			
917. Van der Waals' forces are	maximum in:		
a) HBr	b) LiBr	c) LiCl	d) AgBr
918. The internuclear distance		•	, ,
Cl may be:	. III 112 and 612 molecules a	me / rana 170 pm respectiv	ery. The bond length of H

c) 136 pm

c) NF₃

d) 248 pm

d) ClF₃

b) 70 pm

b) BF₃

a) There is no relationship between stability and bond order

 $920. \, For \, a$ stable molecule, the value of bond order must be

 $919. \, \mbox{The molecule having zero dipole moment is}$

a) 272 pm

a) CH_2Cl_2

b) Zero

			opius zaucati
c) Positive			
d) negative	mong the following has mor	o government above atom?	
a) AlCl ₃	b) AlI $_3$	c) MgI ₂	d) NaI
, ,	ollowing has the largest dipo		uj ivai
a) NH_3	b) H ₂ O	c) HI	d) SO ₃
	f phosphorus in POCl ₃ is san	•	, 3
a) P in PCl ₃	b) S in SF ₆	c) Cl in ClF ₃	d) B in BCl ₃
	•	ition of the following atomic o	
a) s, p_x, p_y, p_z	b) s, p_x, p_y, p_z, d	c) d, s, p_x, p_y	d) s, p_x, p_y, p_z, d, d
925. Which of the follow	ing pairs are isostructural?		
a) SO_3^{2-} , NO_3^{-}	b) BF ₃ , NF ₃	c) BrO_3^- , XeO_3	d) SF ₄ , XeF ₄
926. Among HF, CH ₄ , CH	₃ OH and N ₂ O ₄ intermolecula	ar hydrogen bond is expected	l
a) In two	b) In all	c) In all leaving one	d) None of these
•	ent ions in aqueous solution	is an example of	
a) Ion – induced dip			
b) Dipole - dipole in			
c) Dipole – induced	-		
d) Ion – dipole inter		unda with the greatest and th	ha lagat janja ahawa atau
respectively	$becl_2$ and $mgcl_2$, the compo	ounds with the greatest and th	ne least fonic character,
a) LiCl and RbCl	h) RhCl and MgCl	c) RbCl and BeCl ₂	d) MgCl ₂ and BeCl ₂
	- character in the orbitals f		aj ingalzana beaiz
a) 25	b) 33	c) 50	d) 75
-	toms which are electrically		,
a) Anions	b) Cations	c) Ions	d) Atoms
931. Which among the fo	ollowing elements has lowes	t value of ionisation energy?	•
a) Mg	b) Ca	c) Ba	d) Sr
932. IP ₂ for an element is	${ m s}$ invariably higher than IP $_{ m 1}$ ${ m k}$	oecause:	
•	is smaller than its atom		
-	emove 'e' from cation		
	charge is more for cation		
d) All of the above	N+ 1('') 0 0+ 1	1	1.0
• · · · •		electrons respectively are re	moved from
a) $(\pi^2 2 p_y \text{ or } \pi^2 2 p_y)$	(p_x) and $(\pi 2 p_y)$ or $\pi 2 p_x$		
	1 . /= 2		
b) $(\pi 2 p_y \text{ or } \pi 2 p_y)$	p_x) and $(\pi 2 p_y \text{ or } \pi 2 p_x)$		
0/-0 -0	(p_x) and $(\pi 2 p_y)$ or $\pi 2 p_x$		
•	•		
d) $(\pi_2 n \text{ or } \pi_2 r)$	(p_x) and $(\pi 2 p_y \text{ or } \pi 2 p_x)$		
, , , , , , , , , , , , , , , , , , ,	., .	C 0	
	toms or ions will have same	_	d) E ⁺ and Ma
a) Li ⁺ and He ⁻	b) Cl ⁻ and Ar is best explained by the coo	c) Na and K	d) F ⁺ and Ne
a) $H^+ + H_2 O$	b) Cl + Cl	c) Mg + $\frac{1}{2}$ O ₂	d) $H_2 + I_2$
936. The dipole moment	of CHCl ₃ is 1.05 debye while	e that of CCl ₄ is zero, because	CCl ₄ is:
a) Linear	b) Symmetrical	c) Planar	d) Regular tetrahedral
937. Which shows the hi	ghest lattice energy?		

a) RbF	b) CsF	c) NaF	d) KF
•	*	•	c distance is 1 Å unit, then the
dipole moment is	, g		
a) 41.8 debye	b) 4.18 debye	c) 4.8 debye	d) 0.48 debye
939. The correct order re	egarding the electronegativity		on is:
a) $sp < sp^2 > sp^3$	b) $sp < sp^2 < sp^3$	c) $sp > sp^2 < sp^3$	d) $sp > sp^2 > sp^3$
940. Which of the follow	ing groups all do not have sp^3	d hybridisation?	
a) ClF_3 , IF_3 , XeF_3^+	b) ICl ₂ , ClF ₂ , I ₃	c) ClF ₃ , BrF ₃ , IF ₃	d) PCl ₃ , AsCl ₃ , PF ₅
941. Which of the follow	ing compounds does not follo	w the octet rule for electro	on distribution?
a) H ₂ O	b) PH ₃	c) PCl ₃	d) PCl ₅
942. Which of the follow	ing sets represents the collect	tion of isoelectronic specie	s?
a) Na ⁺ , Mg ²⁺ , Al ³⁺ , 0	Cl b) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻	c) K^+ , Cl^- , Mg^{2+} , Sc^{3+}	d) K^+ , Ca^{2+} , Sc^{3+} , Cl^-
943. Which of the follow	ing has unchanged valency?		
a) H	b) Na	c) Fe	d) O
944. The structure of Xel	F_4 is:		
a) Planar	b) Tetrahedral	c) Square planar	d) Pyramidal
	erted into N_2^+ and O_2^+ respecti	vely.	
Which of the follow	9		
a) In N_2^+ , the N – N b			
b) In O_2^+ , $O - O$ bond			
c) In O_2^+ , paramagne			
d) N ₂ becomes dian			
	trigonal planar geometry?	,	D. D.F.
a) IF ₃	b) PCl ₃	c) NH ₃	d) BF ₃
	ctility of metals can be accoun	rtea aue to	
a) The presence of e			
b) The crystalline st	yers of metal ions to slide over	or the other	
	f electrons with metal ions in		
948. Underlined carbon i		the lattice	
	b) $CH_3CH_2NH_2$	c) CH ₃ CONH ₂	d) CH ₃ CH ₂ CN
, = -	s a liquid unlike other hydrog	, - <u>-</u> -	u) chişchi <u>zc</u> iv
	ociate due to hydrogen bondi		
b) F ₂ is highly react		6	
	t acid of all hydrogen halides		
	the smallest of all halogens		
	ia (σ) and pi (π) covalent bond	ds respectively in banzene	nitrile are
a) 5, 13	b) 15, 3	c) 13, 5	d) 16, 2
•	following cases, breaking of c		.,, -
a) Boiling of H ₂ O	b) Melting of KCN	c) Boiling of CF ₄	d) Melting of SiO ₂
952. Which compound is	soluble in water	, , , , , , , , , , , , , , , , , , , ,	, , ,
a) CS ₂	b) C ₂ H ₅ OH	c) CCl ₄	d) CHCl ₃
	by sideways overlapping of:	•	5
a) <i>s-s</i> orbitals	b) p - p orbitals	c) <i>s-p</i> orbitals	d) <i>s-p-s</i> orbitals
954. Which statement is	true?		
a) Absolutely pure v	water does not contain any io	n.	
b) Some covalent co	mpounds may also give ions	in aqueous solution.	
c) In aqueous soluti	on only electrovalent compo	ınd give ions.	
d) Very sparingly so	luble substances do not disso	ciate in aqueous solution	

955. Formation of π -bond:

a) Increases bond length		•
b) Decreases bond length		
c) Distorts the geometry of molecule		
d) Makes homoatomic molecules more reactive		
956. In which reaction, the hybridisation on the central a		
a) $NH_3 + H^+ \rightarrow NH_4^+$ b) $BF_3 + F^- \rightarrow BF_4^-$	c) $H_20 + H^+ \rightarrow H_30^+$	d) $C_2H_2 + 2H_2 \rightarrow C_2H_6$
957. The low solubility of $BaSO_4$ in water is due to:		
a) Low dissociation energy		
b) Ionic bonds		
c) High value of lattice energy		
d) None of the above		
958. The number of lone pairs of electron on Xe in XeOF ₄	is:	
a) 1 b) 2	c) 3	d) 4
959. Which compound does not contain double bond or t	riple bond?	
a) C ₂ H ₄ b) H ₂ O	c) N ₂	d) HCN
960. The compound showing maximum covalent charact	er is:	
a) BI ₃ b) BCl ₃	c) BF ₃	d) BBr ₃
961. Carbon atoms in $C_2(CN)_4$ are:		
a) <i>sp</i> -hybridised		
b) sp^2 -hybridised		
c) sp - and sp^2 -hybridised		
d) sp , sp^2 and sp^3 -hybridised		
962. Which statement is wrong?	>	
a) 2nd ionisation energy shows jump in alkali metal	S	
b) 2nd electron affinity for halogens is zero		
c) Maximum electron affinity exists for F		
d) Maximum ionization energy exists for He		
963. Value of <i>x</i> in potash alum,	"ΔΤΙΩΝ	
K_2SO_4 . $AI_x(SO_4)_3$. $24H_2O$ is	25.717.01.4	
a) 4 b) 1	c) 2	d) None of these
964. Among the following, the paramagnetic compound i	S	
a) Na_2O_2 b) O_3	c) N ₂ O	d) KO ₂
965. HCl molecule in the vapour state is an example of:		
a) Non-polar bond b) Ionic bond	c) Polar covalent bond	d) Pure covalent bond
966. The electrons in an incomplete outershell are know		
a) Kernel electrons b) Valency electrons	c) Shell electrons	d) None of the above
967. According to bond order concept the correct order of		
a) $0_2 > 0_2^+ > 0_2^-$ b) $0_2^- > 0_2 > 0_2^+$	c) $0_2 > 0_2^- > 0_2^+$	d) $0_2^+ > 0_2 > 0_2^-$
968. The element which exists in both hard and soft form		
a) Fe b) Si		
	c) C	d) Al
969. Which of the following is not a correct statement?	,	d) Al
969. Which of the following is not a correct statement? a) Every AB ₅ molecule does in fact have square pyra	amid structure.	d) Al
 969. Which of the following is not a correct statement? a) Every AB₅ molecule does in fact have square pyra b) Multiple bonds are always shorter than correspond 	amid structure. nding single bonds.	d) Al
 969. Which of the following is not a correct statement? a) Every AB₅ molecule does in fact have square pyra b) Multiple bonds are always shorter than correspond c) The electron-deficient molecules can act as Lewis 	amid structure. nding single bonds.	d) Al
 969. Which of the following is not a correct statement? a) Every AB₅ molecule does in fact have square pyra b) Multiple bonds are always shorter than correspond c) The electron-deficient molecules can act as Lewis d) The canonical structures have no real existence. 	amid structure. nding single bonds.	d) Al
 969. Which of the following is not a correct statement? a) Every AB₅ molecule does in fact have square pyra b) Multiple bonds are always shorter than correspond c) The electron-deficient molecules can act as Lewis d) The canonical structures have no real existence. 970. The bond strength increases: 	amid structure. nding single bonds.	d) Al
 969. Which of the following is not a correct statement? a) Every AB₅ molecule does in fact have square pyra b) Multiple bonds are always shorter than correspond c) The electron-deficient molecules can act as Lewis d) The canonical structures have no real existence. 970. The bond strength increases: a) With increasing bond order 	amid structure. nding single bonds.	d) Al
 969. Which of the following is not a correct statement? a) Every AB₅ molecule does in fact have square pyra b) Multiple bonds are always shorter than correspond c) The electron-deficient molecules can act as Lewis d) The canonical structures have no real existence. 970. The bond strength increases: a) With increasing bond order b) With increasing extent of overlapping of orbitals 	amid structure. nding single bonds. s acids.	d) Al
 969. Which of the following is not a correct statement? a) Every AB₅ molecule does in fact have square pyra b) Multiple bonds are always shorter than correspond c) The electron-deficient molecules can act as Lewis d) The canonical structures have no real existence. 970. The bond strength increases: a) With increasing bond order 	amid structure. nding single bonds. s acids.	d) Al

Gplus	Edι	ıcation
-------	-----	---------

971. The number of u	inpaired electrons in ${\sf O}_2$ m	olecule is:	•
a) Zero	b) 1	c) 2	d) 3
972. Which has higher bond energy and stronger bond?			
a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂
973. Which of the foll	owing statements regarding	ng carbon monoxide is correc	ct?
a) It involves sp -orbitals of carbon			
b) It contains a lone pair only on carbon			
c) It contains a lone pair only on oxygen			
d) In carbonyl, o	xygen end is attached to th	ne metal atoms	
974. Which of the foll	lowing is having highest bo		
a) NO ⁻	b) NO ⁺	c) CN ⁻	d) CN ⁺
	lowing statement is correct	t for CsBr ₃ ?	
a) It is a covalent compound			
b) It contains Cs ³⁺ and Br ⁻ ions			
c) It contains Cs ⁺ and Br ₃ ions			
	⁺ , Br [–] and lattice Br ₂ mole	cule	
976. In 1 – butene nu	mber of σ - bonds is		
a) 8	b) 10	c) 11	d) 12
	have pyramidal geometry?	ı	
a) SO ₃ ²	b) NO ₃	c) NH ₃	d) $C(C_6H_5)_3^-$
978. The nature of bo	onding in CCl ₄ and CaH ₂ :		
-	in both CCl ₄ and CaH ₂		
-	Cl ₄ and electrovalent in Cal	The state of the s	
c) Electrovalent	in CCl ₄ and covalent in Cal	H_2	
d) None of the a			
979. Which of the foll	owing oxides is not expect	ed to react with sodium hydr	oxide?
a) BeO	b) B ₂ O ₃	c) CaO	d) SiO ₂
	CPLUS E	DUCATION	

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 61