GPLUS EDUCATION

THE P-BLOCK ELEMENTS Single Correct Answer Type 1. Nitric oxide is:
 Nitric oxide is: a) Acidic towards litmus b) Basic towards litmus c) Neutral towards litmus d) Amphoteric The last member of inert gas family is: a) Krypton b) Radon c) Xenon d) Argon Helium – oxygen mixture is used by deep by sea divers in preference to nitrogen oxygen mixture because a) Helium is much less soluble in blood than nitrogen b) Nitrogen is much less soluble in blood than helium c) Due to high pressure deep under the sea nitrogen and oxygen react to give poisonous nitric oxide d) Nitrogen is highly soluble in water Among the fluorides below, the one which does not exist is a) CF₄ b) HeF₄ c) XeF₄ d) SF₄ The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
a) Acidic towards litmus b) Basic towards litmus c) Neutral towards litmus d) Amphoteric 2. The last member of inert gas family is: a) Krypton b) Radon c) Xenon d) Argon 3. Helium –oxygen mixture is used by deep by sea divers in preference to nitrogen oxygen mixture because a) Helium is much less soluble in blood than nitrogen b) Nitrogen is much less soluble in blood than helium c) Due to high pressure deep under the sea nitrogen and oxygen react to give poisonous nitric oxide d) Nitrogen is highly soluble in water 4. Among the fluorides below, the one which does not exist is a) CF ₄ b) HeF ₄ c) XeF ₄ d) SF ₄ 5. The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
b) Basic towards litmus c) Neutral towards litmus d) Amphoteric 2. The last member of inert gas family is: a) Krypton b) Radon c) Xenon d) Argon 3. Helium -oxygen mixture is used by deep by sea divers in preference to nitrogen oxygen mixture because a) Helium is much less soluble in blood than nitrogen b) Nitrogen is much less soluble in blood than helium c) Due to high pressure deep under the sea nitrogen and oxygen react to give poisonous nitric oxide d) Nitrogen is highly soluble in water 4. Among the fluorides below, the one which does not exist is a) CF ₄ b) HeF ₄ c) XeF ₄ d) SF ₄ 5. The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
c) Neutral towards litmus d) Amphoteric 2. The last member of inert gas family is: a) Krypton b) Radon c) Xenon d) Argon 3. Helium – oxygen mixture is used by deep by sea divers in preference to nitrogen oxygen mixture because a) Helium is much less soluble in blood than nitrogen b) Nitrogen is much less soluble in blood than helium c) Due to high pressure deep under the sea nitrogen and oxygen react to give poisonous nitric oxide d) Nitrogen is highly soluble in water 4. Among the fluorides below, the one which does not exist is a) CF ₄ b) HeF ₄ c) XeF ₄ d) SF ₄ 5. The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
d) Amphoteric The last member of inert gas family is: a) Krypton b) Radon c) Xenon d) Argon Helium –oxygen mixture is used by deep by sea divers in preference to nitrogen oxygen mixture because a) Helium is much less soluble in blood than nitrogen b) Nitrogen is much less soluble in blood than helium c) Due to high pressure deep under the sea nitrogen and oxygen react to give poisonous nitric oxide d) Nitrogen is highly soluble in water 4. Among the fluorides below, the one which does not exist is a) CF ₄ b) HeF ₄ c) XeF ₄ d) SF ₄ 5. The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
 2. The last member of inert gas family is: a) Krypton b) Radon c) Xenon d) Argon 3. Helium -oxygen mixture is used by deep by sea divers in preference to nitrogen oxygen mixture because a) Helium is much less soluble in blood than nitrogen b) Nitrogen is much less soluble in blood than helium c) Due to high pressure deep under the sea nitrogen and oxygen react to give poisonous nitric oxide d) Nitrogen is highly soluble in water 4. Among the fluorides below, the one which does not exist is a) CF₄ b) HeF₄ c) XeF₄ d) SF₄ 5. The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
 a) Krypton b) Radon c) Xenon d) Argon 3. Helium –oxygen mixture is used by deep by sea divers in preference to nitrogen oxygen mixture because a) Helium is much less soluble in blood than nitrogen b) Nitrogen is much less soluble in blood than helium c) Due to high pressure deep under the sea nitrogen and oxygen react to give poisonous nitric oxide d) Nitrogen is highly soluble in water 4. Among the fluorides below, the one which does not exist is a) CF₄ b) HeF₄ c) XeF₄ d) SF₄ The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
 a) Helium is much less soluble in blood than nitrogen b) Nitrogen is much less soluble in blood than helium c) Due to high pressure deep under the sea nitrogen and oxygen react to give poisonous nitric oxide d) Nitrogen is highly soluble in water 4. Among the fluorides below, the one which does not exist is a) CF₄ b) HeF₄ c) XeF₄ d) SF₄ 5. The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
 b) Nitrogen is much less soluble in blood than helium c) Due to high pressure deep under the sea nitrogen and oxygen react to give poisonous nitric oxide d) Nitrogen is highly soluble in water 4. Among the fluorides below, the one which does not exist is a) CF₄ b) HeF₄ c) XeF₄ d) SF₄ 5. The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
 c) Due to high pressure deep under the sea nitrogen and oxygen react to give poisonous nitric oxide d) Nitrogen is highly soluble in water 4. Among the fluorides below, the one which does not exist is a) CF₄ b) HeF₄ c) XeF₄ d) SF₄ 5. The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
d) Nitrogen is highly soluble in water 4. Among the fluorides below, the one which does not exist is a) CF ₄ b) HeF ₄ c) XeF ₄ d) SF ₄ 5. The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
 4. Among the fluorides below, the one which does not exist is a) CF₄ b) HeF₄ c) XeF₄ d) SF₄ 5. The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
 a) CF₄ b) HeF₄ c) XeF₄ d) SF₄ 5. The percentage of nitrogen in air remains almost constant due to: a) The fixation of nitrogen b) The activity of symbiotic bacteria
5. The percentage of nitrogen in air remains almost constant due to:a) The fixation of nitrogenb) The activity of symbiotic bacteria
a) The fixation of nitrogen b) The activity of symbiotic bacteria
b) The activity of symbiotic bacteria
c) The effect of lightening and bacteria
d) The nitrogen cycle in nature
6. The metal which does not form ammonium nitrate by reaction with dilute nitric acid is
a) Al b) Fe c) Pb d) Mg
7. The following acids have been arranged in the order of decreasing acid strength. Identify the correct order ClOH(I) BrOH(II) IOH(III)
a) $I > II > III$ b) $II > I > III$ c) $III > II > II$
8. H ₂ S exhibits:
a) Oxidizing properties b) Reducing properties c) Basic properties d) None of these
9. Liquid oxygen is:
a) Colourless b) Pale yellow c) Pale blue d) Dark blue 10. HNO ₃ is manufactured by:
a) Birkeland and Eyde's process
b) Haber's process
c) Contact's process
d) Fischer-Tropsch's process
11. The decreasing values of bond angles from NH_3 (107°) to SbH_3 (91°) down the group 15 of the periodic
table is due to
a) Increasing bp - bp repulsion b) Increasing p - orbital character in sp^3
c) Decreasing <i>lp-bp</i> repulsion d) Decreasing electronegativity
12. Nitrogen is obtained when NaNO ₂ react with
a) NH ₄ Cl b) NH ₄ NO ₃ c) (NH ₄) ₂ CO ₃ d) NH ₄ OH 13. Which of the following statement is wrong?
a) The stability of hydrides increases from NH ₃ to BiH ₃ in group 15 of the periodic table

	b) Nitrogen cannot form	$d\pi$ – $p\pi$ bond			
	c) Single N—N bond is weaker than the single P—P bond				
	d) N ₂ O ₄ has two resonance structure				
14.	Which is monoatomic?				
	a) Oxygen	b) Fluorine	c) Neon	d) Nitrogen	
15.	Which gas can be collecte	d over water?			
	a) NH ₃	b) N ₂	c) SO ₂	d) HCl	
16.	In the reaction,				
	$2KI + H_2O_2 + O_3$	\rightarrow 2KOH + O ₂ + A, the co	mpound A is:		
	a) KIO ₃	b) I ₂ O ₅	c) HIO ₃	d) I ₂	
17.	In the reaction MnO. +	$I^- \xrightarrow{Alkaline solution} [X]; [X] i$	S *		
	a) $10\frac{1}{3}$	b) IO_4^-	c) I ₂	d) IO ⁻	
18		ps present in pyrosulphuri	· -	uj 10	
10.	a) 3	b) 4	c) 2	d) 1	
19	Which is not an acid salt?	b) I	c) <u>z</u>	uj I	
1).	a) Na ₄ P ₂ O ₇	b) NaH ₂ PO ₃	c) NaH ₂ PO ₂	d) Na ₃ HP ₂ O ₆	
20	·		nixture from air, Is us		
20.	a) 90% CaC ₂ +10%CaCl ₂	or separation of hobic gas is	b) Coconut charcoal	ocu,	
	c) Soda lime +potash solu	ıtion	d) 90% CaCO ₃ +10% urea	1	
21		es two gases on reacting wi	•	L	
41.	a) Si	b) C	c) S	d) P	
22	-		es are evolved. These fume	,	
22.	a) SO_2	b) SO ₃	c) N ₂ 0	d) NO ₂	
23		um hydroxide fluorine reac	, <u>-</u>	u) NO ₂	
23.	a) NaF and OF ₂	b) NaF + O ₃	c) O_2 and O_3	d) NaF $+$ O ₂	
24	-	ion energy is minimum in:	C) O ₂ and O ₃	uj Nar + O ₂	
Δ Τ.			c) Br.	d) I-	
25	a) F_2 b) Cl_2 c) Br_2 d) I_2			u) 1 ₂	
25. Which of the following is not the characteristic of interhalogen compounds?					
	a) They are more reactive than halogensb) They are quite unstable but none of them is explosive				
	c) They are covalent in na	=	Sive		
		points and are highly volati	ile		
26	Which is soluble in water				
20.	a) AgCl	b) AgBr	c) AgI	d) AgF	
27.	· -		r Bi, the angle Cl– <i>E</i> –Cl for d		
_,.	a) $B > P = As = Bi$	b) B > P > As > Bi			
28.	-		ng it with aqueous solution		
	a) H_2O_2	b) Sodium sulphide	c) Sodium thiosulphate	d) Sodium sulphate	
29	Sulphuric acid has great a	•	e) boaram emosarphace	a) boarain saiphace	
	a) It hydrolyses the acid	innity for water because	b) It decomposes the acid		
	c) Acid forms hydrates w	ith water	d) Acid decomposes water	r	
30.	•	very of noble gases is given	•	•	
00.	a) Cavendish	b) Ramsay	c) Rayleigh	d) None of these	
31		umber of lone pairs of Xe is		a) None of these	
011	a) 3, 2, 1	b) 1,2,3	c) 2, 3, 1	d) 4, 1, 2	
32	Which of the following ha	•	<i>∪_j ⊒_j ∪_j ⊥</i>	w, 1, 1, 1	
J = 1	a) NO_3^-	of the manual			
	b) SO ₃ ²⁻				
	c) BO ₃ ³⁻				
	-, 3				

	d) CO ₃ ²⁻			
33.	Acidified iodates are redu			
	a) Iodites	b) Iodide	c) Iodine	d) None of these
34.	Anhydrone is:			
	a) HClO ₄			
	b) HClO ₃			
	c) Anhydrous magnesium			
	d) Anhydrous calcium per			
35.	In Kipp's apparatus, H ₂ S i	• •		
	a) Continuously	b) By FeS + conc. H_2SO_4		d) By Fe + dil. H_2SO_4
36.		and HNO_3 in the ratio 3: 1 c		
	a) ClO ₂	b) NOCl	c) NCl ₃	d) N_2O_4
37.	Pure nitrogen can be prep			
	a) NH ₄ OH	b) NH ₄ NO ₂	c) $Ba(NO_3)_2$	d) Ca ₃ N ₂
38.		HF by passing the mixture	· ·	
	a) H ₂ O	b) An alkaline solution	c) Conc. H ₂ SO ₄	d) NaF
39.	Fluorine is usually obtain			
4.0	a) Fluorspar	b) Fluorapatite	c) Cryolite	d) Tetrafluoromethane
40.	Mark the strongest acid	1) IID	2 1101	1) 1111
4.1	a) HI	b) HBr	c) HCl	d) HF
41.	The most basic hydride is		-)	4) CF11
42	a) NH ₃	b) PH ₃	c) AsH ₃	d) SbH ₃
42.	Cl_2 is used in the extraction		a) Dath (a) and (b)	d) None of these
12	a) Pt	b) Au	c) Both (a) and (b)	d) None of these
43.	a) NH ₃	ring lowest oxidation numb b) N ₃ H	c) N ₂ H ₄	у) и п
1.1.	, ,	ng agent only in presence o	, <u>-</u> .	d) N_2H_2
77.	a) Dry air	b) Moisture	c) Sunlight	d) Pure oxygen
45			n water with a controlled q	, , ,
101	a) Br ₂	b) Cl ₂	c) O_2 enriched air	d) N ₂
46.		· -	on solidification of antimon	· -
	a) Expansion		c) Endothermic reaction	
47.	*	Γhe unpaired electrons are		,
	a) Antibonding orbitals	b) Bonding orbitals	c) p – orbitals	d) <i>f-</i> orbitals
48.	_	eaching powder with a solu		,,
	a) H ₂	b) N ₂	c) N ₂ O ₃	d) N_2O_4
49.	H_3PO_2 has the name and	· -	, 2 0	, <u> </u>
	a) Phosphorous acid and			
	b) Hypophosphorous acid	d and two		
	c) Hypophosphorous acid			
	d) Hypophosphoric acid a	and two		
50.	The correct order of acidi	c nature is:		
	a) $Cl_2O_7 > SO_2 > P_4O_{10}$	b) $CO_2 > N_2O_5 > SO_3$	c) $Na_2O > MgO > Al_2O_3$	d) $K_2 O > CaO > MgO$
51.	The van der Waal's forces	are the greatest in:		
	a) Neon	b) Argon	c) Krypton	d) Xenon
52.	Starch paper moistened w	vith KI solution turns blue i	n ozone because of:	
	a) Iodine liberation			
	b) Oxygen liberation			
	c) Alkali formation			

	d) Ozone reacts with litm	us paper					
53.	Which one is correct state	ement?					
	a) Basicity of H ₃ PO ₄ and H	H_3PO_3 is 3 and 3 respectivel	y				
	b) Acidity of H ₃ PO ₄ and H	3 PO3 is 3 and 3 respectivel	y				
	c) Acidity of H ₃ PO ₄ and H	3 PO3 is 3 and 2respectively	/				
	d) Basicity of H ₃ PO ₄ and H	$H_3 PO_3$ is 3 and 2 respective	ly				
54.	Ammonia water is a good	cleaning agent because it:					
	a) Is weakly basic						
	b) Emulsifies grease						
	c) Leaves no residue whe	n wiped out					
	d) All are true						
55.	A clathrate is defined as a						
	a) Cage compound	b) Liquid crystal	c) Mixture	d) Solid solution			
56.	The acid employed for etc	~ ~					
	a) HCl	b) HClO ₄	c) HF	d) Aqua regia			
57.	H ₂ SO ₄ reacts with sugar a			12.27			
5 0	a) A dehydrating agent	b) An oxidizing agent	c) A sulphonating agent	d) None of these			
58.	Ordinary oxygen contains		2.4	D 0 1 018: .			
5 0	a) Only O ¹⁶ isotope	b) Only O ¹⁷ isotope	c) A mixture of 0^{16} , 0^{17} a	nd) Only O ¹³ isotope			
59.	Metal halide which is inso		.) IZD .	1) C . Cl			
60	a) AgF	b) AgI	c) KBr	d) CaCl ₂			
60.	Phosphine is:	la) A ai di a	a). Assurbatassia	d) Mantural			
<i>c</i> 1	a) Basic	b) Acidic	c) Amphoteric	d) Neutral			
61.	Antimony dissolves in aq		a) ClaCl	4) CP (NO)			
62	a) SbCl ₃	b) $\mathrm{Sb}_2\mathrm{O}_5$	c) SbCl ₅	d) $Sb(NO_3)_3$			
02.	Dinitrogen pentoxide a colourless solid is prepared by a) Heating NH, NO ₂ with an excess of oxygen — b) Dehydrating HNO ₂ with CaO						
	a) Heating NH ₄ NO ₂ with an excess of oxygen b) Dehydrating HNO ₃ with CaO c) Dehydrating HNO ₃ withP ₄ O ₁₀ d) Heating a mixture of HNO ₂ and Ca(NO ₃) ₂						
63			u) Heating a mixture of H	1102 and Ca(1103)2			
03.	Ammonium compound not used as a fertilizer is:						
	a) (NH ₄) ₂ SO ₄ b) (NH ₄) ₂ CO ₂						
	b) (NH ₄) ₂ CO ₃ c) NH ₄ NO ₃						
	d) CAN(calcium ammoniu	ım nitrate)					
64.			gens, chlorine is a gas, bror	nine is a liquid and iodine is			
	a solid. This is because:	F	g, <i>G</i> ,	1			
	a) The specific heats are in the order $Cl_2 > Br_2 > I_2$						
	b) Intermolecular forces among molecules of chlorine are the weakest and those of iodine the strongest						
	c) The order of density is $I_2 > Br_2 > Cl_2$						
	d) The order of stability is						
65.			ivalent mass of Sulphur in	SCl ₂ is 16 g/mol. Therefore			
	the equivalent mass of Su			- -			
	a) 32 g/mol	b) 16 g/mol	c) 64 g/mol	d) 8 g/mol			
66.	Javelle water is:						
	a) Aqueous solution of Na	aOCl					
	b) Used as bleaching ager	nt					
	c) Both (a) and (b)						
	d) None of the above						
67.	The strongest acid is:						
	a) H_3PO_2	b) H ₃ PO ₃	c) $H_4P_2O_7$	d) H_3PO_4			

68.	Orthophosphoric acid on heating gives:		
	a) Phosphine		
	b) Phosphorus pentoxide		
	c) Phosphorus acid		
	d) Metaphosphoric acid		
69.	Which oxide is more acidic?		
	a) Al ₂ O ₃ b) Na ₂ O	c) MgO	d) CaO
70.	$SO_2 + H_2S \rightarrow \text{product}$, the final product is		
	a) H ₂ SO ₃ b) H ₂ SO ₄	c) $H_2S_2O_3$	d) $H_2O + S$
71.	Which of the following is not oxidised by O_3 ?	, 22 3	, 2
	a) KI b) FeSO ₄	c) KMnO ₄	d) K_2MnO_4
72.	The gas used for inflating the tyres of aeroplanes is:	у т	<i>y</i> 2 1
	a) H ₂ b) He	c) N ₂	d) Ar
73.	F_2 is formed by the reaction of K_2MnF_6 with:	5) 1.2	
,	a) SbF ₅ b) MnF ₃	c) KrF ₆	d) MnF ₄
74	Which statement is not correct for nitrogen?	0) 11116	a) 1-1111 4
,	a) It has a small size	b) It does not readily read	rt with Oa
	c) It is a typical non-metal	d) d -orbitals are available	-
75	Which is not oxdised by MnO ₂ ?	aj a orbitais are available	tor bonding
75.	a) F b) Cl	c) I ₂	d) I
76	Passing H ₂ S gas through nitric acid produces:	C) 12	u) i
70.	a) Rhombic sulphur b) Monoclinic sulphur	c) Colloidal sulphur	d) Plastic sulphur
77	Schweitzer's reagent is:	c) Conoldal Sulphul	u) i iastic suipiiui
//.	a) [Cu(NH ₃) ₄]SO ₄ b) [Ag(NH ₃) ₂]Cl	c) [Cu(NH ₃) ₂]Cl	d) K ₄ Fe(CN) ₆
70	Industrial name of $H_2S_2O_7$ is	c) [cu(NII ₃) ₂]ci	$u_1 K_4 re(CN)_6$
70.	A CONTRACTOR OF THE CONTRACTOR	a) Olaum	d) All of those
70	a) Pyrosulphuric acid b) Marshall's acid	c) Oleum	d) All of these
79.	Which does not give oxygen on heating?	c) KClO ₃	4) (NII) C. O
00	a) HgO b) KMnO ₄		d) $(NH_4)_2Cr_2O_7$
80.	Which of the following pairs is obtained on heating a		4) NO 4 NO
01	a) N_2 and H_2O b) N_2O and H_2O	c) NO ₂ and H ₂ O	d) NO and NO ₂
81.	Which reaction is not feasible?	1-) 21/D + 1	
	a) $2KI + Br_2 \rightarrow 2KBr + I_2$	b) $2KBr + I_2 \rightarrow 2KI + Br_2$	_
00	c) $2KBr + Cl_2 \rightarrow 2KCl + Br_2$	d) $2H_2O + 2F_2 \rightarrow 4HF +$	O_2
82.	The conjugate base of $H_2PO_4^-$ is:) II DO	D DO3-
00	a) HPO_4^{2-} b) P_2O_5	c) H ₃ PO ₄	d) PO ₄ ³ -
83.	Reaction of solid KMnO ₄ with conc. H ₂ SO ₄ produces		
0.4	a) Solution state b) Solid state	c) Fine powder	d) None of these
84.	Caro's acid is:	\	D ** GO
a	a) $H_2S_2O_3$ b) $H_2S_2O_8$	c) H_2SO_3	d) H ₂ SO ₅
85.	Which of the following is not oxidized by MnO_2 ?	\	
	a) Fb) Cl	c) Br ⁻	d) I ⁻
86.	Which is an ozonide?		
	a) KO_3 b) NH_4O_3	c) Cr_2O_3	d) Both (a) and (b)
87.	Which statement is false for ozone?		
	a) It is obtained by silent electric discharge on oxyge	en	
	b) It is an endothermic compound		
	c) It can be obtained by the action of ultraviolet rays	on oxygen	
	d) It cannot be regarded as an allotrope of oxygen		
ΩΩ	Which is true with regard to the properties of PH-2		

	ADIL COLLINS	1) DII 1 C 1 11	
	a) PH ₃ is insoluble in water	b) PH ₃ has fishy smell	
	c) PH ₃ is neutral towards litmus	d) PH ₃ is not much stable	
89.	Nitric acid is generally light yellow due to the prese	nce of:	
	a) NH ₃ b) NO	c) NO ₂	d) N_2O_5
90.	The lightning bolts in atmosphere cause the format	on of:	
	a) NO b) O ₃	c) CO ₂	d) H_2O_2
91.	The structure of IF ₇ is:		
	a) Square pyramid		
	b) Trigonal bipyramid		
	c) Octahedral		
	d) Pentagonal bipyramid		
92.	What may be expected to happen, when phosphine	gas is mixed with chlorine g	₇₂₅ 7
,	a) PCl ₅ and HCl are formed and the mixture cools do		,40.
	b) PH ₃ · Cl ₂ is formed with warming up		
	c) The mixture cools down only		
	d) PH ₃ and HCl are formed and the mixture warms	un	
02	$HClO_4 + P_2O_5 \rightarrow (A)$ and (B) A and B are	ир	
73.		a) ClO H DO	4) Cl O HDO
0.4	a) $HClO_3$, H_3PO_4 b) $Cl_2O_6 + HPO_3$	c) ClO_2 , H_2PO_4	d) Cl ₂ O ₇ , HPO ₃
94.	The formula of zinc phosphite is:) 7 (DO)	1) 7 (DO)
0.5	a) $ZnHPO_3$ b) $Zn(PO_4)_3$	c) $\operatorname{Zn}_2(\operatorname{PO}_4)_3$	d) $\operatorname{Zn}_3(\operatorname{PO}_3)_2$
95.	The bonds present in N_2O_5 are:		
	a) Only ionic		
	b) Only covalent		
	c) Covalent and coordinate		
	d) Covalent and ionic		
96.	Uranium isotopes are usually separated by using co	mpounds of the halogen:	
	a) F ₂ b) Cl ₂	c) Br ₂	d) I ₂
97.	Which of the following halogen oxides is ionic?	LATION	
	a) I_4O_9 b) I_2O_5	c) BrO ₂	d) ClO ₃
98.	Which gas is used to improve the atmosphere of cro		
	a) H ₂ b) O ₂	c) 0 ₃	d) N ₂ O
99.	Which of the following is responsible for depletion	of the ozone layer in the upp	per strata of atmosphere?
	a) Polyhalogens b) Ferrocene	c) Fullerenes	d) Freons
100	, $ m H_2SO_4$ and $ m H_2SO_3$ can be distinguished by the addit	ion of:	
	a) Litmus solution b) FeCl ₃ solution	c) NaHSO ₄ solution	d) Magnesium powder
101	$NaNH_2 + N_2O \longrightarrow X + NaOH + NH_3$ what is the X?		
	a) NaN ₂ b) Na ₃ N	c) NaN ₃	d) None of these
102	. Ripening of fruits can be carried out in presence of		
	a) Na ₂ SO ₄ b) NaCl	c) CaC ₂	d) CaCl ₂
103	Which is most thermodynamically stable allotropic	form of phosphorus?	
	a) Red b) White	c) Black	d) Yellow
104	F ₂ is isolated by:	,	,
	a) Electrolysis of HF		
	b) Electrolysis of KHF ₂		
	c) Electrolysis of Na ₃ AlF ₆		
	d) Electrolysis of NaF/HF		
105	Observe the following statements		
100	I. Bleaching powder is used in the preparation of ch	loroform	
	II. Bleaching powder decomposes in the presence of		

III. Aqueous	KHF ₂ is used in the preparation	of fluorine.	
The correct	combination is		
a) I,II and II	I are correct	b) Only II is correct	
c) Only I and	d III are correct	d) Only I and II are co	orrect
106. Which form	of P shows chemiluminescence?		
a) White P	b) Black P	c) Red P	d) None of these
=	e following oxy-acids of phosphor	•	
a) H ₃ PO ₂	b) H ₃ PO ₃	c) H ₃ PO ₄	d) $H_4P_2 O_6$
•	oble gas. Its radioactivity is used		,
a) Typhoid	b) Cancer	c) Cough and cold	d) Thyroid
	e following statement is true?	, 3	, ,
	a stronger acid than H ₂ SO ₃		
<u>-</u>	us medium HF is a stronger acid t	than HCl	
	a weaker acid than $HClO_3$		
	stronger acid than HNO ₂		
=	one pairs of electrons on Xe atom	ns in XeF。XeF,and XeO。mole	ecule are respectively
a) 3, 2 and 1		c) 2, 3 and 1	d) 3, 2 and 0
-	l storage battery is discharged:	c, 2, 3 and 1	u) 3, 2 anu 0
a) SO_2 is evo			
	phate is consumed		
c) Lead is fo			
-		_	
d) H_2SO_4 is		ained finally.	
	silver nitrate strongly is obta		47 411
a) NO ₂	b) 0 ₂	c) Silver metal	d) All
	hine is not combustible while in	npure phosphine is combustit	ole, this combustibility is due to
the presence) DII	D.D.O.
a) P_2H_4	b) N ₂	c) PH ₅	d) P_2O_5
	ct process of H ₂ SO ₄ , SO ₃ dissolve	es in sulphuric acid to give:	
	sulphuric acid		
b) Thiosulpl			
c) Pyrosulpl			
d) Perdisulp			
	ine water is exposed to sunlight,	O ₂ is liberated. Hence:	
	n has little affinity to O_2		
	n has more affinity to O_2		
	n has more affinity to chlorine		
d) It is a red			
116. The number	r of electrons in a halogen in its	outermost orbit in compariso	n with corresponding noble gas
is:			
a) One elect	-	•	
117. The deep blu	ue colour produced on adding ex	cess of ammonia to copper sul	phate solution is due to the
presence of:	1		
a) Cu ²⁺	b) [Cu(NH ₃) ₂] ²⁺	c) $[Cu(NH_3)_4]^{2+}$	d) [Cu(NH ₃) ₆] ²⁺
118. Which of the	e following oxo-acids of chlorine	is formed on shaking chlorine	water with freshly precipitated
yellow oxide	e of mercury?		
a) HClO ₃	b) HClO ₂	c) HClO	d) HClO ₄
119. Phosphorus	is present in bones as:		
a) Ca ₃ (PO ₄)	-	c) Ca ₃ P ₂	d) Cu ₃ P ₂
120. Paramagnet	ic molecule is:		

WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 7

a) Oxygen	b) Nitrogen	c) Hydrogen	d) Chlorine
121. Which is a poison?	b)	a) NaUCO	d) NaCl
a) Hg ₂ Cl ₂	b) As ₂ O ₃	c) NaHCO ₃	d) NaCl
122. Which of the following is		a) II D O	d) U n O
a) H ₃ PO ₄	b) HPO ₃	c) $H_4P_2O_7$	d) $H_4p_2O_6$
123. Presence of sulphide ion		a) Cadium nitronmussida	4) D:1 H CO
 a) BaCl₂ 124. End product of the hydro 	b) (CH ₃ COO) ₂ Pb	c) Sodium nitroprusside	u) DII. n ₂ 30 ₄
a) XeF ₄ O	-	a) VaO	4) V ₀ O-
	b) XeF ₂ O ₂	c) XeO ₃	d) XeO ₃
125. In PO_4^{3-} ion, the formal cl		-	
a) -0.75, 1.25	b) -3, 1.25	c) -0.75, 1.0	d) -0.75, 0.6
126. The lightest, non-inflamn	-	-) M	JD A
a) H ₂	b) He	c) N ₂	d) Ar
127. Which of the following ch			15 NT C.1 1
a) HCl	b) AgCl	c) Both a and b	d) None of the above
128. Which radical can bring a			
a) F ⁻	b) Cl ⁻	c) Br ⁻	d) I ⁻
129. Excess of PCl ₅ reacts with	i conc. H ₂ SO ₄ giving		
a) Chlorosulphonic acid		b) Thionyl chloride	
c) Sulphuryl chloride		d) Sulphurous acid	
130. Conc. H ₂ SO ₄ displaces HO		cause:	
a) Conc. H ₂ SO ₄ is stronge			
b) HCl is a gas whereas H	The second secon		
	luble in water than chloride		
	ible in water than chlorides		
131. Which of the following ha			1) (1)
a) I ₂	b) Br ₂	c) F ₂	d) Cl ₂
132. When a mixture of SO_2 and			
a) Fe + Mo	b) $ZnO + Cr_2O_3$	c) V_2O_5	d) zymase
133. Metal reacts with Sulphu			
a) Sulphide	b) Sulphite	c) Sulphate	d) Thiosulphate
134. The non-metal other than			
a) I ₂	b) Si	c) Cl ₂	d) Br ₂
135. Ozone turns benzidine pa	=		
a) Violet	b) Brown	c) Blue	d) Red
136. Bleaching powder is obta	•	_	
-	OHb) Concentrated solution	oc) Dry CaO	d) Dry slaked lime
137. Which statement is incor			
a) Chlorine can bleach a			
b) Iodine stain can be rer			
c) Bromine can be prepa			
	when iodine is passed throu	gh an acidified KBr solution	1
138. The bond Br—Cl is:			
a) Polar	b) Non-polar	c) True covalent	d) Coordinate
139. Which element is extra	cted commercially by the	e electrolysis of an aqueo	us solutions of one of its
compounds?			
a) Sodium	b) Aluminium	c) Chlorine	d) Bromine
140. CN ⁻ ion and N ₂ are isoele	ectronic but in contrast to (CN^- , N_2 is chemically inert b	ecause of:
a) Low bond energy			

	b) Absence of bond polarity				
	c) Unsymmetrical electron distribution				
	d) Presence of more num	ber of electrons in bonding	g orbitals		
143	1. Which of the following ga	ases exists more abundantly	y in nature than the others'	?	
	a) Helium	b) Neon	c) Argon	d) Krypton	
142	2. Which inert gas has the h	•	, ,	, , , , , , , , , , , , , , , , , , ,	
	a) Xe	b) Kr	c) Ar	d) Ne	
143	3. Which characteristic is n	-	,	,	
	a) Reducing agent	b) Oxidizing agent	c) Sulphonating agent	d) Highly viscous	
144		rdinary atmospheric condi	,	,g,	
- 1	a) Solid	b) Liquid	c) Gas	d) None of these	
14	5. A gas, that relights glowi		cy dus	a) None of these	
17.	a) H_2	b) O ₂	c) N ₂	d) NO ₂	
1//		•	•	u) NO ₂	
140		racter in the orbitals formin	=	J) 7F	
4 4 7	a) 25	b) 33	c) 50	d) 75	
14.	7. Fermy's salt is:	13) al	D. Trale	
	a) HF	b) KHF ₂	c) NaCl	d) KClO ₃	
148	•	ing factors is the most impo	•	e strongest oxidizing agent?	
	a) Electron affinity		b) Ionisation enthalpy		
	c) Hydration enthalpy		d) Bond dissociation ene	rgy	
149	9. Halogens are:				
	a) Gases under ordinary	conditions			
	b) Electronegative in nat	ure	2		
	c) Fuming liquids	174			
	d) The gases found in atm	nosphere			
150	D. Hydrogen sulphide reac	ts with lead acetate formin	ng a black compound whic	th reacts with ${\rm H_2O_2}$ to form	
	another compound. The	colour of the compound is:			
	a) Black	b) Yellow	c) White	d) pink	
15:	-	form KHF ₂ . The compound o		.	
	a) K^+ , F^- and H^+	b) K ⁺ , F ⁻ and HF	c) K ⁺ and [HF ₂] ⁻	d) [KHF] ⁺ and F ₂	
152	2. Which compound does n	-	, E ZJ	., []	
	a) $(NH_4)_2SO_4$	b) (NH ₄) ₂ CO ₃	c) NH ₄ NO ₂	d) NH ₄ Cl	
153		Filled with P_4O_{10} , the production		4) 111401	
10.	a) SO ₂	b) S_2O_4	c) SO ₃	d) S ₂ O ₃	
15/	4. Radon was discovered by		c) 50 ₃	u) 5203	
15	a) Dorn	b) Ramsay	c) Rayleigh	d) None of these	
1 🗆	5. The general formula of h	,	c) Rayleigh	d) None of these	
15:			0	0	
				\parallel	
	a) H—P—OH	O b) H—P—OH	c) HO—P—OH	О d) но—Р—соон	
	 H	OH	OH	OH	
156	6. Ammonia on catalytic ox	idation gives an oxide from			
10.	a) NO	b) NO ₂	c) N_2O_3	d) N ₂ O ₅	
15'	7. Which oxide reacts with	-	c) 11203	d) 11205	
13.			c) 7n0	d) N O	
1 = 4	a) CO ₂	b) CaO	c) ZnO	d) N_2O_5	
158		therefore it is collected in:		d) Kanagara	
1 = 4	a) Spirit	b) H ₂ O	c) Mercury	d) Kerosene	
1.5	9. The structural formula o	i nybodnosdnorus acia is			

160. Which compound is prepared by the following reaction?

$$\frac{\text{Xe} + 2\text{F}_2}{\text{(1:5 volume ratio)}} \xrightarrow{\text{Ni vessel}} \frac{\text{Ni vessel}}{\text{673K, 5-6 atm}}$$

b) XeF₆

c) XeF₄

d) XeOF₂

161. Which one of the following oxides of nitrogen dimerises into a colourless solid /liquid on cooling?

a) N₂O

b) NO

c) N_2O_3

d) NO₂

162. Which ion cannot be precipitated from water?

a) Cl

b) NO_{3}^{-}

c) SO_4^{2-}

d) All of these

163. The correct order of solubility in water for He, Ne, Ar, Kr, Xe is

a) Xe > Kr > Ar > Ne > He

b) Ar > Ne > He > Kr > Xe

c) He > Ne > Ar > Kr > Xe

d) Ne > Ar > Kr > He > Xe

164. Ozone acts as:

- a) An oxidizing agent
- b) A reducing agent
- c) Bleaching agent
- d) All of these

165. Correct order of reactivity

- a) $I_2>Br_2>Cl_2>F_2$
- b) $Br_2 > I_2 > Cl_2 > F_2$
- c) $Cl_2>Br_2>I_2>F_2$
- d) $F_2 > Cl_2 > Br_2 > I_2$

166. On boiling an aqueous solution of KClO₃ with iodine the product formed is:

a) KIO_3

- b) KClO₄
- c) KIO₄

d) KCl

167. When bleaching powder is treated with carbon dioxide:

- a) Chlorine is evolved
- b) Calcium chloride is formed
- c) No reaction occurs
- d) It absorbs the gas

168. Which of the following properties does not correspond to the order?

HI < HBr < HCl < HF

- a) Thermal stability
- b) Reducing power
- d) Dipole moment

169. ClO₂ is an anhydride of:

- a) Chlorous acid (HClO₂)
- b) Chloric acid (HClO₃)
- c) Mixed anhydride of HClO₂ and HClO₃
- d) None of the above

170. Red P can be obtained by white P by

- a) Heating it with a catalyst in an inert atmosphere b) Distilling it in an inert atmosphere
- c) Dissolving it in CS₂ and crystallising
- d) Melting it and pouring the liquid into water

171. In the halogen group chlorine is a gas, bromine is a liquid and iodine exists as solid crystals. Then the next halogen astatine (At) would be:

- a) Solid at room temperature
- b) Having higher electronegativity
- c) Solid with higher IP
- d) Least atomic size

172. A solution of chlorine in water contains:

- a) HOCl only
- b) HCl only
- c) HCl and HOCl
- d) HCl, HOCl and chlorine

173. Helium gives a characteristic spectrum with:

GI	PLUS EDUCATION \	WEB: <u>WWW.GPLUSEDUCATIO</u>	DN.ORG PHONE NO	D: 8583042324 Page 11		
	a) Cavendish	b) Lavoisier	c) Rayleigh	d) Thomson		
171.	Argon was discovered by		c) Rayleigh	d) Thomson		
101	a) White phosphorus	b) Red phosphorus	c) Scarlet phosphorus	u) r isotope		
190.	In the treatment of leuka		c) Scarlet phocphomic	d) P ³² isotope		
100	a) White phosphorus	b) Red phosphorus	c) Both a and b	d) None of these		
197		ts with KOH solution to prod		d) None of these		
100	a) HF Which phosphorus roact	b) HCl ts with KOH solution to prod	c) HBr	d) HI		
188	Which of the following is		a) IIDn	4) III		
100	c) Its size is largest		d) It is the most readily av	aliable gas		
	a) It has highest ionisati	on energy	b) It has lowest ionisation			
187.		xenon reacts with fluorine to	•			
107	a) [Xe]4 f^{10} , $5d^{10}$, $6s^2$		c) [Ne] $3s^2$, $3p^5$	d) [Ar] $3d^{10}$, $4s^2$		
	same family as others?	1) Frz 14 z10 = 2) [N 10 2 c 5	D FA 10 110 4 2		
186.	_	ations of four elements are	given below. Which elem	ent does not belong to the		
101	a) HF, O_2 and O_3	b) HF and F ₂	c) HF and O ₂	d) HF and O_3		
185.	Fluorine reacts with wat) 115 10	Dur 10		
46=	a) SO ₂	b) C ₂ H ₄	c) C_2H_2	d) All of these		
184.	Bromine water is decolo		2011	12 411 - 6.1		
40:	a) Cl ₂ O	b) ClO ₂	c) Cl ₂ O ₇	d) ClO ₃		
183.	Least stable oxide of chlo) al o	1) (1)		
	uj Monoatonne anu ioi n	1 7 10115				
	c) Diatomic and form X ₂	ions ions Vions	ALION			
	b) Diatomic and form <i>X</i>	ions	ATION			
	a) Monoatomic and form					
182.	Halogen molecules are:					
	a) $Na_2S_4O_6$	b) NaHSO ₄	c) NaCl	d) NaOH		
181.		S_2O_3 on reaction with Cl_2 given				
	a) NO	b) N ₂ O ₄	c) N_2O_3	d) N_2O_5		
180.	=	xides of nitrogen is the anhy				
	=	ndividual polarities is oppose		air		
	c) The resultant of the b					
	b) NH ₃ forms associated					
	a) F is more reactive tha					
179.		F_3 is less than NH_3 because:				
	a) KClO ₄	b) KClO ₃	c) KClO ₂	d) KClO		
178.	When chlorine is passed	through concentrated soluti	ion of KOH, the compound	formed is		
	a) 8	b) 2	c) 4	d) 6		
177.	Atomicity of sulphur in r	hombic sulphur is				
	a) $CaC_2 + CaCO_3$	b) $CaC_2 + CaCN_2$	c) $CaC_2 + Ca_3P_2$	d) $Ca_3P_2 + CaCN_2$		
176.	Holme's signals can be g	iven by using				
	d) Hydrogen is loosely b					
	c) H ₂ O has bond angle o					
		electronegative than sulphu	r atom			
	-	electronegative than oxyger				
175.	75. H ₂ S is far more volatile than water because:					
	c) Has completely filled	shells	d) Is diamagnetic			
	a) Is monoatomic		b) Is chemically inert			
174.	Molecules of a noble gas	do not posses virbrational e	nergy because a noble gas			
	a) Orange and red lines	b) Orange lines	c) Yellow lines	d) Green lines		

•	and Zn , the element which c		-
a) Fe	b) Zn	c) K	d) Ca
193. Red P is used in	making:		
a) Air freshners			
b) Red plastics			
c) Red dyes for j	plastics		
d) Safety match-	-striking surface		
194. On heating (NH ₄	$_4)_2$ Cr $_2$ O $_7$, the gas evolved is $^{\prime}2$	X^\prime . The same gas is obtained b	y heating:
a) NH_4NO_2	b) NH ₄ NO ₃	c) $Mg_3N_2 + H_2O$	d) $Na_2O_2 + H_2O$
195. Ozone with KI so	olution produces		
a) IO ₃	b) I ₂	c) Cl ₂	d) HI
196. Ammonium nitr	ate decomposes on heating in	nto	
a) Ammonia and		b) Nitrous oxide and	l water
c) Nitrogen, hyd	lrogen and ozone	d) Nitric oxide, nitro	gen dioxide and hydrogen
	ct obtained in the reaction of	-	
a) (CN) ₂		b) Hg(CN)Cl	
c) Hg[Hg(CN) ₂ C		d) Addition compou	nd HgCl ₂ • Hg(CN) ₂
	_		ectric current is switched on, the
bulb is filled wit			,
a) CH ₄	b) An inert gas	c) CO ₂	d) Cl ₂
199. Which of the foll	, ,	-9 2	-5 -2
		and lengte) Both O_2 and O_2 are	re parad) O_2 is linear and O_3 are i
	lowing has—0—0—linkage?		7 - F 3 3
a) H ₂ S ₂ O ₆	b) H ₂ S ₂ O ₈	c) H ₂ S ₂ O ₃	d) $H_2S_4O_6$
<u>-</u>	lowing is a metalloid?	3) 1123233	4) 1125400
a) N	b) Bi	c) As	d) p
202. The weakest aci	•	c) IIs	α <i>)</i> β
a) HI	b) HBr	c) HCl	d) HF
203. In the preparation	The second secon		u) III
a) SO_2 is dissolv			
b) SO_2 is dissolv			
	red in conc. H ₂ SO ₄		
	red in dilute H ₂ SO ₄		
204. Which element i			
a) Phosphorus	b) Arsenic	c) Antimony	d) Bismuth
· -	tric acid reacts with iodine to	-	a) Disman
a) HI	b) HOI	c) HOIO ₂	d) HOIO ₃
•	for a noble gas is approxima	· -	u) 11010 ₃
a) That of halogo	= = = = =	tery equal to.	
b) Zero	ens		
c) That of oxyge	n family		
d) That of oxyge	-		
,	vater is carried out to remove		
		::	
a) Bacterial imp	uriues		
b) Bad taste	wine was seet		
c) Excess of chlo	-		
-	magnesium salt present in it	a amb ana af	
	nesium can be done in an atm	-	4) M-
a) Xe	b) He	c) Kr	d) Ne

209. Which noble gas is not found in atm	osphere?	
a) Rn b) Kr	c) Ne	d) Ar
210. Which of the following is not oxidise	ed by O ₃ ?	•
a) KI b) FeSO ₄	c) KMnO ₄	d) K_2MnO_4
211. The m. p. and b. p. is lowest for:		
a) He b) Ne	c) Xe	d) Ar
212. The reaction of the type $2X_2 + S \rightarrow$	SX_4 , is shown by sulphur when X is	
a) Fluorine or chlorine	b) Chlorine only	
c) Chlorine and bromine only	d) F, Cl, Br, all	
213. Chlorine, bromine and iodine are pl	aced in the seventh group of the per	iodic table because:
a) They are non-metals		
b) They are electronegative		
c) The have seven electrons in the c	outermost shells of their atoms	
d) They are generally univalent		
214. Nitric acid whether diluted or conce	entrated:	
a) Reacts with Al to give H ₂		
b) Reacts with Al to give NO ₂		
c) Reacts with Al to give NH ₄ NO ₃		
d) Hardly affects Al		
215. NH ₃ can be collected by the displace	ement of:	
a) Mercury b) Water	c) Brine	d) Conc. H_2SO_4
216. The number of <i>p</i> -electrons in brom	ine atom is:	
a) 17 b) 7	c) 15	d) 12
217. Which species has the largest dipole	e moment?	
a) NH ₃ b) PH ₃	c) AsH ₃	d) SbH ₃
218. A gas reacts with CaO, but not with!	NaHCO ₃ . The gas is:	
a) CO ₂ b) Cl ₂	c) N ₂	d) O ₂
219. Nitrogen can be purified from the in	npurities of oxides of nitrogen and a	mmonia by passing through:
a) conc. HCl		
b) Alkaline solution of pyrogallol		
c) A solution of K ₂ Cr ₂ O ₇ acidified w	rith H ₂ SO ₄	
d) A solution of KOH (aq.)		
220. Which statement is correct?		
a) Noble gases are not found in natu	ıre	
b) Some compounds of noble gas el		
c) Atmospheric air is free from nob	le gases	
d) None of the above		
221. Calcium phosphide is:		
a) Ca ₃ P b) Ca ₃ P ₂	c) Ca ₂ P ₃	d) CaP ₂
222. Which of the following inert gas liqu		
a) He b) Kr	c) Ne	d) Ar
223. Compounds containing coordinate l		
a) O ₃ b) SO ₃	c) H ₂ SO ₄	d) All of these
224. When Cl ₂ water is added to an aqu	_	
	e of Cl ₂ water, the violet colour disa	
_	esence of the following in aqueous so	
a) Iodide b) Bromi	-	d) Iodide and bromide
225. Which forms strong $p\pi - p\pi$ bonds		
a) N b) As	c) P	d) Bi

226. In OF ₂ molecule, the total number of bond pairs and	d lone pairs of electrons p	resent respectively are:
a) 2, 6		
b) 2, 8		
c) 2, 10		
d) 2, 9		
227. Nitric acid may be kept in a bottle of:		
a) Ag b) Sn	c) Pb	d) Al
228. The vapour density of NH ₄ Cl is almost half the expe	•	• •
a) Is salt of a strong acid		
b) Sublimes on heating		
c) Dissociates completely		
d) None of the above		
229. The least stable hydride of 15th group elements is		
	a) AaU	4) D:U
	c) AsH ₃	d) BiH ₃
230. Which of the light effective in the formation of chlo		J) A
a) Sodium lamp b) Neon lamp	c) Mercury lamp	d) Argon lamp
231. Which of the following is an explosive compound?) W B	D. W. O.
a) XeOF ₄ b) XeOF ₂	c) XeF ₂	d) XeO ₃
232. The most abundant element in the earth crust is		
a) 0 b) Si	с) Н	d) C
233. Blasting of TNT is done by mixing it with:		
a) NH ₄ Cl b) NH ₄ NO ₃	c) NH ₄ NO ₂	d) $(NH_4)_2SO_4$
234. Man dies, when nitrous oxide is inhaled in large qu	antities because it:	
a) Is poisonous		
b) Causes laughing hysteria		
c) Decomposes haemoglobin		
d) Reacts with organic tissues	CATTONI	
235. The chemical used for cooling in refrigerator is	CAHON	
a) NH ₄ Cl b) NH ₄ OH	c) liquid NH ₃	d) CO ₂
236. SO ₂ can act as strong oxidizing agent in:	, ,	2
a) Acidic medium b) Basic medium	c) Neutral medium	d) None of these
237. Nitrogen gas is absorbed by:	-, -, -, -, -, -, -, -, -, -, -, -, -, -	,
a) Aluminium carbide b) Calcium carbide	c) Ferrous sulphate	d) Calcium hydroxide
238. The reaction $3\text{ClO}^-(aq.) \rightarrow \text{ClO}_3^- + 2\text{Cl}^-(aq.)$ is a	•	ay dareram nyaromae
a) Oxidation reaction	in example of .	
b) Reduction reaction		
c) Disproportionation reaction		
d) Decomposition reaction		
239 liberates oxygen from water.) II	15.1
a) P b) Na	c) F ₂	d) I ₂
240. The hydroxide of which metal is soluble in excess of		
a) Cr b) Cu	c) Fe	d) Bi
241. The formation of $O_2^+[PtF6]^-$ is the basis for the form	nation of xenon fluorides.	This is because
a) O_2 and Xe have comparable sizes		
b) Both O ₂ and Xe are gases		
c) O_2 and Xe have comparable ionisation energies		
d) Both a and c		
242. In nitrogen family the H— <i>M</i> —H bond angle in the	hydrides MH_3 gradually b	ecomes closer to 90° on going
from N to Sb. This shows that gradually:		

	a) The basic strength of t	he hydrides increases		
	b) Almost pure <i>p</i> -orbitals	s are used for <i>M</i> —H bondin	g	
	c) The bond energies of A			
		trons become farther apart	from the central atom	
243.	Sequence of acidic charac	-		
	a) $SO_2 > CO_2 > CO > N_2$			
	b) $SO_2 > N_2O_5 > CO > C$	_		
	c) $N_2O_5 > SO_2 > CO > C$	_		
	d) $N_2O_5 > SO_2 > CO_2 > C$	-		
244		red by heating in a fur	nace	
277.	a) Bone-ash, sodium chlo		nacci	
	b) Bone-ash, silica and co			
	=			
	c) Bone-ash, silica and lin			
245	d) Bone-ash, coke and lin			
<i>2</i> 45.	Which oxide of nitrogen i) N O	DAG
	a) N ₂ O	b) NO ₂	c) N_2O_5	d) NO
246.	In KI solution, I ₂ readily of			
	a) I ⁻	b) KI ₂	c) KI ₃	d) KI ₂
247.	Consider the following co	ompounds		
	Sulphur dioxide			
	Hydrogen peroxide			
	Ozone			
	Among these compound	s identify those that can act	as bleaching agent.	
	a) 1 and 3	b) 2 and 3	c) 1 and 2	d) 1,2 and 3
248.	Different allotropic forms	s of sulphur differ in:		
	a) Crystalline structure	b) Molecular weight	c) Chemical properties	d) Chemical structure
249.	Monoatomic element of r	nitrogen family is:	A STEED A L	
	a) Bismuth	b) Phosphorus	c) Antimony	d) None of these
250.	Which noble gas was firs	t of all detected in solar chr	omosphere?	
	a) Helium	b) Neon	c) Argon	d) Krypton
251.	The acid used in lead stor	rage battery is:	, 0	,
	a) Nitric acid	b) Sulphuric acid	c) Hydrochloric acid	d) Phosphoric acid
252.	Halogen used in the prep	· -	, ,	
	a) I ₂	b) Cl ₂	c) Br ₂	d) F ₂
253.	Which halogen acid is a li	· -	, 2	, 2
	a) HF	b) HCl	c) HBr	d) HI
254	Halon-1301 is	<i>S)</i> 1101	c) 1121	w)
2511	a) CCl ₂ F · CClF ₂	b) C ₂ F ₄ Br ₂	c) CCl ₃ F	d) CF ₃ Br
255	,	act with conc. HNO ₃ , becau		uj di 3Di
233.	a) Proteins are converted		30.	
	b) Water is removed by t	_		
		ile aciu		
	c) Skin gets burnt	_ _		
256	d) Nitrocellulose is forme		1 (1 (1)	
<i>2</i> 56.	= = =	g identical shape for molec	-	D DCL TCL
2	a) XeF_2 , IF_2	b) BF ₃ , NH ₃	c) CF ₄ , SF ₄	d) PCl ₅ , ICl ₅
257.		airs are correctly matched?		
	1.haber process		Manufacture of ammoni	
	2 le-blanc process		Manufacture of sulphur	ic acid

Manufacture of nitric acid

3.birkeland -Eyed process

Sciect	the correct answer	using the codes given belo	W	
a) 2,3	and 4	b) 1,2,3,and 4	c) 1,2and 4	d) 1,3and 4
258. Which	molecule does not	possess distorted geometr	y?	
a) Cl—	– F	b) IF ₃	c) IF ₅	d) IF ₇
259. Iodine	displaces chlorine	from which one of the com	ipounds?	
a) KCl		b) CaCl ₂	c) CCl ₄	d) KClO ₃
260. Which	member of oxygen	family has the highest cat	enation ability?	
a) Oxy	gen	b) Sulphur	c) Selenium	d) Tellurium
261. When	heated NH3 is pass	ed over CuO gas evolved is		
a) N ₂		b) N ₂ O	c) HNO ₃	d) NO ₂
262. The no	ble gas used in the	preparation of first noble	gas compound was:	
a) Xe	_	b) He	c) Cr	d) Rn
263. P ₂ O ₅ is	used extensively a	as a:		•
	ydrating agent	b) Catalytic agent	c) Reducing agent	d) Preservative
-	n differs from sulpl		,	
a) Allo	-			
-	nation of ions			
-		n the outermost orbit		
	are of hydrides			
•	•	lt would give SO ₂ with hot	and dil.H ₂ SO ₄ and also deco	olourises Br ₂ water?
a) Na ₂	_	b) NaHSO ₄	c) Na ₂ SO ₄	d) Na ₂ S
-		chromate, the gas evolved		, <u>-</u>
a) Oxy	=	b) Ammonia	c) Nitrogen	d) Nitric oxide
, .	•	ne following fertilizers incr		,
a) KNO		" U	J	
-	CONH ₂	1		
-	_			
c) (NH	$(4)_{2}SO_{4}$			
	(₄) ₂ SO ₄ erphosphate of lim	e PRINS EDUC	ATION	
d) Sup	erphosphate of lim	the control of the co	er of sulphur in SX,, halide	s is
d) Sup 268. The ha	erphosphate of lim	ximum coordination numb	er of sulphur in SX_n halides $c)$ F	
d) Sup 268. The ha a) Cl	erphosphate of lim logen showing ma	ximum coordination numb b) Br	c) F	s is d) I
d) Sup 268. The ha a) Cl 269. BCl ₃ is	erphosphate of lim logen showing ma a planar molecule	ximum coordination numb b) Br whereas NCl ₃ is pyramida	c) F l because:	
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅	erphosphate of lim logen showing ma: a planar molecule s has no lone pair o	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l	c) F l because:	
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B—	erphosphate of lim logen showing max a planar molecule has no lone pair o Cl bond is more po	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond	c) F l because:	
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr	erphosphate of lim logen showing ma: a planar molecule has no lone pair o Cl bond is more po ogen atom is small	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom	c) F l because:	
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N—	erphosphate of lim logen showing man a planar molecule has no lone pair o Cl bond is more po ogen atom is small Cl bond is more co	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom valent than B—Cl bond	c) F l because:	
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bo	erphosphate of lim logen showing man a planar molecule has no lone pair o Cl bond is more po ogen atom is small Cl bond is more co nd angle in Cl ₂ O m	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom valent than B—Cl bond tolecule is:	c) F l because: one pair of electrons	d) I
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bc a) 180	erphosphate of lim logen showing max a planar molecule has no lone pair o Cl bond is more po ogen atom is small Cl bond is more co	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom valent than B—Cl bond tolecule is: b) 105°	c) F I because: one pair of electrons c) 90°	
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bc a) 180 271. Mark t	erphosphate of lim logen showing max a planar molecule has no lone pair of Cl bond is more po ogen atom is small Cl bond is more cond angle in Cl ₂ O more wrong statemer	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom valent than B—Cl bond tolecule is: b) 105° ht. Halogens are all coloure	c) F l because: one pair of electrons c) 90° d.	d) I d) 111°
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bo a) 180 271. Mark t a) This	erphosphate of lime logen showing mass a planar molecule has no lone pair of the color of the co	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom valent than B—Cl bond colecule is: b) 105° nt. Halogens are all coloure on of visible light by their r	c) F l because: one pair of electrons c) 90° d.	d) I
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bc a) 180 271. Mark t a) This to h	erphosphate of limilogen showing manaled aplanar molecule has no lone pair of the colon of the colon of the colon of the wrong statements is due to absorpting levels and energy levels.	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom valent than B—Cl bond tolecule is: b) 105° at. Halogens are all coloure on of visible light by their r	c) F I because: one pair of electrons c) 90° d. nolecules resulting in the e	d) I d) 111° xcitation of outer electrons
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bc a) 180 271. Mark t a) This to h b) The	erphosphate of lime logen showing mass a planar molecule has no lone pair of the color of the co	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom valent than B—Cl bond tolecule is: b) 105° nt. Halogens are all coloure on of visible light by their researches.	c) F I because: one pair of electrons c) 90° d. nolecules resulting in the e	d) I11° xcitation of outer electrons
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bc a) 180 271. Mark t a) This to h b) The	erphosphate of limilogen showing manal a planar molecule has no lone pair of the colon of the co	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom valent than B—Cl bond colecule is: b) 105° nt. Halogens are all coloure on of visible light by their r s s absorb high energy violet orb low energy yellow and	c) F I because: one pair of electrons c) 90° d. nolecules resulting in the e radiation and appear yelle green radiations and appea	d) I11° xcitation of outer electrons w r violet in colour
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bc a) 180 271. Mark t a) This to h b) The c) Larg d) The	erphosphate of lime logen showing mass a planar molecule has no lone pair of the color of the co	ximum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom valent than B—Cl bond colecule is: b) 105° nt. Halogens are all coloure on of visible light by their r s s absorb high energy violet orb low energy yellow and	c) F I because: one pair of electrons c) 90° d. nolecules resulting in the e radiation and appear yelle green radiations and appea	d) I11° xcitation of outer electrons
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bc a) 180 271. Mark t a) This to h b) The c) Larg d) The	erphosphate of liming logen showing manage of a planar molecule of has no lone pair of the color	wimum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom valent than B—Cl bond tolecule is: b) 105° nt. Halogens are all coloure on of visible light by their r s s absorb high energy violet orb low energy yellow and a required by the small fluor	c) F I because: one pair of electrons c) 90° d. nolecules resulting in the example are according to the example according	d) I11° xcitation of outer electrons w r violet in colour
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bc a) 180 271. Mark t a) This to h b) The c) Larg d) The ator 272. Which	erphosphate of limilogen showing manal a planar molecule has no lone pair of the colon of the co	wimum coordination numb b) Br whereas NCl ₃ is pyramida of electrons but NCl ₃ has a l lar than N—Cl bond er than boron atom valent than B—Cl bond colecule is: b) 105° nt. Halogens are all coloure on of visible light by their r s s absorb high energy violet orb low energy yellow and g required by the small fluor	c) F I because: one pair of electrons c) 90° d. nolecules resulting in the example are adiation and appear yellogreen radiations and appearine atoms is smaller than radiations.	d) 111° xcitation of outer electrons ow r violet in colour required by the large iodine
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bc a) 180 271. Mark t a) This to h b) The c) Larg d) The ator 272. Which a) P ₂ O	erphosphate of limit logen showing maximal a planar molecule shas no lone pair of the color of	ximum coordination numb b) Br whereas NCl_3 is pyramidal of electrons but NCl_3 has a last than N — Cl bond er than boron atom valent than B — Cl bond colecule is: b) 105° nt. Halogens are all coloure on of visible light by their resonance of visible light by their resonance of the same of the	c) F I because: one pair of electrons c) 90° d. nolecules resulting in the example are according to the example according	d) I11° xcitation of outer electrons w r violet in colour
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bc a) 180 271. Mark t a) This to h b) The c) Larg d) The ator 272. Which a) P ₂ O 273. Which	erphosphate of limilogen showing manal a planar molecule has no lone pair of the colon of the co	ximum coordination numb b) Br whereas NCl_3 is pyramida of electrons but NCl_3 has a l lar than N —Cl bond er than boron atom valent than B—Cl bond tolecule is: b) 105° ont. Halogens are all coloure on of visible light by their r s s absorb high energy violet orb low energy yellow and g required by the small fluor ed to prepare phosphoric a b) $P_2O_3 + H_2O \xrightarrow{80^{\circ}C}$ tric bulbs/tubes?	c) F I because: one pair of electrons c) 90° d. molecules resulting in the extradiation and appear yellogreen radiations and appearine atoms is smaller than racid? c) $P_2O_3 + H_2O \xrightarrow{25^{\circ}C}$	d) 111° xcitation of outer electrons ow required in colour required by the large iodine d) P + conc. HNO ₃ →
d) Sup 268. The ha a) Cl 269. BCl ₃ is a) BCl ₅ b) B— c) Nitr d) N— 270. The bc a) 180 271. Mark t a) This to h b) The c) Larg d) The ator 272. Which a) P ₂ O 273. Which a) O ₂	erphosphate of limits logen showing mathematics a planar molecule is has no lone pair of the color of the co	ximum coordination numb b) Br whereas NCl_3 is pyramidal of electrons but NCl_3 has a last than N — Cl bond er than boron atom valent than B — Cl bond colecule is: b) 105° nt. Halogens are all coloure on of visible light by their resonance of visible light by their resonance of the same of the	c) F I because: one pair of electrons c) 90° d. nolecules resulting in the example are adiation and appear yellowing a green radiations and appearine atoms is smaller than racid? c) $P_2O_3 + H_2O \xrightarrow{25^{\circ}C}$ c) Ar	d) 111° xcitation of outer electrons ow r violet in colour required by the large iodine

a) ZnSO ₄ b) CuSO ₄	c) $(NH_4)_2SO_4$	d) Na ₂ SO ₄
275. The interatomic distances in H_2 and Cl_2 r	nolecules are 74 and 198 pm respe	ectively. The bond length of HCl
is:		
a) 272 pm b) 136 pm	c) 124 pm	d) 248 pm
276. Mg on heating to redness in an atmosphe		=
a) NH ₃ b) H ₂	c) N ₂	d) O ₂
277. The bleaching action of bleaching powder		
a) Nascent hydrogen b) Nascent oxy	9	d) None of these
278. In the preparation of O_2 from KClO ₃ , MnC		
a) Activator b) Catalyst	c) Oxidizing agent	d) Dehydrating agent
279. Which noble gas has highest and least po		
a) He, Xe b) Ne, Kr	c) Kr, Ne	d) Xe, He
280. Nitrolim, a nitrogeneous fertilizer, is:		
a) Ca_3H_2 b) $Ca(CN)_2$	c) CaCN ₂	d) CaCN ₂ + C
281. H ₂ S cannot be dried by passing over cond	:.H ₂ SO ₄ because:	
a) The acid oxidises it		
b) The acid combines with H ₂ S to form a	salt	
c) Both form complex		
d) It dissolves in the acid		
282. The chemical name of bleaching powder	is:	
a) Calcium chloro hypochlorite		
b) Calcium hypochlorite		
c) Calcium chlorate	No.	
d) Calcium perchlorate		
283. The following are some statements relate		
I. Reducing property Increases from NH ₃		
II. Tendency to donate lone pair decrease		
III. Thermal stability of hydrides decrease		
IV. Bond angle of hydrides decreases from	n NH₃to BiH₃	
The correct statements are		
a) I, II, III and IV b) I, III and IV	c) I, II, IV	d) I and IV
284. The deficiency of iodine in diet causes		
a) Rickets b) Night blindi	-	d) Goitre
285. The number of $P - O - P$ bonds in cyclic		
a) Zero b) Three	c) Two	d) Four
286. Which noble gas is more soluble in water		
a) He b) Ar	c) Ne	d) Xe
287. An important method of fixation of atmos	spheric N ₂ is:	
a) Fischer-Tropsch's process		
b) Haber's process		
c) Frasch's process		
d) Solvay's process		
288. Which statement about noble gases is not	t correct?	
a) Xe forms XeF ₆		
b) Ar is used in electric bulbs		
c) Kr is obtained during radioactive disin	_	
d) He has the lowest b. p. among all the n	_	
289. Noble gases are group of elements which	-	
a) High chemical activity	b) Much paramagnetic	properties

200 On magaing H. Calenavale acidified East	d) Low chemical act	ivity
290. On passing H ₂ S through acidined Fed	Cl ₃ solution, FeCl ₃ is converted into:	
a) FeCl ₂ b) Fe ₂ (SC	0 ₄) ₃ c) FeS	d) FeSO ₄
^{291.} HPO ₃ + H ₂ O $\stackrel{\text{Heat}}{\longrightarrow}$? The product is:		
a) H ₄ P ₂ O ₇ b) H ₃ PO ₃	c) H ₃ PO ₄	d) P ₂ O ₅
292. Ozone reacts with:	6) 1131 04	a) 1205
a) C_2H_4 b) C_2H_2	c) C ₆ H ₆	d) All of these
293. The inert gas abundantly found in at		uj mi oi mese
a) Xe b) Kr	c) He	d) Ar
294. When SO ₂ gas is passed through cup	-	uj m
a) The solution becomes colourless	The emoritee solution.	
b) A white precipitate is formed		
c) No change takes place		
d) Solution becomes colourless and	a white precipitate is formed	
295. The reaction of chlorine with CO in t		
a) COCl ₂ b) CO ₂ Cl ₂		d) H ₂ Cl ₂ O ₂
296. The mixture of noble gases is separa	•	$\mathbf{u}_1 \mathbf{u}_2 \mathbf{u}_2 \mathbf{u}_2$
a) Ramsay-Rayleigh's first method	ted by.	
b) Ramsay-Rayleigh's second metho	d	
c) Fischer and Ringe's method	u	
	tion mathod	
d) Dewar's coconut charcoal adsorpt		it is begange.
297. The boiling points of halogens increases		
	ndergo association leading to higher s	tability
b) Bond strength increases due to in		u ma al a
-	th increase in number of electrons pe	r mole
d) None of the above	EDILGATION	
298. NCl ₃ on hydrolysis yields:	d HCl c) NH ₃ and HOCl	d) N. O and NII
	i HCi cj NH ₃ and HOCi	d) N_2O and NH_3
299. The strongest oxidizing agent is:	-) II PO	DIIMO
	c) H ₃ PO ₃	d) HNO ₂
a) H_3PO_4 b) HNO_3		
300. Increasing order of acid strengths of	hydrogen halides is:	
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI	hydrogen halides is:	
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF	hydrogen halides is:	
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF	hydrogen halides is:	
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these		
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in	water due to	
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction	water due to b) Dipole-induced d	
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction c) Induced dipole-induced dipole interaction	water due to b) Dipole-induced d teraction d) Hydrogen bondin	
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction c) Induced dipole-induced dipole int 302. Oxidation state exhibited by sulphur	water due to b) Dipole-induced d teraction d) Hydrogen bondin	g
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction c) Induced dipole-induced dipole int 302. Oxidation state exhibited by sulphur a) +6 b) +4	water due to b) Dipole-induced diteraction d) Hydrogen bondin c	
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction c) Induced dipole-induced dipole into 302. Oxidation state exhibited by sulphur a) +6 b) +4 303. Low volatile nature of H ₂ SO ₄ is due to	water due to b) Dipole-induced diteraction d) Hydrogen bondin c) 0	g d) All of these
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction c) Induced dipole-induced dipole interaction c) Induced dipole-induced dipole interaction 302. Oxidation state exhibited by sulphur a) +6 b) +4 303. Low volatile nature of H ₂ SO ₄ is due to a) Hydrogen bonding b) Van de	water due to b) Dipole-induced diteraction d) Hydrogen bondin c) 0 to: er Waals' forces c) Strong bonds	g
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction c) Induced dipole-induced dipole into 302. Oxidation state exhibited by sulphur a) +6 b) +4 303. Low volatile nature of H ₂ SO ₄ is due to a) Hydrogen bonding b) Van de 304. When Na ₂ S is added to sodium nitro	water due to b) Dipole-induced diteraction d) Hydrogen bondin c) 0 to: er Waals' forces c) Strong bonds oprusside solution:	g d) All of these
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction c) Induced dipole-induced dipole into 302. Oxidation state exhibited by sulphur a) +6 b) +4 303. Low volatile nature of H ₂ SO ₄ is due to a) Hydrogen bonding b) Van de 304. When Na ₂ S is added to sodium nitro a) Beautiful violet colour is produced	water due to b) Dipole-induced deteraction d) Hydrogen bondin c) c) 0 to: er Waals' forces oprusside solution:	g d) All of these
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction c) Induced dipole-induced dipole int 302. Oxidation state exhibited by sulphur a) +6 b) +4 303. Low volatile nature of H ₂ SO ₄ is due to a) Hydrogen bonding b) Van de 304. When Na ₂ S is added to sodium nitro a) Beautiful violet colour is produced b) A complex [Fe(CN) ₅ NOS] ⁴⁻ is form	water due to b) Dipole-induced diteraction d) Hydrogen bondin c) 0 to: or Waals' forces oprusside solution: d med	g d) All of these
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction c) Induced dipole-induced dipole into 302. Oxidation state exhibited by sulphur a) +6 b) +4 303. Low volatile nature of H ₂ SO ₄ is due to a) Hydrogen bonding b) Van de 304. When Na ₂ S is added to sodium nitro a) Beautiful violet colour is produced b) A complex [Fe(CN) ₅ NOS] ⁴⁻ is for a c) The complex Na ₄ [Fe(CN) ₅ NOS] is	water due to b) Dipole-induced diteraction d) Hydrogen bondin c) 0 to: or Waals' forces oprusside solution: d med	g d) All of these
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction c) Induced dipole-induced dipole into 302. Oxidation state exhibited by sulphur a) +6 b) +4 303. Low volatile nature of H ₂ SO ₄ is due to a) Hydrogen bonding b) Van de 304. When Na ₂ S is added to sodium nitro a) Beautiful violet colour is produced b) A complex [Fe(CN) ₅ NOS] ⁴⁻ is form c) The complex Na ₄ [Fe(CN) ₅ NOS] is d) All of the above	water due to b) Dipole-induced diteraction d) Hydrogen bondin c) 0 to: or Waals' forces oprusside solution: d med	g d) All of these
300. Increasing order of acid strengths of a) HF < HCl < HBr < HI b) HCl < HI < HBr < HF c) HCl < HBr < HF d) None of these 301. Noble gases are sparingly soluble in a) Dipole-dipole interaction c) Induced dipole-induced dipole into 302. Oxidation state exhibited by sulphur a) +6 b) +4 303. Low volatile nature of H ₂ SO ₄ is due to a) Hydrogen bonding b) Van de 304. When Na ₂ S is added to sodium nitro a) Beautiful violet colour is produced b) A complex [Fe(CN) ₅ NOS] ⁴⁻ is for a c) The complex Na ₄ [Fe(CN) ₅ NOS] is	water due to b) Dipole-induced diteraction d) Hydrogen bondin c) 0 to: er Waals' forces c) Strong bonds oprusside solution: d med s formed	g d) All of these

is an example o	of:			
a) Synthesis of	H_2SO_4			
b) Analysis of I	H_2SO_4			
c) Displacemen	nt reaction			
d) Double deco	mposition			
306. The gases abso	rbed by alkaline pyrogallol and o	il of turpentine respectively	are:	
a) O ₃ , CH ₄	b) O_2, O_3	c) SO ₂ , CH ₄	d) N_2O , O_3	
	tramethyl base paper:	<i>3</i> 2, 1	, , , ,	
a) Green	b) Violet	c) Red	d) Black	
		•		
308. A student accidently splashes few drops of conc H ₂ SO ₄ on his cotton shirt, after a while, the splashed par blacken and holes appear. This is happened because sulphuric acid				
	the cotton with burning	b) Causes the cotton re	pact with air	
	-	-		
c) Heats up the		d) Removes the eleme	nts of water from cotton	
309. Aquaregia is a		3 H PO + H CO	Duck cu coou	
a) 3HCl + HNC		c) $H_3PO_4 + H_2SO_4$	d) $HCl + CH_3COOH$	
310. The bond angle	_	2	120	
a) 109°28'	b) 104°51′	c) 120°	d) 92.5°	
	ture of sulphuric acid by contact	•	to	
a) Filter dust p		b) Remove impurities		
c) Convert SO ₂	to SO ₃	d) Test the presence o	f dust particles	
312. The oxide inso	uble in water is:			
a) TeO ₂	b) SO ₂	c) PoO ₂	d) SeO ₂	
313. Which indicate	s the common laboratory method	l for the preparation of chlo	rine?	
a) 4HCl + O ₂ -	\rightarrow 2H ₂ O + 2Cl ₂			
b) 2NaCl + 2H ₂	$_2O \rightarrow 2NaOH + H_2 + Cl_2$			
	$Cl \rightarrow MnCl_2 + Cl + 2H_2O$			
	$O_2 \rightarrow 4MgO + 2Cl_2$			
314. The geometry		JCATION		
a) Tetrahedral	O'LUJ LD	b) Pentagonal bipyran	nidal	
c) Octahedral		d) Square planar		
•	s a bleaching agent only is presen	,		
a) Dry air	b) Moisture	c) Sunlight	d) Pure oxygen	
	ne following pentafluorides canno		u) i ure oxygen	
a) PF ₅	b) AsF ₅	c) SbF ₅	d) BiF ₅	
•	b) ASF5	c) sors	u) bii·5	
317. SO_2 oxidises:	b) V. Cr. O	a) WMa O	d) All of those	
a) Mg	b) $K_2Cr_2O_7$	c) KMnO ₄	d) All of these	
	llowing has highest proton affinit	•	Day	
a) NH ₃	b) PH ₃	c) H ₂ O	d) H ₂ S	
319. Nuclear fusion				
a) Argon	b) Deuterium	c) Helium	d) Krypton	
	lydrochloric acid when kept in op	en air sometimes produces	a cloud of white fumes. The	
explanation for	it is that			
a) Concentrate	d hydrochloric acid emits strongl	y smelling HCl gas all the tin	ne	
b) Oxygen in ai	r reacts with the emitted HCl gas	to form a cloud of chlorine g	gas	
	ty of HCl gas for moisture in air r a cloudy smoke.	esults in forming of droplets	s of liquid solution which	
	g affinity for water, concentrated	hydrochloric acid nulls moi	sture of air towards itself This	
	ms droplets of water and hence t		stare of an towards itself, Illis	

321. In the dewar's method of separation of noble gases, the mixture of noble gases is kept in contact with

coconut charcoal at 173	k. Which one of the follow	ing gaseous mixtures is not	adsorbed on to the
charcoal?			
a) Ar, Kr	b) Xe, Ar	c) He, Ne	d) Xe, Kr
322. The type of hybrid orbit	als used by chlorine atom i	n ClO ₂ is	
a) <i>sp</i>	b) sp^2	c) sp^3	d) None of these
323. The oxidation state of N	is highest in:		
a) N ₃ H			
b) NH ₃			
c) N_2H_4			
d) NH ₂ OH			
324. Formula of rhombic Sul	ohur is:		
a) S ₂	b) S	c) S ₄	d) S ₈
325. The noble gases are unre	eactive because they:		
a) Have the same numbe			
b) Have an atomicity of			
c) Are gases with low de			
_	c configuration or closed va	alency shell	
326. Phosphine reacts with co		-	
a) Copper	b) Copper phosphide	c) Copper phosphate	d) Copper phosphite
327. Desicchlora is	-)FF FF	·))FF FF
a) Anhydrous Ba(ClO ₄) ₂		b) Anhydrous CaCl ₂	
c) Anhydrous Mg(ClO ₄)		d) Conc H ₂ SO ₄	
328. Who among the following			
a) Neil Bartlett	b) Reyleigh	c) Ramsay	d) Rutherford
329. On exposure to light elec	T 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1	•	a) Radio For a
a) Increases	surreur communeurrus, or solo		
b) Decreases			
c) Remains same	GPLUS EDU	ΓΔΤΙΩΝ	
d) First decreases then i		CHILDIA	
330. For H_3PO_3 and H_3PO_4 the			
a) H_3PO_3 is dibasic and r		b) H ₃ PO ₃ is dibasic and n	ion-reducinσ
c) H_3PO_3 is tribasic and I	_	d) H_3PO_3 is tribasic and I	_
331. When chlorine reacts wi	-	=	_
zero to	di dii, Naori dilder cold col	nultions, the oxidation state	e of emornie changes from
a) -1 and +5	b) +1 and +4	c) +5 and +3	d) -1 and +1
332. Yellow ammonium sulpl	-	cj +3 aliu +3	u) -1 anu +1
a) $(NH_4)_2S$	b) $(NH_4)_2S_x$	c) $(NH_4)_2S_8$	d) $(NH_4)_2S_4$
333. Sulphuric acid is used:	$0) \left(Nn_4)_2 S_X$	$C_J (Nn_4)_2 S_8$	u) (Nn ₄) ₂ 3 ₄
•	ion		
a) In lead storage batter			
b) As a dehydrating ager	It		
c) In making fertilizers			
d) All of the above	NIII I Vl-!-l C-l C-ll		
334. Hydrolysis of NCl₃ gives			D Halo
a) HClO ₄	b) HClO ₃	c) HOCl	d) HClO ₂
335. How many lone pairs are			
a) 1, 2 and 3	b) 2, 3 and 1	c) 3, 2 and 1	d) 4, 3 and 2
336. Nitrous oxide		12.	
a) Is an acidic oxide		b) Is a mixed oxide	
c) Support the combusti	on of sulphur	d) Highly soluble in hot	water

337. The number of unp	aired electrons in the \emph{p} -subshell	of oxygen atom is	
a) 1	b) 2	c) 3	d) 4
338. $(NH_4)_2Cr_2O_7$ on he	ating liberates a gas. The same g	gas will be obtained by	
a) Heating NH ₄ NO ₃		b) Heating NH ₄ NO ₂	
c) Treating H ₂ O ₂ w		d) Treating Mg ₃ N ₂ wit	th H ₂ O
339. Fluorapatite is a mi		, 6 65 2	-
a) F ₂	b) Br ₂	c) P	d) As
340. Least malleable and	d ductile metal is:	•	•
a) Au	b) Ag	c) Ni	d) Bi
341. Which of the follow	ring is not correct?		
	=		
a) 3O ₂ Silent ele	<u>→</u> 2O ₃ ;		
	ge		
$\Delta H = -284.5KJ$			
	s addition reaction with unsatur		
=	hate reacts with I_2 to form sodiu	m tetrathionate and sodi	ium iodide.
	ead sulphide to lead sulphate		
342. Laughing gas is pre			
a) NH ₄ Cl	b) NH ₄ NO ₃	c) $NH_4Cl + NaNO_3$	
343. A certain element for	orms a solid oxide which when d	lissolved in water forms	an acidic solution. The element
is:			
a) Neon	b) Sodium	c) Phosphorus	d) sulphur
344. NO ₂ cannot be obta	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED AND ADDRESS	>	
a) KNO ₃	b) $Pb(NO_3)_2$	c) $Cu(NO_3)_2$	d) AgNO ₃
345. The product obtain	ed by heating (NH ₄) ₂ SO ₄ and KO	CNO is	
a) Ammonia	b) Ammonium cyanide	c) Urea	d) Hydrocyanic acid
	hich is least soluble in NH ₄ OH, i		
a) AgF	b) AgCl	c) AgBr	d) AgI
347. Fermings salt is	O. 103 11 0	27112011	
a) HF	b) KHF ₂	c) NOCl	d) KClO ₃
348. H_3PO_3 is			
a) A dibasic acid	b) A tribasic acid	c) Monobasic	d) Neutral
349. Correct order of de	creasing thermal stability is as		
a) $NH_3 > PH_3 > AsH_3$	>SbH₃	b) $PH_3 > NH_3 > AsH_3 >$	SbH ₃
c) AsH ₃ > PH ₃ > NH	$_3$ > SbH $_3$	d) $SbH_3 > AsH_3 > PH_3 >$	NH ₃
350. Most electropositiv	e halogen is:		
a) F	b) Cl	c) Br	d) I
351. Argon is used			
a) In filling airships	S	b) To obtain low temp	erature
c) In high temperat	ture welding	d) In readiotherapy fo	r treatment of cancer
352. K_2CS_3 can be called	l potassium:		
a) Sulphocyanide	b) Thiocarbide	c) Thiocarbonate	d) Thiocyanate
353. Which of the follow	ring has S—S bond		
a) $H_2 S_2 O_6$	b) H ₂ S ₂ O ₇	c) $H_2S_2O_8$	d) Mustard gas
354. The structure of or	thophosphoric acid is		

- 355. Bleaching action of chlorine is due to:
 - a) Reduction
- b) Oxidation
- c) Chlorination
- d) Hydrogenation
- 356. In clatherates of xenon with water, the nature of bonding between xenon and water molecule is
 - a) Dipole induced dipole interaction
- b) Coordinate

c) Hydrogen bonding

- d) Covalent
- 357. Asthma patients use a mixture of.....for respiration.
 - a) O_2 and H_2
- b) O_2 and He
- c) O₂ and Ar
- d) O2 and Ne
- 358. When ammonium nitrate is heated at 250°C the gas evolved is
 - a) N_2

b) NH₃

c) N_2O_3

d) N_2O

- 359. Fluorine gas is stored in:
 - a) Copper vessels
- b) Steel vessels
- c) Both (a) and (b)
- d) None of these

- 360. Conc. HNO₃ reacts with iron to:
 - a) Render iron passive
 - b) Give ferrous nitrate and nitric oxide
 - c) Give ferric nitrate and ammonium nitrate
 - d) Give ferric nitrate and nitrogen dioxide
- 361. Which one of the following statements is not true?
 - a) Among halide ions, iodine is the most powerful reducing agent
 - b) Fluorine is the only halogen that does not show variable oxidation state
 - c) HOCl is stronger acid than HOBr
 - d) HF is a stronger acid than HCl
- 362. In nitroprusside ion, the iron and NO exist as Fe^{II} and NO⁺ rather than Fe^{III} and NO. These forms can be differentiated by:
 - a) Estimating the concentration of iron
 - b) Measuring the concentration of CN-
 - c) Measuring the solid state magnetic moment
 - d) Thermally decomposing the compound
- 363. The colourless gas liberated by passing excess of chlorine through NH₃ gas is:
 - a) NCl₃
- b) HCl

c) N_2

d) H_2

- 364. The basicity of H₃ PO₄ is
 - a) 2

b) 3

c) 4

d) 5

- 365. A radioactive element resembling iodine in properties is:
 - a) Astatine
- b) Lead

- c) Radium
- d) Thorium
- 366. Which of the following form of interhalogen compounds does not exists?
 - a) IF₇

b) ClF₃

c) ICl

d) BrCl₇

- 367. Which one is true peroxide?
- a) NO₂

- b) MnO₂
- c) BaO₂

d) SO_2

368.	When a colourless gas is a) HCl	passed through bromine wa b) HBr	ater, decolourization takes p	place. The gas is: d) SO ₂		
369.	*	is possible but not NCl ₅ whi	, <u>-</u>	, <u>-</u>		
00).		possible. It is due to				
	a) Lower electronegativi	ty of P but not in N				
	•	oond formation in P than N				
	•	d-orbital in P but not in N				
		d while N in gaseous state a	it room temperature			
370	The bonds present in per		at room temperature			
570.	a) Ionic bonds	meric acia arc.				
	b) Covalent bonds					
	c) Semipolar bonds or da	ative hands				
	d) Coordinate and covale					
371	•	ses platinum is used as a cat	alvet?			
3/1.	a) Oxidation of ammonia	=	b) Hardening of oils			
	c) Productions of synthe		d) Synthesis of methanol			
372	- -	ellow region of the sun's sp	• •			
372.	a) Na	b) Ne	c) Kr	d) He		
272	•	reacts with an alkali meta	•	•		
3/3.	•	ches. The gas and halate res	•	iate willen can be used if		
	a) Br ₂ , KBrO ₃	b) Cl ₂ , KClO ₃	c) I ₂ , NaIO ₃	d) Cl ₂ , NaClO ₃		
274	Correct statement about		$C_1 I_2$, $NaIO_3$	$u_1 cl_2$, Nacio ₃		
3/4.			a) It is not noisonous	d) It ignites at 20°C		
275	a) It ignites at 240°C		c) It is not poisonous	d) It ignites at 30°C		
3/3.	Ammonia reacts with exc	No. Late	a) NII Claud NCl	J) M and HCl		
276	a) N ₂ and NH ₄ Cl	b) NCl ₃ and HCl	c) NH ₄ Cl and NCl ₃	d) N ₂ and HCl		
3/6.	-	diffuse through rubber and		J) II -		
277	a) Xe	b) Ne	c) Ar	d) He		
3//.		e formation of following cor		1) (0 1 (0		
270	a) Acrolein	b) Chlorine nitrate	c) Peroxy acetyl nitrate	d) SO ₂ and SO ₃		
3/8.		a yellow precipitate when b	olled with an excess of nitr	ic acid and ammonium		
	molybdate and red precip		a) Matauhaanhata	d) Hemoule contrate		
270	a) Orthophosphate	b) Pyrophosphate	c) Metaphosphate	d) Hypophosphate		
3/9.	Nitrous acid reacts with		-) NO + CO	J) Manage Cale and		
200	a) $NO_2 + SO_2$	b) NO + SO ₂	c) $NO + SO_3$	d) None of these		
380.) reducing , (b) oxidising an	(c) complexing, the set of	properties snown by UN		
	ion towards metal specie		-) - "	J) I.		
201	a) <i>a</i> , <i>b</i> , <i>c</i>	b) <i>b</i> , <i>c</i>	c) <i>c</i> , a	d) a, b		
381.	Sea-weeds are important) r 1:	l) p		
200	a) Iron	b) Chlorine	c) Iodine	d) Bromine		
382.	_	ith calcium silicate because		D.M. C.I		
202	a) CAN is explosive	b) CAN is hygroscopic	c) CAN is water soluble	d) None of these		
383.	Yellow phosphorus is kej		> 41 - 1 - 1	1) 17		
004	a) Water	b) Ether	c) Alcohol	d) Kerosene		
384.	F ₂ combines with all non		N 77	15.17		
00=	a) N ₂	b) P	c) Xe	d) Kr		
<i>3</i> 85.		ng has lowest bond dissocia				
201	a) Cl —Cl	b) F —F	c) Br —Br	d) I —I		
	Ozone reacts with moist) 10	D. I. O.		
	a) HIO ₂	b) I ₄ O ₉	c) IO _E	d) I ₂ O ₅		

387. On heating sodium as well as sulphur can be melted. Molten sodium and molten sulphur are used as:			
a) Medium for extracting metals			
b) Catalysts			
c) Metal refiners			
d) Electrodes in batteries			
388. Oxidation of metals by HNO ₃ does not depen		D C + 1 +	
a) Nature of metal b) Conc. of HNO ₃	c) Temperature	d) Catalyst	
389. In froth floatation process for the purificatio	-	at because	
a) Their surface is not easily wetted by wate			
c) They are insoluble	d) They bear electrost	atic charge	
390. XeF ₆ on complete hydrolysis gives:			
a) XeO ₃ b) XeO	c) XeO ₂	d) Xe	
391. The zero group members are collectively kno	own as:		
a) Inert gases b) Rare gases	c) Noble gases	d) All of these	
392. How many lone pair of electrons are present	t on Xe in XeOF ₄ ?		
a) 1 b) 2	c) 3	d) 4	
393. Hypophosphorous acid, H ₃ PO ₂ is			
a) A monobasic acid b) A Tribasic acid	c) A Dibasic acid	d) Not acidic at all	
394. The ionization potential of X^- ion is equal to	:		
a) The electron affinity of X atom			
b) The electronegativity of X atom			
c) The ionization potential of Xatom			
d) None of the above	4 >		
395. Which oxide of chlorine is most powerful oxi	idizing agent?		
a) Cl_2O b) ClO_2	c) Cl ₂ O ₆	d) Cl_2O_7	
396. In Ostwald process of manufacturing of HNO			
a) MO b) Fe	c) Mn	d) Pt	
397. In the reaction,	BUCATION	•	
$HNO_3 + P_4O_{10} \longrightarrow 4HPO_3 + X$			
the product Xis			
a) N_2O_3 b) N_2O_5	c) NO ₂	d) H ₂ O	
398. Given are H ₃ PO ₂ , H ₃ PO ₃ , H ₃ PO ₄ and H ₄ P ₂ O ₇ . w	hich of the above oxoacids resu	lts into two series of salts?	
a) H ₃ PO ₂ b) H ₃ PO ₃	c) H ₃ PO ₄	d) $H_4P_2O_7$	
399. Which of the following is a mixed anhydride	•	,	
a) NO b) NO ₂	c) N_2O_5	d) N ₂ O	
400. Pure N ₂ can be obtained by:	-7 - 2 - 3		
a) Heating barium azide b) NH_3 and CuO	c) Both (a) and (b)	d) None of these	
401. Sulphur trioxide is dissolved in heavy water	, , , , , ,		
a) sp^2 b) sp^3	c) <i>sp</i>	d) <i>dsp</i> ²	
402. What happens to the colour of litmus paper v			
a) It turns red to blue b) It turns blue to		d) It is unaffected	
403. Which noble gas does not form clathrates?	red ej it gets destroyed	d) it is unaffected	
a) Xe b) Kr	c) He	d) Ar	
	c) He	u) Ai	
404. Strongest reducing agent is:	a) II Ca	d) II To	
a) H ₂ O b) H ₂ S	c) H ₂ Se	d) H ₂ Te	
405. Most abundant element in earth's crust is:	a) C	d) To	
a) 0 b) Se	c) S of ablazina from a given quantity	d) Te	
406. Which reaction yields the greatest quantity of	or emorme from a given quantity	or nyurochioric acia?	

	b) Warming conc. HCl with PbO ₂		
	c) Mixing conc. HCl with KMnO ₄		
	d) Treating bleaching powder with HCl		
407	Superphosphate of lime is		
	a) A mixture of normal calcium phosphate and gypsu	m	
	b) A mixture of primary calcium phosphate and gyps	um	
	c) Normal calcium phosphate		
	d) Soluble calcium phosphate		
408	In Birkeland and Eyde process, the temperature of th	e electric arc is about:	
	a) 1500°C b) 4000°C	c) 3000°C	d) 2000°C
409	Sulphides of which element are not precipitated in ac	ridic or alkaline medium?	
	a) K b) Ca	c) Al	d) All of these
410	Select the correct statement.		•
	a) Sodium metal is stored under kerosene		
	b) One of the oxides of carbon is a basic oxide		
	c) Metals can form only basic oxides		
	d) To prevent combination of white phosphorus with	oxvgen it is kept in kerose	ene
411	SO_2 is dried by:	, 8	
	a) CuO b) HNO ₃	c) P ₂ O ₅	d) Anhyd. CaCl ₂
412	When Zn reacts with very dilute nitric acid it produce		a, ramy area a z
	a) NO b) NH ₄ NO ₃	c) NO ₂	d) H ₂
413	The geometry of H_2S and its dipole moment are:	c) 110 ₂	u) 112
110	a) Angular and non-zero b) Angular and zero	c) Linear and zero	d) Linear and non-zero
414	Graham's salt is:	ej Ellicai alia zero	a) Bilical and holi zero
111	a) Sodium aluminosilicate		
	b) Sodium hexametaphosphate		
	a) Formous ammonium sulphato		
	d) Potassium chromium sulphate	ΔΤΙΩΝ	
415	Yellow oils of sulphur is/are	PULLVIA	
113	a) H ₂ S b) H ₂ S ₁ , H ₂ S ₃	c) H ₂ SO ₄	d) CS ₂ , NH ₂ CSNH ₂
416	In the atmosphere N_2 is present as element with O_2		u) 652, 14112 6514112
710	a) N_2 is more reactive	because.	
	b) N ₂ is inert		
	c) N_2 does not react with O_2		
	d) N ₂ is actively participating in the reaction		
117	Percentage of argon in air is about:		
417	-		
	a) 10 per cent		
	b) 0.1 per cent		
	c) Much less than 0.1 per cent		
410	d) 1 per cent		
418	Select the incorrect statement among the following		
	a) O_3 is used as germicide for purification of air.	1 1	
	b) In O_3 ,0—0 bond length is identical with that of mo	olecular oxygen	
	c) O ₃ molecule is angular in shape.		
	d) O_3 is an oxidizing agent.		
419	For advertisement the coloured dischared tubes cont		D ***
	a) He b) Ne	c) Ar	d) Kr
420	Which reaction cannot be used for the preparation of	the halogen acid?	
	a) $2KBr + H_2SO_4 \rightarrow K_2SO_4 + 2HBr$		

	Conc.	00 + HCl		
	b) NaCl + $H_2SO_4 \rightarrow NaH$	$SO_4 + HCI$		
	c) NaHSO ₄ + NaCl \rightarrow Na	2SO4 + HCl		
	d) $CaF_2 + H_2SO_4 \rightarrow CaSO_4$ Conc.	4		
121	. The principal source of h			
	a) Air	b) Monazite sand	c) Radium	d) All of these
122	. Heat of vaporisation of N			
	a) Its basic nature	b) Its polar nature	c) Hydrogen bonding	d) Solubility in water
123		ce element involved in phys		
	a) Fe	b) Ca	c) Na	d) I ₂
124	. Which coagulates white o			
		b) Metaphosphoric acid	c) Hypophosphoric acid	d) Pyrophosphoric acid
125	. The fluoride which does i			
	a) CF ₄	b) SF ₆	c) HeF ₄	d) XeF ₄
126		n water increases in presen		
	a) Chloroform	b) Alcohol	c) Potassium iodide	d) Sodium hydroxide
127	. Sal volatile is:	1. ()		
	a) NH ₄ Cl	b) (NH ₄) ₂ SO ₄	c) $(NH_4)_2CO_3$	d) NH ₄ NO ₃
128		preparation of aqua regia is		12 ***
400	a) HF	b) HBr	c) HCl	d) HI
129		en an aqueous solution of Kl		1) 00
400	a) Dil H ₂ SO ₄	b) I ₂	c) Cl ₂	d) SO_2
130		— <i>M—</i> H bond angle in the h	ydrides gradually becomes	s closer to 90° on going from
	N to Sb. This shows that g			
	a) The basic strength of t	ne nyariaes increases	MOTTA	
	a) The hand energies of the	s are used for <i>M</i> —H bondin	BMIIDIA	
	c) The bond energies of /		ranulaian dua ta dagraagin	a alaatnan agatiriitu tuan d
121	. NH_4Cl is used to clean me	ir of electrons show lesser i	repulsion due to decreasin	g electronegativity trend
131	a) It dissociates into NH_3			
	b) NH ₃ forms a soluble co	_		
	c) NH ₄ Cl forms a volatile	_		
	d) None of the above	cinoriae		
132		ate nitric oxide from nitrou	s oxide?	
<u>-</u>	a) Sodium nitroprusside			
	b) FeSO ₄ Solution			
	c) Nessler's reagent			
	d) Ammoniacal silver niti	rate solution		
133	. The shape and hybridisat			
	a) Triangular planar, sp^3			
	b) Pyramidal, $sp^3 d^2$			
	c) Tetrahedral, sp^3			
	d) Bent T, $sp^3 d$			
134	. The anhydride of pyrosul	lphuric acid is:		
	a) SO ₂	b) S ₂ O ₃	c) SO ₃	d) S ₂ O ₇
135	. Which one is strongest ox		. •	. <u>.</u> ,
	a) HClO	b) HClO ₂	c) HClO ₃	d) HClO ₄

436. Which is not an oxo-	acid of chlorine?			
a) HClO	b) HClO ₂	c) HClO ₃	d) HClO ₅	
437. A greenish-yellow co	oloured gas is liberated on l	neating a mixture of two subs	stances which are:	
a) KBr + HCl	b) KI + HCl	c) MnO ₂ + HCl	d) NaCl + H_2SO_4	
438. What are the produc	ts obtained when ammonia	a is reacted with excess chlor	rine?	
a) N_2 and NCl_3	b) N ₂ and HCl	c) N_2 and NH_4Cl	d) NCl ₃ and HCl	
439. PH ₃ produces smoky	rings when it comes in co	ntact with air. This is because	e:	
a) It is inflammable				
b) It combines with v	water vapours			
c) It combines with 1	nitrogen			
d) It contains impuri	ty of P ₂ H ₄			
440. The least stable anio	n of oxo-acids of chlorine is	5		
a) ClO ⁻	b) ClO ₂	c) ClO_3	d) ClO ₄	
441. Among H ₂ O, H ₂ S, H ₂ S	Se and H ₂ Te, the one with h	nighest boiling point is:		
a) H ₂ O because of H-	bonding			
b) H ₂ Te because of h	igh mol.wt.			
c) H ₂ S because of H-	bonding			
d) H ₂ Se because of lo	ow mol. wt.			
442. Non-combustible hy	dride is:			
a) PH ₃	b) AsH ₃	c) SbH ₃	d) NH ₃	
443. In H ₃ PO ₃ :				
a) Each hydrogen ato	om is attached to oxygen at	om		
b) Two hydrogen ato	oms are attached to oxygen	atoms		
c) One atom of H is a	ttached to oxygen atom			
d) None of the above				
444. In the known interha	alogen compounds the max	imum number of halogen ato	oms is:	
a) 4	b) 5	c) 7	d) 8	
445. Which of the following	ng is the life saving mixture	e for an asthma patient?		
a) Mixture of helium	and oxygen	b) Mixture of neon and	d oxygen	
c) Mixture of xenon	and nitrogen	d) Mixture of argon an	d oxygen	
446. Which species is not	known?			
a) XeF ₆	b) XeF ₄	c) XeO ₃	d) KrF ₆	
447. The reaction of the ty	$ype 2X_2 + S \longrightarrow SX_4, is show$	n by sulphur when X is		
a) Fluorine or chlori	ne	b) Chlorine only		
c) Chlorine and bron	nine only	d) F, Cl Br all		
448. Oxygen reacts with e	each of the following eleme	nts readily, except:		
a) P	b) Na	c) S	d) Cl	
449. Cane sugar reacts wi	th concentrated HNO_3 to g	ive:		
a) CO_2 and H_2O	b) Oxalic acid	c) Carbonic acid	d) CO and H ₂ O	
450. Phosgene is the nam	e of:			
a) A phosphorus con	npound			
b) A phosphonium co	ompound			
c) Carbonyl chloride				
d) Phosphorus halid	e			
451 . H_2S is not a/an				
a) Reducing agent	b) Acidic	c) Oxidising agent	d) None of these	
452 The idea which prom	,			
152. The fact wines pron		rst ever compound of noble g	gas was:	
a) High bond energy	npted Bartlett to prepare fi	rst ever compound of noble g	gas was:	

	O ₂ and xenon were almost	similar	
d) None of the above		i . i	
453. Which of the following s		ir is incorrect?	
a) SO ₂ molecule is paran	_		
•	consists mostly of S ₈ rings.		
_	ly consists of S ₂ molecules.		
-	sulphur is never less than	+4 in its compounds.	
454. Which of the following is			
a) N_2O_3	b) N ₂ O	c) NO	d) N_2O_5
455. On heating copper nitrat		ined.	
a) Copper	b) Copper oxide	c) Copper nitrite	d) Copper nitride
456. Which of the following d	issolves in water but does r	not give any oxyacid solutio	n?
a) SO ₂	b) OF ₂	c) SCl ₄	d) SO ₃
457. The colour of I_2 is violet	because it:		
a) Absorbs violet light			
b) Does not absorb light			
c) Absorbs yellow and g	reen light		
d) None of the above	•		
458. Compounds formed whe	n the noble gases get entra	pped in the cavities of cryst	al lattices of certain organic
and inorganic compound		,	O .
a) Interstitial compound			
b) Clathrates			
c) Hydrates		>	
d) Picrates	- 1		
459. The mineral clevite on h	esting gives:		
a) He	b) Xe	c) Ar	d) Ra
460. Bromine can be liberate	-		u) Na
			d) Dotaccium indido
a) Iodine solution	b) Chlorine water	c) Sodium chloride	d) Potassium iodide
461. Which element is not con	_) C-1.1	D. D. J'
a) Selenium	b) Oxygen	c) Sulphur	d) Polonium
462. When lead nitrate is hea	=		N. 1. 0
a) NO ₂	b) NO	c) N_2O_5	d) N ₂ O
463. Which is the most easily			
a) Xe	b) Kr	c) Ar	d) Ne
464. The outermost electroni	-		
a) ns^2np^1	b) ns^2np^2	c) ns^2np^3	d) ns^2np^4
465. The noble gas used in at	omic reactor ,is		
a) Krypton	b) Oxygen	c) Neon	d) Helium
466. Atom that requires high	energy of excitation is:		
a) F	b) Cl	c) Br	d) I
467. In modern process phos	phorus is manufactured by:		
a) Heating a mixture of p	phosphorite mineral with sa	and and coke in electric furi	nace
b) Heating calcium phos	=		
c) Heating bone-ash wit	=		
d) Heating the phosphat			
468. Which property is most		ne the strongest oxidising h	alogen?
a) Bond dissociation ene	-	on ongood omalonig in	
b) Ionisation enthalpy	יסי		
c) Hydration enthalpy			
o, ii, aradon champy			

d) Electron affinity		
469. Which has maximum vapour pressure or mo	st volatile or low b.p.?	
a) HCl b) HI	c) HF	d) HBr
470. Amphoteric oxide is:		
a) Sb_4O_6 b) N_2O_5	c) Bi ₂ O ₃	d) Na ₂ O
471. Bone black is polymorphic form of		
a) Phosphorus b) Sulphur	c) Carbon	d) Nitrogen
472. In which case, the order of acidic strength is	not correct?	
a) HI>HBr>HCl	b) HIO ₄ >HBrO ₄ >HCIO	0_4
c) HCIO ₄ >HCIO ₃ >HCIO ₂	d) $HF>H_2O>NH_3$	
473. Which compound does not has S—S bond?		
a) $Na_2 S_2 O_4$ b) $Na_2 S_4 O_6$	c) $Na_2 S_2 O_3$	d) $Na_2 S_2 O_7$
474. The chamber acid contains H ₂ SO ₄ .		
a) 10.20% b) 35.45%	c) 67.80%	d) 82.90%
475. Compound of Sulphur used in electrical trans	sformer is:	
a) SO ₂ b) H ₂ S	c) SO ₃	d) SF ₆
476. The inert gases producing maximum number	r of compounds are	
a) He and Ne b) Ar and Ne	c) Kr and Ne	d) Ar and Xe
477. The fertilizer named 'Nitrolim' is prepared by	y the use of :	•
a) $CaO + N_2$ b) $CaC + N_2$	c) $CaC_2 + N$	d) $CaC_2 + N_2$
478. When KBr is treated with concentrated H ₂ SC	0_4 reddish brown gas is evolved	
a) Bromine	b) HCl	-
c) Mixture of bromine and HBr	d) None of the above	
479. Sulphur trioxide can be obtained by which of	f the following reaction:	
The state of the s	c) $Caso_4 + C \xrightarrow{\Delta}$	d) $\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3} \stackrel{\Delta}{\to}$
480. The metallic form of phosphorus is:	\rightarrow 5 CasO ₄ $+$ C \rightarrow	$-9 \text{ Fe}_2(304)_3 \rightarrow$
a) White P b) Red P	c) β-black P	d) α-black P
481. The atomic weight of noble gases is obtained		u) u-black i
a) Atomic weight = equivalent weight × vale		
b) Atomic weight = equivalent weight/valen		
	icy	
c) Atomic weight = $\frac{\text{Valency}}{\text{Equivalent weight}}$		
d) $2 \times VD =$ molecular weight = atomic weigh	nt	
482. When \mbox{HNO}_3 reacts with metals, nitrogen dio	xide is usually evolved if the ac	id is:
a) Dilute b) Very dilute	c) Moderately strong	d) Concentrated
483. Which one of the following reaction of xenon	compounds is not feasible?	
a) $XeO_3 + 6HF \rightarrow XeF_6 + 3H_2O$		
b) $3XeF_4 + 6H_2O \rightarrow 2Xe + XeO_3 + 12HF + 1$.502	
c) $2XeF_2 + 2H_2O \rightarrow 2Xe + 4HF + O_2$		
d) $XeF_6 + RbF \longrightarrow Rb[XeF_7]$		
484. Fixation of nitrogen means:		
a) Reaction of nitrogen with oxygen		
b) Conversion of free atmospheric nitrogen i	nto nitrogen compounds	
c) Decomposition of nitrogeneous compound	ds to yield free nitrogen	
d) The action of denitrifying bacteria on nitro	ogen compounds	
485. One mole of fluorine is reacted with two mol	es of hot and concentrated KOH	I. The products formed are KF,
$\rm H_2O$ and $\rm O_2$. The molar ratio of KF, $\rm H_2O$ and $\rm O_2$	O ₂ respectively is:	
a) 1 : 1 : 2 b) 2 : 1 : 0.5	c) 1 : 2 : 1	d) 2 : 1 : 2
486. Slow acting nitrogenous fertilizer among the	following is	

a) NH ₂ CONH ₂	b) NH ₄ NO ₃	c) CaNCN	d) KNO ₃
487. Liquor ammonia is			
a) Ammonium hydroxide		b) Liquefied ammonia ga	
c) Concentrated solution		d) A solution of NH3 in al	
488. In ramsay and rayleigh's	isolation of noble gases fro	m air, the nitrogen of the a	ir is finally converted into
a) NaNO ₂ Only	b) NO and NO_2	c) NaNO ₃ Only	d) NaNO2 and NaNO3
489. Superphosphate of lime i	s used in:		
a) Cement industry	b) Glass industry	c) Agriculture	d) metallurgy
490. Noble gases are:			
a) Colourless			
b) Odourless			
c) Tasteless and non-infl	ammable		
d) All of the above			
491. Nitric acid is used in the	manufacture of :		
a) TNT	b) Picric acid	c) NH ₄ NO ₃	d) All of these
492. The symbol Rn represent	3		
a) Radium	b) Radon	c) Rhenium	d) Rhodium
493. The gas which is absorbe	d by ferrous sulphate solut	ion giving blackish brown	colour is:
a) NH ₃	b) N ₂	c) CO	d) NO
494. Conc. HNO ₃ is heated wit			
a) N ₂ O	b) NO	c) NO ₂	d) N_2O_5
495. Cold fire is related to	·	, <u>,</u>	<i>y</i> 2 3
a) White P	b) Red P	c) PH ₃	d) P ₂ O ₅
496. The non-existent species		3	7 - 2 - 3
a) XeF ₅	b) BrF ₅	c) SbF ₅	d) PF ₅
497. In Kroll and ICl process o			a) II g
a) Ne	b) Ar	c) Kr	d) Xe
498. A 500 g toothpaste samp			-
a) 250	b) 200	c) 400	d) 1000
499. PCl ₃ on hydrolysis gives	5) 200	c) 400	d) 1000
a) HPO ₃	b) H ₃ PO ₂	c) H ₃ PO ₄	d) H ₃ PO ₃
500. Which halogen does not s		c) 1131 O4	u) 1131 03
a) F ₂	b) Cl_2	c) Br ₂	d) I ₂
501. Which of the following is	· -	c) br ₂	u) 1 ₂
-	b) Xe	a) Cl	d) N
a) N ₂ 0 502. Noble gases possess:	b) Ae	c) Cl ₂	d) N ₂
•	:-1		
a) High ionization potent	ılal		
b) Zero electron affinity	.		
c) High electrical conduc	tance		
d) All of the above	1	1 1 1	6.111
503. What would happen whe			
a) CrO_4^{2-} is reduced to $+3$		b) CrO_4^{2-} is oxidized to +	
c) $\text{Cr}_2\text{O}_7^{2-}$ and H_2O are for		d) Cr^3 and $Cr_2O_7^{2-}$ are f	
504. A green yellow gas reacts		oxide to form a halate which	h can used in fireworks and
	nd halate respectively are		
a) Br ₂ , KBrO ₃	b) Cl ₂ , KClO ₃	c) I ₂ , NaIO ₃	d) Cl ₂ , NaClO ₃
505. When plants and animals			
a) Nitrates	b) Nitrides	c) Ammonia	d) Elements of nitrogen
506. Which of the following sr	oecies is not a nseudohalide	57	

a) CNO ⁻	b) <i>R</i> COO ⁻	c) OCN	d) NNN ⁻
507. Dilute HNO ₃ reacts with	_		
a) $Ca(OH)_2 \cdot Ca(NO_3)_2$	b) CaO· Ca(NO ₃) ₂	c) 2CaO· Ca(NO ₃) ₂	d) None of the above
508. Sulphur is soluble in:	Dan and) T.I	1) 00
a) Water	b) Dilute HCl	c) Ether	d) CS ₂
509. Which of the following i) V E	D.V. E
a) XeF ₇	b) XeF ₄	c) XeF ₅	d) XeF ₃
510. The oxide which is solid	-	-) N O	J) M O
a) N ₂ O	b) NO	c) N_2O_4	d) N_2O_5
511. Which hydride possesse	=	=	1) C -11
a) NH ₃	b) PH ₃	c) BiH ₃	d) SbH ₃
512. Bad conductor of electric	-	a) IID»	4) III
a) H ₂ F ₂	b) HCl	c) HBr	d) HI
513. The van der Waals' forc	_		d) Cl > Dn > I > E
	b) $I_2 > Br_2 > Cl_2 > F_2$	$C_1 B I_2 > C I_2 > F_2 > I_2$	d) $Cl_2 > Br_2 > I_2 > F_2$
514. The word argon means:		a) Strango	d) Logy
a) Noble	b) Now	c) Strange	d) Lazy
515. SO ₂ reacts with chloring a) Sulphur monochloric			
b) Sulphur dichloride	le		
c) Sulphuryl chloride			
d) Sulphur trichloride			
516. Which hydride does not	evist?	>	
a) SbH ₃	b) AsH ₃	c) PH ₅	d) N_2H_4
a) bbii3	D) 113113	C) 1 115	4) 11/11/4
	The state of the s	, ,	_ ·
517. Ozone is formed by the	interaction of water with:		
517. Ozone is formed by the a) Chloride	interaction of water with: b) Chlorine	c) Fluorine	d) Fluoride
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe	interaction of water with: b) Chlorine s not because:		
 517. Ozone is formed by the a) Chloride 518. PCl₅ exists but NCl₅ doe a) Nitrogen has no vaca 	interaction of water with: b) Chlorine s not because: nt 'd'orbitals		
 517. Ozone is formed by the a) Chloride 518. PCl₅ exists but NCl₅ doe a) Nitrogen has no vaca b) Lower tendency of H 	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N		
 517. Ozone is formed by the a) Chloride 518. PCl₅ exists but NCl₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative 	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N	c) Fluorine	d) Fluoride
 517. Ozone is formed by the a) Chloride 518. PCl₅ exists but NCl₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous	c) Fluorine	d) Fluoride
 517. Ozone is formed by the a) Chloride 518. PCl₅ exists but NCl₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not variety 	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous	c) Fluorine	d) Fluoride
 517. Ozone is formed by the a) Chloride 518. PCl₅ exists but NCl₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not value a) HCl + F₂ → HF + Cl₂ 	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous	c) Fluorine s state at room temperature b) HF + $Cl_2 \rightarrow F_2 + HCl$	d) Fluoride
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not vaca a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + I	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous lid?	c) Fluorine state at room temperature b) $HF + Cl_2 \rightarrow F_2 + HCl$ d) $Al + HCl \rightarrow AlCl_3 + H_2$	d) Fluoride
 517. Ozone is formed by the a) Chloride 518. PCl₅ exists but NCl₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not value a) HCl + F₂ → HF + Cl₂ 	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous lid?	c) Fluorine state at room temperature b) $HF + Cl_2 \rightarrow F_2 + HCl$ d) $Al + HCl \rightarrow AlCl_3 + H_2$	d) Fluoride
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegativ d) Occurrence of P in so 519. Which reaction is not va a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + I 520. Arrange the acids (I) H ₂ a) I > III > II	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous lid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III	c) Fluorine state at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order	d) Fluoride
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegativ d) Occurrence of P in so 519. Which reaction is not va a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + I 520. Arrange the acids (I) H ₂ a) I > III > II 521. With excess of chlorine,	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous lid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III	c) Fluorine state at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order c) III > I > II	d) Fluoride of acidic nature. d) II > III > I
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not vaca a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + I 520. Arrange the acids (I) H ₂ a) I > III > II 521. With excess of chlorine, a) NCl ₃	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous alid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III ammonia forms: b) NOCl ₂	c) Fluorine state at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order	d) Fluoride
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not vaca a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + I 520. Arrange the acids (I) H ₂ a) I > III > II 521. With excess of chlorine, a) NCl ₃ 522. Oxalic acid when heated	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous alid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III ammonia forms: b) NOCl ₂ I with conc H ₂ SO ₄ , gives out	c) Fluorine a state at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order c) III > I > II c) N ₂	d) Fluoride of acidic nature. d) II > III > I d) NH ₄ Cl
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegativ d) Occurrence of P in so 519. Which reaction is not va a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + I 520. Arrange the acids (I) H ₂ a) I > III > II 521. With excess of chlorine, a) NCl ₃ 522. Oxalic acid when heated a) CO and CO ₂	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous lid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III ammonia forms: b) NOCl ₂ I with conc H ₂ SO ₄ , gives out b) CO ₂ and H ₂ S	c) Fluorine state at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order c) III > I > II	d) Fluoride of acidic nature. d) II > III > I
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not vaca a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + I 520. Arrange the acids (I) H ₂ a) I > III > II 521. With excess of chlorine, a) NCl ₃ 522. Oxalic acid when heated	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous lid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III ammonia forms: b) NOCl ₂ I with conc H ₂ SO ₄ , gives out b) CO ₂ and H ₂ S	c) Fluorine a state at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order c) III > I > II c) N ₂ c) H ₂ O and CO ₂	d) Fluoride of acidic nature. d) II > III > I d) NH ₄ Cl d) Oxalic sulphate
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not vaca a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + H 520. Arrange the acids (I) H ₂ a) I > III > II 521. With excess of chlorine, a) NCl ₃ 522. Oxalic acid when heated a) CO and CO ₂ 523. The anhydride of hypoc	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous alid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III ammonia forms: b) NOCl ₂ I with conc H ₂ SO ₄ , gives out b) CO ₂ and H ₂ S hlorous acid is: b) ClO ₂	c) Fluorine a state at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order c) III > I > II c) N ₂ c) H ₂ O and CO ₂ c) Cl ₂ O ₅	d) Fluoride of acidic nature. d) II > III > I d) NH ₄ Cl
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not vaca a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + I 520. Arrange the acids (I) H ₂ a) I > III > II 521. With excess of chlorine, a) NCl ₃ 522. Oxalic acid when heated a) CO and CO ₂ 523. The anhydride of hypoca	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous alid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III ammonia forms: b) NOCl ₂ I with conc H ₂ SO ₄ , gives out b) CO ₂ and H ₂ S hlorous acid is: b) ClO ₂	c) Fluorine a state at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order c) III > I > II c) N ₂ c) H ₂ O and CO ₂ c) Cl ₂ O ₅	d) Fluoride of acidic nature. d) II > III > I d) NH ₄ Cl d) Oxalic sulphate
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not vaca a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + I 520. Arrange the acids (I) H ₂ a) I > III > II 521. With excess of chlorine, a) NCl ₃ 522. Oxalic acid when heated a) CO and CO ₂ 523. The anhydride of hypoca a) ClO ₃ 524. On bubbling F ₂ in 2% so	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous alid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III ammonia forms: b) NOCl ₂ I with conc H ₂ SO ₄ , gives out b) CO ₂ and H ₂ S hlorous acid is: b) ClO ₂ Olution of NaOH, the product b) NaF	c) Fluorine state at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order c) III > I > II c) N ₂ c) H ₂ O and CO ₂ c) Cl ₂ O ₅ formed are:	d) Fluoride of acidic nature. d) II > III > I d) NH ₄ Cl d) Oxalic sulphate d) Cl ₂ O
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not vaca a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + H 520. Arrange the acids (I) H ₂ a) I > III > II 521. With excess of chlorine, a) NCl ₃ 522. Oxalic acid when heated a) CO and CO ₂ 523. The anhydride of hypoca a) ClO ₃ 524. On bubbling F ₂ in 2% so a) OF ₂	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous alid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III ammonia forms: b) NOCl ₂ I with conc H ₂ SO ₄ , gives out b) CO ₂ and H ₂ S hlorous acid is: b) ClO ₂ Olution of NaOH, the product b) NaF	c) Fluorine state at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order c) III > I > II c) N ₂ c) H ₂ O and CO ₂ c) Cl ₂ O ₅ formed are:	d) Fluoride of acidic nature. d) II > III > I d) NH ₄ Cl d) Oxalic sulphate d) Cl ₂ O
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegativ d) Occurrence of P in so 519. Which reaction is not va a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + I 520. Arrange the acids (I) H ₂ a) I > III > II 521. With excess of chlorine, a) NCl ₃ 522. Oxalic acid when heated a) CO and CO ₂ 523. The anhydride of hypod a) ClO ₃ 524. On bubbling F ₂ in 2% so a) OF ₂ 525. I ₂ dissolves in KI solution	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous lid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III ammonia forms: b) NOCl ₂ I with conc H ₂ SO ₄ , gives out b) CO ₂ and H ₂ S hlorous acid is: b) ClO ₂ clution of NaOH, the product b) NaF n due to the formation of b) K ⁺ , I ⁻ and I ₂	c) Fluorine State at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order c) III > I > II c) N ₂ c) H ₂ O and CO ₂ c) Cl ₂ O ₅ formed are: c) H ₂ O c) I ₃	d) Fluoride of acidic nature. d) II > III > I d) NH ₄ Cl d) Oxalic sulphate d) Cl ₂ O d) All of these
517. Ozone is formed by the a) Chloride 518. PCl ₅ exists but NCl ₅ doe a) Nitrogen has no vaca b) Lower tendency of H c) Lower electronegative d) Occurrence of P in so 519. Which reaction is not vaca a) HCl + F ₂ → HF + Cl ₂ c) Zn + HCl → ZnCl ₂ + I 520. Arrange the acids (I) H ₂ a) I > III > II 521. With excess of chlorine, a) NCl ₃ 522. Oxalic acid when heated a) CO and CO ₂ 523. The anhydride of hypoca a) ClO ₃ 524. On bubbling F ₂ in 2% so a) OF ₂ 525. I ₂ dissolves in KI solution a) KI ₂ and I ⁻	interaction of water with: b) Chlorine s not because: nt 'd'orbitals -bond formation in P than N rity of P than N lid state while N ₂ in gaseous alid? H ₂ SO ₃ , (II)H ₃ PO ₃ , and (III) HC b) I > II > III ammonia forms: b) NOCl ₂ I with conc H ₂ SO ₄ , gives out b) CO ₂ and H ₂ S hlorous acid is: b) ClO ₂ clution of NaOH, the product b) NaF n due to the formation of b) K ⁺ , I ⁻ and I ₂ ling points of the hydrides o	c) Fluorine State at room temperature b) HF + Cl ₂ \rightarrow F ₂ + HCl d) Al + HCl \rightarrow AlCl ₃ + H ₂ lO ₃ in the decreasing order c) III > I > II c) N ₂ c) H ₂ O and CO ₂ c) Cl ₂ O ₅ formed are: c) H ₂ O c) I ₃	d) Fluoride of acidic nature. d) II > III > I d) NH ₄ Cl d) Oxalic sulphate d) Cl ₂ O d) All of these d) None of these

527. In which process sulphur is not used?				
a) Protection of grape wines				
b) Manufacture of H ₂ SO ₄				
c) Manufacture of black shoe polish				
d) Vulcanization of rubber				
528. When the mineral clevite is heated, it give off the in	ert gas			
a) Helium b) Xenon	c) Radon	d) Argon		
529. In NH ₃ and PH ₃ , the common is	•	, ,		
a) Basic nature b) Odour	c) Combustibility	d) None of these		
530. Oxygen is not readily reacted with	•			
a) P b) Cl	c) Na	d) S		
531. Most acidic oxide among the following is	,	,		
a) Cl ₂ O ₅ b) Cl ₂ O	c) Cl_2O_3	d) Cl ₂ O ₇		
532. Which one has the highest bond energy?	-,2-3	,,		
a) 0—0 b) S—S	c) Se—Se	d) Te—Te		
533. KMnO ₄ is prepared by:	ej be be	aj re re		
a) Passing Cl ₂ through K ₂ MnO ₄ solution				
b) Passing O_2 through K_2MnO_4 solution				
c) Reaction of KOH with KMnO ₄				
d) Fusing KON with MnO ₂				
534. Bromine is prepared in the laboratory by heating a	miyturo of:			
a) MgBr + H_2SO_4 b) MgBr ₂ + Cl_2		d) KBr ± HCl		
		u) Kbi + iici		
535. I_2 on rubbing with liquor NH_3 forms with explosion a) NH_4I b) N_2		4) NI NU		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c) $NH_4I + N_2 + I_2$	d) NI ₃ NH ₂		
536. When KBr is treated with concentrated H ₂ SO ₄ redd		IS		
a) Mixture of bromine and HBr	b) HBr			
c) Bromine	d) None of the above			
537. Which of the following noble gases is most reactive		J) V.		
a) He b) Ne	c) Ar	d) Xe		
538. First stable compound of inert gas was prepared by	:			
a) Rayleigh and Ramsay				
b) Bartlett				
c) Frankland and Lockyer				
d) Cavendish				
539. The function of $Fe(OH)_3$ in the contact process is				
a) To remove arsenic impurity				
	b) To detect colloidal im			
c) To remove moisture	b) To detect colloidal impd) To remove dust partic			
540. Which is incorrect for bleaching powder?				
540. Which is incorrect for bleaching powder? a) Highly soluble in water				
540. Which is incorrect for bleaching powder?a) Highly soluble in waterb) Light yellow coloured powder				
540. Which is incorrect for bleaching powder?a) Highly soluble in waterb) Light yellow coloured powderc) Oxidizing agent				
540. Which is incorrect for bleaching powder?a) Highly soluble in waterb) Light yellow coloured powderc) Oxidizing agentd) Reacts with dilute acid to release chlorine				
540. Which is incorrect for bleaching powder? a) Highly soluble in water b) Light yellow coloured powder c) Oxidizing agent d) Reacts with dilute acid to release chlorine 541. Molecule with a three electron bond is:	d) To remove dust partic	eles		
540. Which is incorrect for bleaching powder? a) Highly soluble in water b) Light yellow coloured powder c) Oxidizing agent d) Reacts with dilute acid to release chlorine 541. Molecule with a three electron bond is: a) Cl ₂ b) NO				
540. Which is incorrect for bleaching powder? a) Highly soluble in water b) Light yellow coloured powder c) Oxidizing agent d) Reacts with dilute acid to release chlorine 541. Molecule with a three electron bond is: a) Cl ₂ b) NO 542. Phosphorus pentoxide cannot be used to dry:	d) To remove dust partic	d) Cl ₂ O		
540. Which is incorrect for bleaching powder? a) Highly soluble in water b) Light yellow coloured powder c) Oxidizing agent d) Reacts with dilute acid to release chlorine 541. Molecule with a three electron bond is: a) Cl ₂ b) NO 542. Phosphorus pentoxide cannot be used to dry: a) Nitrogen b) Ammonia	 d) To remove dust particular control of the control of th	eles		
540. Which is incorrect for bleaching powder? a) Highly soluble in water b) Light yellow coloured powder c) Oxidizing agent d) Reacts with dilute acid to release chlorine 541. Molecule with a three electron bond is: a) Cl ₂ b) NO 542. Phosphorus pentoxide cannot be used to dry: a) Nitrogen b) Ammonia 543. Calcium cyanamide on treatment with steam produ	 d) To remove dust particular control of the control of th	d) Cl ₂ O		
540. Which is incorrect for bleaching powder? a) Highly soluble in water b) Light yellow coloured powder c) Oxidizing agent d) Reacts with dilute acid to release chlorine 541. Molecule with a three electron bond is: a) Cl ₂ b) NO 542. Phosphorus pentoxide cannot be used to dry: a) Nitrogen b) Ammonia	 d) To remove dust particular control of the control of th	d) Cl ₂ O		

PHONE NO: 8583042324 Page | 33

	•	nd sustain powerful super o	conducting magnets	
	o) It is used in gas-cooled			
С	e) It is used to fill gas ball	oons instead of hydrogen l	pecause it is lighter and nor	n-inflammable
d	l) It is used as a cryogeni	c agent for carrying out exp	periments at low temperati	ıre
545. H	łydrogen bromide is drie	d by passing the gas throu	gh:	
a	ı) Quick lime	b) Anhydrous CaCl ₂	c) KOH pellets	d) Conc. H ₂ SO ₄
546. T	The ion that cannot under	rgo disproportionation is:		
a	ı) ClO ₄	b) ClO ₃	c) ClO_2^-	d) ClO ⁻
547. V	Which of the following is	the most basic oxide?		
a	i) Bi ₂ O ₃	b) SeO ₂	c) Al ₂ O ₃	d) Sb ₂ O ₃
548. V	Which one is the anhydric	de of HClO ₄ ?		
a	ı) ClO ₂	b) Cl ₂ O ₇	c) Cl ₂ 0	d) Cl ₂ O ₆
549. P	Phosphine is generally pr	epared in the laboratory?		
		in a current of hydrogen		
		phorus with aqueous soluti	ion of caustic potash	
	E) By decomposition of P ₂		•	
		orus with an aqueous solut	tion of caustic soda	
		gen atoms bonded to each		
	ı) 1.5	b) 2	c) 3	d) 4
	The most abundant inert		<i>c</i> , <i>c</i>	w) .
	a) He	b) Ne	c) Ar	d) Kr
	-	,	own fumes evolve. These fu	
	1) SO_2	b) SO ₃	c) NO ₂	d) NO
			H_3 and Na H_2 PO ₂ . This read	•
	n) Oxidation	with causife soud to give i	ing and warryr Oz. Tims reac	ction is an example of.
) Reduction			
	r) Neutralisation			
d	I) Ovidation and reductio	PLUS EDU	'ATION	
СЕ / Т	The molecular formula of	dithionic acid is	MINTIN	
			a) II C O	4) 11 C O
	$(1) H_2S_2O_4$	b) H ₂ S ₂ O ₆	c) H ₂ S ₂ O ₅	d) $H_2S_2O_7$
	_	dohalide ,polyhalide and ir	_	DOCNE DIE IE
	$BrI_2^ OCN^-, IF_5$	b) IF ₅ , BrI ₂ ,OCN	c) OCN ⁻ ,IF ₅ , BrI ₂	d) OCN ⁻ , BrI ₂ ⁻ , IF ₅
			=	and reacts with hydrogen
	•	ueous solution of which is		
	ı) Al	b) Na	c) Br ₂	d) I ₂
		n KCI,KF and KBr solutions		
	ı) Cl ₂ and Br ₂ are evolved		b) Cl ₂ is evolved	
	c) Cl_2 , Br_2 and F_2 are evol		d) None of the above	
		${ m Cl}_4$, the colour that results i		
	ı) Colourless	b) Brown	c) Bluish green	d) Violet
559. C	Oxide of nitrogen which is	s soluble in alcohol is:		
a	ı) NO ₂	b) N ₂ O	c) N_2O_3	d) NO
560. T	The correct order of redu	cing abilities of hydrides of	f V group elements is	
a	ı) NH3 <ph3<ash3<sbh3< td=""><td><bih₃< td=""><td>b) NH₃>PH₃>AsH₃>SbH₃</td><td>s>BiH₃</td></bih₃<></td></ph3<ash3<sbh3<>	<bih₃< td=""><td>b) NH₃>PH₃>AsH₃>SbH₃</td><td>s>BiH₃</td></bih₃<>	b) NH ₃ >PH ₃ >AsH ₃ >SbH ₃	s>BiH ₃
С	e) NH ₃ <ph<sub>3<ash<sub>3<sbh<sub>3</sbh<sub></ash<sub></ph<sub>	<bih₃< td=""><td>d) $SbH_3 > BiH_3 > AsH_3 > N$</td><td>$H_3 > PH_3$</td></bih₃<>	d) $SbH_3 > BiH_3 > AsH_3 > N$	$H_3 > PH_3$
		ated from bleaching powd		
) Is heated	b) Reacts with water	c) Reacts with acid	d) Reacts with alkali
	A salt of sulphurous acid i	-		
	ı) Sulphate	b) Sulphurate	c) Sulphite	d) Sulphide

WEB: WWW.GPLUSEDUCATION.ORG

GPLUS EDUCATION

563. The sides of safety match	es contains		
a) Red phosphorus + sai		b) P ₄ S ₃	
c) Ca ₃ (PO) ₄ + glass pieces		d) KClO ₃ , KNO ₃ , sulphur +antimony	
564. Which compound is prep		=	-antimony
	-	ion:	
$\frac{\text{Xe} + 2\text{F}_2}{\text{(2:1 volume ratio)}} \frac{\text{Ni}}{673\text{K}}$	»:		
a) XeF ₄	b) XeF ₂	c) XeF ₆	d) None of these
565. The most stable hydride	is		
a) NH ₃	b) PH ₃	c) AsH ₃	d) SbH ₃
566. Thomas slag is:			
a) $Ca_3(PO_4)_2$	b) CaCHNH ₂	c) CaSiO ₃	d) FeSiO ₃
567. The second most electron	negative element in periodi	c table is:	
a) F	b) 0	c) Cl	d) N
568. Among the C—X bond (v	where $X = Cl$, Br, I) the corr	ect bond energy order is:	
a) C — $Cl > C$ — $Br > C$ — I			
b) $C-I > C-Cl > C-Br$			
c) C — $Br > C$ — $Cl > C$ — I			
d) $C-I > C-Br > C-Cl$			
569. When heated to 800°C, N ₂	₂ 0 gives:		
a) $NO + O_2$	b) $NO_2 + O_2$	c) $N_2 + O_2$	d) None of these
570. The oxidation number of	S in S_8 , S_2F_2 and H_2S are re	spectively:	
a) 0, +1, and -2	b) -2, +1, and -2	c) 0, +1 and +2	d) -2, +1, and +2
571. H ₂ SO ₄ has very corrosive	action on skin because:	P	
a) It reacts with proteins			
b) It acts as an oxidizing a	agent		
c) It acts as dehydrating a	agent		
d) It acts as dehydrating	agent and absorption of wa	ter is highly exothermic	
572. Which oxide do not act as	s a reducing agent?	AHUN .	
a) N ₂ O ₅	b) N ₂ O	c) NO	d) NO ₂
573. Fuming sulphuric acid is			
a) $H_2SO_4 + SO_3$	b) $H_2SO_4 + SO_2$	c) H ₂ SO ₄	d) $H_2SO_4 + SO_4$
574. The weakest acid is:			
a) H ₂ Se	b) H ₂ Te	c) H ₂ O	d) H ₂ S
575. HIO ₃ on heating gives:			
a) I ₂	b) 0 ₂	c) I_2O_5	d) HI
576. Halogen used as an antise	eptic is:		
a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
577. HF is a weak acid but HCl	is a strong acid because:		
a) HF is less ionic than H	Cl		
b) HF attacks glass but H	Cl does not		
c) Bond energy of HF is h	igher than HCl		
d) Electron affinity of fluo	orine is lower than chlorine		
578. The product A in the following the following states of the state	owing equation,		
$2KMnO_4 \rightarrow A + MnO_2 +$	0 ₂ , is:		
a) $K_2Mn_2O_7$	b) K_2MnO_4	c) K ₂ O	d) K_2O_2
579. The element present in co	ombined state in <i>Laminari</i>	a stenophylla is:	
a) Bromine	b) Iodine	c) Fluorine	d) Chlorine
580. In the manufacture of bro	omine from sea water, the n	nother liquor containing br	omide is treated with
a) Carbon dioxide	b) Chlorine	c) Iodine	d) Sulphur dioxide

581. Which of the following ed	quations is not correctly for	mulated?	
a) $3Cu + 8HNO_3(dil.) \rightarrow$	$3Cu(NO_3)_2 + 2NO + 4H_2O$)	
b) 3Zn + 8HNO ₃ (very dil	$1.) \rightarrow 3\text{Zn}(\text{NO}_3)_2 + 2\text{NO} + $	4H ₂ O	
c) 4Sn + 10HNO ₃ (dil.) -	$\rightarrow 4Sn(NO_3)_2 + NH_4NO_3 +$	$3H_{2}O$	
d) As + $3HNO_3(dil.) \rightarrow 1$	$H_3AsO_3 + 3NO_2$		
582. P ₄ O ₁₀ has short and long	P— O bonds. The number of	of short P— O bonds in this	compound is:
a) 1	b) 2	c) 3	d) 4
583. Which of the following ac	cts as fluoro Lewis acids?		
a) RuF ₅	b) SbF ₅	c) AsF ₅	d) All of these
584. A radioactive element X_0	decays to give two inert gas	es. X is:	
a) ²³⁸ U	b) ²²⁶ ₈₈ Ra	c) ₉₀ Th	d) ₈₉ Ac
585. Which one of the following	ng can be purified by sublin	nation?	
a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂
586. Noble gases do not occur	in:		
a) Nature	b) Ores	c) Atmosphere	d) Sea water
587. Ammonia is:			
a) Polar solvent	b) Non-polar	c) Paramagnetic	d) None of these
588. The treatment of Cu with	dilute HNO₃ gives		
a) N ₂ O	b) NO	c) NH ₄ +	d) NO ₂
589. Wrong statement about I	HNO ₃ is:		
a) The proteins are conv	erted into xanthoproteins		
b) HNO ₃ acts as a dehydr			
c) It exists in two canoni		P	
d) HNO ₃ acts as an oxidiz	zing agent		
590. Sulphur on boiling with N	NaOH solution gives		
a) $Na_2SO_3 + H_2S$	b) $Na_2S_2O_3 + Na_2S$	c) $Na_2S_2O_3 + NaHSO_3$	d) $Na_2SO_3 + SO_2$
591. Electronegativity of an in		LACITAL	
a) High	b) Low	c) Negative	d) Zero
592. Good conductor of electr	icity is:		
a) Yellow P	b) Red p	c) Violet P	d) Black P
593. Which burns to form an o			
a) Hydrogen	b) Phosphorus	c) Sodium	d) Sulphur
594. Helium was discovered b	•		
a) Frankland and Lockye	r		
b) Rayleigh			
c) Ramsay			
d) None of these			
595. SO ₂ does not act as			
a) Bleaching agent	b) Oxidising agent	c) Reducing agent	d) Dehydrating agent
596. NaOH + P_4 + $H_2O \rightarrow ?$			
a) $PH_3 + NaH_2PO_2$	b) PH $_3$ + Na $_2$ PO $_4$	c) $PH_3 + Na_2HPO_2$	d) $H_3PO_4 + NaO$
597. Peroxy linkage is present			
a) Caro's acid	b) Pyrosulphuric acid	c) Sulphurous acid	d) Dithionic acid
598. Which requires catalyst?			
a) $S+O_2 \longrightarrow SO_2$	b) $2S O_2 + O_2 \rightarrow 2SO_3$	c) $C + O_2 \longrightarrow CO_2$	d) All of the above
599. Which of the following is	•		
a) He	b) Ne	c) H ₂	d) N ₂
600. The noble gas forming m	=		
a) Xe	b) Ne	c) Ar	d) He

601. Dinitrogen tetroxide, N	₂ O ₄ , is a mixed anhydride b	ecause it:			
a) Is a mixture of N_2O_3	a) Is a mixture of N_2O_3 and N_2O_5				
b) Decomposes into tw	b) Decomposes into two oxides of nitrogen				
c) Reacts with water to	c) Reacts with water to form nitric acid				
d) Reacts with water to	o form two acids				
602. A depolarizer used in d	ry batteries is:				
a) KOH	b) NH ₂ OH	c) MnO ₂	d) Na ₃ PO ₄		
603. Which one of the follow	· -	· -	, <u>, , , , , , , , , , , , , , , , , , </u>		
	oalloons instead of hydroger		non- inflammable		
	enic agent for carrying out e	-			
	and sustain powerful super				
d) It is used in gas cool	= = = = = = = = = = = = = = = = = = = =				
604. Which of the following		action of constituent elem	nents?		
a) XeO ₃	b) XeF ₂	c) XeF ₆	d) XeF ₄		
605. White phosphorus is	b) ner z	6) 1161 6	4		
a) A monoatomic gas		b) P ₄ a tetrahedral sol	id		
c) P_8 , a crown		d) A linear diatomic m			
606. Sides of match box hav	e coating of	a) 11 illiear diaconne ill	iorecure		
a) Potassium chlorate,	_	b) Antimony sulphide,	red phoephorus		
c) Potassium chlorate,		d) Antimony sulphide,			
607. A positive chromyl chlo			, reu ieau		
a) Br ⁻	b) Cl ⁻	c) SO_3^{2-}	d) I ⁻		
•		c) 30 ₃	u) i		
608. Zinc and cold dil. HNO ₃		a) NII NO	J) 7 NO		
a) NO	b) NO ₂	c) NH ₄ NO ₃	d) ZnNO ₃		
609. In presence of moisture) (; 1 ,	D.N		
a) Act as oxidant	b) Act as reductant	c) Gain electron	d) Not act as reductant		
610. Which has the highest		CATION	Dan		
a) HBr	b) HCl	c) HF	d) HI		
611. SO ₂ can be used as:	13.50 ()	N A 1.1	D A11 C.1		
a) Bleaching agent	b) Disinfectant	c) Antichlor	d) All of these		
612. When sugar is treated					
a) Oxidized	b) Dehydrated	c) Reduced	d) sulphonated		
613. Liquid ammonia is used	d for refrigeration because		_		
a) It is basic		_	b) It is a stable compound		
c) It has a high dipole r		d) It has a high heat o	f vaporisation		
614. The smog is essentially	caused by the presence of				
a) O_2 and N_2		b) 0_2 and 0_3			
c) O_3 and N_2		d) Oxides of sulphur and nitrogen			
J	does not increase its conc	centration beyond 20.24	per cent because hydrochloric		
acid:					
a) Is very volatile					
b) Is extremely soluble	in water				
c) Forms a constant bo	iling mixture				
d) Forms a saturated so	olution at this concentration	1			
_		en air sometimes produc	es a cloud of white fumes. The		
explanation for it is tha	it:				
a) Strong affinity of HC	l gas for moisture in air resu	ults in forming of droplets	s of liquid solution which		
appears like a cloudy	y smoke				

b) Due to strong affinity for water conc. HCl pulls moisture of air towards itself. The moisture forms

droplets of water and	hence the cloud				
c) conc. HCl emits strongly smelling gas all the time					
d) Oxygen in air reacts with the emitted HCl gas to form a cloud of chlorine gas					
617. Atomicity of phosphorus	s is:				
a) 1	b) 2	c) 3	d) 4		
618. Each of the following is t	rue for white and red phosp	phorus except that they			
a) Can be oxidised by he	ating in air	b) Are both soluble in CS ₂	2		
c) Consists of same kind	of atoms	d) Can be converted into	one another		
619. The <i>M</i> —Cl bond energie	s are different in:				
a) PCl ₅	b) PCl ₃	c) CCl ₄	d) NCl ₃		
620. Most acidic oxide is:					
a) As ₂ O ₃	b) P ₂ O ₃	c) Sb ₂ O ₃	d) Bi ₂ O ₃		
621. King of chemicals is:					
a) HNO ₃	b) H ₂ SO ₄	c) HCl	d) None of these		
622. Fluorine is the best oxid					
a) Highest electron affin	= =	b) Highest E _{red}			
c) Highest E _{oxid}		d) Lowest electron affinit	V		
623. Which bond has the grea	utest nolarity?	a, 2011 est electron annine	J		
a) H—Cl	b) H—Br	c) H—I	d) H—F		
624. Berthelot's salt is:	b) II bi	c) II I	ujii r		
a) KClO ₃	b) KIO ₃	c) KBrO ₃	d) None of these		
625. The strongest oxidizing			u) None of these		
a) Ozone	b) Oxygen	c) Fluorine	d) Chlorine		
626. All the elements of the o	, , ,	- c) Pluorine	u) cinorine		
a) Non-metals	b) Metalloids	c) Radioactive	d) Polymorphic		
627. As the number of —OH a					
the acidic strength	groups increases in hypopin	ospilorus aciu pilospilorus a	aciu aliu pilospilorie aciu		
a) Increases	(JPLUS EDU)	h) Dogrange			
c) Remains nearly same	CALLOS ED G	d) Remains appropriately	, camo		
628. Nitric acid oxidizes sulpl	aur to	u) Kemams appropriately	Same		
a) SO_2	b) SO ₃	c) H ₂ SO ₃	d) H ₂ SO ₄		
629. Which one is correct if H			u) 11 ₂ 30 ₄		
a) $HCl + HF \rightarrow H_2Cl^+ +$		mer m nquiu state:			
b) HCl + HF \rightarrow No reac					
c) $HCl + HF \rightarrow H_2F^+ +$					
d) None of the above	GI				
630. Red phosphorus is chem	ically uproactive because				
a) It does not contain P-					
•					
b) It does not contain tel	-				
c) It does not catch fire i	=				
d) It has a polymeric structure of the control of t		shoonhowyo nontovido?			
631. Which acid is not formed			4) II DO		
a) HPO ₃	b) $H_4P_2O_7$	c) H ₃ PO ₄	d) H ₃ PO ₃		
632. To make nitrogen dioxid	· -	sea through o-tube:			
a) Containing FeSO ₄ solu					
b) Containing NaOH solu					
c) Kept in freezing mixto	ше				
d) Kept in boiling water 633. Sulphur does not combin	no with which of the follows:	ng halogons to form a same	ound?		
- 055, SUIDHUL AUES HUL COMDII	te with willth of the followi	ng naiogens to form a come	ounu:		

a) Cl ₂	b) Br ₂	c) I ₂	d) F ₂
634 . If Na_2SO_3 is left op			
a) Na ₂ S	b) Na ₂ SO ₄	c) NaHSO ₄	d) NaHSO ₃
635. Which is planar mo	olecule?		
a) XeO ₄	b) XeF ₄	c) XeOF ₄	d) XeO ₂ F ₂
636. Bacteria convert m	olecular nitrogen into:		
a) NO_3	b) Amino acids	c) NO ₂	d) NH ₃
637. Nitric acid (conc.)	oxidizes phosphorus to:		
a) H ₃ PO ₄	b) P ₂ O ₃	c) H ₃ PO ₃	d) $H_4P_2O_7$
638. The acidity of hydr	rides of O, S, Se, Te varies in the o	rder	
a) $H_2O > H_2S > H_2S$	Se > H ₂ Te	b) $H_2O < H_2S < H_2Se$	$e < H_2Te$
c) $H_2S > H_2O > H_2S$	$Se > H_2Te$	d) $H_2Se > H_2S > H_2O$	> H ₂ Te
639. Which of the follow	ving is anhydride of perchloric ac	rid?	
a) Cl ₂ O ₇	b) Cl ₂ O ₅	c) Cl_2O_3	d) HCIO
640. When plants and a	nimals decay the organic nitroger	n is converted into ino	rganic nitrogen .The inorganic
nitrogen in the for			
a) Ammonia	b) Elements of nitrogen	c) Nitrates	d) Nitrides
641. Minimum bond len	-	,	,
a) H ₂ S	b) HF	c) H ₂ O	d) ICI
· -	ving has no action with starch sol		,
a) F ₂ and Cl ₂	b) Br ₂	c) I ₂	d) None of these
	ough KMnO ₄ solution gives:	-) -2	,
a) K_2SO_3	b) S	c) K ₂ MnO ₄	d) MnO ₂
,	cted to happen when phosphine g		· -
	e formed and the mixture cools do		e guo
•	ed with warming up		
	e formed and the mixture warms	un-	
	y cools down	PATION	
	t gives chorine like smell is:	PLITOIL	
a) CHCl ₃	b) CaOCl ₂	c) Chloretone	d) None of these
646. Hyponitrous acid i		c) dinoretone	a) None of these
a) HNO ₂	b) HNO ₄	c) H N O	d) CaN ₂
· -	$\rightarrow A+3$ NaH ₂ PO ₂ here A is	c) $H_2N_2O_2$	u) carv ₂
a) NH_3	b) PH_3	c) H ₃ PO ₄	d) H_3PO_3
•	•	•	eous solution on treatment with
	9	•	ssolves Mg ribbon with evolution
	Le precipitate. The saturated aquicate X and Y are respectively:	eous solutions also uis	ssolves mg ribbon with evolution
_		a) Cl U	a) u ci
a) CO ₂ , Cl ₂	b) Cl ₂ , CO ₂	c) Cl ₂ , H ₂	d) H ₂ , Cl ₂
	there is no change in valency and	the oxidation state?	
a) $SO_2 + H_2S \rightarrow 2$	_		
b) $2Na + 0 \rightarrow Na_2$			
	$\rightarrow \text{Na}_2\text{SO}_4 + \text{H}_2\text{O}_2$		
d) $4KClO_3 \rightarrow 3KCl$			
	prepared from solid KMnO ₄ by:		
a) Dissolving the s			
b) Dissolving the s			
c) Treating the sol			
d) Strongly heating		.1	
651. In solid state of no	ble gases, the atoms are held toge	ether by:	

a) Ionic bonds	b) Hydrogen bonds	c) Van der Waals' forces	d) Hydrophobic forces		
652. Potassium manganate (
a) Chlorine is passed into aqueous K ₂ MnO ₄ solution					
b) Manganese dioxide is fused with potassium hydroxide in air					
c) Potassium permanganate reacts with conc. Sulphuric acid					
d) None of the above					
653. Phosphorus pentoxide i	s widely used as				
a) Bleaching agent	b) Dehydrating agent	c) Oxidising agent	d) Reducing agent		
654. In the reaction, HCOOH	$\xrightarrow{\text{H}_2\text{SO}_4}$ CO + H ₂ O; H ₂ SO ₄ acts	s as			
a) Reducing agent	b) Oxidising agent	c) Dehydrating agent	d) All of these		
655. Which are hydrolysed b	y water?		•		
a) XeF ₂	b) XeF ₄	c) XeF ₆	d) All of these		
656. Weldon mud is:	•		•		
a) MnO ₂	b) $Mn(OH)_2$	c) 2CaO·MnO ₂	d) Mn_2O_3		
657. In the manufacture of H		-			
a) H ₂ SO ₄ · NO ₂	b) H ₂ SO ₄ · NO	c) H ₂ SO ₄ · 2NO	d) HSO ₄ · NO		
658. In PCl ₅ , phosphorus und		<i>,</i> 2 4	, ,		
a) sp^2 -hybridisation	b) sp^3 -hybridisation	c) sp^3d -hybridisation	d) sp^3d^2 -hybridisation		
659. The perhalate ion with i		• •	,,		
a) $ClO_{\overline{4}}$	b) BrO ₄	c) IO_4^-	d) ClO ⁻		
660. If two litre of air is passe		-	-		
	volume finally obtained will		Turther reduction in		
a) 200 mL	b) 20 mL	c) Zero	d) 10 mL		
661. What products are expe		•			
a) HClO ₃ and Cl ₂ O	b) HClO ₂ and HClO ₄	c) HCl and Cl_2O	d) HCl and HClO ₃		
662. On exciting Cl ₂ molecule		c) fici and Gizo	uj fici aliu ficio3		
a) Cl		c) Cl ⁺	d) All of these		
663. Smelling salt is:	b) Cl ⁻	c) Cl ⁺	u) All of these		
a) $(NH_4)_2SO_4$	b) (NH ₄) ₃ PO ₄	c) NH ₄ Cl	4) (NH) CO		
		C) NH ₄ Cl	d) $(NH_4)_2CO_3$		
664. Sulphate ion has geo	•	a) Tatwah adwal	d) None of these		
a) Trigonal	b) Square planar	c) Tetrahedral	d) None of these		
665. Sulphur in + 3 oxidation	•) mi '	D.D 1-1		
a) Dithionous acid	b) Sulphurous acid	c) Thiosulphuric acid	d) Pyrosulphuric acid		
666. Oleum is					
a) Fuming H ₂ SO ₄	13.001 6 11 1) C	D.C. 1 11		
	b) Oil of vitriol	c) Castor oil	d) Caro's acid		
-	b) Oil of vitriol gan electron becomes:	c) Castor oil	d) Caro's acid		
a) α -particle	-	c) Castor oil	d) Caro's acid		
a) α-particle b) Hydrogen atom	g an electron becomes:	c) Castor oil	d) Caro's acid		
a) α-particleb) Hydrogen atomc) Positively charged he	g an electron becomes:	c) Castor oil	d) Caro's acid		
a) α-particle b) Hydrogen atom c) Positively charged he d) Negatively charged h	g an electron becomes: elium ion elium ion		d) Caro's acid		
 a) α-particle b) Hydrogen atom c) Positively charged he d) Negatively charged h 668. Concentrated nitric acid 	g an electron becomes: elium ion elium ion I on heating decomposes to g	give:			
a) α -particle b) Hydrogen atom c) Positively charged he d) Negatively charged h 668. Concentrated nitric acid a) O_2 and N_2	g an electron becomes: elium ion elium ion I on heating decomposes to g b) NO		d) Caro's acid $\label{eq:d}$ d) NO_2 and O_2		
 a) α-particle b) Hydrogen atom c) Positively charged he d) Negatively charged h 668. Concentrated nitric acid a) O₂and N₂ 669. Bromine is obtained on 	g an electron becomes: elium ion I on heating decomposes to g b) NO a commercial scale from:	give: c) O ₂	d) NO_2 and O_2		
 a) α-particle b) Hydrogen atom c) Positively charged he d) Negatively charged h 668. Concentrated nitric acid a) O₂ and N₂ 669. Bromine is obtained on a) Caliche 	g an electron becomes: elium ion elium ion I on heating decomposes to g b) NO a commercial scale from: b) Carnallite	give:			
 a) α-particle b) Hydrogen atom c) Positively charged he d) Negatively charged h 668. Concentrated nitric acid a) O₂and N₂ 669. Bromine is obtained on 	g an electron becomes: elium ion elium ion I on heating decomposes to g b) NO a commercial scale from: b) Carnallite	give: c) O ₂	d) NO_2 and O_2		
 a) α-particle b) Hydrogen atom c) Positively charged he d) Negatively charged h 668. Concentrated nitric acid a) O₂ and N₂ 669. Bromine is obtained on a) Caliche 	g an electron becomes: elium ion elium ion I on heating decomposes to g b) NO a commercial scale from: b) Carnallite	give: c) O ₂	d) NO_2 and O_2		
 a) α-particle b) Hydrogen atom c) Positively charged he d) Negatively charged h 668. Concentrated nitric acid a) O₂ and N₂ 669. Bromine is obtained on a) Caliche 670. The blue coloured gas is a) F₂ 671. The catalyst used in Hab 	g an electron becomes: elium ion I on heating decomposes to g b) NO a commercial scale from: b) Carnallite s: b) O ₃	give: c) O ₂ c) Common salt c) NO	d) NO_2 and O_2 d) Cryolite		
 a) α-particle b) Hydrogen atom c) Positively charged he d) Negatively charged h 668. Concentrated nitric acid a) O₂ and N₂ 669. Bromine is obtained on a) Caliche 670. The blue coloured gas is a) F₂ 	g an electron becomes: elium ion I on heating decomposes to g b) NO a commercial scale from: b) Carnallite s: b) O ₃	give: c) O ₂ c) Common salt c) NO	d) NO_2 and O_2 d) Cryolite		

682. 683. 684. 685. 686. 687. 689. 690.	Which is not correct for waa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following pha) White Ozone reacts with dry iod a) IO ₂	chite phosphorus (P ₄)? sons I P and C gives respectively CO ₂ CO anot be formed? b) He ⁺ displaces three halogens from by F osphorus is most stable? b) Red ine to give: b) I ₂ O ₃ on of light and appears yell b) Green and angle in SO ₃ are: b) sp ³ ,109° 28' oke screen is b) Sodium phosphate	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl c) Black c) I ₂ O ₄	
682. 683. 684. 685. 686. 687. 689. 690.	Which is not correct for wa a) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following pha) White Ozone reacts with dry iod a) IO ₂ Fluorine absorbs portia) Yellow The hybridization and bora) sp^2 ,120° The substance used in sma) Sodium chloride Which is cyclic phosphate a) Na ₅ P ₃ O ₁₀	white phosphorus (P_4) ? ons P and C gives respectively CO_2 CO mot be formed? b) He^+ displaces three halogens from E_1 b) F osphorus is most stable? b) Red ine to give: b) I_2O_3 on of light and appears yell b) Green and angle in SO_3 are: b) sp^3 , 109° 28' oke screen is b) Sodium phosphate ?	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl c) Black c) I ₂ O ₄ ow. c) Violet c) sp ² ,109° 28' c) Calcium fluoride	CO ₂ d) He ₂ d) I d) All stable d) I ₄ O ₉ d) Red d) None of these d) Calcium phosphide
682. 683. 684. 685. 686. 687. 689. 690.	Which is not correct for wa a) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following pha) White Ozone reacts with dry iod a) IO ₂ Fluorine absorbs portia) Yellow The hybridization and bora) sp^2 ,120° The substance used in sma) Sodium chloride Which is cyclic phosphate	white phosphorus (P_4) ? ons P and C gives respectively CO_2 CO mot be formed? b) He^+ displaces three halogens from E_1 b) F osphorus is most stable? b) Red ine to give: b) I_2O_3 on of light and appears yell b) Green and angle in SO_3 are: b) sp^3 , 109° 28' oke screen is b) Sodium phosphate ?	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl c) Black c) I ₂ O ₄ ow. c) Violet c) sp ² ,109° 28' c) Calcium fluoride	CO ₂ d) He ₂ d) I d) All stable d) I ₄ O ₉ d) Red d) None of these d) Calcium phosphide
682. 683. 684. 685. 686. 687. 689.	Which is not correct for waa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following pha) White Ozone reacts with dry iod a) IO ₂ Fluorine absorbs portia) Yellow The hybridization and bora) sp ² ,120° The substance used in sma) Sodium chloride	chite phosphorus (P ₄)? sons I P and C gives respectively CO ₂ CO anot be formed? b) He ⁺ displaces three halogens from by F osphorus is most stable? b) Red ine to give: b) I ₂ O ₃ on of light and appears yell b) Green and angle in SO ₃ are: b) sp ³ ,109° 28' oke screen is b) Sodium phosphate	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl c) Black c) I ₂ O ₄ ow. c) Violet c) sp ² ,109° 28'	CO ₂ d) He ₂ d) I d) All stable d) I ₄ O ₉ d) Red d) None of these
682. 683. 684. 685. 686. 687. 689.	Which is not correct for waa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following pha) White Ozone reacts with dry iod a) IO ₂ Fluorine absorbs portia) Yellow The hybridization and bora) sp ² ,120° The substance used in sm	white phosphorus (P_4) ? ons P and C gives respectively CO_2 CO nnot be formed? b) He^+ displaces three halogens from $E(P_4)$ by $E(P_4)$ b) Red ine to give: b) $E(P_4)$ on of light and appears yell $E(P_4)$ b) Green and angle in $E(P_4)$ oke screen is	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl c) Black c) I ₂ O ₄ ow. c) Violet c) sp ² ,109° 28'	CO ₂ d) He ₂ d) I d) All stable d) I ₄ O ₉ d) Red d) None of these
682. 683. 684. 685. 686. 687. 688.	Which is not correct for waa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following phaa) White Ozone reacts with dry iod a) IO ₂ Fluorine absorbs portia) Yellow The hybridization and bora) sp ² ,120°	chite phosphorus (P ₄)? sons JPLUM P and C gives respectively CO ₂ CO not be formed? b) He ⁺ displaces three halogens from by b) F osphorus is most stable? b) Red ine to give: b) I ₂ O ₃ on of light and appears yell b) Green and angle in SO ₃ are: b) sp ³ ,109° 28'	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl c) Black c) I ₂ O ₄ low. c) Violet	CO ₂ d) He ₂ d) I d) All stable d) I ₄ O ₉ d) Red
682. 683. 684. 685. 686. 687. 688.	Which is not correct for waa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following pha) White Ozone reacts with dry iod a) IO ₂ Fluorine absorbs portia) Yellow The hybridization and bor	chite phosphorus (P ₄)? sons p and C gives respectively CO ₂ CO anot be formed? b) He ⁺ displaces three halogens from by F osphorus is most stable? b) Red ine to give: b) I ₂ O ₃ on of light and appears yell by Green and angle in SO ₃ are:	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl c) Black c) I ₂ O ₄ low. c) Violet	CO ₂ d) He ₂ d) I d) All stable d) I ₄ O ₉ d) Red
682. 683. 684. 685. 686. 687.	Which is not correct for wa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following pha) White Ozone reacts with dry iod a) IO ₂ Fluorine absorbs portia) Yellow	chite phosphorus (P ₄)? sons p and C gives respectively CO ₂ CO nnot be formed? b) He ⁺ displaces three halogens from by F osphorus is most stable? b) Red ine to give: b) I ₂ O ₃ on of light and appears yell b) Green	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl c) Black c) I ₂ O ₄	CO_2 d) He_2 d) I d) All stable d) I_4O_9
682. 683. 684. 685. 686. 687.	Which is not correct for wa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following pha) White Ozone reacts with dry ioda) IO ₂ Fluorine absorbs porti	chite phosphorus (P ₄)? sons A P and C gives respectively CO ₂ CO anot be formed? b) He ⁺ displaces three halogens from b) F osphorus is most stable? b) Red ine to give: b) I ₂ O ₃ on of light and appears yell	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl c) Black c) I ₂ O ₄	CO_2 d) He_2 d) I d) All stable d) I_4O_9
682. 683. 684. 685. 686.	Which is not correct for waa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following pha) White Ozone reacts with dry iod a) IO ₂	chite phosphorus (P ₄)? sons , P and C gives respectively CO ₂ CO nnot be formed? b) He ⁺ lisplaces three halogens from by F osphorus is most stable? b) Red ine to give: b) I ₂ O ₃	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl c) Black c) I ₂ O ₄	CO ₂ d) He ₂ d) I d) All stable
682. 683. 684. 685. 686.	Which is not correct for wa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following pha) White Ozone reacts with dry iod	chite phosphorus (P ₄)? sons A P and C gives respectively CO ₂ CO anot be formed? b) He ⁺ displaces three halogens from by F osphorus is most stable? b) Red ine to give:	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl	CO ₂ d) He ₂ d) I d) All stable
682. 683. 684. 685.	Which is not correct for waa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br Which of the following ph	chite phosphorus (P ₄)? sons , P and C gives respectively CO ₂ CO anot be formed? b) He ⁺ displaces three halogens from b) F osphorus is most stable?	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂ c) He om their compounds c) Cl	CO_2 d) He_2 d) I
682. 683. 684.	Which is not correct for wa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which ca) Br	chite phosphorus (P ₄)? sons , P and C gives respectively CO ₂ CO anot be formed? b) He ⁺ displaces three halogens from the properties of the properti	b) HIO_{3} , $H_{2}SO_{4}$, $H_{3}PO_{3}$ and d) $I_{2}O_{5}$, SO_{2} , $P_{2}O$ and CO_{2} c) He om their compounds	CO ₂
682. 683. 684.	Which is not correct for wa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺ Make the element which of	white phosphorus (P ₄)? ons , P and C gives respectively CO ₂ CO nnot be formed? b) He ⁺ lisplaces three halogens from	b) HIO_{3} , $H_{2}SO_{4}$, $H_{3}PO_{3}$ and d) $I_{2}O_{5}$, SO_{2} , $P_{2}O$ and CO_{2} c) He om their compounds	CO ₂
682. 683. 684.	Which is not correct for wa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following cara) He ²⁺	hite phosphorus (P ₄)? ons , P and C gives respectively CO ₂ CO anot be formed? b) He ⁺	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂	CO_2
682. 683.	Which is not correct for wa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and Which of the following car	white phosphorus (P_4) ? Sons P and C gives respectively CO_2 CO Anot be formed?	b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂	CO_2
682.	Which is not correct for wa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and c) HIO ₂ , H ₂ SO ₄ , H ₃ PO ₄ and	white phosphorus (P ₄)? ons , P and C gives respectively CO ₂	b) HIO _{3,} H ₂ SO ₄ , H ₃ PO ₃ and	
682.	Which is not correct for wa) Six P—P sigma bonds b) Four P—P single bonds c) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO ₃ with I, Sa) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and	white phosphorus (P_4) ? Sons One is P and C gives respectively CO_2	b) HIO _{3,} H ₂ SO ₄ , H ₃ PO ₃ and	
682.	Which is not correct for wa) Six P—P sigma bondsb) Four P—P single bondsc) Four lone pair of electrd) P—P—P angle of 60° Reaction of HNO3 with I, S	hite phosphorus (P ₄)? s ons , P and C gives respectively	ATION	
682.	Which is not correct for wa) Six P—P sigma bondsb) Four P—P single bondsc) Four lone pair of electrd) P—P—P angle of 60°	hite phosphorus (P ₄)? s ons	ATION	u) III
682.	Which is not correct for wa) Six P—P sigma bondsb) Four P—P single bondsc) Four lone pair of electr	rhite phosphorus (P ₄)?	ATION	u) iii
682.	Which is not correct for water a) Six P—P sigma bondsb) Four P—P single bonds	rhite phosphorus (P ₄)?	e, m	u) iii
682.	Which is not correct for was a) Six P—P sigma bonds	hite phosphorus (P ₄)?	ej iui	u) III
682.	Which is not correct for w		ej iui	u) III
			c) iui	d) III
		DIAI		
	a) Ne	b) Ar	c) Rn	d) Kr
	The noble gas which is no		C) I.JT	a) None of these
	a) 1.40	b) 1.66	c) 1.34	d) None of these
	The poisson's ratio for ine	· -	C) NO	u) 1120
	a) CO	b) F ₂ O	c) NO	d) N ₂ O
	Oxygen exhibits positive of			
	d) HCl ionizes in aqueous		ution uoes	
		Dhm's law, whereas the sol	ution does	
	 a) H₂O is a good conducte b) A gas cannot conduct e 			
	because:	on of alastoisites		
	-	onductor of electricity, wh	ile its aqueous solution is	a good conductor. This is
	a) Are oxidized	b) Are reduced	c) Form Sulphur halides	-
	When H ₂ S reacts with hal			
		b) sp^2 -hybridized	c) <i>sp</i> -hybridized	d) sp^3 d-hybridized
	In XeO ₃ , Xe is:	2		2
	a) KrF ⁻ [SbF ₆] ⁻	b) [KrF ₃] ⁻ [SbF ₄] ⁺	c) KrF ⁺ [MoOF ₅]	d) KrF ⁺ [WOF ₅] ⁻
	Which of the following do			
;	a) Flowers of sulphur	b) H ₂ SO ₄	c) H_2SO_3	d) Free sulphur
	Large deposits of sulphur	in nature are found in the	form of:	
	a) ZnCl ₂	b) COCl ₂	c) CuCl ₂	d) CdCl ₂
674.				
673.	a) ClO ₂ H ₂ S does not produce met	b) NOCl tallic sulphide with	c) NCl ₃	d) N_2O_4

693. Elements O, S, Se and Te are usually known as:				
a) Metals	b) Rare earth metals	c) Coinage metals	d) Chalcogens	
694. Phosphine is produced	by adding water to			
a) CaC ₂	b) HPO ₃	c) Ca ₃ P ₂	d) P_4O_{10}	
695. Which of the following	is more soluble in water?			
a) N ₂	b) 0 ₂	c) Ar	d) He	
696. Which of the following	compound is tribasic acid?			
a) H ₃ PO ₂	b) H ₃ PO ₃	c) H_3PO_4	d) $H_4P_2O_7$	
697. Which pair gives Cl ₂ at	room temperature?			
a) Conc. HCl + KMnO ₄	b) NaCl + Conc. H_2SO_4	c) NaCl + MnO ₂	d) NaCl + Conc. HNO ₃	
698. Which of the following	oxide does not form acidic a	queous solution?		
a) N_2O_3	b) NO ₂	c) N_2O_5	d) NO	
699. Which one below is a p	seudohalide?			
a) I -	b) IF ⁻	c) ICl	d) CN ⁻	
700. The Nessler's reagent of	contains:			
a) Hg ₂ +	b) Hg ²⁺	c) Hg ₂	d) Hg ₄ ² -	
701. Interhalogen compound	ds are:			
a) Ionic compounds				
b) Coordinate compour	nds			
c) Molecular compound	ds			
d) Covalent compounds	5			
702. Fluorine does not show	positive oxidation states be	cause:		
a) It is a most electrone	gative element	~		
b) It forms only anions	in ionic compounds			
c) It cannot form multip	ple bonds			
d) It shows non-bonded	d electron pair repulsion due	to small size		
703. Poison for platinum, a c	catalyst in contact process of	H ₂ SO ₄ is:		
a) S	b) P 1 1 5 E 1 1 1	c) As	d) C	
704. The solubility of iodine	in water is greatly increased	l by:		
a) Adding an acid				
b) Boiling the solution				
c) Cooling the solution				
d) Adding potassium io	dide			
705. The catalyst used in the				
	e preparation of red P from y	ellow P is:		
a) I ₂	b) Ni	ellow P is: c) ZnO	d) Fe	
 a) I₂ 706. Which one of the follow 	b) Ni	c) ZnO		
	b) Ni	c) ZnO		
706. Which one of the follow	b) Ni ving is present as an active in	c) ZnO agredient in bleaching pow	der for bleaching action?	
706. Which one of the follow a) CaCl ₂	b) Ni ving is present as an active in b) CaOCl ₂	c) ZnO agredient in bleaching pow	der for bleaching action?	
 706. Which one of the follow a) CaCl₂ 707. Nitrogen dioxide 	b) Ni ving is present as an active in b) CaOCl ₂ water	c) ZnO agredient in bleaching pow	der for bleaching action?	
 706. Which one of the follow a) CaCl₂ 707. Nitrogen dioxide a) Does not dissolve in b) Dissolves in water for 	b) Ni ving is present as an active in b) CaOCl ₂ water	c) ZnO agredient in bleaching pow c) Ca(OCl) ₂	der for bleaching action?	
 706. Which one of the follow a) CaCl₂ 707. Nitrogen dioxide a) Does not dissolve in b) Dissolves in water for c) Dissolves in water to 	b) Ni ving is present as an active in b) CaOCl ₂ water orming nitric acid	c) ZnO ngredient in bleaching pow c) Ca(OCl) ₂ nd nitric acid	der for bleaching action?	
 706. Which one of the follow a) CaCl₂ 707. Nitrogen dioxide a) Does not dissolve in b) Dissolves in water for c) Dissolves in water to 	b) Ni ving is present as an active in b) CaOCl ₂ water orming nitric acid o form a mixture of nitrous an	c) ZnO ngredient in bleaching pow c) Ca(OCl) ₂ nd nitric acid	der for bleaching action?	
 706. Which one of the follow a) CaCl₂ 707. Nitrogen dioxide a) Does not dissolve in b) Dissolves in water for c) Dissolves in water to d) Dissolves in water to 	b) Ni ving is present as an active in b) CaOCl ₂ water orming nitric acid o form a mixture of nitrous an	c) ZnO ngredient in bleaching pow c) Ca(OCl) ₂ nd nitric acid	der for bleaching action?	
 706. Which one of the follow a) CaCl₂ 707. Nitrogen dioxide a) Does not dissolve in b) Dissolves in water for c) Dissolves in water to d) Dissolves in water to 708. The gas used in gas the 	b) Ni ving is present as an active in b) CaOCl ₂ water orming nitric acid o form a mixture of nitrous aconduction of the companient of t	c) ZnO ngredient in bleaching pow c) Ca(OCl) ₂ nd nitric acid off oxygen	der for bleaching action? d) CaO ₂ Cl	
706. Which one of the follow a) CaCl ₂ 707. Nitrogen dioxide a) Does not dissolve in b) Dissolves in water for c) Dissolves in water to d) Dissolves in water to Total The gas used in gas the a) He	b) Ni ving is present as an active in b) CaOCl ₂ water orming nitric acid o form a mixture of nitrous aconomic of the community of the commu	c) ZnO ngredient in bleaching pow c) Ca(OCl) ₂ nd nitric acid off oxygen	der for bleaching action? d) CaO ₂ Cl	
 706. Which one of the follow a) CaCl₂ 707. Nitrogen dioxide a) Does not dissolve in b) Dissolves in water for c) Dissolves in water to d) Dissolves in water to 708. The gas used in gas the a) He 709. Mixture of O₂ and N₂O 	b) Ni ving is present as an active in b) CaOCl ₂ water orming nitric acid o form a mixture of nitrous and form nitrous acid and gives rmometer is: b) O ₂ is used as: b) Anaesthetic	c) ZnO agredient in bleaching pow c) Ca(OCl) ₂ and nitric acid off oxygen c) Xe c) In welding	der for bleaching action? d) CaO ₂ Cl d) Ne	
706. Which one of the follow a) CaCl ₂ 707. Nitrogen dioxide a) Does not dissolve in b) Dissolves in water fo c) Dissolves in water to d) Dissolves in water to d) Dissolves in gas the a) He 709. Mixture of O ₂ and N ₂ O a) Fuel	b) Ni ving is present as an active in b) CaOCl ₂ water orming nitric acid o form a mixture of nitrous and form nitrous acid and gives rmometer is: b) O ₂ is used as: b) Anaesthetic	c) ZnO agredient in bleaching pow c) Ca(OCl) ₂ and nitric acid off oxygen c) Xe c) In welding	der for bleaching action? d) CaO ₂ Cl d) Ne	

a) 1	b) 3	c) 2	d) 0
712. The angular shape of	ozone molecule (0_3) consists of	of:	
a) 2 sigma and 2 π -bo	onds		
b) 1 sigma and 1 π -bo	ond		
c) 2 sigma and 1 π -bo	ond		
d) 1 sigma and 2 π -bo	onds		
713. Bromine vapour turn	s moist starch-iodide paper:		
a) Brown	b) Red	c) Blue	d) Colourless
	ed by the action of HNO ₃ on		
a) Cu	b) Sn	c) Zn	d) Fe
715. The allotrope of Sulph			
a) Rhombic sulphur	b) Monoclinic sulphur	c) Plastic sulphur	d) Flowers of sulphur
	s not used to prepare HBr fron	n KBr because it:	
a) Oxidizes HBr			
b) Reduces HBr	6335		
c) Causes disproporti			
d) Reacts too slowly v			C.1 .1 YAYL: 1 C.1
	yer at a height of about 29 kil	lometres above the surface	e of the earth. Which of the
following statements			
	se ozone is dangerous to living	_	o of ogono
	nuse oxidation reactions can pr nuse ozone cuts out the ultravio	_	e or ozone
-	se ozone cuts out the importar		ch are vital for
photosynthesis	se ozone cuts out the importar	it radiations of the sun will	cii are vitarioi
718. Cl ₂ on passing throug	h Na. SO., solution gives:		
a) Na ₂ S	b) Na_2SO_4	c) NaHSO ₃	d) NaHS
719. SO ₂ reduces:	b) 1.u ₂ 504	c) mando3	u) mano
a) Mg	b) H ₂ S	c) KMnO ₄	d) All of these
_	our often shown by nitric acid		,
a) Bubbling air throu		Ž	
b) Boiling the acid			
c) Passing ammonia t	hrough acid		
d) Adding a little Mg p	_		
721. Which one will libera	te Br ₂ from KBr?		
a) I ₂	b) SO ₂	c) HI	d) Cl ₂
722. The halide which doe	s not give a precipitate with Ag	gNO ₃ is:	
a) F ⁻	b) Cl ⁻	c) Br ⁻	d) I ⁻
723. HF present as impurit	ty in gaseous F ₂ , can be remove	ed by passing over:	
a) P_2O_5	b) NaF	c) H_2SO_4	d) CaCl ₂
724. In pyrophosphoric ac	id the number of hydroxy grou	ps present are:	
a) 4	b) 3	c) 5	d) 7
-	to respirate is a mixture of		
a) Oxygen and nitrog		c) Oxygen and hydrogen	d) Oxygen and helium
	g gives M ³⁺ ion most readily?		
a) P	b) N	c) Sn	d) Bi
	onegative than sulphur, yet H ₂	S is acidic while H ₂ O is neu	ıtral. This is because:
a) Water is a highly as	-		
b) H—S bond is weakc) H₂S is a gas while I			

•	nt of H ₂ S is more than that o	fH ₂ O	
728. HI reacts with HNO ₃ to a) O_2	b) N ₂ O	c) HIO ₃	d) $NO_2 + I_2$
729. Phosphate $+$ conc. HNC	· -	, ,	$u_1 NO_2 + I_2$
		→ renow precipitate.	
The composition of yell		a) (NIII) DO -12MaO	d) NIL DO - MaO
	b) $(NH_4)_3PO_4 \cdot 12MoO_3$		
730. Density of nitrogen gas		_	en prepared by chemical
	und of nitrogen because aeri	iai mitrogen contains:	
a) CO ₂			
b) Argon	amala gaya ta O		
c) Some N ₂ molecules a		15:	
	₂ molecules derived from N	isotope	
731. Antichlor is a compoun			
a) Which absorbs chlor			
b) Which removes Cl ₂ f			
c) Which liberates Cl ₂ f			
	lyst in the manufacture of Cl		1
732. When F_2 reacts with ho		=	
a) O_2	b) H ₂	c) Na ₂ O	d) Na
733. The geometry of $XeOF_4$			D 0 + 1 - 1 - 1
a) Tetrahedral	b) Square pyramidal	c) Square planar	d) Octahedral
734. Oleum is	1) 0:1 (', ', 1) F : U.CO	D.M. Cil
a) Castor oil	b) Oil of vitriol	c) Fuming H ₂ SO ₄	d) None of these
735. Which reacts rapidly w	700-		D.N. O
a) White P	b) Red P	c) N ₂	d) N ₂ O
736. The chief source of iodi	ine in which it is present as s		
a) Carnallite	GPLUS EDU	b) Sea weeds	andium indaka
c) Caliche		d) Iodine never exists as	sodium iodate
737. As the atomic number of	<u> </u>	e naiogens:	
a) Lose the outermost of			
b) Become lighter in co	nour		
c) Become less dense	andily		
d) Gain electrons less r738. An interhalogen compo	-		
a) IF ₅		c) CN ⁻	d) (CN) ₂
739. Phosphine is not collec	b) I ₃ -	C) CN	$u_j (GN)_2$
a) It is poisonous	teu iii aii because.		
b) It absorbs moisture			
c) It catches fire sponta	anoouely in oir		
d) It is combustible	aneously in an		
•	hagayaa		
740. Bones glow in the dark			
a) They contain a shini	_		
b) They contain red ph	_		
	hanges into red phosphorus		
	indergoes slow combustion v	wiui dii	
741. Oxygen exhibits positiv		c) Cl	9) 1
a) F 742 Which gives carbon with	b) Br	c) Cl	d) I
742. Which gives carbon with		c) Ovalia acid	d) Starch
a) Formic acid	b) Ethyl alcohol	c) Oxalic acid	d) Starch

743. The atom larger in size as	compared to oxygen is:		
a) Ne	b) F	c) He	d) All of these
744. In the reaction,			
$2Ag + 2H_2SO_4 \longrightarrow Ag_2SO_4$	$SO_4 + 2H_2O + SO_2$, H_2SO_4 i	s:	
a) Reducing agent	b) Oxidant	c) Catalyst	d) Dehydrating agent
745. Among the phosphatic fer	tilizers, superphosphate of	flime is a mixture of Ca(H ₂)	$PO_4)_2$ and:
a) CaSO ₄ · 2H ₂ O	b) CaSO ₄ · H ₂ O	c) $CaSO_4 \cdot \frac{1}{2}H_2O$	d) CaSO ₄
746. What is the oxidising ager	nt chlorine water?		
a) HCl	b) HCIO ₂	c) HOCI	d) None of these
747. Which of the following ha	logens is solid at room tem	perature?	
a) Iodine	b) Fluorine	c) Chlorine	d) Bromine
748. Vegetable colouring matte			
a) Oxidation	b) Reduction	c) Sulphonation	d) Unsaturation
749. White phosphorus (P_4) do	oes not contain		
a) Six P — P single bond		b) Four P – P single bond	
c) Four lone pairs of elect		d) $P - P - P$ angle of 60°	
750. The anhydride of nitrous			
a) N ₂ O ₃	b) NO	c) N ₂ O	d) N_2O_4
751. XeF ₂ on hydrolysis gives			
a) XeO ₃	b) XeO	c) Xe	d) XeO ₂
752. Coconut charcoal at -180°			D. v. 1.v.
a) Ar and Kr	b) Ne and Ar	c) He and Kr	d) He and Ne
753. Paramagnetic oxide of chl			
a) ClO_3	b) Cl ₂ O ₆	c) Cl ₂ O	d) None of these
754. Decreasing order of reduc	ring power of hydrogen hal	ides is:	
a) HI > HBr > HCl > HF	Company of the Control of the Contro	ATTON	
b) HF > HI > HBr > HCl	PLUS EDUC	ATION .	
c) HI > HF > HBr > HCl			
d) None of these	a dinastla mith.		
755. Nitrogen does not combin		a) A a	d) Ma
a) Ca	b) Al	c) Ag	d) Mg
756. Which of the following is t			4) IICIO
a) HOCI757. In case of halogen family,	b) HCIO ₂	c) HCIO ₃	d) HCIO ₄
a) Ionic radius decreases	winch trend occurs as the a	itomic number increases:	
b) Ionization potential de	croscos		
	MX ₂ decreases (where M=1	motal and V—halogon)	
d) None of the above	m_2 decreases (where $m - 1$	metai and A –nalogen)	
758. What is the product forme	ed when nhoenhorus triovi	da is dissolvad in water?	
a) HPO ₃	b) H ₃ PO ₄	c) H ₃ PO ₃	d) HPO ₂
759. Approximately what percentage 759.		•	
a) 20%	b) 10%	c) 35%	d) 55%
760. There is no $S - S$ bond is	~, ±070	S) 5570	a, 00 /0
a) $S_2O_4^{2-}$	b) S ₂ O ₃ ²⁻	c) $S_2O_5^{2-}$	d) $S_2O_7^{2-}$
761. The acidic nature of HF ca	-	· - ·	, -, -,
a) SbF ₅	b) H ₂ O	c) HClO ₄	d) None of these
762. Identify the incorrect state	· ·	· ·	, 01 01000
a) Ozone reacts with SO_2 to		,	
,	J -		

	-	$\mathrm{H}(\mathit{aq})$ in the presence of ai	r to give Na ₂ SiO ₃ and H ₂ O	
	c) Cl ₂ reacts with excess o	•		
	d) Br ₂ reacts with hot and	strong NaOH solution to g	ive NaBr, NaBrO ₄ and H ₂ O	
763	.S—S bond is not present i			
	a) $S_2O_7^{2-}$	b) $S_4O_6^{2-}$	c) $S_2O_4^{2-}$	d) $S_2O_3^{2-}$
764	Which of the following ox	ides are acidic?		
	a) Mn_2O_7	b) CrO ₃	c) Both (a) and (b)	d) None of these
765	The pentavalence in phos	phorus is more stable as co	mpared to that of nitrogen	even though they belong
	to the same group. It is du	e to		
	a) Inert nature of nitroger		b) Reactivity of phosphore	us
	c) Larger size of phosphor		d) Dissimilar electronic co	
766	. Which of the following is l		,	88
	a) White phosphorus	b) Sodium	c) Potassium	d) Calcium
767	. The formula of iodine ace	•	c) i otassiam	a) dalciani
, 0,	a) I(CH ₃ COO)	b) I(CH ₃ COO) ₃	c) I ₂ (CH ₃ COO)	d) (CH ₃ COO) ₂ I
760	. Phosphine is not evolved		c) 1 ₂ (c)13c00)	d) (chi3coo)21
700	-		of Pa(OU)	
		oiled with a strong solution	of $Da(On)_2$	
	b) Phosphorus acid is hea			
	c) Calcium hypophosphite			
	d) Metaphosphoric acid is			
769	. The last orbit of argon wo			N 40
	a) 2	b) 6	c) 8	d) 18
770	. Xenon directly combines v			
	a) Oxygen	b) Rubidium	c) Fluorine	d) Chlorine
771	Structure of XeF_5^+ ion is			
	a) Trigonal bipyramidal	b) Square pyramidal	c) Octahedral	d) Pentagonal
772	. Thermal stability of hydro	gen halide follows the ord	er:	
	a) HI > HBr > HCl > HF	JPLUS EDUC	AHUN .	
	b) $HI > HF > HBr > HCl$			
	c) $HI > HBr > HF > HCl$			
	d) HF > HCl > HBr > HI			
773	. Iodine is fromed when KI	reacts with solution of		
	a) CuSO ₄	b) (NH ₄) ₂ SO ₄	c) ZnSO ₄	d) FeSO ₄
774	The strongest reducing ag	* * *		,
	a) F ⁻	b) CI ⁻	c) Br ⁻	d) I ⁻
775	. In Birkeland Eyde process		-,) -
,,,	a) Air	b) NO ₂	c) HNO ₃	d) NH ₃
776	•	· -	he following liquids can cli	-
770	vessel in which it is placed		ne fonowing nquius can en	ind up the wan of the glass
	•	b) Liquid He	c) Liquid N	d) water
777	a) Alcohol Which is not correct for N		c) Liquid N ₂	d) water
///	. Which is not correct for N			
		used as anaesthetic agent		
	b) It is nitrous oxide	1		
	c) It is not a linear molecu			
	d) It is least reactive of all			
778	The strongest acidic oxide			
	a) SO ₂	b) SO ₃	c) P_2O_5	d) Sb_2O_3
779	. Apatite is an ore of			
	a) Fluorine	b) Chlorine	c) Bromine	d) Iodine

780. The sulphur molecul	e (S ₈) possesses:		
a) Cubical structure			
b) Spherical structur	re		
c) Tetrahedral struc	ture		
d) W-shaped ring str	ructure		
781. Copper turnings who	en heated with concentrate	d sulphuric acid will give	
a) H ₂ S	b) SO ₂	c) SO ₃	d) O ₂
782. PCl ₅ is prepared by t	the action of Cl ₂ on:		
a) P_2O_3	b) P ₂ O ₅	c) H_3PO_3	d) PCl ₃
783. Chlorine water on co	ooling deposits greenish-ye	llow crystals of:	
a) Cl ₂ · 2H ₂ O	b) Cl ₂ · H ₂ O	c) Cl ₂ · 3H ₂ O	d) Cl ₂ • 8H ₂ O
784. Which inert gas have	e highest boiling point?		
a) Xe	b) Ar	c) Kr	d) He
785. Metaphosphoric acid	l is:		
a) H_3PO_2	b) HPO ₃	c) H_3PO_3	d) H_3PO_4
786. H ₃ PO ₃ has non io	nisable P—H bonds	, , ,	
a) 3	b) 1	c) 2	d) None of these
787. Dry bleach caused by	•	•	•
a) Cl ₂	b) SO ₂	c) H ₂ O ₂	d) O ₃
788. Ammonia is dried ov		, , ,	, ,
a) Slaked lime		b) Calcium chloride	
c) Phosphorus pent	oxide	d) Quick lime	
	n energy of Cl ₂ ,Br ₂ and I ₂ fo		
a) $Cl_2 > I_2 > Br_2$	b) I ₂ >Br ₂ >Cl ₂	c) $I_2=Cl_2=Br_2$	d) $Cl_2>Br_2>I_2$
790. Which is correct stat	-		
a) Nitric oxide is iso			
b) Nitric oxide is dia			
<u>-</u>	endothermic compound	JCATION	
-	used as general anaestheti	C	
,	behaves abnormally in liqu		
a) Xe	b) Ne	c) He	d) Ar
•	ng is correct with reference	•	-,
a) PH ₃ is more basic	-	To protession desired.	
b) PH ₃ is less basic t			
c) PH ₃ is as basic as	-		
d) PH ₃ is amphoteric			
793. Amongst the followi			
a) Bi_2O_3	b) Sb ₂ O ₃	c) N ₂ O ₅	d) P_2O_5
	colour of the flowers by re		
a) CO and CO_2	b) H ₂ S and Br ₂	c) SO_2 and Cl_2	d) NH_3 and SO_3
795. Cl_2O_6 is an anhydrid		cj soz una aiz	a) Wig and 503
a) HClO ₃	b) HClO ₂	c) HClO ₄	d) Mixed anhydride of HCl
	of the atmosphere ozone is f		a) Mixed anniyaride of file
a) Combination of or		office by the.	
	discharge on oxygen molec	ulac	
c) Action of ultravio		uico	
d) None of the above			
•	: elium behave like ideal gas	as over a wide range of to	mnerature However they
171. Inci i gases such as fi	cham behave like luedi gas	cs over a wrue range or ter	nperature, mowever, they

condense into the solid state at very low temperatures. It indicates that at very low temperature there is a:

a) Weak attractive force	between the atoms					
b) Weak repulsive force between the atoms						
c) Strong attractive force between the atoms						
d) Strong repulsive force						
798. Calcium phosphide is used in smoke screens because it:						
a) Burns to form soot						
-	b) Gives PH ₃ which forms smoke					
	c) Immediately catches fire in air					
d) Is a gas which brings to						
799. The inert gas obtained from						
a) He	b) Ne	c) Ar	d) Kr			
800. Sulphur does not exist as		C) Al	u) Ki			
-		h) It is not able to constitu	uto me me bonda			
a) It is less electronegative		b) It is not able to constitu				
c) It has ability to exhibit		d) Of tendency to show va				
801. The oxide of nitrogen wh						
a) NO_2	b) N ₂ O ₅	c) N ₂ O ₃	d) NO			
802. Oxide of nitrogen used as						
a) NO	b) N ₂ O	c) N_2O_3	d) N_2O_5			
803. The non-existent compo						
a) PH ₄ I	b) AsH ₃	c) SbCl ₂	d) As_2O_3			
804. A colourless gas on passi	ng through bromine water o	decolourises it. The gas is:				
a) HCl	b) HBr	c) CO ₂	d) SO ₂			
805. When silver chloride diss	olves in ammonia, it forms?	?				
a) Ag(NH ₃)Cl	b) Ag(NH ₃) ₂ Cl	c) $Ag(NH_3)_3Cl$	d) $Ag(NH_3)_4Cl$			
806. Which of the following pa	nirs has bleaching property?	?				
a) O_3 and NO_2	b) O ₃ and H ₂ S	c) SO ₂ andCl ₂	d) Cl ₂ and NO ₂			
807. Which of the following is	not a hydride?	ATTONI				
a) HCl	b) CaH ₂	c) CsH	d) LiH			
808. Iron is dropped in dil HN	O₃ it gives					
a) Ferric nitrate		b) Ferric nitrate and NO ₂				
c) Ferrous nitrate and an	nmonium nitrate	d) Ferrous nitrate and nit	ric oxide			
809. Pnicogens are the elemen	nts of group?					
a) 15	b) 13	c) 8	d) Zero			
810. The percentage of availab	ole chlorine in a commercia	l sample of bleaching powd	er is:			
a) 12%	b) 35%	c) 58%	d) 85%			
811. Complete fertilizer is that		,				
a) S, K, and N	b) N, K and P	c) S, K and P	d) S and N			
812. The element which libera	•	-, -,	-,			
a) Na	b) Ca	c) F	d) N			
813. SF_6 exists but OF_6 does n		<i>c</i>) .	u) 11			
	re vacant and are vacant an	d are available for bonding	•			
_	ns can be accommodated in	_	•			
_	ization energy than oxygen	or breats with $n=3$				
		a overgon and fluoring				
	ronegativity is less between	• =				
814. N_2O_4 molecule is comple			d) 40°C			
a) -10°C	b) 140 – 150°C	c) 420°C	d) -40°C			
815. Out of (i) XeO ₃ (ii) XeOF ₄		_	_			
a) (i) and (ii) only	b) (i) and (iii) only	c) (ii) and (iii) only	d) (i), (ii) and (iii)			
816. Chlorous acid and its salt	s conforites) are:					

	a) Good oxidising agents			
	b) Good reducing agents			
	c) Good bleaching agents			
	d) Good oxidising and ble	aching agents		
817	. Antimony burns in chlori	ne to form:		
	a) SbCl ₃	b) SbCl ₂	c) SbOCl ₂	d) SbCl ₅
818	. Bromargyrite is a minera	l of:		
	a) Pb	b) Sn	c) I ₂	d) Br ₂
819	. Helium is used in gas ball	oons instead of hydrogen b	ecause:	
	a) It is lighter than H ₂			
	b) It is non-combustible			
	c) It is more abundant that	an H ₂		
	d) Its leakage can be dete			
820	. Reaction of PCl₃ and PhM			
	a) Bromobenzene	0	b) Chlorobenzene	
	c) Triphenylphosphite		d) Dichlorobenzene	
821	. Which does not give amm	nonia with water?	,	
	a) Mg_3N_2	b) AIN	c) CaCN ₂	d) Ca(CN) ₂
822	Bond length is maximum	•	ej dadriz	a) da(dit)/2
	a) HI	b) HBr	c) HCl	d) HF
823	=	,	it has a between two ni	,
023	a) Single bond	b) Double bond	c) Triple bond	d) Coordinate bond
824	, ,		ining some CCl ₄ and the mi	•
021	a) Upper layer becomes v		ining some coi4 and the ini	Ature is snaken, then.
	b) Lower layer becomes v			
	c) Homogeneous violet la	iyer is formed		
025	d) None of the above	Chould haire and Jones waire a	f alastuana an nituazan atau	
825			f electrons on nitrogen ator	
026	a) 2, 2	b) 3, 1	c) 1, 3	d) 4, 0
826	. Cl ₂ is used in the manufac) 147 ·	15 A11 C11
00.	a) Chloroform	b) CCl ₄	c) Westron	d) All of these
827	. Which element shows pol	•		12 411 6.1
	a) 0	b) S	c) Se	d) All of these
828	N_2 0 is formed on reaction	-		1)
	a) Cu	b) Hg	c) Ag	d) Fe
829	. The inert gases present ir	-		
	a) He and Ne	b) He, Ne and Ar	c) He, Ne, Ar and Kr	d) He, Ne, Ar, Kr and Xe
830	. Orthophosphoric acid is i	-		
	a) 1	b) 2	c) 3	d) 4
831	. In the clathrates of xenon	with water, the nature of h	oonding between xenon and	d water molecule is:
	a) Covalent			
	b) Hydrogen bonding			
	c) Coordinate			
	d) Dipole-induced dipole			
832	. Which one is least soluble	e in water?		
	a) BaF ₂	b) CaF ₂	c) SrF ₂	d) MgF ₂
833	. If $NO_2(N_2O_4)$ is dissolved	in NaOH, we get solution o	of?	
	a) NaNO2		b) NaNO ₃	
	c) Mixture of NaNO ₂ and	NaNOa	d) NaNO4	

834. The bond angles in OF ₂ ,			
	b) $OF_2 > OB_2 > OCl_2$		d) OCl2 > OBr2 > OF2
835. Xenon tetrafluoride has	=		2 12 1 1
	b) $sp^3 d^2$ square planar		
836. The atomicity of phosph		=	
a) <i>X</i> =4, <i>Y</i> =90°	b) <i>X</i> =4, <i>Y</i> =60°	c) $X=3, Y=120^{\circ}$	d) <i>X</i> =2, <i>Y</i> =180°
837. Bottle of PCl ₅ is kept sto)	יי אין אין
a) Explodes	b) Get oxidized	,	d) Reacts with moisture
838. Sometimes a yellow tur	bidity appears while passing	$3 \mathrm{H}_2 \mathrm{S}$ gas even in the absence	ce of II group radicals. This
is because:	ha mirrtura aa immuuritra		
a) Sulphur is present I t			
	precipitated as sulphides		
	2S gas by some acid radicals precipitated as hydroxides		
839. The oxidation of thiosul			
a) SO_3^{2-}	b) SO_4^{2-}	c) $S_2O_8^{2-}$	d) $S_4O_6^{2-}$
, ,			
840. Rain water sometimes of oxides of nitrogen and:	ontains Nn_4NO_3 because light	intening in the sky causes ti	ie air to react and produce
	b) NH ₃	c) CO ₂	d) Noble gages
a) H ₂	, ,	· -	d) Noble gases
841. The number of molecule			
a) 2	b) 3	c) 4	d) 5
842. Which of the following i			
a) NH ₃ <ph<sub>3<ash<sub>3</ash<sub></ph<sub>	b) AsH ₃ <ph<sub>3<nh<sub>3</nh<sub></ph<sub>	•	d) $NH_3 < AsH_3 < PH_3$
843. Which of the following v	The Later		T) II CO
a) Cl ₂	b) Br ₂	c) HCl	d) H_2SO_4
844. Which metal forms an a) (1) 77
a) Cr	b) Fe	c) Cu	d) Zn
845. H ₂ SO ₄ is added while pr			12.0
a) Hydration	b) Reduction	c) Hydrolysis	d) Complex formation
846. The element which catc			D 50
a) Sodium	b) Phosphorus	c) Magnesium	d) Zinc
847. Which are solid?	13.44		
a) XeF ₂	b) XeF ₄	c) XeF ₆	d) All of these
848. Cl ₂ O is an anhydride of:			
a) HClO ₄	b) HOCl	c) Cl ₂ O ₃	d) HClO ₂
849. Ammonium dichromate		•	
a) CrO ₃	b) Cr ₂ O ₃	c) Cr	d) $CrO(O_2)$
850. An element forms a gase			
a) S	b) Na	c) P	d) H
851. PCl ₃ and cold water read	_	_	
a) H_3PO_3	b) H ₃ PO ₂	c) $H_4P_2O_7$	d) H_3PO_4
852. Ammonia on heating wi	=	-	
a) NH ₄ HCO ₃	b) $(NH_4)_2CO_3$	c) NH ₂ COONH ₄	d) $(NH_4)_2CO$
853. The acid which forms to			
a) H ₃ PO ₄	b) H ₃ PO ₃	c) H_3BO_3	d) H_3PO_2
854. The structure of white p	-		
a) Square planar	b) Pyramidal	c) Tetrahedral	d) Trigonal planar
855. Which of the following i			
a) I _a	b) Br ₂	c) Cl ₂	d) F ₂

856.	It 20% nitrogen is present	in a compound, its minimu	ım molecular weight can bo	e:
	a) 144	b) 70	c) 100	d) 140
857.	Which sulphide is insoluble	e in yellow ammonium sul	phide?	
	a) SnS	b) As_2S_3	c) Sb ₂ S ₃	d) Bi ₂ S ₃
858.	Which one is most basic in	character?		
	a) F ⁻	b) Cl ⁻	c) Br ⁻	d) I ⁻
859.	Which oxide is alkaline?			
	a) P_2O_3	b) B_2O_3	c) Bi_2O_3	d) As_2O_3
860.	Fluorine oxidises HSO ₄ to			
	a) $S_2O_3^{2-}$	b) $S_2O_8^{2-}$	c) $S_4 O_6^{2-}$	d) SO ₂
861.	Oleum is chemically			
	a) H_2SO_3	b) H ₂ SO ₅	c) $H_2S_2O_7$	d) $H_2S_2O_8$
862.	Among halogens maximur			
	a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
863.	Which statement is false?			
	a) Radon is obtained from	the decay of radium.		
	b) Helium is an inert gas.			
		ole gas in the atmosphere is	He.	
	d) Xe is the most reactive a	among the noble gases.		
864.	Freons are used as:			
	a) Refrigerant	b) Catalyst	c) Oxidant	d) None of these
865.	Sulphur molecule exists as		2.0	1) a
0	a) S ₂	b) S ₄	c) S ₆	d) S ₈
866.	Noble gases are adsorbed	The same of the sa	120 1 1 1 1	
		anida	h l L'onnia hardnorrida	
	a) Anhydrous calcium chlo	Tide	b) Ferric hydroxide	•
	c) Conc. H ₂ SO ₄		d) Activated coconut chard	coal
867.	c) Conc. H ₂ SO ₄ Phosphorus when exposed	l to air burns spontaneousl	d) Activated coconut chard	coal
867.	c) Conc. H_2SO_4 Phosphorus when exposed a) The reaction is endother	l to air burns spontaneousl rmic	d) Activated coconut chard	coal
867.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endother b) The reaction is exother	l to air burns spontaneousl rmic mic	d) Activated coconut chard	coal
867.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endother b) The reaction is exother c) The activation energy is	l to air burns spontaneousl rmic mic s very low	d) Activated coconut chard	coal
	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endother b) The reaction is exother c) The activation energy is d) Air contains some catal	l to air burns spontaneousl rmic mic s very low	d) Activated coconut chard	coal
	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endothed b) The reaction is exother c) The activation energy is d) Air contains some catal There is O—O bond is:	l to air burns spontaneousl rmic mic s very low ytic agent	d) Activated coconut chard y because:	
868.	c) Conc. H_2SO_4 Phosphorus when exposed a) The reaction is endother b) The reaction is exother c) The activation energy is d) Air contains some catal There is O—O bond is: a) $S_2O_8^{2-}$	l to air burns spontaneousl rmic mic s very low	d) Activated coconut chard	coal d) S ₂ O ₇ ²⁻
868.	c) Conc. H_2SO_4 Phosphorus when exposed a) The reaction is endother b) The reaction is exother c) The activation energy is d) Air contains some catal There is O—O bond is: a) $S_2O_8^{2-}$ Freons are:	I to air burns spontaneously rmic mic s very low ytic agent b) S ₄ O ₆ ²⁻	d) Activated coconut chard y because: c) SO ₃ ²⁻	d) S ₂ O ₇ ²⁻
868. 869.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endothed b) The reaction is exother c) The activation energy is d) Air contains some catal There is O—O bond is: a) S ₂ O ₈ ² Freons are: a) CCl ₂ F ₂	I to air burns spontaneous rmic mic s very low ytic agent b) S ₄ O ₆ ²⁻ b) CFCl ₃	d) Activated coconut chard y because:	
868. 869.	c) Conc. H_2SO_4 Phosphorus when exposed a) The reaction is endother b) The reaction is exother c) The activation energy is d) Air contains some catal There is 0—0 bond is: a) $S_2O_8^{2-}$ Freons are: a) CCl_2F_2 Normality of pure sulphur	I to air burns spontaneously mic sources were low ytic agent b) S ₄ O ₆ ²⁻ b) CFCl ₃ ic acid is:	 d) Activated coconut chard y because: c) SO₃²⁻ c) CClF₃ 	d) $S_2O_7^{2-}$ d) All of these
868. 869. 870.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endothed b) The reaction is exothered c) The activation energy is d) Air contains some cataly There is O—O bond is: a) S ₂ O ₈ ² Freons are: a) CCl ₂ F ₂ Normality of pure sulphur a) 4 N	I to air burns spontaneously rmic sout an account of the spontaneous o	d) Activated coconut chard y because: c) SO ₃ ²⁻	d) S ₂ O ₇ ²⁻
868. 869. 870.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endothed b) The reaction is exothered c) The activation energy is d) Air contains some catal There is O—O bond is: a) S ₂ O ₈ ² Freons are: a) CCl ₂ F ₂ Normality of pure sulphur a) 4 N The number of S — S bond	I to air burns spontaneously rmic sout the second s	 d) Activated coconut chard y because: c) SO₃²⁻ c) CClF₃ c) 24 N 	d) $S_2O_7^{2-}$ d) All of these d) 36 N
868. 869. 870.	c) Conc. H_2SO_4 Phosphorus when exposed a) The reaction is endother b) The reaction is exother c) The activation energy is d) Air contains some catal. There is O—O bond is: a) $S_2O_8^{2-}$ Freons are: a) CCl_2F_2 Normality of pure sulphur a) 4 N The number of S — S bond a) Three	I to air burns spontaneously rmic south of the second of t	d) Activated coconut chard y because: c) SO ₃ ²⁻ c) CClF ₃ c) 24 <i>N</i> c) One	d) $S_2O_7^{2-}$ d) All of these
868. 869. 870.	c) Conc. H_2SO_4 Phosphorus when exposed a) The reaction is endothed b) The reaction is exother c) The activation energy is d) Air contains some cataly. There is $O-O$ bond is: a) $S_2O_8^{2-}$ Freons are: a) CCl_2F_2 Normality of pure sulphur a) $4N$ The number of $S-S$ bond a) Three	I to air burns spontaneously rmic mic so very low sytic agent b) S ₄ O ₆ ²⁻ b) CFCl ₃ ic acid is: b) 12 N s in sulphur trioxide b) Two present in the valency shell	d) Activated coconut chard y because: c) SO ₃ ²⁻ c) CClF ₃ c) 24 <i>N</i> c) One of P in PCl ₃ is:	d) $S_2O_7^{2-}$ d) All of these d) 36 N d) Zero
868. 869. 870. 871.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endothed b) The reaction is exothered c) The activation energy is d) Air contains some catal There is O—O bond is: a) S ₂ O ₈ ²⁻ Freons are: a) CCl ₂ F ₂ Normality of pure sulphura a) 4 N The number of S – S bond a) Three The number of electrons paal 12	I to air burns spontaneously rmic south of the second of t	d) Activated coconut chard y because: c) SO ₃ ²⁻ c) CClF ₃ c) 24 <i>N</i> c) One	d) $S_2O_7^{2-}$ d) All of these d) 36 N
868. 869. 870. 871.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endothed b) The reaction is exothered c) The activation energy is d) Air contains some cataly There is O—O bond is: a) S ₂ O ₈ ² Freons are: a) CCl ₂ F ₂ Normality of pure sulphur a) 4 N The number of S — S bond a) Three The number of electrons paraly a) 12 A hydride of nitrogen which	I to air burns spontaneously rmic mic so very low ytic agent b) S ₄ O ₆ ²⁻ b) CFCl ₃ ic acid is: b) 12 N s in sulphur trioxide b) Two present in the valency shell b) 10 ch is acidic is	d) Activated coconut chard y because: c) SO ₃ ²⁻ c) CClF ₃ c) 24 N c) One of P in PCl ₃ is: c) 8	d) $S_2O_7^{2-}$ d) All of these d) $36 N$ d) Zero d) 18
868. 869. 870. 871. 872.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endothed b) The reaction is exothered c) The activation energy is d) Air contains some cataly There is O—O bond is: a) S ₂ O ₈ ² Freons are: a) CCl ₂ F ₂ Normality of pure sulphur a) 4 N The number of S — S bond a) Three The number of electrons paal 12 A hydride of nitrogen which a) N ₃ H	I to air burns spontaneously rmic mic so very low sytic agent b) S ₄ O ₆ ²⁻ b) CFCl ₃ ic acid is: b) 12 N s in sulphur trioxide b) Two oresent in the valency shell b) 10 ch is acidic is b) N ₂ H ₂	d) Activated coconut chard y because: c) SO ₃ ²⁻ c) CClF ₃ c) 24 <i>N</i> c) One of P in PCl ₃ is: c) 8 c) NH ₃	d) $S_2O_7^{2-}$ d) All of these d) 36 N d) Zero
868. 869. 870. 871. 872.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endothed b) The reaction is exothered c) The activation energy is d) Air contains some catal There is O—O bond is: a) S ₂ O ₈ ² Freons are: a) CCl ₂ F ₂ Normality of pure sulphur a) 4 N The number of S — S bond a) Three The number of electrons paral a) 12 A hydride of nitrogen which a) N ₃ H Which of the following core	I to air burns spontaneously rmic burns spontaneously rmic burns spontaneously rmic so very low sytic agent b) S ₄ O ₆ ²⁻ b) CFCl ₃ ic acid is: b) 12 N s in sulphur trioxide b) Two cresent in the valency shell b) 10 ch is acidic is b) N ₂ H ₂ inpound show sublimation?	d) Activated coconut chard y because: c) SO ₃ ²⁻ c) CClF ₃ c) 24 N c) One of P in PCl ₃ is: c) 8 c) NH ₃	d) $S_2O_7^{2-}$ d) All of these d) 36 N d) Zero d) 18 d) N_2H_4
868. 869. 870. 871. 872. 873.	c) Conc. H_2SO_4 Phosphorus when exposed a) The reaction is endother b) The reaction is exother c) The activation energy is d) Air contains some cataly There is O—O bond is: a) $S_2O_8^{2-}$ Freons are: a) CCl_2F_2 Normality of pure sulphur a) 4 N The number of S — S bond a) Three The number of electrons paraly 12 A hydride of nitrogen which a) N_3H Which of the following correct as N_3H	to air burns spontaneously rmic continuously respectively. Subject of the sacidic is continuously continu	d) Activated coconut chard y because: c) SO ₃ ²⁻ c) CClF ₃ c) 24 N c) One of P in PCl ₃ is: c) 8 c) NH ₃ c) BaSO ₄	d) $S_2O_7^{2-}$ d) All of these d) $36 N$ d) Zero d) 18
868. 869. 870. 871. 872. 873.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endothed b) The reaction is exothered c) The activation energy is d) Air contains some cataly There is O—O bond is: a) S ₂ O ₈ ² Freons are: a) CCl ₂ F ₂ Normality of pure sulphur a) 4 N The number of S — S bond a) Three The number of electrons paal 12 A hydride of nitrogen which a) N ₃ H Which of the following cor a) CaHPO ₃ The highest ionization potential	It to air burns spontaneously rmic continuously with a series of the ser	d) Activated coconut chard y because: c) SO ₃ ²⁻ c) CClF ₃ c) 24 N c) One of P in PCl ₃ is: c) 8 c) NH ₃ c) BaSO ₄ by:	d) $S_2O_7^{2-}$ d) All of these d) $36 N$ d) Zero d) 18 d) N_2H_4 d) $CaCO_3$
868. 869. 870. 871. 872. 873. 874.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endothed b) The reaction is exothered c) The activation energy is d) Air contains some cataly There is O—O bond is: a) S ₂ O ₈ ²⁻ Freons are: a) CCl ₂ F ₂ Normality of pure sulphuraly a) 4 N The number of S — S bond a) Three The number of electrons paaly a) 12 A hydride of nitrogen which a) N ₃ H Which of the following coraly CaHPO ₃ The highest ionization potaly a) Alkaline earth metals	I to air burns spontaneously rmic burns spontaneously rmic burns spontaneously rmic solution with the spontaneously rmic burns and spontaneously rmic solution with the spontaneously sp	d) Activated coconut chard y because: c) SO ₃ ²⁻ c) CClF ₃ c) 24 N c) One of P in PCl ₃ is: c) 8 c) NH ₃ c) BaSO ₄	d) $S_2O_7^{2-}$ d) All of these d) 36 N d) Zero d) 18 d) N_2H_4
868. 869. 870. 871. 872. 873. 874.	c) Conc. H ₂ SO ₄ Phosphorus when exposed a) The reaction is endothed b) The reaction is exothered c) The activation energy is d) Air contains some cataly There is O—O bond is: a) S ₂ O ₈ ² Freons are: a) CCl ₂ F ₂ Normality of pure sulphur a) 4 N The number of S — S bond a) Three The number of electrons paal 12 A hydride of nitrogen which a) N ₃ H Which of the following cor a) CaHPO ₃ The highest ionization potential	I to air burns spontaneously rmic burns spontaneously rmic burns spontaneously rmic solution with the spontaneously rmic burns and spontaneously rmic solution with the spontaneously sp	d) Activated coconut chard y because: c) SO ₃ ²⁻ c) CClF ₃ c) 24 N c) One of P in PCl ₃ is: c) 8 c) NH ₃ c) BaSO ₄ by:	d) $S_2O_7^{2-}$ d) All of these d) $36 N$ d) Zero d) 18 d) N_2H_4 d) $CaCO_3$

877. The percentage of nitro	gen in urea is about:		
a) 70	b) 63	c) 47	d) 28
878. Phosphate mineral of p	hosphorus is:		
a) $Fe_3(PO_4)_2H_2O$	b) $Ca_{3}(PO_{4})_{2}$	c) $3Ca_3(PO_4)_2 \cdot CaF_2$	d) $3Ca_3(PO_4)_2 \cdot CaCl_2$
879. Dithionic acid has the fo	ormula:		
a) H ₂ S ₂ O ₆	b) H ₂ SO ₅	c) $H_2S_2O_8$	d) $H_2S_2O_5$
880. A person working with	phosphorus suffers from a d	lisease in which bones deca	y. It is known as
a) Arthritis	b) Phossay jaw	c) Rickets	d) cancer
881. A salt X gives white pre	cipitates with lead acetate s	olution, insoluble in hot wat	ter and nitric acid. The salt X
most probably contains	:		
a) Cl [–]	b) Ba ²⁺	c) SO_4^{2-}	d) CO ₃ ²⁻
882. S – S bond is present in	ı		
a) $\alpha - (SO_3)_n$	b) $\gamma - (S_3 O_9)$	c) $H_2S_2O_3$	d) $H_2S_2O_8$
883. NH ₃ molecule can enter	into complex formation thr	ough:	
a) Ionic bond			
b) Covalent bond			
c) Coordinate bond			
d) Electron deficient bo	nd		
884. Bromine can be liberate	ed from KBr solution by the	action of	
a) KI	b) NaCl	c) Cl ₂	d) I ₂ soluation
885. The oxidation state of X		= = = = = = = = = = = = = = = = = = = =	
a) +6, 109°	b) +8, 103°	c) +6, 103°	d) +8, 120°
886. Among the following ni			nmonium nitrate; the one
-	ut leaving any solid residue		
a) Ammonium nitrate	b) Sodium nitrate	c) Silver nitrate	d) Lead nitrate
887. Ammonia and phosphir	ne resemble each other in:		
a) Solubility in water	Canus EDII/	LACITAT	
	PLUS EDU	PHITOIA	
c) Stability			
d) Reducing character	now n		
888. In the compound of typ			
a) $p\pi - d\pi$	b) $d\pi - d\pi$	c) $p\pi - p\pi$	d) No multiple bonding
889. Tear gas is:	1) 0 001	2.377	D GGL NO
a) COCl ₂	b) CaOCl ₂	c) NH ₃	d) CCl ₃ · NO ₂
890. Which statement is not	correct about (CN) ₂ ?		
a) It is poisonous gas	•		
b) It is called pseudoha	•		
c) It is named as cyanog	gen		
d) None of the above	da da la cara desdala MaQII e e		
891. When ammonium chlor			D M II
a) Pungent odour	b) Smell of rotten eggs	c) Smell of ammonia	d) No smell
892. When phosphine is bub	_		
a) Silver	b) Silver phosphide	c) Silver oxide	d) None of these
893. Hydrolysis of one mole		roduces:	
a) Two moles of sulphu			
b) Two moles of peroxo	— ·	vomonogulnkuvic: d	
	ic acid and one mole of pero	_	anovida
-	phuric acid, peroxomonosul		JEI UXIUE
894. Which has the same ele	ca onic comigui adon as of fi	ici i gas:	

GPLUS EDUCATION

a) Ag ³⁺	b) Cu ²⁺	c) Pb ⁴⁺	d) Ti ⁴⁺
895. Glacial phosphoric ac	•	,	,
a) H ₃ PO ₄	b) HPO ₃	c) $H_4P_2O_7$	d) H ₃ PO ₂
	g pairs is not correctly mat		, <u> </u>
a) A halogen which is	liquid at room temperatur	e—bromine	
_	egative element—fluorine		
c) The most reactive	-		
d) The strongest oxid	-		
897. Nitrous oxide is know			
a) Laughing gas	b) Laboratory gas	c) Breathing gas	d) Exercising gas
898. The number of hydro	gen atom (s) attached to ph	nosphorus atom in pyrophos	sphorus acid is
a) Zero	b) One	c) Two	d) Three
899. Which of the followin	g is not correct?		
a) Ammonia is used a	is refrigerant		
b) A mixture of Ca(CN	N)2 and C is known as nitrol	im	
c) A mixture of Ca(H ₂	$(PO_4)_2$ and $CaSO_4$. $2H_2O$ is k	nown as superphosphate of	Flime
d) Hydrolysis of NCl ₃ ;	give NH₃ and HOCl		
900. Which halide does no	t hydrolyse?		
a) SbCl ₃	b) AsCl ₃	c) PCl ₃	d) NF ₃
901. The noble gas mixtur	e is cooled in a coconut bull	o at 173k, the gases that are	not absorbed are
a) Ne and Xe	b) He and xe	c) Ar and Kr	d) He and Ne
902. In the reaction H_2S +	$0_3 \rightarrow$, the products are:		
a) H_2O , S , O_2	b) $H_2SO_4 + O_2$	c) $H_2O + S$	d) $SO_2 + H_2$
903. When PCl ₅ reacts wit	h sulphuric acid, sulphuryl (chloride (SO ₂ Cl ₂) is formed	as the final product .this
shows that sulphuric	acid		
1			
=	groups in its structure	b) Is a derivative of su	lphur dioxide
=		b) Is a derivative of suddentified by Is a derivative by Is a derivative of suddentified by Is a derivative	
a) Has two hydroxyl			
a) Has two hydroxyl a			
a) Has two hydroxyl gc) Is a dibasic acid904. Caliche is:a) Crude saltpetre	groups in its structure	d) Has greater affinityc) Impure carnallite	for water
 a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 	groups in its structure b) Impure nitre d electron in oxygen molecu b) 8	d) Has greater affinityc) Impure carnallite	for water
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P ₄ O ₁₀ is:	d) Has greater affinity c) Impure carnallite lle are c) 16	for water d) Ashes of sea-weeds d) 12
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6	groups in its structure b) Impure nitre d electron in oxygen molecu b) 8 bonds in P_4O_{10} is: b) 16	d) Has greater affinity c) Impure carnallite lle are	for water d) Ashes of sea-weeds
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of S0	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P ₄ O ₁₀ is: b) 16 O ₂ is due to	d) Has greater affinity c) Impure carnallite lle are c) 16 c) 20	for water d) Ashes of sea-weeds d) 12 d) 7
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of So a) Reduction	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P ₄ O ₁₀ is: b) 16 O ₂ is due to b) Hydrolysis	d) Has greater affinity c) Impure carnallite lle are c) 16 c) 20 c) Oxidation	for water d) Ashes of sea-weeds d) 12
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of So a) Reduction 908. Nitrogen is produced	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P_4O_{10} is: b) 16 O_2 is due to b) Hydrolysis when $NaNO_2$ is heated with	d) Has greater affinity c) Impure carnallite lle are c) 16 c) 20 c) Oxidation h:	for water d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of SO a) Reduction 908. Nitrogen is produced a) NH ₄ Cl	groups in its structure b) Impure nitre d electron in oxygen molecu b) 8 bonds in P_4O_{10} is: b) 16 O_2 is due to b) Hydrolysis when $NaNO_2$ is heated with	d) Has greater affinity c) Impure carnallite lle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃	for water d) Ashes of sea-weeds d) 12 d) 7
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of SO a) Reduction 908. Nitrogen is produced a) NH ₄ Cl	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P_4O_{10} is: b) 16 O_2 is due to b) Hydrolysis when $NaNO_2$ is heated with	d) Has greater affinity c) Impure carnallite lle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃	for water d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of SO a) Reduction 908. Nitrogen is produced a) NH ₄ Cl	groups in its structure b) Impure nitre d electron in oxygen molecu b) 8 bonds in P_4O_{10} is: b) 16 O_2 is due to b) Hydrolysis when $NaNO_2$ is heated with	d) Has greater affinity c) Impure carnallite lle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃	for water d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of SO a) Reduction 908. Nitrogen is produced a) NH ₄ Cl	groups in its structure b) Impure nitre d electron in oxygen molecu b) 8 bonds in P_4O_{10} is: b) 16 O_2 is due to b) Hydrolysis when $NaNO_2$ is heated with	d) Has greater affinity c) Impure carnallite lle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃	for water d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of SO a) Reduction 908. Nitrogen is produced a) NH ₄ Cl	groups in its structure b) Impure nitre d electron in oxygen molecu b) 8 bonds in P_4O_{10} is: b) 16 O_2 is due to b) Hydrolysis when $NaNO_2$ is heated with	d) Has greater affinity c) Impure carnallite dle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃ l is	for water d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature d) NH ₄ OH
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of SO a) Reduction 908. Nitrogen is produced a) NH ₄ Cl 909. The structural formula O	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P ₄ O ₁₀ is: b) 16 O ₂ is due to b) Hydrolysis when NaNO ₂ is heated with b) NH ₄ NO ₃ la of hypophosphorous acid	d) Has greater affinity c) Impure carnallite dle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃ Lis	d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature d) NH ₄ OH
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of So a) Reduction 908. Nitrogen is produced a) NH ₄ Cl 909. The structural formula of P	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P ₄ O ₁₀ is: b) 16 O ₂ is due to b) Hydrolysis when NaNO ₂ is heated with b) NH ₄ NO ₃ la of hypophosphorous acid	d) Has greater affinity c) Impure carnallite dle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃ l is	for water d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature d) NH ₄ OH
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of So a) Reduction 908. Nitrogen is produced a) NH ₄ Cl 909. The structural formula OH H	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P ₄ O ₁₀ is: b) 16 O ₂ is due to b) Hydrolysis when NaNO ₂ is heated with b) NH ₄ NO ₃ la of hypophosphorous acid	d) Has greater affinity c) Impure carnallite lle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃ l is	d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature d) NH ₄ OH
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of So a) Reduction 908. Nitrogen is produced a) NH ₄ Cl 909. The structural formula OH H	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P ₄ O ₁₀ is: b) 16 O ₂ is due to b) Hydrolysis when NaNO ₂ is heated with b) NH ₄ NO ₃ la of hypophosphorous acid	d) Has greater affinity c) Impure carnallite dle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃ l is c) HOH OH	d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature d) NH ₄ OH d) OH OH h SO ₂ in the presence of acid?
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of So a) Reduction 908. Nitrogen is produced a) NH ₄ Cl 909. The structural formula O H 910. Which of the following a) Sodium chloride	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P ₄ O ₁₀ is: b) 16 O ₂ is due to b) Hydrolysis when NaNO ₂ is heated with b) NH ₄ NO ₃ la of hypophosphorous acid O——H b) P H OH og compounds gives chloring	d) Has greater affinity c) Impure carnallite dle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃ l is c) HOH e dioxide when it reacts with c) Sodium perchlorate	d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature d) NH ₄ OH d) OH OH h SO ₂ in the presence of acid? d) Sodium chlorite
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of So a) Reduction 908. Nitrogen is produced a) NH ₄ Cl 909. The structural formula O H 910. Which of the following a) Sodium chloride	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P ₄ O ₁₀ is: b) 16 O ₂ is due to b) Hydrolysis when NaNO ₂ is heated with b) NH ₄ NO ₃ la of hypophosphorous acid O——H b) P H OH og compounds gives chloring	d) Has greater affinity c) Impure carnallite dle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃ l is c) HOH OH	d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature d) NH ₄ OH d) OH OH h SO ₂ in the presence of acid? d) Sodium chlorite
a) Has two hydroxyl (c) Is a dibasic acid 904. Caliche is: a) Crude saltpetre 905. The number of paired a) 14 906. The number of sigma a) 6 907. Bleaching action of So a) Reduction 908. Nitrogen is produced a) NH ₄ Cl 909. The structural formu O A P OH 910. Which of the followin a) Sodium chloride 911. The hydride of group a) H ₂ Te	b) Impure nitre d electron in oxygen molecu b) 8 bonds in P ₄ O ₁₀ is: b) 16 O ₂ is due to b) Hydrolysis when NaNO ₂ is heated with b) NH ₄ NO ₃ la of hypophosphorous acid O—H b) P H OH ag compounds gives chloring b) Sodium chlorate 16 elements showing maxi	d) Has greater affinity c) Impure carnallite dle are c) 16 c) 20 c) Oxidation h: c) (NH ₄) ₂ CO ₃ l is c) HOH OH e dioxide when it reacts wit c) Sodium perchlorate mum tendency for complex c) H ₂ S	d) Ashes of sea-weeds d) 12 d) 7 d) Acidic nature d) NH ₄ OH d) OH OH h SO ₂ in the presence of acid? d) Sodium chlorite formation is

913. Iodine may be liberated	from sodium iodate by:		
a) H ₂ SO ₄	b) NaHSO ₃	c) KMnO ₄	d) HCl
914. Which oxide is of differe	ent type than others?		
a) MnO ₂	b) PbO ₂	c) TiO ₂	d) Na ₂ O ₂
915. Oxide of nitrogen used a	as a catalyst in the lead cha	amber process for the mai	nufacture of sulphuric acid is:
a) NO	b) N ₂ O	c) N_2O_3	d) N_2O_5
916. When excess of KI is add	ded to copper sulphate sol	lution:	
a) Cuprous iodide is for	med		
b) I ₂ is liberated			
c) Potassium iodide is o	xidized		
d) All of the above			
917. The spectrum of helium	is similar to:		
а) Н	b) Na	c) Li ⁺	d) He ⁺
918. The reaction of P_4 with A_2	X leads selectively to P_4O_6		
a) dry O ₂		b) A mixture of O ₂ and	l N ₂
c) Moist O ₂		d) O_2 in the presence of	of aqueous NaOH
919. $PH_4I + NaOH$ forms:			
a) PH ₃	b) NH ₃	c) P_4O_6	d) P ₄ O ₁₀
920. When fluoride is heated		-	
a) HF	b) MnF ₂	c) F ₂	d) None of these
921. Which would quickly ab			
a) Alkaline solution of p			
b) Concentrated sulphu	ric acid	-	
c) Lime water		,	
d) Alkaline solution of c			
922. The compound used as	_	2.00	N 97 91
a) CCl ₄	b) COCl ₂	c) CF ₄	d) CF ₂ Cl ₂
923. Phosphine is not obtain	The second of the second second	CHITOIA	
a) White P is heated wit			
b) Red P is heated with			
c) Ca ₃ P ₂ reacts with wa			
d) Phosphorus trioxide			
924. Nitrogen forms Oxide		م) الـ	4) (
a) 3	b) 4	c) 5 on ablavida ava giyyan balay	d) 6
925. Some of the reasons of r		en chioride are given beio	w. The incorrect is:
a) The nitrogen atom of			
b) NH ₃ can give a pair o		∞ NU	
	ccept an electron pair from	ш ипз	
926. The compound of Sulph	as a stable configuration	igoront ic	
a) S_2Cl_2	b) SO ₂	c) SO_3	d) H ₂ SO ₄
927. Oxygen can be obtained	· -		u) 11 ₂ 30 ₄
a) Adding dilute acid	from bleaching powder b	у.	
b) Passing carbon dioxid	de		
c) Heating with a cobalt			
d) Adding alkalies	. Juit		
928. The catalyst used in the	manufacture of ammonia	is	
a) V_2O_5	b) Pt	c) Fe	d) Ni(CO) ₄
929. F_2 is largely used in:	,	,) \)·

a) Making Freon b) Making Teflon c) Rocket fuels	d) All of these
930. Substance used in Holme's signal is:	
a) NH ₃ b) PH ₃ c) PH ₅	d) P_2O_5
931. Which one of the following combines with Fe (II) ions to form a brown comp	lex?
a) NO b) N_2O c) N_2O_3	d) N_2O_5
932. All the three atoms of ozone are used up when it reacts with:	
a) H_2O_2 b) PbS c) KI	d) SO_2
933. Which can act as an acid in sulphuric acid?	2
a) HNO_3 b) H_3PO_4 c) $HClO_4$	d) H ₂ O
934. SO ₂ reduces cupric ion to cuprous ion in presence of:	3 2
a) KOH b) H ₂ O c) KCNS	d) H_2SO_4
935. On heating a salt with NaOH, smell of NH ₃ is obtained. The salt contains:	
a) NH_4^+ b) NO_3^- c) NO_2^-	d) CH ₃ COO ⁻
936. The catalyst used in the manufacture of HNO ₃ by Ostwald's process is:	u) dii3000
a) Platinum black b) Finely divided nickel c) Vanadium pentoxide	d) Platinum gauze
937. Which is used in vulcanisation of rubber?	uj i latilitili gauze
	d) 5 Cl
a) SF ₆ b) SF ₄ c) SF ₂	d) S_2Cl_2
938. Superphosphate of lime is obtained from the reaction of:	
a) Calcium carbonate with phosphoric acid	
b) Calcium phosphate with hydrochloric acid	
c) Calcium phosphate with sulphuric acid	
d) Bones with gypsum	
939. The anhydride of orthophosphoric acid is:	
a) P_4O_{10} b) P_2O_5 c) P_4O_6	d) P_2O_3
940. Which is bad conductor of electricity?	
a) H ₂ F ₂ b) HCl c) HBr	d) HI
941. Which compound has an incorrect formula?	
a) Thionyl chloride—SOCl ₂	
b) Sulphuryl chloride— SO_2Cl_2	
c) Oleum— H ₂ S ₂ O ₆	
d) Phosphorus oxychloride— POCl ₃	
942. Chromium dissolves in dil. H_2SO_4 to form $Cr(H_2O)_6^{2+}$. The colour of the ion is	:
a) Blue b) Green c) Yellow	d) Orange
943. The oxide that is not reduced by hydrogen in the hot is:	
a) Ag ₂ O b) Fe ₂ O ₃ c) CuO	d) K ₂ O
944. Bleaching action of SO ₂ is due to its	
a) Oxidizing property b) Acidic property c) Basic property	d) Reducing property
945. The chloric acid and chlorates are:	
a) Good oxidizing agents	
b) Bleaching agents	
c) Undergo disproportionation on heating	
c) Undergo disproportionation on heatingd) All of the above	
d) All of the above	
d) All of the above 946. The oxidation number of xenon in XeOF ₂ is	d) 3
d) All of the above 946. The oxidation number of xenon in XeOF ₂ is a) Zero b) 2 c) 4	d) 3
d) All of the above 946. The oxidation number of xenon in XeOF ₂ is a) Zero b) 2 c) 4 947. Which metal liberates H ₂ with dil. nitric acid?	
d) All of the above 946. The oxidation number of xenon in XeOF ₂ is a) Zero b) 2 c) 4 947. Which metal liberates H ₂ with dil. nitric acid? a) Zn b) Cu c) Mn	d) 3 d) Hg
d) All of the above 946. The oxidation number of xenon in XeOF ₂ is a) Zero b) 2 c) 4 947. Which metal liberates H ₂ with dil. nitric acid?	

1) 7 (00)) F (00)	D F 60
	c) $\operatorname{Fe}_2(\operatorname{SO}_3)_3$	d) FeSO ₄
) Kalo	D MILE
•	c) KCIO ₃	d) KHF ₂
-) N 0	DAG
-		d) NO ₂
		d) Liquid NH ₃
, ,	c) Monotropy	d) None of these
ir is:		
b) 78.7% by volume	c) Both (a) and (b)	d) None of these
ve element		
ve element		
b) Oleum	c) Azeotropic mixture	d) None of these
uSO ₄ solution and then Na	₂ S ₂ O ₃ solution is added to	it. Which of the statement is
?		
b) CuI ₂ is formed	c) Na ₂ S ₂ O ₃ is oxidised	d) Cu ₂ I ₂ is formed
facture of ice-cream is:		
b) N ₂ O	c) NO	d) N_2O_3
ained on hydrolysis of:		
76a. Late	c) BiCl ₃	d) AsCl ₃
,	the following, except:	, and the second
rmed		
mic	:ATION	
	7111011	
-	age of available chlorine is	49. The volume of chlorine
= = =	=	
-		d) 150 litre
,	-,	,
. F	b) Ammonium sulphate	
n aqueous solution?		
•	c) NaClO _o	d) NaClO ₄
-		4) 1146164
		d) Hydrated CaCl ₂
, 2 0	c) conc. 112504	a) Hydrated GaG12
	c) VoE	d) None of these
	c) Ker ₆	d) None of these
	c) K CO	d) None of these
	CI K2SU4	u) None of these
b) R2003 R20203	<i>J</i> 2 4	
		d) An acid
b) A chloride	c) A hydride	d) An acid
		d) An acid d) Sb
	b) NH₄OH ges slowly to a stable form. b) Dynamic allotropy ir is: b) 78.7% by volume ve element b) Oleum uSO₄ solution and then Na? b) CuI₂ is formed facture of ice-cream is: b) N₂O ained on hydrolysis of: b) NCl₃ 2KCl + 3O₂ indicates all of ormed mic mic mic mof mass is obeyed ecomposes ching powder the percentanple is treated with HCl at N b) 3.0 litre t percentage of nitrogen? n aqueous solution? b) NaClO₂ not a drying and dehydratic b) P₂O₅ xs pyrex glass is: b) XeF₄ →, the products are:	known as Berthelot's salt? b) NaOCl c) KClO ₃ sigives b) NH ₄ NO ₃ c) N ₂ O ₅ oling in refrigeration or in manufacture of ice is: b) NH ₄ OH c) NH ₄ Cl ges slowly to a stable form. It is called b) Dynamic allotropy c) Monotropy ir is: b) 78.7% by volume c) Both (a) and (b) we element b) Oleum c) Azeotropic mixture uSO ₄ solution and then Na ₂ S ₂ O ₃ solution is added to ? b) Cul ₂ is formed c) Na ₂ S ₂ O ₃ is oxidised facture of ice-cream is: b) N ₂ O c) NO ained on hydrolysis of: b) NCl ₃ c) BiCl ₃ 2KCl + 3O ₂ indicates all of the following, except: rmed mic land of mass is obeyed ecomposes ching powder the percentage of available chlorine is apple is treated with HCl at NTP is: b) 3.0 litre c) 15.0 litre t percentage of nitrogen? b) Ammonium sulphate d) Ammonium nitrate n aqueous solution? b) NaClO ₂ c) NaClO ₃ not a drying and dehydrating agent? b) P ₂ O ₅ c) Conc. H ₂ SO ₄ ks pyrex glass is: b) XeF ₄ c) XeF ₆

a) NaH ₂ PO ₂	b) NaH ₂ PO ₃	c) NaH ₂ PO ₄	d) None of these			
970. Oxygen is gas but sulphur is solid because:						
a) Oxygen is compose	a) Oxygen is composed of discrete molecules while sulphur is polymeric					
b) Molecular weight of sulphur is much higher than that of oxygen						
c) Oxygen is a strong	er oxidizing agent than sulph	ur				
d) Boiling point of su	lphur is much higher than th	at of oxygen				
971. In contact process im	purities of arsenic are remov	red by:				
a) $Al(OH)_3$	b) $Fe(OH)_3$	c) $Cr(OH)_3$	d) Fe_2O_3			
972. Concentrated sulphur						
a) Efflorescent	b) Hygroscopic	c) Oxidizing agent	d) Sulphonating agent			
973. Which halogen does i	not react with water?					
a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂			
974. Which hydride is mos	st acidic?					
a) H ₂ O	b) H ₂ S	c) H ₂ Te	d) H ₂ Se			
975. The discovery of isoto	opes began with the experim	ents with:				
a) Xe	b) Kr	c) Ar	d) Ne			
976. In the oxo-acids of ch	lorine Cl— O bond contains:					
a) $d\pi$ – $d\pi$ bonding	b) $p\pi$ – $d\pi$ bonding	c) $p\pi - p\pi$ bonding	d) None of these			
977. Arsenic acid is:						
a) H ₃ AsO ₃	b) H ₃ AsO ₄	c) H ₂ AsO ₄	d) HAsO ₄			
978. The halogen that is m	ost readily reduced is:					
a) Chlorine						
b) Bromine	- h	2				
c) Iodine						
d) Fluorine	7					
979. The bond angle O—S	—0 and hybridization of sul	ohur in SO ₂ are:				
a) 119.5°, sp^3		c) $109^{\circ}28'$, sp^3	d) None of these			
a) $119.5^{\circ}, sp^3$	b) 119.5°, sp^2		-			
a) $119.5^{\circ}, sp^3$			cids?			
 a) 119.5°, sp³ 980. Which of the element a) N 	b) 119.5°, sp^2 of nitrogen family produce p	naximum number of oxy-ac c) As	sids? d) Sb			
 a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed in 	b) 119.5°, sp^2 of nitrogen family produce in b) Pin the VIIA group or gp. 17 of	naximum number of oxy-ac c) As	sids? d) Sb			
 a) 119.5°, sp³ 980. Which of the element a) N 	b) 119.5°, sp^2 of nitrogen family produce in b) P notes of the VIIA group or gp. 17 of als	naximum number of oxy-ac c) As	sids? d) Sb			
 a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very react 	b) 119.5°, sp^2 of nitrogen family produce in b) P in the VIIA group or gp. 17 of als	naximum number of oxy-ac c) As	sids? d) Sb			
 a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very reac c) They are electrone 	b) 119.5°, sp^2 of nitrogen family produce in b) P in the VIIA group or gp. 17 of als etive egative	naximum number of oxy-ac c) As	sids? d) Sb			
 a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very reac c) They are electrone d) They have 7 electr 	b) 119.5°, sp^2 of nitrogen family produce in b) P in the VIIA group or gp. 17 of als	naximum number of oxy-ac c) As	sids? d) Sb			
 a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very reac c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: 	b) 119.5°, sp ² of nitrogen family produce in b) P in the VIIA group or gp. 17 of als stive egative ons in outermost orbit	naximum number of oxy-ac c) As the periodic table, because	cids? d) Sb :			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very reac c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl	b) 119.5°, sp^2 of nitrogen family produce in b) P in the VIIA group or gp. 17 of als entire egative ons in outermost orbit b) NOCl ₂	naximum number of oxy-ac c) As the periodic table, because c) NO ₂ Cl ₂	sids? d) Sb			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very read c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the following	b) 119.5°, sp^2 of nitrogen family produce in b) P in the VIIA group or gp. 17 of als itive egative ons in outermost orbit b) NOCl ₂ og gives M ³⁻ ion most readily	naximum number of oxy-ac c) As the periodic table, because c) NO ₂ Cl ₂ ?	sids? d) Sb : d) N ₂ OCl ₂			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very reac c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the followin a) P	b) 119.5°, sp^2 of nitrogen family produce in b) P in the VIIA group or gp. 17 of als stive egative ons in outermost orbit b) NOCl ₂ ig gives M ³⁻ ion most readily b) N	naximum number of oxy-ac c) As the periodic table, because c) NO ₂ Cl ₂ ? c) Sn	tids? d) Sb d) N_2OCl_2 d) As			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very read c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the followin a) P 984. There is very little diff	b) 119.5°, sp^2 for nitrogen family produce to b) P In the VIIA group or gp. 17 of als etive egative ons in outermost orbit b) NOCl ₂ log gives M ³⁻ ion most readily b) N Ifference in acid strength in the	naximum number of oxy-acc c) As the periodic table, because c) NO ₂ Cl ₂ ? c) Sn he acids H ₃ PO ₄ , H ₃ PO _{3,} H ₃ Po	tids? d) Sb d) N_2OCl_2 d) As			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very reac c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the followin a) P 984. There is very little did a) Phosphorus in the	b) 119.5°, sp^2 f of nitrogen family produce to b) P In the VIIA group or gp. 17 of als stive regative ons in outermost orbit b) NOCl ₂ reg gives M ³⁻ ion most readily b) N Ifference in acid strength in the se acids exists in different ox	c) As the periodic table, because c) NO ₂ Cl ₂ ? c) Sn the acids H ₃ PO ₄ , H ₃ PO ₃ , H ₃ Poidation states	cids? d) Sb d) N_2OCl_2 d) As O_2 because:			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very read c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the followin a) P 984. There is very little diff a) Phosphorus in the	b) 119.5°, sp^2 for nitrogen family produce to b) P In the VIIA group or gp. 17 of als strive figative figative fig gives M^{3-} ion most readily b) N Ifference in acid strength in the se acids exists in different ox nese acids are not all bound to	c) As the periodic table, because c) NO ₂ Cl ₂ ? c) Sn the acids H ₃ PO ₄ , H ₃ PO ₃ , H ₃ Poidation states	cids? d) Sb d) N_2OCl_2 d) As O_2 because:			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very reac c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the followin a) P 984. There is very little did a) Phosphorus in the b) The hydrogen in the	b) 119.5°, sp ² t of nitrogen family produce to b) P In the VIIA group or gp. 17 of als etive regative regative regative regative b) NOCl ₂ reg gives M ³⁻ ion most readily b) N fference in acid strength in the se acids exists in different ox rese acids are not all bound to gen	c) As the periodic table, because c) NO ₂ Cl ₂ ? c) Sn the acids H ₃ PO ₄ , H ₃ PO ₃ , H ₃ Poidation states	cids? d) Sb d) N_2OCl_2 d) As O_2 because:			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very read c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the followin a) P 984. There is very little diff a) Phosphorus in the b) The hydrogen in the unprotonated oxyg c) Phosphorus is high	b) 119.5°, sp ² t of nitrogen family produce to b) P In the VIIA group or gp. 17 of als trive legative legativ	c) As the periodic table, because c) NO ₂ Cl ₂ ? c) Sn the acids H ₃ PO ₄ , H ₃ PO ₃ , H ₃ Poidation states	cids? d) Sb d) N_2OCl_2 d) As O_2 because:			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very read c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the followin a) P 984. There is very little diff a) Phosphorus in the b) The hydrogen in the unprotonated oxyg c) Phosphorus oxides	b) 119.5°, sp ² t of nitrogen family produce in b) P In the VIIA group or gp. 17 of als etive regative regativ	naximum number of oxy-accc) As the periodic table, because c) NO ₂ Cl ₂ ? c) Sn the acids H ₃ PO ₄ , H ₃ PO ₃ , H ₃ Poidation states to the phosphorus and have	cids? d) Sb d) N_2OCl_2 d) As O_2 because:			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very read c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the followin a) P 984. There is very little diff a) Phosphorus in the unprotonated oxyg c) Phosphorus oxides 985. Among the following	b) 119.5°, sp ² tof nitrogen family produce in b) P in the VIIA group or gp. 17 of als etive egative ons in outermost orbit b) NOCl ₂ ig gives M ³⁻ ion most readily b) N ifference in acid strength in these acids exists in different ox nese acids are not all bound to gen ally electronegative element is are less basic imolecule (i) XeO ₃ (ii) XeOF	c) As the periodic table, because c) NO ₂ Cl ₂ c) Sn the acids H ₃ PO ₄ , H ₃ PO ₃ , H ₃ Poidation states to the phosphorus and have	cids? d) Sb d) N_2OCl_2 d) As O_2 because:			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very reac c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the followin a) P 984. There is very little diff a) Phosphorus in the b) The hydrogen in the unprotonated oxyg c) Phosphorus oxides 985. Among the following Those having same n	b) 119.5°, sp ² tof nitrogen family produce to b) P In the VIIA group or gp. 17 of als stive egative tons in outermost orbit b) NOCl ₂ to g gives M ³⁻ ion most readily b) N Ifference in acid strength in the se acids exists in different ox these acids are not all bound to gen ally electronegative element is are less basic molecule (i) XeO ₃ (ii) XeOF tumber of lone pairs on Xe are	c) As the periodic table, because c) NO ₂ Cl ₂ c) Sn the acids H ₃ PO ₄ , H ₃ PO ₃ , H ₃ Po idation states the phosphorus and have	d) Sb : d) N ₂ OCl ₂ d) As O ₂ because: same number of			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very read c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the followin a) P 984. There is very little diff a) Phosphorus in the b) The hydrogen in the unprotonated oxyg c) Phosphorus oxides 985. Among the following Those having same in a) (i) and (iii) only	b) 119.5°, sp ² tof nitrogen family produce in b) P In the VIIA group or gp. 17 of als etive regative	c) As the periodic table, because c) NO ₂ Cl ₂ c) Sn the acids H ₃ PO ₄ , H ₃ PO ₃ , H ₃ Poidation states the phosphorus and have (iii)XeF ₆ c) (ii) and (iii) only	cids? d) Sb d) N_2OCl_2 d) As O_2 because:			
a) 119.5°, sp³ 980. Which of the element a) N 981. Halogens are placed i a) They are non-meta b) They are very read c) They are electrone d) They have 7 electr 982. Nitrosyl chloride is: a) NOCl 983. Which of the followin a) P 984. There is very little diff a) Phosphorus in the b) The hydrogen in the unprotonated oxyg c) Phosphorus oxides 985. Among the following Those having same in a) (i) and (iii) only	b) 119.5°, sp ² tof nitrogen family produce to b) P In the VIIA group or gp. 17 of als stive egative tons in outermost orbit b) NOCl ₂ to g gives M ³⁻ ion most readily b) N Ifference in acid strength in the se acids exists in different ox these acids are not all bound to gen ally electronegative element is are less basic molecule (i) XeO ₃ (ii) XeOF tumber of lone pairs on Xe are	c) As the periodic table, because c) NO ₂ Cl ₂ c) Sn the acids H ₃ PO ₄ , H ₃ PO ₃ , H ₃ Poidation states the phosphorus and have (iii)XeF ₆ c) (ii) and (iii) only	d) Sb : d) N ₂ OCl ₂ d) As O ₂ because: same number of			

987.		loses its activity when it st	ands in air. This is due to:	
	a) Reaction with moisture	e to liberate O ₂		
	b) Auto oxidation			
	c) Loss of CaCl ₂			
000	d) Formation of Ca(OH) ₂			
900.	Which statement is false?			
	a) NH ₃ is a Lewis base	ulan nlanan		
	b) NH ₃ molecule is triang	-		
	c) NH ₃ does not act as red			
റററ	d) NH ₃ (liquid) is used as		howig atom in himonhowig	agid ia ?
989.			horus atom in hypophorus	
000	a) Three	b) One	c) Two	d) Zero
990.		g cations does not form a c b) Cu ²⁺	c) Cd ²⁺	d) Pb ²⁺
001	a) Ag ⁺	•	•	,
991.			lumps and dil. H_2SO_4 . The b	=
002	a) FeSO ₄	b) MnO ₂	c) FeS	d) FeSO ₃
992.	Nuclear fusion produces	1) D ()) II !'	13.17
000	a) Argon	b) Deuterium	c) Helium	d) Krypton
993.	Which possesses least sta) P. II	1) DVV+
004	a) PH ₃	b) P ₂ H ₆	c) P ₂ H ₅	d) PH ₆
994.		hermal stability of hydroge	· ·	
	a) HI>HCI <hf>HBr</hf>	b) HCI <hf>HBr<hi< td=""><td>c) HF>HCl>HBr>HI</td><td>d) HI>HBr>HCl>HF</td></hi<></hf>	c) HF>HCl>HBr>HI	d) HI>HBr>HCl>HF
995.	Noble gases can be separa			
	a) Passing them through s	Sec. 1.48		
	b) Electrolysis of their con			
	c) Adsorption and desorp	tion on coconut charcoal		
	d) None of the above	EDILIZ	ATION	
996.		atements is not valid for ox		
	-	trahedral four coordinated	= =	
	=	tleast one $P = 0$ unit and o		
		s used in the manufacture	of triple superphosphate	
	d) Hypophosphorous acid			
997.	Which statement is not tr			
	a) It is less electronegativ			
	b) It exhibits only -1 oxida			
			rules will be larger than bet	ween the iodine molecules
	d) It is composed of diator			
998.		roup or group 16 elements	s, which is definitely a meta	l, is:
	a) Tellurium	b) Selenium	c) Sulphur	d) Polonium
999.	The increasing order of re			
	a) $I_2 < Br_2 < Cl_2, < F_2$	b) $Cl_2 < F_2 < Br_2 < I_2$	c) $Cl_2 < Br_2 < I_2 < F_2$	d) $I_2 < Cl_2 < Br_2 < F_2$
100	Coconut charcoal at - 100	°C adsorbs a mixture of:		
0.				
	a) He and Kr	b) Ar, Kr and Xe	c) Kr and Xe	d) He and Ne
100	Clathrates are			
1.				
	a) Non-stoichiometric cor	npounds	b) Complex compounds	
	c) Interstitial compounds		d) Ionic compounds	
100	Two nungent emelling gas	eac bloach a cortain cubetar	aca. The gaces may he	

2.				
	a) Cl ₂ and SO ₂	b) Cl ₂ and NH ₃	c) NH ₃ and PH ₃	d) O ₂ and CO ₂
100	Nitrogen is an essential co		, 3 3	<i>J</i>
3.	_			
	a) Proteins	b) Fats	c) Proteins and fats	d) None of these
100	Mark the halogen which s	hows electropositive chara	icter:	
4.		1.2.01		15.*
100	a) F	b) Cl	c) Br	d) I
5.	Which of the following is o	called Berthelot's sait?		
J.	a) (NaPO ₃) ₆	b) NaOCl	c) KClO ₃	d) KHF ₂
100	, , ,	s behind no residue on heat	•	uj mii z
6.	Γ		8	
	a) $Cu(NO_3)_2$	b) KNO ₃	c) NH ₄ NO ₃	d) None of these
100	Phosphine on reaction with	th hydrobromic acid gives:		
7.				
	a) PBr ₃	b) PH ₄ Br	c) PBr ₅	d) P_2H_4
	Bleaching powder has the	molecular formula:		
8.) ((10	1) C ClO) C OC	D C (OC)
100	a) CaClO ₃	b) CaClO	c) CaOCl ₂	d) Ca(OCl) ₂
9.	Six volumes of oxygen, on	complete ozonisation, form	ii volumes of ozone.	
<i>)</i> .	a) 2	b) 4	c) 6	d) 3
101	*	clothes can be removed by	,	uj o
0.			, .	
	a) NaCl	b) NaBr	c) Na ₂ S ₂ O ₃	d) Na ₂ S ₄ O ₆
	•	b) NaBr s not liberate oxygen on tre	c) Na ₂ S ₂ O ₃ catment with ozone is	d) Na ₂ S ₄ O ₆
	•			d) Na ₂ S ₄ O ₆
101 1.	The substance which does a) PbS	s not liberate oxygen on tre b) HCl		d) Na₂S₄O₆d) Hg
101 1. 101	The substance which does	s not liberate oxygen on tre b) HCl	eatment with ozone is	
101 1.	The substance which does a) PbS In the reaction $CaS + H_2S$	s not liberate oxygen on tre b) HCl →, the products are:	eatment with ozone is $c) SO_2$	d) Hg
101 1. 101 2.	The substance which does a) PbS In the reaction $CaS + H_2S$ a) $CaS_2 + H_2$	s not liberate oxygen on tre b) HCl →, the products are: b) CaS ₃ + H ₂	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$	
101 1. 101 2.	The substance which does a) PbS In the reaction $CaS + H_2S$ a) $CaS_2 + H_2$	s not liberate oxygen on tre b) HCl →, the products are:	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$	d) Hg
101 1. 101 2.	The substance which does a) PbS In the reaction $CaS + H_2S$ a) $CaS_2 + H_2$ HI cannot be prepared by	s not liberate oxygen on tre b) HCl →, the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$	d) Hg
101 1. 101 2.	The substance which does a) PbS In the reaction $CaS + H_2S$ a) $CaS_2 + H_2$ HI cannot be prepared by a) H_2SO_4 is stronger acid	s not liberate oxygen on tre b) HCl →, the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$	d) Hg
101 1. 101 2.	The substance which does a) PbS In the reaction CaS + H ₂ S a) CaS ₂ + H ₂ HI cannot be prepared by a) H ₂ SO ₄ is stronger acid b) HI is stronger acid than	s not liberate oxygen on tree b) HCl \rightarrow , the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC than HI $_{1}$ H ₂ SO ₄	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$	d) Hg
101 1. 101 2.	The substance which does a) PbS In the reaction $CaS + H_2S$ a) $CaS_2 + H_2$ HI cannot be prepared by a) H_2SO_4 is stronger acid b) HI is stronger acid than c) H_2SO_4 is an oxidizing a	b) HCl \rightarrow , the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC than HI 1 H ₂ SO ₄ gent	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$	d) Hg
101 1. 101 2. 101 3.	The substance which does a) PbS In the reaction CaS + H ₂ S a) CaS ₂ + H ₂ HI cannot be prepared by a) H ₂ SO ₄ is stronger acid b) HI is stronger acid than c) H ₂ SO ₄ is an oxidizing a d) HI is more volatile than	b) HCl \rightarrow , the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC than HI $_{1}$ H ₂ SO ₄ gent $_{2}$ H ₂ SO ₄	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$	d) Hg d) Ca + S
101 1. 101 2. 101 3.	The substance which does a) PbS In the reaction CaS + H ₂ S a) CaS ₂ + H ₂ HI cannot be prepared by a) H ₂ SO ₄ is stronger acid b) HI is stronger acid than c) H ₂ SO ₄ is an oxidizing a d) HI is more volatile than	b) HCl \rightarrow , the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC than HI $_{1}$ H ₂ SO ₄ gent $_{2}$ H ₂ SO ₄	c) SO_2 c) $CaS_5 + H_2$ O_4 because:	d) Hg d) Ca + S
101 1. 101 2. 101 3.	The substance which does a) PbS In the reaction CaS + H ₂ S a) CaS ₂ + H ₂ HI cannot be prepared by a) H ₂ SO ₄ is stronger acid b) HI is stronger acid than c) H ₂ SO ₄ is an oxidizing a d) HI is more volatile than	b) HCl \rightarrow , the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC than HI $_{1}$ H ₂ SO ₄ gent $_{2}$ H ₂ SO ₄	c) SO_2 c) $CaS_5 + H_2$ O_4 because:	d) Hg d) Ca + S
101 1. 101 2. 101 3.	The substance which does a) PbS In the reaction CaS + H ₂ S a) CaS ₂ + H ₂ HI cannot be prepared by a) H ₂ SO ₄ is stronger acid than c) H ₂ SO ₄ is an oxidizing a d) HI is more volatile than Lead nitrate on heating gi	b) HCl \rightarrow , the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC than HI $_{1}$ H ₂ SO ₄ gent $_{2}$ H ₂ SO ₄ ves lead oxide, nitrogen did b) Combination	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$ O_4 because:	d) Hg d) Ca + S tion is known as:
101 1. 101 2. 101 3.	The substance which does a) PbS In the reaction CaS + H ₂ S a) CaS ₂ + H ₂ HI cannot be prepared by a) H ₂ SO ₄ is stronger acid b) HI is stronger acid than c) H ₂ SO ₄ is an oxidizing a d) HI is more volatile than Lead nitrate on heating gi a) Combustion Which hydride is the stronger	b) HCl \rightarrow , the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC than HI $_{1}$ H ₂ SO ₄ gent $_{2}$ H ₂ ves lead oxide, nitrogen did b) Combination ngest base?	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$ O ₄ because: exide and oxygen. The react	d) Hgd) Ca + Stion is known as:d) Decomposition
101 1. 101 2. 101 3. 101 4. 101 5.	The substance which does a) PbS In the reaction CaS + H ₂ S a) CaS ₂ + H ₂ HI cannot be prepared by a) H ₂ SO ₄ is stronger acid than c) H ₂ SO ₄ is an oxidizing a d) HI is more volatile than Lead nitrate on heating gir a) Combustion Which hydride is the strong a) AsH ₃	b) HCl →, the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC than HI H ₂ SO ₄ gent H ₂ SO ₄ ves lead oxide, nitrogen did b) Combination ngest base? b) NH ₃	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$ O_4 because:	d) Hg d) Ca + S tion is known as:
101 1. 101 2. 101 3. 101 4. 101 5.	The substance which does a) PbS In the reaction CaS + H ₂ S a) CaS ₂ + H ₂ HI cannot be prepared by a) H ₂ SO ₄ is stronger acid b) HI is stronger acid than c) H ₂ SO ₄ is an oxidizing a d) HI is more volatile than Lead nitrate on heating gi a) Combustion Which hydride is the stronger	b) HCl →, the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC than HI H ₂ SO ₄ gent H ₂ SO ₄ ves lead oxide, nitrogen did b) Combination ngest base? b) NH ₃	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$ O ₄ because: exide and oxygen. The react	d) Hgd) Ca + Stion is known as:d) Decomposition
101 1. 101 2. 101 3. 101 4. 101 5.	The substance which does a) PbS In the reaction CaS + H ₂ S a) CaS ₂ + H ₂ HI cannot be prepared by a) H ₂ SO ₄ is stronger acid than c) H ₂ SO ₄ is an oxidizing a d) HI is more volatile than Lead nitrate on heating gi a) Combustion Which hydride is the strong a) AsH ₃ Which forms maximum contains and a strong	b) HCl →, the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC than HI H ₂ SO ₄ gent H ₂ SO ₄ ves lead oxide, nitrogen did b) Combination ngest base? b) NH ₃ ompounds with xenon?	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$ O_4 because: exide and oxygen. The react c) Displacement c) PH_3	 d) Hg d) Ca + S tion is known as: d) Decomposition d) SbH₃
101 1. 101 2. 101 3. 101 4. 101 5.	The substance which does a) PbS In the reaction CaS + H ₂ S a) CaS ₂ + H ₂ HI cannot be prepared by a) H ₂ SO ₄ is stronger acid than c) H ₂ SO ₄ is an oxidizing a d) HI is more volatile than Lead nitrate on heating gir a) Combustion Which hydride is the strong a) AsH ₃	b) HCl →, the products are: b) CaS ₃ + H ₂ heating KI with conc. H ₂ SC than HI H ₂ SO ₄ gent H ₂ SO ₄ ves lead oxide, nitrogen did b) Combination ngest base? b) NH ₃ ompounds with xenon?	eatment with ozone is c) SO_2 c) $CaS_5 + H_2$ O ₄ because: exide and oxygen. The react	d) Hgd) Ca + Stion is known as:d) Decomposition

	a) N ₂	b) NH ₃	c) N ₂ O	d) NO ₂
101	Which is a saline oxide?			
8.				
404	a) Na_2O_2	b) BaO ₂	c) Na ₂ O	d) Fe ₂ O ₃
	Which set of elements has	the strong tendency to for	m anions?	
9.	a) N, O, F	b) P, S, Cl	c) As, Se, Br	d) Ch. To. I
102	Light blue colour of nitrou		C) AS, 3e, DI	d) Sb, Te, I
0.	Light blue colour of introc	is acid is due to dissolved.		
01	a) 0 ₂	b) N ₂	c) N ₂ O	d) N ₂ O ₃
102	· -	· -	ot form oxygen when they r	
1.		.	, ,	
	a) F ₂ , NaOH solution (hot,	conc.)	b) F ₂ , H ₂ O	
	c) Cl ₂ , NaOH solution (col	d, dilute)	d) CaOCl ₂ , H ₂ SO ₄ , (dilute,	small amount)
102	= = = = = = = = = = = = = = = = = = =	-	teristics: (i) It is both a pro	=
2.			t reacts readily with basic a	and acidic oxides. (iv) It
	oxidses Fe at boiling point			12.440
400	a) H ₂ O	b) CO ₂	c) H_2O_2	d) NO
	Most unstable hydride is			
3.	a) NH ₃	b) PH ₃	c) AsH ₃	d) BiH ₃
102	Phosphide ion has the elec		-	u) biii3
4.	Thospinae for has the ele-	eti ome sti detare siimar to	that on	
	a) Nitride ion	b) Chloride ion	c) Fluoride ion	d) Sodium ion
102	The gaseous mixture used	The same of the sa		
5.				
	a) $N_2 + O_2$ mixture	b) He + O_2 mixture	c) Ar + O_2 mixture	d) Ne + O_2 mixture
102	A gas that cannot be collected	cted over water is	AHON .	
6.				
100	a) SO ₂	b) N ₂	c) 0 ₂	d) PH ₃
	Which is used in the manu	ifacture of safe matchsticks	5?	
7.	a) Red phosphorus	b) Sulphur	c) Selenium	d) White phosphorus
102	Bond angle in O ₃ molecule		c) sciemum	a) white phosphoras
8.	Zona angro m o 3 morocan			
	a) 108° 29'	b) 108° 28'	c) 116° 90'	d) 120°
102	The noble gas which show	s abnormal behaviour in li	quid state and behave as si	uper fluid is
9.				
	a) Ne	b) He	c) Ar	d) Xe
	Which of the following is i	not hydrolysed?		
0.		1) 01 01	2 4 61	15
102	a) PF ₃	b) SbCl ₃	c) AsCl ₃	d) NF ₃
	NH ₃ has a much higher bo	olling point than PH ₃ becau	se:	
1.	a) NH ₃ has a higher molec	rular weight		
	b) NH ₃ undergoes umbrel	_		
	c) NH ₃ forms hydrogen be			
		ds whereas PH ₃ contains c	ovalent bonds	
103		-	the periodic table. Its electr	onic configuration will be

2.				
۷.	a) $1s^2 2s^2 2p^3$	b) $1s^2 2s^2 2p^4$	c) $1s^2 2s^2 2p^6 3s^2 3p^3$	d) $1s^2 2s^2 2p^6 3s^2 3p^2$
103 3.	The reagent used for testi	•	-, _F _F	,
	a) Bayer's reagent	b) Nessler's reagent	c) Fenton's reagent	d) Molisch reagent
103	Elements of nitrogen fami	ly having allotropic forms a	are:	
4.				
	a) N, Sb, Bi	b) N, P, As, Sb	c) As, Sb, Bi	d) P, As, Bi
103 5.	An example of tetrabasic a	acid is:		
	a) Orthophosphorus acid			
	b) Orthophosphoric acid			
	c) Metaphosphoric acidd) Pyrophosphoric acid			
103	Phosphoric acid is syrupy	liquid due to:		
6.	Thosphoric deld is syrupy	inquia auc to.		
103 7.	Two oxides of nitrogen No	er compound of nitrogen Y	253°K and form a compou	d) None of these nd of nitrogen <i>X. X</i> reacts
	a) Tetrahedral	b) Triangular planar	c) Square planar	d) Pyramidal
103		s maximum number of com	· · ·	
8.	O	< h :		
	a) Ar	b) He	c) Ne	d) Xe
103	When conc. H ₂ SO ₄ is heate	ed with P_2O_{5} , the acid is con	verted into	
9.				
	a) Sulphure trioxideb) Sulphur dioxidec) Sulphur	FPLUS EDUC	ATION	
	-	oxide and sulphur trioxide		
104	The most reactive allotrop	oic form of phosphorus is:		
0.				
	a) Red phosphorus	b) Yellow phosphorus	c) Black phosphorus	d) Violet phosphorus
	P_2O_5 when treated with co	old water gives:		
1.		1226		
104		b) Metaphosphoric acid	,	d) Hypophosphoric acid
	Sodium pyrophosphate is	represented by which of the	ne following formula?	
2.	a) Na ₂ P ₂ O ₄	b) Na ₄ P ₂ O ₅	c) Na ₄ P ₂ O ₇	d) Na ₂ P ₂ O ₅
104	_	when heated give nitrogen		u) Na ₂ F ₂ O ₅
3.	which of the following(3)	when heated give introgen	i gas.	
0.	a) $(NH_4)_2Cr_2O_7$	b) Ba (N ₃) ₂	c) NH ₄ NO ₃	d) Both a and b
104	Ozone is readily dissolved		,	,
4.	ř			
	a) Water	b) Turpentine oil	c) Carbon disulphide	d) Ammonia
104	When AgNO ₃ is heated str	rongly, the products formed	d are	
5.				
104	a) NO and NO ₂	b) NO ₂ and N ₂ O	c) NO and O ₂	d) NO ₂ and O ₂

6.				
	a) Rayleigh		b) Ramsay	
	c) Both (a) and (b)		d) Frankland and Lockey	er
104	Phosphorus compound us	sed as drying agent and de	siccating agent is:	
7.				
	a) PCl ₃	b) PCl ₅	c) P_4O_{10}	d) P ₄ O ₆
104	, ,	ron pairs are there in white		7 4 0
8.	y 0	1		
	a) 6	b) 12	c) 4	d) 8
104	-	es not react with fluorine?	-	
9.				
•	a) Kr	b) Ar	c) Xe	d) All of these
105		•		d responsible for cough and
0.	choking in human?	auses damage to the bund	ing containing carerain and	a responsible for cough and
0.	a) Sulphur	b) Carbon	c) Nitrogen dioxide	d) Sulphur dioxide
105	CIO ⁻ disproportionate int	_	c) Will ogen aloxide	a) Sulphul Gloxide
1.	Cio disproportionate int			
1.	a) CI ⁻ and O	h) CI and CIO	a) CL and O	d) CI=and O=
105		b) CI ⁻ and CIO ₃	=	d) CI ⁻ and O ⁻
	nyuronuoric aciu is not p	reserved in glass bottles b	ecause:	
2.	-	1 t C1: -1- t		
	a) It reacts with the visible			
		im oxide of the glass comp		
	=	inium oxide of the glass co	mposition	
405	d) It reacts with the silico	The state of the s	. 1 1	
	SO ₂ acts as temporary ble	aching agent but Cl ₂ acts as	s permanent bleaching age	nt. why?
3.				
		uction but SO ₂ due oxidation	- A	
		dation but SO ₂ due to redu	ction.	
	c) Both of the above			
	d) None of the above			
105	Liquid ammonia bottles b	e opened after cooling the	m in ice for some time. It is	because liquid NH ₃ :
4.				
	a) Brings tears in the eyes			
	b) Has a high vapour pres	ssure		
	c) Is a corrosive liquid			
	d) Is a mild explosive			
105	is the compound which	n can remove both oxygen a	and nitrogen of the air whe	n it is passed over it at
5.	1000°C.			
	a) CaC ₂	b) CaCl ₂	c) CaCN ₂	d) Ca(CN) ₂
105	The crystals of ferrous su	lphate on heating give:		
6.				
	a) $FeO + SO_2 + H_2O$			
	b) $Fe_2O_3 + H_2SO_4 + H_2O$			
	c) $Fe_2O_3 + SO_2 + H_2SO_4$	$+ H_2 O$		
	d) $FeO + SO_3 + H_2SO_4 +$	-		
105		ng reactions does not occur	?	
7.				
	a) $F_2 + Cl^- \rightarrow 2F^- + Cl_2$	2	b) $Cl_2 + 2F^- \rightarrow 2Cl^- + F$	2
	c) $Br_2 + 2I^- \rightarrow 2Br^- + I$		d) $Cl_2 + 2Br^- \rightarrow 2Cl^- +$	-

105 8.	By the action of hot conc l	H ₂ SO ₄ , phosphorus change	s to	
0.	a) Phosphorous acid		b) Metaphosphoric acid	
	c) Pyrophosphoric acid		d) Orthophosphoric acid	
105	Which is an amphoteric of	xide?	, , ,	
9.	-			
	a) SO ₂	b) B ₂ O ₃	c) ZnO	d) Na ₂ O
106	Anhydride of nitric acid is	S:		
0.				
	a) NO	b) N ₂ O ₃	c) N_2O_4	d) N_2O_5
106	Which of the following att	tacks glass:		
1.				
	a) HCl	b) HF	c) HI	d) HBr
106	Which property of white	phosphorus is common to r	red P?	
2.				
	a) It is soluble in carbon of	-		
	b) It shows chemilumines			
		ic soda solution to give pho	osphine	
	d) It burns when heated in			
	Which one of the followin	g pairs of substances when	mixed, produces chlorine	gas at room temperature?
3.)			
	a) NaCl and MnO ₂		b) NaCl and HNO ₃ (conc)	
100	c) NaCl and H ₂ SO ₄ (conc)		d) HCl (conc) and KMnO ₄	
	Oxygen is divalent, where	as sulphur exhibits valency	7 of 2, 4 and 6 due to:	
4.	a) S is bigger atom			
	a) S is bigger atomb) Ionization potential of	gulphur ic more		
	c) S being less electroneg	ative than 0	ATION	
	d) Presence of <i>d</i> -orbitals in		PETTOTA	
106	Which of the following ele		of electricity?	
5.	William of the following en	Smelles is good conductor o	r orecerrency r	
٥,	a) As	b) Sb	c) Bi	d) All of these
106	Which one is known as oil	•	·)	,
6.				
	a) $H_2S_2O_7$	b) H ₂ SO ₃	c) $H_2S_2O_8$	d) H ₂ SO ₄
106	The electrolysis of brine s	· - ·	,	, 2 1
7.	•			
	a) Dennis cell	b) Gray cell	c) Nelson cell	d) Solvay cell
106	The correct order of acidi	c strength is:		
8.				
	a) $Al_2O_3 < SiO_2 < P_2O_3 <$	< SO ₂		
	b) $SiO_2 < SO_2 < Al_2O_3 <$	$P_{2}O_{3}$		
	c) $Al_2O_3 < SiO_2 < SO_2 <$	$P_{2}O_{3}$		
	d) $SO_2 < P_2O_3 < SiO_2 < A$	$1_{2}0_{3}$		
106	Ozone molecule has	geometry.		
9.				
	a) Linear	b) Triangular	c) Tetrahedral	d) None of these
107	Which is not true for ozor	ne?		
0.				

	a) It oxidizes lead sulphid	e		
	b) It oxidizes potassium ic	odide		
	c) It oxidizes mercury			
	d) It cannot act as bleaching	ng agent		
107	The strongest oxidizing ag	gent is:		
1.				
	a) HNO ₃	b) H ₂ SO ₄	c) H ₂ SO ₃	d) $H_2S_2O_3$
107	The oxidation states of ph	osphorus vary from:		
2.				
	a) -1 to $+3$	b) -3 to $+3$	c) -3 to $+5$	d) -5 to $+1$
107	The following elelment for	rms a molecule with eight (of its own atoms	
3.				
	a) Si	b) S	c) Cl	d) P
107	The correct order of acidic	c nature of oxides is in the	order	
4.				
	a) NO <n<sub>2O<n<sub>2O₃<no<sub>2<</no<sub></n<sub></n<sub>	N_2O_5	b) $N_2O < NO < N_2O_3 < NO_2$	$<$ N $_2$ O $_5$
	c) $N_2O_5 < NO_2 < N_2O_3 < NO_2$	$0 < N_2O$	d) $N_2O_5 < N_2O_3$, $< NO_2 < NO_3$	$0 < N_2 0$
107	Bleaching powder is mixe	d calcium salt of:		
5.				
	a) HCl and HClO	b) HClO ₂ and HCl	c) HClO and HClO ₂	d) HCl and HClO ₃
107	In compounds of type ECl	$_3$, where $E = B$, P, As or Bi	the angles $Cl - E - Cl$ for d	ifferent E are in the order
6.				
	a) $B > P > As > Bi$	b) $B > P = As = Bi$	c) $B < P = As = Bi$	d) $B < P < As < Bi$
107	Bleaching properties of bl	eaching powder are due to	its:	
7.				
	a) Oxidizing properties			
	b) Reducing properties	C EDII/	ATION	
	c) Basic properties	PLUS EDUC	AHON .	
	d) Disinfecting properties			
107	One mole of calcium phos	phide on reaction with exc	ess water gives	
8.				
	a) One mole of phosphoru		b) Two moles of phosphin	
	c) One mole of phosphine		d) Two moles of phosphor	ric acid
	Which noble gas has the le	east tendency to form com	pounds?	
9.				
	a) He	b) Ne	c) Kr	d) Xe
	Mixture used on tips of ma	atchsticks is:		
0.				
	a) S + K	• •	c) $K_2Cr_2O_7 + S + red P$:
			ld explosive which decomp	_
1.	= ' '	cts with H ₂ to give an acid	(Y). (Y) can also be prepare	ed by heating its salt with
	H ₃ PO ₄ . X and Y are			
	a) Cl ₂ , HCl	b) SO_2 , H_2SO_4	c) Br ₂ , HBr	d) I ₂ , HI
108	The catalyst used in the m	anufacture of H ₂ SO ₄ by cor	ntact process is	
2.				
2.	a) V ₂ O ₃	b) V ₂ O ₅	c) FeO	d) Cu
2.108	a) V_2O_3 Which one is the stronges		c) FeO	d) Cu
2.	Which one is the stronges	t reducing agent?		
2.108	=		c) FeO c) SbH ₃	d) Cu d) PH ₃

108	Which among the followi	ing statements are correct?		
4.	(i)Carbon monoxide i	s neutral whereas SO ₃ is ac	idic.	
		basic whereas nitrous oxic		
			ic is actaic.	
		inc oxides are amphoteric.		
		s acidic whereas phosphor	-	
	(v) Carbon dioxide is i	neutal whereas sulphur dic	xide is amphoteric	
	a) (ii) and (iii)	b) (i) and (iv)	c) (i) and (iii)	d) (ii) and (iv)
108	Aqua fortis is:			
5.				
	a) HNO ₃	b) HNO ₂	c) H ₂ NO ₂	d) $H_2N_2O_2$
108	Which among the following	· -		u) 11211202
	which among the following	ig is the strongest acid:		
6.) HP	1240) HD	13. 111
	a) HF	b) HCl	c) HBr	d) HI
108	Which does not liberate 0	₂ on heating?		
7.				
	a) MgO	b) NaNO ₃	c) Pb ₃ O ₄	d) KClO ₃
108	Late discovery of F ₂ is due	e to its:	, , ,	, ,
8.				
0.	a) High reactivity			
	· · · · · · · · · · · · · · · · · · ·	-1		
	b) High ionization potenti	aı		
	c) High electronegativity			
	d) High electron affinity			
108	Peroxy acids are	- A -	P	
9.				
	a) $H_2S_2O_3$, $H_2S_4O_6$	b) H ₂ S ₄ O ₆ , H ₂ SO ₅	c) H_2SO_5 , $H_2S_2O_8$	d) $H_2S_2O_3$, $H_2S_2O_8$
109	The pale-yellow coloured		-72 3,2- 2 - 8)2-2-3,2-2-8
0.	The pare yenow coloured	gus 15.		
υ.	-) Cl	Mellic EDIIC	c) Br ₂	J \ T
400	a) Cl ₂		с) вг ₂	d) I ₂
	Which of the following is a	a pseudohalogen?		
1.				
	a) lCl ₃	b) lCl ₂	c) $(CN)_2$	d) N ₃
109	Cl ₂ reacts with CS ₂ in pres	sence of I ₂ catalyst to form		
2.				
	a) CHCl ₃	b) C ₂ H ₅ Cl	c) CCl ₄	d) C ₂ H ₆
109	· ·	ric acid; HCl can reduce KI	•	w) 02116
	Tibi and in reduce surping	iric aciu, rici can reduce Ki	mo ₄ and m reduces.	
3.) H CO	1) KW O) W C O	D.M. C.I
	a) H ₂ SO ₄	b) KMnO ₄	c) $K_2Cr_2O_7$	d) None of these
109		ed with sulphuric acid liber	ates a gas which turns starc	ch paper blue. The
4.	substance is:			
	a) NaCl	b) NaBr	c) NaI	d) NaNO ₃
109	NO ₂ is not obtained on hea	ating		
5.	_	0		
٥.	a) AgNO ₃	b) KNO ₃	c) Cu(NO ₃) ₂	d) $Pb(NO_3)_2$
100			c) du(1103)2	a) 1 b(1403)2
	Concentrated H ₂ SO ₄ has g	great ammity 101":		
6.				
	a) H ₂ S	b) H ₂ O	c) CO ₂	d) O ₂
109	How can you synthesise n	itric oxide in the laboratory	/?	
7.				
	a) Zinc with cold and dilu	te HNO3	b) Zinc with concentrated	HNO ₂

	c) Copper with cold and	l dilute HNO3	d) Heating NH4NO3	
109	Number of $p\pi - d\pi$ bon	ds present in XeO₄ are		
8.	•			
	a) Four	b) Two	c) Three	d) zero
109	Which acid has P—P lin	•	.,	.,
9.		0		
	a) Hypophosphoric acid			
	b) Pyrophosphoric acid			
	c) Metaphosphoric acid			
	d) Orthophosphoric acid			
110			potassium chlorate we get	this mixture of gases:
0.	by the action of concent	racea ny aroemorie aeia on	potassium emorate we get	uns mixture of gases.
0.	a) $CO_2 + Cl_2$	b) $O_2 + ClO_2$	c) $Cl_2 + ClO_2$	d) $O_2 + Cl_2 + ClO_2$
110		a liquid while H_2S as a gas		$u_1 u_2 + u_2 + u_3 u_2$
1.	deficially 1120 exists as	a fiquid wiffle fizs as a gas	because.	
1.	a) U O shawa hydrogan	handing		
	a) H ₂ O shows hydrogen	-		
	b) Molecular weight of H	= -		
	c) Bond angle in H_2O is	•		
110	d) Size of 'O' atom is sm		1	
	Ammonium saits are ox	idized in the soil to nitrites	by:	
2.	a) Danituifain a la atania			
	a) Denitrifying bacteria			
	b) Nitrifying bacteria	1	4	
	c) Ammonifying bacteri	a CL		
	d) Nitrosifying bacteria			
440		·		
	Bleaching powder is a m	nixture of:		
110 3.		Company	CATION	
	a) Calcium hypochlorite	and calcium chloride	CATION	
	a) Calcium hypochloriteb) Calcium chlorate and	and calcium chloride calcium chloride	CATION	
	a) Calcium hypochloriteb) Calcium chlorate andc) Calcium hypochlorite	e and calcium chloride calcium chloride e and basic calcium chloride	CATION	
3.	a) Calcium hypochloriteb) Calcium chlorate andc) Calcium hypochlorited) Calcium chlorate and	and calcium chloride calcium chloride and basic calcium chloride calcium hydroxide		
3.110	a) Calcium hypochloriteb) Calcium chlorate andc) Calcium hypochlorited) Calcium chlorate and	e and calcium chloride calcium chloride e and basic calcium chloride		
3.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed	and calcium chloride calcium chloride and basic calcium chloride calcium hydroxide through nitric acid, the pro	oduct is	
3. 110 4.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S	and calcium chloride calcium chloride and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S		d) None of these
3. 110 4.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed	and calcium chloride calcium chloride and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S	oduct is	d) None of these
3. 110 4.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is:	oduct is c) Prismatic S	
3. 110 4.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S	and calcium chloride calcium chloride and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S	oduct is	d) None of these
3. 110 4.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is: b) CH(OH)COONa	oduct is c) Prismatic S c) CH(OH)COOK	d) CH(OH)COOSbO
3. 110 4. 110 5.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for a) CH(OH)COOH CH(OH)COOK	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is: b) CH(OH)COONa CH(OH)COOK	oduct is c) Prismatic S	
3. 110 4. 110 5.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is: b) CH(OH)COONa CH(OH)COOK	oduct is c) Prismatic S c) CH(OH)COOK	d) CH(OH)COOSbO
3. 110 4. 110 5.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for a) CH(OH)COOH CH(OH)COOK Iodine imparts brown co	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is: b) CH(OH)COONa CH(OH)COOK	oduct is c) Prismatic S c) CH(OH)COOK CH(OH)COOK	d) CH(OH)COOSbO CH(OH)COOK
3. 110 4. 110 5.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for a) CH(OH)COOH CH(OH)COOK Iodine imparts brown co	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is: b) CH(OH)COONa CH(OH)COOK colour to: b) Benzene	oduct is c) Prismatic S c) CH(OH)COOK	d) CH(OH)COOSbO
3. 110 4. 110 5.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for a) CH(OH)COOH CH(OH)COOK Iodine imparts brown co	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is: b) CH(OH)COONa CH(OH)COOK colour to: b) Benzene	oduct is c) Prismatic S c) CH(OH)COOK CH(OH)COOK	d) CH(OH)COOSbO CH(OH)COOK
3. 110 4. 110 5.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for a) CH(OH)COOH CH(OH)COOK Iodine imparts brown co a) Water Neon is extensively used	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is: b) CH(OH)COONa CH(OH)COOK colour to: b) Benzene	oduct is c) Prismatic S c) CH(OH)COOK CH(OH)COOK	d) CH(OH)COOSbO CH(OH)COOK
3. 110 4. 110 5. 110 6.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for a) CH(OH)COOH CH(OH)COOK Iodine imparts brown co a) Water Neon is extensively used a) Cold storage units	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is: b) CH(OH)COONa CH(OH)COOK colour to: b) Benzene	oduct is c) Prismatic S c) CH(OH)COOK CH(OH)COOK	d) CH(OH)COOSbO CH(OH)COOK
3. 110 4. 110 5. 110 6.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for a) CH(OH)COOH CH(OH)COOK Iodine imparts brown co a) Water Neon is extensively used a) Cold storage units b) Organic compounds	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is: b) CH(OH)COONa CH(OH)COOK colour to: b) Benzene	oduct is c) Prismatic S c) CH(OH)COOK CH(OH)COOK	d) CH(OH)COOSbO CH(OH)COOK
3. 110 4. 110 5. 110 6.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for a) CH(OH)COOH CH(OH)COOK Iodine imparts brown co a) Water Neon is extensively used a) Cold storage units b) Organic compounds c) Medicines	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is: b) CH(OH)COONa CH(OH)COOK colour to: b) Benzene d in:	oduct is c) Prismatic S c) CH(OH)COOK CH(OH)COOK	d) CH(OH)COOSbO CH(OH)COOK
3. 110 4. 110 5. 110 6.	a) Calcium hypochlorite b) Calcium chlorate and c) Calcium hypochlorite d) Calcium chlorate and When H ₂ S gas is passed a) Rhombic S The chemical formula for a) CH(OH)COOH CH(OH)COOK Iodine imparts brown co a) Water Neon is extensively used a) Cold storage units b) Organic compounds	e and calcium chloride calcium chloride e and basic calcium chloride calcium hydroxide through nitric acid, the pro b) Amorphous S or tartar emetic is: b) CH(OH)COONa CH(OH)COOK colour to: b) Benzene d in:	oduct is c) Prismatic S c) CH(OH)COOK CH(OH)COOK	d) CH(OH)COOSbO CH(OH)COOK

8.				
	a) It can readily accept an	electron	b) It is very strongly elect	ronegative
	c) It is a non metal		d) It belongs to halogen fa	•
110	-	rough a solution of Na ₂ SO ₃		,
9.	F	823	, .	
	a) Na ₂ SO ₄	b) Na ₂ S	c) NaHSO ₄	d) NaH
111	F_2 on treatment with methods		c) Nano ₄	a) Hari
0.	1 2 on treatment with met	nane gives.		
0.	a) CH ₂ F ₂	b) CH ₃ F	c) CHF ₃	d) All of those
111			c) chr ₃	d) All of these
	Coloured oxide is nitroger	I IS:		
1.) N O	1) NO) N. O	DAG
	a) N ₂ 0	b) NO	c) N_2O_4	d) NO ₂
	Oxalic acid on dehydration	n by conc. H ₂ SO ₄ gives:		
2.				
	a) $C + CO_2$	b) CO	c) CO ₂	d) $CO + CO_2$
111	Which of the following is t	the life saving mixture for a	ın asthma patient?	
3.				
	a) Mixture of helium and o	oxygen	b) Mixture of neon and ox	xygen
	c) Mixture of xenon and n	itrogen	d) Mixture of argon and o	xygen
111	SO ₂ reacts with Cl ₂ to yiel	d:		
4.				
	a) Thionyl chloride			
	b) Carbonyl chloride	< 1 3	>	
	c) Sulphuryl chloride	131		
	d) Sulphur monochloride			
111		the preparation of pesticid	es?	
5.	winen element is used in	ine preparation of pesticia	C31	
J,	a) Arsenic	b) Bismuth	c) Antimony	d) Nitrogen
111			c) Allumony	u) Niti ogen
_	Which of the following is i	not a peroxy acid?		
6.		1) D 1: 1 11) D 1: 1.1 : :1	DD 11 : :1
	a) Perphosphoric acid	b) Pernitric acid	c) Perdisulphuric acid	d) Perchloric acid
	White phosphorus is:			
7.				
	a) Strong poison	b) Mild poison	c) Non-poisonous	d) None of these
111	Which on heating with con	nc. H ₂ SO ₄ gives violet vapo	urs?	
8.				
	a) Iodide	b) Nitrate	c) Sulphate	d) Bromide
111	Formation of ozonide is:			
9.				
	a) Addition reaction	b) Substitution reaction	c) Decomposition	d) None of these
112	Which blue liquid is obtain	ned on reacting equimolar	amounts of two gases at –	30°C?
0.	1	0 1	O	
	a) N ₂ O ₄	b) N ₂ O	c) N_2O_3	d) N_2O_5
112	Which of the following is of		0) 11203	u) 11205
1.	vvincii of the following is t	Maisca III all i		
1.	a) CH	ы н о	c) NaCl	d) White phoenhouse
112	a) CH ₄	b) H ₂ O	c) NaCl	d) White phosphorus
	Which statement is not co	rrect?		
2.	-) 147L:4 1 1 1 1	orus roast with shloring at a		
	at White and red phosphe	vene roact unth chloring of t	room tomporature	

	b) White phosphorus is metastable, while red phosphorus is stablec) White phosphorus is lighter than red phosphorusd) White phosphorus is highly poisonous, while red phosphorus is not			
112 3.	Which element does not for			
	a) Iodine H ₂ S is a:	b) Phosphorus	c) Nitrogen	d) Oxygen
	a) Weak dibasic acidb) Weak monobasic acidc) Strong dibasic acidd) Strong monobasic acidOzone oxidises moist sulp	hur to:		
5.112.	a) SO_2 Which element reacts wit	b) SO ₃ h chlorine to give pentachl	c) H ₂ SO ₄	d) None of these
6.	a) P	b) As	c) Sb	d) All of these
112 7.			n compound X. The oxidation	
112 8.	a) +2 Anomalous behavior of ox	b) +4 Tygen is due to:	c) +6	d) 0
	a) High electronegativityb) Small atomic sizec) Non-availability of <i>d</i>-ord) All of the above	bitals	ATION	
112 9.	In oxo-acids of halogen, X			
113 0.	a) $d\pi$ - $d\pi$ overlapping Fuming nitric acid is:	b) $p \pi - p \pi$ overlapping	c) $d \pi - p \pi$ overlapping	d) either of these
113 1.	a) Conc. $HNO_3 + NO_2$ When NaCl or KCl is heater	b) Conc. HNO ₃ + NO ₃ ed with conc. H ₂ SO ₄ and so	c) Conc. $HNO_3 + N_2O_3$ lid $K_2Cr_2O_7$, we get:	d) Conc. HNO ₃ + NO
113	a) Chromic chlorideb) Chromous chloridec) Chromyl chloride (CrOd) Chromic sulphateOzone is used for purifyin			
2.	a) It dissociates and releab) Do not leave any foul stc) Kills bacteria, cyst, fungd) All of the above	mell like chlorine. gi and acts as a biocide.		
113 3.	Nitrogen is a relatively inaa) Its atom has a stable ele			
	b) It has a low atomic rad	ius		

440	c) Its electronegativity is fairly highd) Dissociation energy of its molecule is fairly high3 The following species will not exhibit disproportionation reaction				
113 4.	The following species will	not exhibit disproportiona	ition reaction		
113 5.	a) CIO ⁻ Which of the following is t	b) $CIO_{\overline{2}}$ used to prepare Cl_2 gas at reference.	c) CIO ₃ oom temperature from con	d) CIO ₄ centrated HCl?	
	a) MnO ₂ Arsine is:	b) H ₂ S	c) KMnO ₄	d) Cr ₂ O ₃	
113 7.	a) Solid The arrangement of oxyge	b) Liquid en atoms around phosphor	c) Supersaturate liquid us atoms in P_4O_{10} is:	d) Gas	
113 8.	is obtained by allowing KN the electrolysis of a fluorid a) Fluorine is a highly read	MnO ₄ to react with hydroch de. This is because: ctive gas st chemical oxidizing agent onous	nloric acid. Fluorine, howev	d) Tetrahedral ands. For example, chlorine ver, can be obtained only by	
	The number of different o				
9.	a) 3	b) 4	c) 5	d) 6	
	The gas which does not sh	ow oxidizing and bleachin	g properties is:		
0. 114 1.	a) Chlorine Ammonia is generally man	b) Ozone nufactured for fertilizers by	c) Sulphur dioxide the reaction:	d) Nitrous oxide	
11	a) $2NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O + 2NH_3$ b) By passing an electric discharge in a mixture of N_2 and H_2 c) By reducing the byproduct nitric acid d) By passing a mixture of N_2 and H_2 under high pressure and moderate temperature over a catalyst				
114 2.	Which halide of nitrogen i		oure una mouerate temper	acaro over a cacaryor	
	a) NF ₃ Reagent used to distinguis	b) $\mathrm{NCl_3}$ sh $\mathrm{H_2O_2}$ and $\mathrm{O_3}$ is:	c) NI ₃	d) NBr ₃	
114	a) PbS Which one liberates Br_2 fr	b) Starch and iodine rom KBr?	c) KMnO4	d) Bleaching powder	
4. 114 5.	a) I ₂ Which chloride is explosiv	b) HI re?	c) Cl ₂	d) SO ₂	
	a) PCl ₃ Extra pure N ₂ can be obtain	b) AsCl ₃ ined by heating	c) NCl ₃	d) SbCl ₃	
	a) NH ₃ with CuO	b) NH ₄ NO ₃	c) (NH ₄) ₂ Cr ₂ O ₇	d) Ba (N ₃) ₂	

7.				
	a) I ₂ , KI and rectified spiri	it		
	b) I ₂ and rectified spirit			
	c) KI and rectified spirit			
	d) I ₂ and water			
114		med in the reaction of xeno	on hexafluoride with silicor	n dioxide?
8.	What are the products for	med in the reaction of xen	on nevallaoriae with sincor	1 dionide:
01	a) XeSiO ₄ + HF	b) $XeF_2 + SiF_4$	c) $XeOF_4 + SiF_4$	d) $XeO_3 + SiF_2$
114	Mixture of sand and iodin		c) Acor4 on 4	uj neog i bli z
9.	Mixture of Sand and Iouni	e can be separated by.		
٦.	a) Dissolving in water and	d filtoring		
	b) Fractional crystallization			
	c) Sublimation	UII		
		hlo		
115	d) Separation is not possible of gas is evolved as hypro-		fall the following elements	ovaont.
	Ci ₂ gas is evolved as bypro	oduct ili tile manulacture o	f all the following elements	s except:
0.	-) M-	LA MI-	-) 41	J) 17
445	a) Mg	b) Na	c) Al	d) K
	Which is more suitable for	r storing concentrated H_2S	04?	
1.				1) (1)
	a) Copper vessel	b) Aluminium vessel	c) Earthen vessel	d) Glass vessel
	Sodium nitrate on heating	g with zinc dust and caustic	soda gives:	
2.				
	a) NaNO ₂	b) NH ₃	c) NO ₂	d) N ₂ O
	Which of the following for	rms vortex ring?		
3.		7		
	a) P_2O_5	b) PH ₃	c) NH ₃	d) P_4O_{10}
115	When radioactive mineral	ls like clevite, monazite and	d pitchblende are heated to	1273 k in vacuo the noble
4.	gas obtained is	JPLUS EDUL	AHUN.	
	a) Rn	b) Kr	c) He	d) Ne
115	a) Rn Diamagnetic oxide of chlo	•	с) Не	d) Ne
115 5.	•	•	с) Не	d) Ne
	•	•	c) He	d) Ne d) None of these
5.	Diamagnetic oxide of chlo	orine is: b) Cl ₂ O ₆	,	,
5.	Diamagnetic oxide of chlo a) ClO ₃	orine is: b) Cl ₂ O ₆	,	,
5. 115	Diamagnetic oxide of chlo a) ClO ₃	orine is: b) Cl ₂ O ₆	,	,
5. 115 6.	Diamagnetic oxide of chlo a) ClO ₃ Best absorbent for SO ₂ is:	b) Cl_2O_6 b) $KOH(aq.)$	c) ClO ₂	d) None of these
5. 115 6.	Diamagnetic oxide of chlo a) ClO ₃ Best absorbent for SO ₂ is: a) H ₂ SO ₄	b) Cl_2O_6 b) $KOH(aq.)$	c) ClO ₂	d) None of these
5. 115 6.	Diamagnetic oxide of chlo a) ClO ₃ Best absorbent for SO ₂ is: a) H ₂ SO ₄	b) Cl_2O_6 b) $KOH(aq.)$	c) ClO ₂	d) None of these
5. 115 6. 115 7.	Diamagnetic oxide of chloral ClO ₃ Best absorbent for SO ₂ is: a) H ₂ SO ₄ In which reaction does SO a) Acidified KMnO ₄	b) Cl_2O_6 b) $KOH(aq.)$ c) act as oxidizing agent? b) Acidified $K_2Cr_2O_7$	c) ClO ₂	d) None of these d) CaCl ₂ anhyd. d) H ₂ S
5. 115 6. 115 7.	Diamagnetic oxide of chloral ClO ₃ Best absorbent for SO ₂ is: a) H ₂ SO ₄ In which reaction does SO a) Acidified KMnO ₄	b) Cl_2O_6 b) $KOH(aq.)$ c) act as oxidizing agent? b) Acidified $K_2Cr_2O_7$	c) ClO ₂ c) Water c) Acidified C ₂ H ₅ OH	d) None of these d) CaCl ₂ anhyd. d) H ₂ S
5. 115 6. 115 7.	Diamagnetic oxide of chloral ClO ₃ Best absorbent for SO ₂ is: a) H ₂ SO ₄ In which reaction does SO a) Acidified KMnO ₄	b) $\operatorname{Cl}_2\operatorname{O}_6$ b) $\operatorname{KOH}(aq.)$ O_2 act as oxidizing agent? b) Acidified $\operatorname{K}_2\operatorname{Cr}_2\operatorname{O}_7$ actions HNO_3 does not behalon.	c) ClO ₂ c) Water c) Acidified C ₂ H ₅ OH	d) None of these d) CaCl ₂ anhyd. d) H ₂ S
5. 115 6. 115 7.	Diamagnetic oxide of chloral ClO ₃ Best absorbent for SO ₂ is: a) H_2SO_4 In which reaction does SO a) Acidified KMnO ₄ In one of the following reaction as $I_2 + 10HNO_3 \rightarrow 2HIO_3 \rightarrow 2HIO$	b) Cl_2O_6 b) $KOH(aq.)$ O_2 act as oxidizing agent? b) Acidified $K_2Cr_2O_7$ actions HNO_3 does not behalf	c) ClO ₂ c) Water c) Acidified C ₂ H ₅ OH	d) None of these d) CaCl ₂ anhyd. d) H ₂ S
5. 115 6. 115 7.	Diamagnetic oxide of chloral ClO ₃ Best absorbent for SO ₂ is: a) H ₂ SO ₄ In which reaction does SO a) Acidified KMnO ₄ In one of the following reactions	b) Cl_2O_6 b) $KOH(aq.)$ O_2 act as oxidizing agent? b) Acidified $K_2Cr_2O_7$ actions HNO_3 does not behave V_1O_3 actions V_2O_4 actions V_2O_4 actions V_3O_4	c) ClO ₂ c) Water c) Acidified C ₂ H ₅ OH	d) None of these d) CaCl ₂ anhyd. d) H ₂ S
5. 115 6. 115 7.	Diamagnetic oxide of chloral ClO ₃ Best absorbent for SO ₂ is: a) H_2SO_4 In which reaction does SO a) Acidified KMnO ₄ In one of the following reaction as $I_2 + 10HNO_3 \rightarrow 2HIO_3 \rightarrow 3Cu(N_2)$ b) $3Cu + 8HNO_3 \rightarrow 3Cu(N_3)$ c) $4Zn + 10HNO_3 \rightarrow 4Zn(N_3)$	b) Cl_2O_6 b) $KOH(aq.)$ O_2 act as oxidizing agent? b) Acidified $K_2Cr_2O_7$ actions HNO_3 does not behave V_2O_3 $V_2O_3O_3 + V_3O_3 +$	c) ClO ₂ c) Water c) Acidified C ₂ H ₅ OH	d) None of these d) CaCl ₂ anhyd. d) H ₂ S
5. 115 6. 115 7. 115 8.	Diamagnetic oxide of chloral ClO ₃ Best absorbent for SO ₂ is: a) H_2SO_4 In which reaction does SO a) Acidified KMnO ₄ In one of the following reaction as $I_2 + 10HNO_3 \rightarrow 2HIO_3 \rightarrow 3Cu(N_2)$ b) $3Cu + 8HNO_3 \rightarrow 3Cu(N_3)$ c) $4Zn + 10HNO_3 \rightarrow 4Zn(N_3)$ d) $2HNO_3 + P_2O_5 \rightarrow 2HPO_3$	b) Cl_2O_6 b) $KOH(aq.)$ O_2 act as oxidizing agent? b) Acidified $K_2Cr_2O_7$ actions HNO_3 does not behave V_2O_3 actions V_3O_4 actions V_4O_5 $V_3O_3 = V_4O_5$	c) ClO ₂ c) Water c) Acidified C ₂ H ₅ OH	d) None of these d) CaCl ₂ anhyd. d) H ₂ S
5. 115 6. 115 7. 115 8.	Diamagnetic oxide of chloral ClO ₃ Best absorbent for SO ₂ is: a) H_2SO_4 In which reaction does SO a) Acidified KMnO ₄ In one of the following reaction as $I_2 + 10HNO_3 \rightarrow 2HIO_3 \rightarrow 3Cu(N_2)$ b) $3Cu + 8HNO_3 \rightarrow 3Cu(N_3)$ c) $4Zn + 10HNO_3 \rightarrow 4Zn(N_3)$	b) Cl_2O_6 b) $KOH(aq.)$ O_2 act as oxidizing agent? b) Acidified $K_2Cr_2O_7$ actions HNO_3 does not behave V_2O_3 actions V_3O_4 actions V_4O_5 $V_3O_3 = V_4O_5$	c) ClO ₂ c) Water c) Acidified C ₂ H ₅ OH	d) None of these d) CaCl ₂ anhyd. d) H ₂ S
5. 115 6. 115 7. 115 8.	Diamagnetic oxide of chloral Diamagnetic oxide of chloral ClO ₃ Best absorbent for SO_2 is: a) H_2SO_4 In which reaction does SO_2 a) Acidified KMnO ₄ In one of the following reaction as $I_2 + 10HNO_3 \rightarrow 2HIO_3 \rightarrow 3Cu(N_2)$ b) $3Cu + 8HNO_3 \rightarrow 3Cu(N_2)$ c) $4Zn + 10HNO_3 \rightarrow 4Zn(N_2)$ d) $2HNO_3 + P_2O_5 \rightarrow 2HPO_3$ Bleaching powder is an expensive series of the series of t	b) Cl_2O_6 b) $KOH(aq.)$ O_2 act as oxidizing agent? b) Acidified $K_2Cr_2O_7$ actions HNO_3 does not behave V_2O_3 V_2O_3 V_3O_3 V_2O_3 V_3O_3 V_3O_5	c) ClO ₂ c) Water c) Acidified C ₂ H ₅ OH ave as an oxidizing agent Id	d) None of these d) CaCl ₂ anhyd. d) H ₂ S entify it
5. 115 6. 115 7. 115 8.	Diamagnetic oxide of chloral ClO ₃ Best absorbent for SO ₂ is: a) H_2SO_4 In which reaction does SO a) Acidified KMnO ₄ In one of the following reaction as $I_2 + 10HNO_3 \rightarrow 2HIO_3 \rightarrow 3Cu(N_2)$ b) $3Cu + 8HNO_3 \rightarrow 3Cu(N_3)$ c) $4Zn + 10HNO_3 \rightarrow 4Zn(N_3)$ d) $2HNO_3 + P_2O_5 \rightarrow 2HPO_3$ Bleaching powder is an example of the solution of the solution of the following reaction of t	b) Cl_2O_6 b) $KOH(aq.)$ O_2 act as oxidizing agent? b) Acidified $K_2Cr_2O_7$ actions HNO_3 does not behave $O_3O_3O_2 + O_3O_4$ $O_3O_3O_2 + O_3O_5$ cample of: b) A complex salt	c) ClO ₂ c) Water c) Acidified C ₂ H ₅ OH	 d) None of these d) CaCl₂ anhyd. d) H₂S entify it d) A mixed salt

	a) 2	b) 3	c) 1	d) zero		
116	When ammonia is dissolv	ed in water:				
1.	•					
	a) It loses a proton					
	b) It loses an electron					
	c) It gains a proton from water molecule					
	d) It gains an electron from	m water molecule				
116	The $S - S - S$ bond angle	in S ₈ molecule is				
2.						
	a) 109.5°	b) 105°	c) 110°	d) 60°		
116	Which of the following is j	planar?				
3.						
	a) XeF ₂	b) XeO ₂ F ₂	c) XeO ₃ F	d) XeF ₄		
116	Which oxide of N is neutra	al?				
4.						
	a) N_2O_3	b) N ₂ O ₅	c) N_2O_4	d) N ₂ O		
116	I ₂ can exist in the oxidation	on states:				
5.						
	a) -1, +1, +3, +5	b) -1, +1, +3	c) +3, +5, +7	d) -1, +1, +3, +5, +7		
116	Ozone is manufactured by	carrying silent electric dis	scharge using:			
6.						
	a) Siemens ozonizer					
	b) Brodie's ozonizer	S. Ju. 1	>			
	c) Siemens and Halske's o	ozonizer				
	d) All of the above					
116	Which forms new compou	ınd in air?				
7.		C FRUZ	ATTONI			
	a) H ₂ 0 in air	b) 0 ₂ in air	c) N ₂ in air	d) Phosphorus in air		
116	Which statement regarding	ng He is incorrect?				
8.						
	a) It is used in gas cooled nuclear reactor					
	b) It is used as a cryogenic agent for carrying out experiment at low temperature					
	c) It is used to produce and sustain powerful superconducting magnets					
	d) It is used to fill gas ball	oons instead of H ₂ because	e it is lighter and non-comb	ustible		
116	Reactivity of NO is due to:					
9.						
	a) Its low molecular weigh	ht				
	b) Its gaseous state					
	c) Odd electron					
	d) None of the above					
117	Welding of magnesium ca	n be done in an atmospher	e of:			
0.						
	a) 0 ₂	b) He	c) N ₂	d) All of these		
117	Colloidal sulphur is obtain	ned by the action of HNO_3 (on:			
1.						
	a) H ₂ S	b) HgS	c) CaS ₂	d) CaS ₂ O ₃		
117	Treatment of CS ₂ with exc	cess of Cl ₂ gives:				
2.						
	a) CCl ₄	b) CHCl ₃	c) Carbon black	d) C ₂ H ₅ Cl		

	The oxygen family is char	acterised by the electronic	configuration:	
3.	. 2 4		. 1 2	n 2 f
	a) $ns^2 np^4$	b) $ns^2 np^2$	c) $ns^1 np^3$	d) $ns^2 np^5$
	Which one of the following	ig noble gases is used in m	iner's cap lamps?	
4.) II 1:	15 M) A	1) 17
445	a) Helium	b) Neon	c) Argon	d) Krypton
	Colour of bromine in CS ₂	lS:		
5.	a) Cua au	h) Onemas	a) Vallaru	d) Dad
117	a) Green	b) Orange	c) Yellow	d) Red
6.	Bleaching powder on star	iding forms mixture of.		
0.	a) CaO + Cl ₂	b) HOCl + Cl ₂	c) $CaCl_2 + Ca(ClO_3)_2$	d) CaO + CaCl ₂
117	Which statement is not co	-	$c_1 c_3 c_1 + c_4 c_1 c_3 c_2$	uj cao + caci ₂
7.	Winen statement is not et	Treet.		
, .	a) Xe is the most reactive	among the rare gases		
	b) He is an inert gas	among the rare gases		
	c) Radon is obtained fron	n decay of radium		
	•	re gas found in atmosphere	e is He	
117	Which acid can combine v	=		
8.		-		
	a) HF	b) HBr	c) HCl	d) HI
117	Among the following the	number of compounds tha	t can react with PCl5 to give	$e POCl_3 is O_2$, CO_2 , SO_2 , H_2O ,
9.	$H_2 SO_{4}, P_4O_{10}$	Sale I	2	
	a) 1	b) 2	c) 3	d) 4
118	When water is added in c	onc. H_2SO_4 the reaction is	exothermic because:	
0.				
	a) H ₂ SO ₄ is viscous	Carrie EDII/	LACITAL	
	b) Hydrates of H ₂ SO ₄ are	formed US EDU	ALION	
	c) H ₂ SO ₄ is corrosive			
440	d) None of the above			
	Polyanion formation is m	aximum in		
1.	a) Nitnagan	h) Culmhum	a) Overgan	d) Danan
110	a) Nitrogen	b) Sulphur	c) Oxygen	d) Boron
2.	The solubility of hobie ga	ses in water shows the ord	lei:	
۷.	a) He > Ar > Kr > Ne >	Yο		
	b) He > Ne > Ar > Kr >			
	c) $Xe > Kr > Ar > Ne > 1$			
	d) None of the above			
118	Solid Cl ₂ O ₆ exists as:			
3.	2 0			
	a) $ClO_2^+ \cdot ClO_4^-$	b) Covalent species	c) $(ClO_3)_2$	d) None of these
118		ed below occurs in allotrop		•
4.				
	a) Sulphur	b) Copper	c) Iodine	d) Silver
118	Concentrated HNO ₃ react	s with I ₂ to gives		
5.				
	a) HI	b) HOI	c) HIO ₃	d) HOIO ₂
112	Noble gases are adsorbed	l by:		

a) Finely divided Pd and Pt b) Colloidal Pd c) Coconut charcoal d) All of the above 118 In which of the following, NH ₃ is not used? 7. a) Tollen's reagent b) Nessler's reagent c) Group reagent for the analysis of IV group basic radicals d) Group reagent for the analysis of III group basic radicals 118 The element than oxidizes water to oxygen with evolution of heat is: 8. a) Fluorine b) Chlorine c) Iodine d) Bromine 118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl ₂ N ₃ b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1: 2 b) 2: 1 c) 1: 3 d) 3: 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is 4.	6.				
c) Coconut charcoal d) All of the above 118 In which of the following, NH3 is not used? 7. a) Tollen's reagent b) Nessler's reagent c) Group reagent for the analysis of IV group basic radicals d) Group reagent for the analysis of III group basic radicals 118 The element than oxidizes water to oxygen with evolution of heat is: 8. a) Fluorine b) Chlorine c) Iodine d) Bromine 118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl ₂ N ₃ b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1: 2 b) 2: 1 c) 1: 3 d) 3: 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is		a) Finely divided Pd and I	Pt		
d) All of the above 118 In which of the following, NH3 is not used? 7. a) Tollen's reagent b) Nessler's reagent c) Group reagent for the analysis of IV group basic radicals d) Group reagent for the analysis of III group basic radicals 118 The element than oxidizes water to oxygen with evolution of heat is: 8. a) Fluorine b) Chlorine c) Iodine d) Bromine 118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl ₂ N ₃ b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1: 2 b) 2: 1 c) 1: 3 d) 3: 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is					
118 In which of the following, NH3 is not used? 7. a) Tollen's reagent b) Nessler's reagent c) Group reagent for the analysis of IV group basic radicals d) Group reagent for the analysis of III group basic radicals 118 The element than oxidizes water to oxygen with evolution of heat is: 8. a) Fluorine b) Chlorine c) Iodine d) Bromine 118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl ₂ N ₃ b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1: 2 b) 2: 1 c) 1: 3 d) 3: 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is					
7. a) Tollen's reagent b) Nessler's reagent c) Group reagent for the analysis of IV group basic radicals d) Group reagent for the analysis of III group basic radicals 118 The element than oxidizes water to oxygen with evolution of heat is: 8. a) Fluorine b) Chlorine c) Iodine d) Bromine 118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl ₂ N ₃ b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1 : 2 b) 2 : 1 c) 1 : 3 d) 3 : 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is	110	•	NII : +		
a) Tollen's reagent b) Nessler's reagent c) Group reagent for the analysis of IV group basic radicals d) Group reagent for the analysis of III group basic radicals 118 The element than oxidizes water to oxygen with evolution of heat is: 8. a) Fluorine b) Chlorine c) Iodine d) Bromine 118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl ₂ N ₃ b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1 : 2 b) 2 : 1 c) 1 : 3 d) 3 : 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is		in which of the following,	NH ₃ is not used?		
b) Nessler's reagent c) Group reagent for the analysis of IV group basic radicals d) Group reagent for the analysis of III group basic radicals 118 The element than oxidizes water to oxygen with evolution of heat is: 8. a) Fluorine b) Chlorine c) Iodine d) Bromine 118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl ₂ N ₃ b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1 : 2 b) 2 : 1 c) 1 : 3 d) 3 : 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is	/.	a) Tollen's reagent			
c) Group reagent for the analysis of IV group basic radicals d) Group reagent for the analysis of III group basic radicals 118 The element than oxidizes water to oxygen with evolution of heat is: 8. a) Fluorine b) Chlorine c) Iodine d) Bromine 118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl ₂ N ₃ b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1 : 2 b) 2 : 1 c) 1 : 3 d) 3 : 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is		·			
118 The element than oxidizes water to oxygen with evolution of heat is: 8. a) Fluorine b) Chlorine c) Iodine d) Bromine 118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl ₂ N ₃ b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1 : 2 b) 2 : 1 c) 1 : 3 d) 3 : 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is		c) Group reagent for the a	analysis of IV group basic ra	adicals	
8.					
a) Fluorine b) Chlorine c) Iodine d) Bromine 118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl ₂ N ₃ b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 12 b) 2 : 1 c) 1 : 3 d) 3 : 1 13 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 149 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is		The element than oxidize:	s water to oxygen with evo	lution of heat is:	
118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl ₂ N ₃ b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1 : 2 b) 2 : 1 c) 1 : 3 d) 3 : 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is	8.	a) Elucrino	h) Chlorino	a) Indina	d) Promino
9. a) Cl_2N_3 b) $BrCN$ c) $ClCN$ d) ICN 119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of $HCOOH$ and $H_2C_2O_4$ by $conc. H_2SO_4$ is: 1. a) $1:2$ b) $2:1$ c) $1:3$ d) $3:1$ 119 Peroxy compound is: 2. a) $H_2S_2O_8$ b) $H_2S_4O_8$ c) $H_2S_2O_6$ d) $H_2S_2O_3$ 119 During bleaching of chlorine an antichlor is used to: 3. a) $Enhance$ bleaching action b) $Eliminate$ last traces of bleaching agent c) $Eliminate$ last traces of bleaching agent c) $Eliminate$ last traces of bleaching agent d) $Eliminate$ last traces of bleaching agent $Eliminate$ $Elimin$	118		•	,	u) broinine
119 Which is called stranger gas? 0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and $H_2C_2O_4$ by conc. H_2SO_4 is: 1. a) 1: 2 b) 2: 1 c) 1: 3 d) 3: 1 119 Peroxy compound is: 2. a) $H_2S_2O_8$ b) $H_2S_4O_8$ c) $H_2S_2O_6$ d) $H_2S_2O_3$ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is		when or the fone wing co	mpounds is not an interpo	eudonarogen i	
0. a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1 : 2 b) 2 : 1 c) 1 : 3 d) 3 : 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is		a) Cl ₂ N ₃	b) BrCN	c) CICN	d) ICN
a) Kr b) Xe c) He d) Ne 119 The ratio of the gases obtained on dehydration of HCOOH and H ₂ C ₂ O ₄ by conc. H ₂ SO ₄ is: 1. a) 1 : 2 b) 2 : 1 c) 1 : 3 d) 3 : 1 119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is	119	Which is called stranger g	gas?		
119 The ratio of the gases obtained on dehydration of HCOOH and $H_2C_2O_4$ by conc. H_2SO_4 is: 1. a) 1 : 2 b) 2 : 1 c) 1 : 3 d) 3 : 1 119 Peroxy compound is: 2. a) $H_2S_2O_8$ b) $H_2S_4O_8$ c) $H_2S_2O_6$ d) $H_2S_2O_3$ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is	0.				
1. a) $1:2$ b) $2:1$ c) $1:3$ d) $3:1$ 119 Peroxy compound is: 2. a) $H_2S_2O_8$ b) $H_2S_4O_8$ c) $H_2S_2O_6$ d) $H_2S_2O_3$ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is	110	-			
a) $1:2$ b) $2:1$ c) $1:3$ d) $3:1$ 119 Peroxy compound is: 2. a) $H_2S_2O_8$ b) $H_2S_4O_8$ c) $H_2S_2O_6$ d) $H_2S_2O_3$ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is		The ratio of the gases obtain	ained on denydration of HC	$LOOH$ and $H_2C_2O_4$ by conc.	1 ₂ SU ₄ 1S:
119 Peroxy compound is: 2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is	1.	a) 1 : 2	b) 2 : 1	c) 1 : 3	d) 3 : 1
2. a) H ₂ S ₂ O ₈ b) H ₂ S ₄ O ₈ c) H ₂ S ₂ O ₆ d) H ₂ S ₂ O ₃ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is	119	=		-, - , -	.,
 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is 			4		
 a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen T-shaped interhalogen compound is 					d) $H_2S_2O_3$
b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is		During bleaching of chlor	ine an antichlor is used to:	ATION	
c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is		a) Enhance bleaching acti	on		
d) Liberate oxygen 119 T-shaped interhalogen compound is					
119 T-shaped interhalogen compound is			the fibre		
	110		1 ! -		
		i -snaped internalogen co	mpouna is		
a) ClF_3 b) ICl c) ClF_5 d) IF_5	т.	a) CIF ₂	b) ICl	c) CIF _E	d) IF _r
119 The catalyst used in Deacon's process for Cl ₂ is:	119		•	o) an 5	w) ··· 5
5.		•			
a) Al_2O_3 b) $CuCl_2$ c) $AlCl_3$ d) MnO_2		a) Al ₂ O ₃	b) CuCl ₂	c) AlCl ₃	d) MnO ₂
119 Nitre cake is:	119	Nitre cake is:			
6.	6.	-) N-HCO	L) N.NO	-) M - N/O	D.M CO
a) NaHSO ₄ b) NaNO ₃ c) NaNO ₂ d) Na ₂ SO ₄ 119 Helium is used in balloons in place of hydrogen because it is	110			_	a) Na ₂ SO ₄
7.		Henum is used in bandons	s in place of flydrogen beca	use it is	
a) Incobusible b) Lighter than hydrogen		a) Incobusible		b) Lighter than hydrogen	
c) Radioactive d) More abundant than hydrogen					drogen
119 The 0—0 bond length in ozone is:	119	The O—O bond length in	ozone is:		
8.	8.	3.4.05 %	124048	3 4 3 4 8	D 4 40 8
a) 1.27 Å b) 1.21 Å c) 1.34 Å d) 1.48 Å	110				aj 1.48 A

9.				
	a) The acid becomes weal	k		
	b) Gas starts coming out f	orm top		
	c) A protective film is for	med on iron sulphide		
	d) The contact between si	alphide and the acid is brol	ken by the presence of gas	collected in the free surfac
	of the middle chamber			
120	Sulphur hepto oxide is an	anhydride of		
0.				
	a) $H_2S_2O_8$	b) H ₂ S ₂ O ₇	c) H_2SO_4	d) H ₂ SO ₅
120	Hydrolysis of PI ₃ yields:			
1.				
	a) Monobasic acid and a s			
	b) Monobasic acid and dil			
	c) Dibasic acid and tribas			
120	d) Monobasic acid and tri	basic acid		
	Which is not poisonous?			
2.	a) NU	h) DU	c) AsH ₃	4) CPU
120	a) NH ₃ What is the number of sign	b) PH_3	esent in sulphuric acid mo	d) SbH ₃
3.	What is the number of sig	ilia (0) aliu pi (n) bolius pi	esent in surphuric acid ino.	iecuie:
٥.	a) 6σ , 2π	b) 6σ , 0π	c) 2σ , 4π	d) 2σ , 2π
120			nd the hybridization state of	
4.	in surprises for the simulation			
	a) sp^2	b) sp^3	c) d^2sp^3	d) sp^3d^2
120	The element evolving two	No. 1.40	with conc. Sulphuric acid	
5.				
	a) P Which statement is correct	b) C ct? Plus F	c) Hg	d) S
120	Which statement is correct	ct? PLUS EUUL	ATION .	
6.				
	a) Ozone is a resonance h			
	b) Ozone is an allotropic i	· -		
	c) Ozone is an isomer of c	• •		
120	d) Ozone has no relations			
	when sulphur is bolled w	ith Na ₂ SO ₃ solution, the co	mpound formed is	
7.	a) Sodium thiosulphate	b) Sodium sulphate	c) Sodium sulphide	d) Sodium persulphate
120	•	ons used in the Lewis struc		a) Souldin persulphate
8.	Number of valence electry	ons used in the Lewis struc	ture of 504 are.	
O.	a) 22	b) 20	c) 18	d) None of these
120	The shape of IF ₇ molecule		0, 10	a) None of those
9.	, ,			
	a) Octahedral			
	b) Pentagonal bipyramida	al		
	c) Tetrahedral			
	d) Trigonal bipyramidal			
121	The strongest acid among	st the following is		
0.				
	a) HClO	b) HClO ₂	c) HClO ₃	d) HClO ₄
121	In ordinary Cl ₂ gas Cl ³⁵ ar	nd Cl ³⁷ are in the ratio:		

1.				
	a) 1 : 3	b) 3 : 1	c) 1 : 1	d) 1 : 2
121	Which group is called buf			,
2.	9 I	Q and a self-a		
	a) I	b) VII	c) VIII	d) Zero
121			ses causes a decrease in the	-
3.		8		
	a) Ionisation energy	b) Density	c) Boiling point	d) Atomic radius
121	-	<u> </u>	it with aqueous solution of	·· , · · · · · · · · · · · · · · · · ·
4.			1	
	a) Na ₂ S	b) Na ₂ S ₂ O ₃	c) Na ₂ S	d) Na ₂ SO ₄
121	S—S bond is not present		.,	4
5.	P			
	a) H ₂ S ₂ O ₄	b) H ₂ S ₂ O ₆	c) H ₂ S ₂ O ₈	d) None of these
121	Which one among the foll	•	•	,
6.				
	a) Bromine	b) Sulphur	c) Phosphorus	d) carbon
121	A radioactive element is:	<i>y</i> 1	, 1	,
7.				
	a) Sulphur	b) Polonium	c) Tellurium	d) Selenium
121	Metalloid among the follo	,	,	,
8.	O	ŭ		
	a) 0	b) S	c) Te	d) Po
121	,	drides of the V-group elem	ents decreases in the order	
9.	, and the second			
	a) $NH_3 > SbH_3 > PH_3 >$	AsH ₃	b) $SbH_3 > AsH_3 > PH_3 >$	· NH ₃
	c) $NH_3 > PH_3 > AsH_3 >$	-		=
	C IVII2 / I II2 / ASII2 /	20113	$\alpha \mid SDH_2 > PH_2 > ASH_2 >$	NH_{2}
122			d) $SbH_3 > PH_3 > AsH_3 >$ as. The reason is	NH ₃
	At room temperature, H ₂			NH ₃
122 0.	At room temperature, H_2	O is liquid while H ₂ S is a ga		· <i>N</i> H ₃
	At room temperature, H ₂ a) Electronegativity of O	O is liquid while H ₂ S is a gais is greater than S	as. The reason is	· <i>N</i> H ₃
	At room temperature, H ₂ a) Electronegativity of O i b) Difference in the bond	O is liquid while H ₂ S is a ga is greater than S angles of both the molecul	es. The reason is	· <i>N</i> H ₃
	At room temperature, H ₂ a) Electronegativity of O i b) Difference in the bond c) Association takes place	O is liquid while H ₂ S is a gais is greater than S angles of both the molecul e in H ₂ O due to H-bonding	as. The reason is	· <i>N</i> H ₃
0.	a) Electronegativity of O is b) Difference in the bond c) Association takes placed) O and S belong to difference t	O is liquid while H ₂ S is a gains is greater than S angles of both the molecule in H ₂ O due to H-bonding rent periods	es. The reason is	· N H ₃
0.	At room temperature, H ₂ a) Electronegativity of O i b) Difference in the bond c) Association takes place	O is liquid while H ₂ S is a gains is greater than S angles of both the molecule in H ₂ O due to H-bonding rent periods	es. The reason is	· <i>N</i> H ₃
0. 122	a) Electronegativity of O is b) Difference in the bond c) Association takes placed) O and S belong to difference t	O is liquid while H ₂ S is a gain is greater than S angles of both the molecule in H ₂ O due to H-bonding rent periods reasing acidic strength of o	es. The reason is	· <i>N</i> H ₃
0. 122	At room temperature, H ₂ a) Electronegativity of O is b) Difference in the bond c) Association takes place d) O and S belong to difference order for december of the correct o	O is liquid while H_2S is a gain is greater than S angles of both the molecule in H_2O due to H -bonding rent periods reasing acidic strength of C $AsO_4 > H_3PO_4$	es. The reason is	· N H ₃
0. 122	At room temperature, H ₂ ' a) Electronegativity of O i b) Difference in the bond c) Association takes place d) O and S belong to difference order for decorrect order.	O is liquid while H_2S is a gain is greater than S angles of both the molecule in H_2O due to H -bonding rent periods reasing acidic strength of S	es. The reason is	· N H ₃
0. 122	At room temperature, H ₂ ' a) Electronegativity of O is b) Difference in the bond c) Association takes place d) O and S belong to difference order for decorrect orde	O is liquid while H_2S is a gain is greater than S angles of both the molecular in H_2O due to H -bonding rent periods reasing acidic strength of S and S and S and S and S and S and S are S and S and S are S and S and S are S are S and S are S	es. The reason is	· N H ₃
0. 122 1.	At room temperature, H ₂ a) Electronegativity of O is b) Difference in the bond c) Association takes place d) O and S belong to difference order for decorrect order for decorrect order a) HNO ₃ > H ₃ SbO ₄ > H ₃ b) H ₃ PO ₄ > H ₃ AsO ₄ > H ₃	O is liquid while H_2S is a gain is greater than S angles of both the molecule in H_2O due to H -bonding rent periods reasing acidic strength of C $AsO_4 > H_3PO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$	es. The reason is	· N H ₃
0. 122 1.	At room temperature, H ₂ a) Electronegativity of O is b) Difference in the bond c) Association takes place d) O and S belong to difference or decreased The correct order for decreased a) HNO ₃ > H ₃ SbO ₄ > H ₃ b) H ₃ PO ₄ > H ₃ AsO ₄ > H ₃ c) HNO ₃ > H ₃ PO ₄ > H ₃ AsO ₄ > H ₃ d) HNO ₃ > H ₃ AsO ₄ > H ₃	O is liquid while H_2S is a gain is greater than S angles of both the molecule in H_2O due to H -bonding rent periods reasing acidic strength of C $AsO_4 > H_3PO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$	es. The reason is	· N H ₃
0. 122 1.	At room temperature, H ₂ a) Electronegativity of O is b) Difference in the bond c) Association takes place d) O and S belong to difference or decreased The correct order for decreased a) HNO ₃ > H ₃ SbO ₄ > H ₃ b) H ₃ PO ₄ > H ₃ AsO ₄ > H ₃ c) HNO ₃ > H ₃ PO ₄ > H ₃ AsO ₄ > H ₃ d) HNO ₃ > H ₃ AsO ₄ > H ₃	O is liquid while H_2S is a gain is greater than S angles of both the molecule in H_2O due to H -bonding rent periods reasing acidic strength of C $AsO_4 > H_3PO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$	es. The reason is	$N_{ m H_3}$
0. 122 1.	At room temperature, H ₂ ' a) Electronegativity of O is b) Difference in the bond c) Association takes place d) O and S belong to difference order for dec a) HNO ₃ > H ₃ SbO ₄ > H ₃ . b) H ₃ PO ₄ > H ₃ AsO ₄ > H ₃ . c) HNO ₃ > H ₃ PO ₄ > H ₃ AsO ₄ > H ₃ . d) HNO ₃ > H ₃ AsO ₄ > H ₃ . Chlorine gas can be dried	O is liquid while H_2S is a gain is greater than S angles of both the molecule in H_2O due to H -bonding rent periods reasing acidic strength of C $AsO_4 > H_3PO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$	es. The reason is	· NH ₃
0. 122 1.	a) Electronegativity of O is b) Difference in the bond c) Association takes place d) O and S belong to difference or decorrect order for decorrect	O is liquid while H_2S is a gain is greater than S angles of both the molecule in H_2O due to H -bonding rent periods reasing acidic strength of C $AsO_4 > H_3PO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$ $AsO_4 > H_3SbO_4$	es. The reason is	$N_{ m H_3}$
0. 122 1.	a) Electronegativity of O is b) Difference in the bond c) Association takes place d) O and S belong to difference or decorrect order for decorrect	O is liquid while H_2S is a gain greater than S angles of both the molecular in H_2O due to H -bonding rent periods reasing acidic strength of S and S and S and S and S and S are S and S and S are S are S and S are S are S and S are S are S and S are S and S are S are S and S are S are S and S are S and S are S are S and S are S are S and S are S and S are S and S are S and S are S and S are S are S and S are S and S are S and S are S are S and	es. The reason is	$N_{ m H_3}$
0. 122 1. 122 2.	a) Electronegativity of O is b) Difference in the bond c) Association takes place d) O and S belong to difference or dec a) HNO ₃ > H ₃ SbO ₄ > H ₃ . b) H ₃ PO ₄ > H ₃ AsO ₄ > H ₃ . c) HNO ₃ > H ₃ PO ₄ > H ₃ AsO ₄ > H ₃ . d) HNO ₃ > H ₃ AsO ₄ > H ₃ . Chlorine gas can be dried a) Quick lime b) Soda lime c) Caustic potash sticks	O is liquid while H_2S is a gain is greater than S angles of both the molecule in H_2O due to H -bonding rent periods reasing acidic strength of S and S and S and S and S are S and S and S and S are S are S and S are S and S are S are S are S and S are S are S are S are S and S are S are S and S are S are S are S and S are S and S are S are S and S are S and S are S are S and S are S and S are S and S are S are S and S are S and S are S are S and S a	es. The reason is	· NH ₃
0. 122 1. 122 2.	a) Electronegativity of O is b) Difference in the bond c) Association takes place d) O and S belong to difference or decorrect order for decorrect	O is liquid while H_2S is a gain is greater than S angles of both the molecule in H_2O due to H -bonding rent periods reasing acidic strength of S and S and S and S and S are S and S and S and S are S are S and S are S and S are S are S are S and S are S are S are S are S and S are S are S and S are S are S are S and S are S and S are S are S and S are S and S are S are S and S are S and S are S and S are S are S and S are S and S are S are S and S a	es. The reason is	$N_{ m H_3}$
0. 122 1. 122 2.	a) Electronegativity of O is b) Difference in the bond c) Association takes place d) O and S belong to difference or decorrect order for decorrect	O is liquid while H_2S is a gain is greater than S angles of both the molecule in H_2O due to H -bonding rent periods reasing acidic strength of S and S and S and S and S are S and S and S and S are S are S and S are S and S are S are S are S and S are S are S are S are S and S are S are S and S are S are S are S and S are S and S are S are S and S are S and S are S are S and S are S and S are S and S are S are S and S are S and S are S are S and S a	es. The reason is	d) N—N

4.				
Т.	a) Magnesium	b) Lead	c) Aluminium	d) sodium
122	The first noble gas compo	•	c) manimum	a) sourain
5.	The most hobie gas compo	and obtained wasi		
٥.	a) XeF ₂	b) XeF ₄	c) XePtF ₆	d) XeOF ₄
122	Sulphurous acid can be us	, .	5) 1101 11 6	, 4
6.	baipinar ous dela carr se de	ou usi		
0.	a) Oxidizing agent	b) Reducing agent	c) Bleaching agent	d) All of these
122	, ,	f noble gases decreases in t		a) im or these
7.	The case of inqueraction of	i nobre gases acereases m		
	a) He $>$ Ne $>$ Ar $>$ Kr $>$ 2	Хe		
	b) $Xe > Kr > Ar > Ne > H$			
	c) $Kr > Xe > He > Ar > N$			
	d) Ar $>$ Kr $>$ Xe $>$ He $>$ N			
122	•		re other acids is that conc H	I ₂ SO ₄
8.	The reason why cone 1125	o4 is assa largely to propar	to outer delas is that come is	12504
0.	a) Is highly ionised		b) Is dehydrating agent	
	c) Has high specific gravit	v and density	d) Has a high boiling poin	t
122		e made by passing CO ₂ over	, ,	
9.	ri cora, gi cen name can be	made by passing do 2 over	wai iii	
7.	a) Bronze	b) White P	c) Grey Sn	d) Green candles
123	Which one of the followin		cy drey on	a) dicen canales
0.	willen one of the following	6 reacts with glass.		
0.	a) H ₂ SO ₄	b) HF	c) HNO ₃	d) $K_2Cr_2O_7$
123	Super halogen is:	b) III	c) invos	uj Rzcrzo/
1.	Super halogen is.	1		
1.	a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂
123	The gas which is supporte		c) bi 2	u) 1 ₂
2.	me 8as willen is supporte		15.417.05.1.4	
	a) NH ₃	b) N ₂ O	c) NO ₂	d) N ₂ O ₅
123	The halide that cannot act	´ -	c) 1102	u) 11205
3.	The name that cannot act	as he wis dela is.		
0.	a) SiCl ₄	b) SnCl ₄	c) CCl ₄	d) SF ₄
123	Which gives off oxygen on	•	c) ddi ₄	u) 51 4
4.	which gives on oxygen on	moderate neating.		
1.	a) Cupric oxide	b) Mercuric oxide	c) Zinc oxide	d) Aluminium oxide
123	Which is the true covalent	=	e, zme omae	a) mammam omae
5.	which is the true covarent	oxide of found.		
J.	a) I ₂ O ₄	b) I ₂ O ₅	c) I ₂ O ₈	d) I ₄ O ₉
123		Ar, Kr and Xe forms least n	, = 0	4) 1409
6.	willen ciement out of fie,	m, m and he forms least m	umber of compounds.	
0.	a) Kr	b) Xe	c) Ar	d) He
123	Which one is the anhydric		c) III	u) ne
7.	willen one is the unity arte	ic of fidic4 :		
<i>,</i> .	a) ClO ₂	b) Cl ₂ O ₇	c) Cl ₂ O	d) Cl ₂ O ₆
123	Dry bleaching is done by:	0) 0120/	0, 0120	aj 01200
8.	Dry bleaching is done by.			
o,	a) Cl ₂	b) SO ₂	c) 0 ₃	d) H ₂ O ₂
123	Which chemical contains	· -	<i>c</i> ₁ <i>c</i> ₃	a) 11202
	Comment Committee			

9.				
124 0.	a) Fischer salt Which reaction represent	b) Epsom salt s the oxidizing behaviour o	c) Fermy's salt f H ₂ SO ₄ ?	d) Spirit of salt
	a) $2PCl_5 + H_2SO_4 \rightarrow 2PO_4$ b) $2NaOH + H_2SO_4 \rightarrow NaOH_4$ c) $NaCl + H_2SO_4 \rightarrow NaH_5$ d) $2HI + H_2SO_4 \rightarrow I_2 + S$ Which statement is wrong	$A_2SO_4 + 2H_2O$ $SO_4 + HCI$ $O_2 + 2H_2O$		
124 2.	a) Oxygen and Sulphur be b) Oxygen is a gas while S c) Both show +2, +4 and d) H ₂ S shows no hydroge Concentrated sulphuric ac	+6 oxidation states n bonding	periodic table	
124 3.	a) NaCl A solution of SO ₂ in water	b) NaF reacts with H ₂ S precipitat	c) NaOH ing sulphur. Here SO ₂ acts a	d) NaBr as:
	a) An oxidizing agent Sulphuric acid has great a	b) A reducing agent ffinity for water because	c) An acid	d) A catalyst
	a) Acid decomposes watec) It decomposes the acidCorrect order of electron	Tel.	b) It hydrolyses the acid d) Acid forms hydrates wi	ith water
5. 124 6.	a) F>Cl>Br>I The correct order of acidi	b) I>Br>Cl>F ty of halogenic acids is	c) Cl>F>I>Br	d) Cl>F>Br>I
	a) HF <hcl<hbr<hi c)="" hi<hcl<hbr<hf="" is:<="" pearl="" td="" white=""><td></td><td>b) HI<hbr<hcl<hf d) HF<hbr<hi<hcl< td=""><td></td></hbr<hi<hcl<></hbr<hcl<hf </td></hcl<hbr<hi>		b) HI <hbr<hcl<hf d) HF<hbr<hi<hcl< td=""><td></td></hbr<hi<hcl<></hbr<hcl<hf 	
	a) BiOCl The nitrate which when h splinter is:	b) SbOCl eated gives-off a gas or a m	c) NOCl lixture of gases which cann	d) AsOCl ot relight a glowing
	a) Sodium nitrate	b) Ammonium nitrate g agent in its reaction with:	c) Lead nitrate	d) Potassium nitrate
	a) Ba(OH) ₂ Nitric oxide is prepared b	b) Zn y the action of cold dil. HNO	c) KOH O ₃ on :	d) H ₂ C ₂ O ₄
	a) Fe Which of the following ha	b) Cu logen acids has the lowest	c) Sn melting point?	d) Zn
	a) HF The lone pair present on I	b) HCl N family hydrides more eas	c) HBr ily participates in bond for	d) HI mation in:
	a) AsH ₃	b) PH ₃	c) NH ₃	d) SbH ₃

125 3.	Which does not react with	n KMnO ₄ solution?		
	a) O_3 Noble gases are prepared	b) H ₂ O ₂ by the:	c) H ₂ S	d) H ₂ SO ₃
	a) Condensation of gasesb) Fractionation of liquidc) Removal of nitrogen ard) Fractionation of liquid	oxygen nd oxygen from air air		
125 5.	When an aqueous solution	n of hypochlorite is heated	:	
J.	a) Chlorine is evolvedb) Chlorite is formedc) Chlorate is formedd) Chlorine peroxide is fo	rmed		
	Sodium chromite is:			
6.	a) Na ₂ CrO ₄	b) Na ₂ Cr ₂ O ₄	c) Na ₂ Cr ₂ O ₇	d) $Cr_2(SO_4)_3$
125			ng because it has high vapor	
7.	explosive.			
	a) It is a mild explosive		b) It generates high vapou	ır pressure
125	c) Both a and bWhich is the most volatile	compound?	d) It is a lachrymatory	
8.	willen is the most volatile	compound:		
	a) HCl	b) HI	c) HBr	d) HF
	In halogen's group which	elements has highest elect	ron affinity?	
9.) II	Dallie EDII	'ATTON	D. r.
126	a) F Which halogens ovidises	b) Cl water to oxygen exotherma	c) Br	d) I
0.	willell flatogetts oxidises	water to oxygen exotnerma	any:	
	a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
126	Chlorine is mixed with dr	inking water so that:		
1.	2.7			
	a) Bacteria are killedb) Dirt is removed			
	c) Water is cleaned			
	d) Suspension is removed	I		
126 2.		phosphide is used, becaus	e it:	
	a) Catches fire easily			
	b) Burns and gives sootc) Forms phosphine whic	h giyoc emoko		
	d) None of the above	ii gives siiioke		
126	= =	whose molecules contain	maximum number of its ato	oms is:
3.				
	a) 0	b) Si	c) As	d) P
	Aqua-regia is			
4.	a) 1.3 conc HNO2 and con	nc HCl	h) 1:2 conc HNO2 and cor	nc HCl

Gplus Education

	c) 3:1 conc. HNO ₃ and co	nc. HCl	d) 2:1 conc. HNO ₃ and con	nc. HCl
126	XeO ₂ F ₂ is obtained by par	rtial bydrolysis of		
5.				
	a) XeOF ₄	b) XeF ₆	c) Both (a) and (b)	d) None of these
126	Interhalogen compounds	are more reactive than the	individual halogen because	e:
6.				
	a) Two halogens are pres	ent in place of one		
	b) They are more ionic			
	c) Their bond energy is le	ess than the bond energy of	the halogen molecule	
	d) They carry more energ			
126	Oxalic acid when heated v	with conc. H ₂ SO _{4,} gives		
7.				
	a) H_2O_2 and CO_2	b) CO and CO ₂	c) H ₂ O ₂ and CO	d) CO ₂ and H ₂ S
	Which of the following iso	otopes is present in largest	amount?	
8.	- 16		. 10	
	a) 0 ¹⁶	b) 0 ¹⁷	c) 0 ¹⁸	d) All in equal amounts
	Who observed helium firs	st on the earth?		
9.		12.5) a)	22.5
40=	a) Lothar Meyer	b) Ramsay	c) Sheele	d) Rutherford
	The group 15 or VA group	o elements are commonly k	mown as:	
0.) ** 1	15.17	3 D 4 .	15 AV
405	a) Halogens		c) Pnictogens	d) None of these
	In the reduction of HNO_3	to N_2 0, the number of mole	e of electrons involved per	mole of HNO_3 is:
1.	-) 0	13.4	-) 2	J) (
127	a) 8	b) 4	c) 3	d) 6
2.	Sulphuric acid reacts with	i PGI ₅ to yield:		
۷.	a) Thionyl chloride	b) Sulphuryl chloride	c) Phosphoric acid	d) Sulphur monochloride
127		mpounds can not be stored		a) sulphul monocinoriue
3.	willen of the following co	impounds can not be stored	i ili giass vesseis:	
٥.	a) XeF ₄	b) XeF ₆	c) XeO ₃	d) XeF ₂
127	Which is tribasic acid?	b) Kei 6	c) heog	aj her z
4.	Willelf is tribusic acia.			
.,	a) H ₃ PO ₂	b) H ₃ PO ₄	c) H ₄ P ₂ O ₇	d) H ₃ PO ₃
127	•	hen warmed with conc. H_2	•	
5.			4 ·	
	a) Protein	b) Fat	c) Hydrocarbon	d) Carbohydrate
127		with conc. $\rm H_2SO_4$ and $\rm MnO_2$	* *	, ,
6.		2 1 2	J	
	a) HF	b) F ₂	c) SF	d) None of these
127	The compound of sulphur	r used as a solvent in rubbe	r industry is	
7.			•	
	a) SO ₂ (OH)Cl	b) SO ₂	c) SO ₃	d) S ₂ Cl ₂
127	Which one can be used to	test for H ₂ S gas?		
8.				
	a) A smell of rotten egg			
	b) A violet colouration wi	th sodium nitroprusside		
	c) Turning lead acetate p	aper black		
	d) All of the above			

	When H_2S is passed through nitric acid solution, the product formed is:			
9.	a) Milk of Sulphur	b) colloidal Sulphur	c) γ – sulphur	d) β – sulphur
128	Sulphurous anhydride is:	b) conoidaí suiphui	c) y suiphui	uj p Suipilui
0.	ı			
	a) SO ₂	b) SO ₃	c) HSO ₃	d) SO ₃ ²⁻
128	The percentage of ozone i	n ozonized oxygen is abou	t:	
1.	2 4 9 9 4	12.4004	2 0004	D 40004
120	a) 10%	b) 40%	c) 80%	d) 100%
128 2.	The weakest acid among	the following is:		
۷.	a) HClO	b) HBr	c) HClO ₃	d) HCl
128	•	e separated from red phos	<u> </u>	,
3.			•	
	a) Sublimation	b) Distillation	c) Dissolving in CS ₂	d) None of these
	The correct order of bond	l angles in H ₂ S, NH ₃ , BF ₃ ar	nd SiH ₄ is:	
4.) W G			
	a) $H_2S < NH_3 < BF_3 < Si$	=		
	b) $NH_3 < H_2S < SiH_4 < E$ c) $H_2S < NH_3 < SiH_4 < E$	-		
	d) $H_2S < SiH_4 < NH_3 < E$	•		
128	Solid PCl ₅ exists as:	/1 3		
5.	3	< A .	>	
	a) PCl ₅	b) PCl ₄	c) PCl ₆	d) PCl ₄ and PCl ₆
128	Among the fluorides given	n below which will further	react with F ₂ ?	
6.				
420	a) NaF	b) CaF ₂	c) SF ₆	d) IF ₅
128 7.	Ammonia is soluble in wa	ter because it is:	MITOIA	
/.	a) A polar molecule	b) Bronsted base	c) Both (a) and (b)	d) None of these
128	Formula of iodine phosph	•	c) Both (a) and (b)	a) None of these
8.	1 1			
	a) I ₃ PO ₄	b) $I_2(PO_4)_3$	c) IPO ₄	d) I ₂ PO ₄
128	The tetrahedral nature of	the three bonds in a chlora	ate ion (ClO_3^-) is due to:	
9.				
	a) The presence of a lone	pair of electrons		
	b) sp^3 -hybridization			
	c) sp^2 -hybridization	hana afian		
120	d) Trigonal bipyramidal s	nape of ion r long time acquires brown	colour?	
0.	winch acid on keeping for	Tiong time acquires brown	coloui:	
01	a) HF	b) HCl	c) HBr	d) HI
129	•	ating with conc. H ₂ SO ₄ give	•	,
1.		_ 2 10		
	a) Chlorine dioxide	b) HClO ₄	c) KHSO ₄	d) All of these
	In the reaction, $HNO_3 + P$	$_4O_{10} \rightarrow 4HPO_3 + x$, the pro	oduct x is	
129 2.	In the reaction, $HNO_3 + P_1$ a) NO_2	$_{4}O_{10} \rightarrow 4HPO_{3} + x$, the probable $_{2}O_{5}$	oduct x is c) N ₂ O ₃	d) H ₂ O

3.				
	a) F – Br	b) F — Cl	c) F – F	d) Cl — Br
129	The forces of cohesion in l	iquid helium are:	•	
4.				
	a) Covalent	b) Ionic	c) Van der Waals'	d) Metallic
129	When molten sulphur is s	uddenly cooled by pouring	into water, it takes the form	n of
5.				
	a) Milk of sulphur	b) Colloidal sulphur	c) Flower of sulphur	d) Plastic sulphur
129	Which does not react with	1 H ₂ SO ₄ to form H ₂ ?		
6.				
	a) Al	b) Pb	c) Zn	d) Mg
129	-	n burnt gave three oxides. T		
7.		cand the third formed an a	queous solution of pH 3 ne	arly. The elements present
	in the compound are:			
	a) C, S, O	b) C, H, Na	c) C, H, S	d) C, H, Ca
	The starting material in B	irkeland and Eyde's proces	s for the manufacture of HI	NO ₃ is:
8.	N	13.440	2.44	D. Cl. of Land
100	a) NH ₃	b) NO ₂	c) Air	d) Chile saltpetre
	Anhydride of sulphuric ac	1d 1S:		
9.	-) (0	F) CO	-) II C O	1) II CO
120	a) SO ₂	b) SO ₃	c) $H_2S_2O_3$	d) H ₂ SO ₃
0.	The essential element of n	ntrogen fixation is:	in the second	
U.	a) Zn	b) Cu	c) Mo	d) B
130		g configuration represents	•	и) Б
1.	withen one of the following	g comiguration represents	a nobic gas.	
	a) $1s^2$, $2s^2$ $2p^6$, $3s^2$		h) $1s^2$ $2s^2$ $2n^6$ $3s^1$	
	c) $1s^2, 2s^2 2p^6$	WOLLIS EDUC	b) $1s^2$, $2s^2$ $2p^6$, $3s^1$ d) $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^6$, $4s^2$	s^2
130	Which halogen do not form		, , , , , , , , , , , , , , , , , , ,	•
2.		1 . 7		
	a) F	b) Cl	c) Br	d) I
130	Oxygen is manufactured b	y fractional distillation of:		
3.				
	a) H ₂ 0	b) H ₂ O ₂	c) Na ₂ O ₂	d) Liquid air
130	Which is not the property	of nitrogen?		
4.				
	a) Hydrogen bonding	b) Catenation	c) Supporter of life	d) Low b.p.
130	Which metal loses its men	iscus after reaction with oz	zone?	
5.				
	a) Ag	b) Hg	c) Pb	d) Cu
	The two electrons in heliu	m atom:		
6.				
	a) Occupy different shells			
	b) Have different spins			
	c) Have the same spins	-11		
120	d) Occupy different subsh			
	Which of the following is a	iot tetraneurai?		
7.	a) SCl ₄	b) SO ₄ ²⁻	c) Ni(CO) ₄	d) NiCl ²⁻
	a) 5614	0) 30 ₄	C) 141(CO)4	uj 141014

	30 The hydrolysis of PCl ₃ produces:			
8.				
400	a) $H_3PO_3 + HClO$	b) $H_3PO_3 + HCl$	c) $H_3PO_4 + HCl$	d) $PH_3 + HClO$
	NaOH can absorb:			
9.	-) N O	L) NO	a) N O	J) All of the co
191	a) N_2O_5	b) NO	c) N ₂ 0	d) All of these
	The electron affinity of ha	alogens snows the order:		
0.	a) I > Cl > F > Br	b) Cl > F > Br > I	c) F > Cl > I > Br	d) E × I × Cl × Dr
121	On heating ozone its volu	•	C) F > CI > I > DI	d) $F > I > Cl > Br$
1.	On heating ozone its void	mes.		
1.	a) Decreases to half			
	b) Becomes double			
	c) Increases to 3/2 times			
	d) Remains unchanged			
131		ot combine directly with Cl ₂	Br ₂ and I ₂ ?	
2.		,	<i>z, z</i>	
	a) Carbon	b) Nitrogen	c) Oxygen	d) All of these
131	Oleum or fuming H ₂ SO ₄ i	-	, ,	,
3.	0 2 1			
	a) A mixture of conc. H ₂ S	${\sf O_4}$ and oil		
	b) Sulphuric acid which g	ives fumes of sulphur diox	ide	
	c) Sulphuric acid saturate	ed with sulphur trioxide, i.	$e.$, $H_2S_2O_7$	
	d) A mixture of sulphuric	acid and nitric acid		
131	N ₂ forms NCl ₃ , whereas P	can form both PCl_3 and PC	l ₅ why?	
4.				
			bonding but N2 does not ha	ave low lying 2 <i>d</i> orbital
	b) N ₂ atom is larger than		AHUN	
	c) P is more reactive tow	ards Cl than N ₂		
101	d) None of the above			
	Which of the following is	pseudohalogen?		
5.	.) IP	L) (CN)	-) ICI	.17 I=
191	a) IF ₇	b) (CN) ₂	c) ICl ₂	d) I ₃
	The decreasing order of b	ip, or m.p. or natogens is:		
6.	a) I > Pr > Cl > E	h) E > Cl > l > Pr	c) $Cl_2 > Br_2 > I_2 > F_2$	d) E > 1 > C1 > Pr
121	Nitrogen (I) oxide is prod		$C_1 C_1_2 > D_1_2 > T_2 > T_2$	$U_1 \Gamma_2 > I_2 > U_1 > U_1 > U_1 > U_2$
7.	Mitrogen (1) oxide is proc	luceu by.		
/.	a) Thermal decompositio	n of ammonium nitrate		
	b) Disproportionation of			
	c) Thermal decompositio			
	d) None of the above			
131	SO_3 on reacting with cond	c, HCl gives:		
8.	3	J		
	a) Chlorosulphonic acid	b) $Cl_2 + H_2SO_3$	c) $Cl_2 + H_2SO_4$	d) None of these
131		producing organic compou		•
9.			Ç	
	a) Sodamide	b) Ammonium cyanate	c) Sodalime	d) Potassium cyanide
400	Formula of calcium chlori	ito io.		

0.						
	a) CaClO ₂	b) Ca(ClO ₂) ₂	c) $Ca(ClO_3)_2$	d) $Ca(ClO_4)_2$		
132	32 The gas not absorbed by coconut charcoal is					
1.						
	a) He	b) Ne	c) Ar	d) Kr		
132	A black sulphide when tre	eated with ozone becomes	white. The white compound	l is:		
2.						
	a) ZnSO ₄	b) CaSO ₄	c) BaSO ₄	d) PbSO ₄		
132	Sulphur on oxidation with	hot sulphuric acid gives:				
3.						
	a) SO ₃	b) SO ₂	c) H ₂ SO ₄	d) None of these		
132	Which loses weight on exp	posure to the atmosphere?				
4.						
	a) Conc. H ₂ SO ₄					
	b) NaOH					
	c) Anhyd. AlCl ₃					
	d) Saturated aqueous solu	ition of CO ₂				
132	The correct order of heat	of formation of halogen aci	ds is?			
5.						
	a) HI>HBr>HCl>HF	b) HF>HCl>HBr>HI	c) HCl>HF>HBr>HI	d) HCl>HBr>HF>HI		
132	The number of $P - O - P$	bridges in the structure of	phosphorus pentoxide and	phosphorus trioxide are		
6.	respectively					
	a) 5, 5	b) 6, 5	c) 5, 6	d) 6, 6		
132	Rhombic and monoclinic s	sulphur are:				
7.						
	a) Isobars	b) Isomers	c) Isotopes	d) Allotropes		
132	Copper turning on heating	g with conc.H ₂ SO ₄ produce	ATTONI			
132 8.	Copper turning on heating	g with conc.H ₂ SO ₄ produce	ATION			
	Copper turning on heating a) H_2S	g with conc. $ m H_2SO_4$ produce b) $ m O_2$	c) SO₃	d) SO ₂		
8.	a) H ₂ S	JPLUS EDU	c) SO ₃	d) SO ₂		
8.	a) H ₂ S Which one of the followin	b) O_2 g represents noble gas con	c) SO ₃	d) SO ₂		
8.132	a) H_2S Which one of the followin a) $1s^2,2s^22p^6,3s^23p^63d^{10}$,	b) $ m O_2$ g represents noble gas con $ m 4s^24p^64d^{10}$,	c) SO ₃	d) SO ₂		
8.132	a) H_2S Which one of the followin a) $1s^2,2s^22p^6,3s^23p^63d^{10},$ $5s^2,5$	b) O_2 g represents noble gas con $4s^2 4p^64d^{10}$, $p^6 5d^6$, $6s^2$	c) SO ₃	d) SO ₂		
8.132	 a) H₂S Which one of the followin a) 1s²,2s² 2p⁶,3s²3p⁶3d¹⁰, 5s²,5 b) 1s²,2s² 2p⁶,3s²3p⁶3d¹⁰,4 	b) O_2 g represents noble gas con $4s^2 4p^64d^{10}$, $p^6 5d^6$, $6s^2$ $4s^2 4p^64d^{10}$	c) SO ₃	d) SO ₂		
8.132	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , ² 5s ² 5p	b) O_2 g represents noble gas con $4s^2 4p^64d^{10}$, $p^6 5d^6$, $6s^2$ $4s^2 4p^64d^{10}$ $p^6 5d^1$, $6s^2$	c) SO ₃	d) SO ₂		
8.132	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ ,	b) O_2 g represents noble gas con $4s^2 4p^64d^{10}$, $p^6 5d^6$, $6s^2$ $4s^2 4p^64d^{10}$ $p^6 5d^1$, $6s^2$	c) SO ₃	d) SO ₂		
8.132	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p ⁶ c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ ,	b) O_2 g represents noble gas con $4s^2 4p^64d^{10}$, $p^6 5d^6$, $6s^2$ $4s^2 4p^64d^{10}$ $p^6 5d^1$, $6s^2$ $4s^2 4p^64d^{10}$	c) SO ₃	d) SO ₂		
8.132	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ ,	b) O_2 g represents noble gas con $4s^2 4p^64d^{10}$, $p^6 5d^6$, $6s^2$ $4s^2 4p^64d^{10}$ $p^6 5d^1$, $6s^2$ $4s^2 4p^64d^{10}$	c) SO ₃	d) SO ₂		
8. 132 9.	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p ⁶ c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , , 5s ² 5p ⁶ d) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ ,	b) O ₂ g represents noble gas con 4s ² 4p ⁶ 4d ¹⁰ , p ⁶ 5d ⁶ ,6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰	c) SO ₃	d) SO ₂		
8. 132 9.	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p ⁶ c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ ,	b) O ₂ g represents noble gas con 4s ² 4p ⁶ 4d ¹⁰ , p ⁶ 5d ⁶ ,6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰	c) SO ₃	d) SO ₂		
8. 132 9.	a) H_2S Which one of the following a) $1s^2,2s^22p^6,3s^23p^63d^{10},\\ 5s^2,5$ b) $1s^2,2s^22p^6,3s^23p^63d^{10},\\ 5s^25p^6$ c) $1s^2,2s^22p^6,3s^23p^63d^{10},\\ 5s^25p^6$ d) $1s^2,2s^22p^6,3s^23p^63d^{10},\\ 4$ Which of the following is a	b) O ₂ g represents noble gas con 4s ² 4p ⁶ 4d ¹⁰ , p ⁶ 5d ⁶ ,6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 4s ² 4p ⁶ 4f ¹⁴ ,5s ² 5p ⁶ 5d ¹ more acidic in nature?	c) SO ₃ figuration?			
8. 132 9. 133 0.	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , , 5s ² 5p ⁶ d) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , Which of the following is a a) HCIO	b) O ₂ g represents noble gas con 4s ² 4p ⁶ 4d ¹⁰ , p ⁶ 5d ⁶ ,6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 4s ² 4p ⁶ 4f ¹⁴ ,5s ² 5p ⁶ 5d ¹ more acidic in nature? b) HCIO ₂	c) SO ₃ figuration? c) HCIO ₃	d) SO_2		
8.1329.1330.133	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , , 5s ² 5p ⁶ d) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , Which of the following is a a) HCIO	b) O ₂ g represents noble gas con 4s ² 4p ⁶ 4d ¹⁰ , p ⁶ 5d ⁶ ,6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 4s ² 4p ⁶ 4f ¹⁴ ,5s ² 5p ⁶ 5d ¹ more acidic in nature?	c) SO ₃ figuration? c) HCIO ₃			
8. 132 9. 133 0.	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , , 5s ² 5p ⁶ d) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , Which of the following is a a) HCIO The lattice energy of lithium	b) O ₂ g represents noble gas con 4s ² 4p ⁶ 4d ¹⁰ , p ⁶ 5d ⁶ ,6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ more acidic in nature? b) HCIO ₂ um halides in the following	c) SO ₃ figuration? c) HCIO ₃ order	d) HCIO ₄		
8.1329.1330.133	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , , 5s ² 5p ⁶ d) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , Which of the following is a a) HCIO The lattice energy of lithic a) LiF > LiCl > LiBr > Lil	b) O ₂ g represents noble gas con 4s ² 4p ⁶ 4d ¹⁰ , p ⁶ 5d ⁶ ,6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ more acidic in nature? b) HCIO ₂ am halides in the following	c) SO ₃ figuration? c) HCIO ₃ order b) LiI > LiBr > LiCl > LiF	d) HCIO4		
8. 132 9. 133 0. 133	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , , 5s ² 5p ⁶ d) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , Which of the following is a a) HCIO The lattice energy of lithiu a) LiF > LiCl > LiBr > Lil c) LiCl > LiF > LiBr > Lil	b) O ₂ g represents noble gas con 4s ² 4p ⁶ 4d ¹⁰ , p ⁶ 5d ⁶ ,6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰ 4s ² 4p ⁶ 4f ¹⁴ ,5s ² 5p ⁶ 5d ¹ more acidic in nature? b) HCIO ₂ am halides in the following	c) SO ₃ figuration? c) HCIO ₃ order b) LiI > LiBr > LiCl > LiF d) LiBr > LiCl > LiF	d) HCIO4		
8. 132 9. 133 0. 133 1.	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , , 5s ² 5p ⁶ d) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , Which of the following is a a) HCIO The lattice energy of lithiu a) LiF > LiCl > LiBr > Lil c) LiCl > LiF > LiBr > Lil	b) O ₂ g represents noble gas con 4s ² 4p ⁶ 4d ¹⁰ , p ⁶ 5d ⁶ ,6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ more acidic in nature? b) HCIO ₂ am halides in the following	c) SO ₃ figuration? c) HCIO ₃ order b) LiI > LiBr > LiCl > LiF d) LiBr > LiCl > LiF	d) HCIO4		
8. 132 9. 133 0. 133	a) H ₂ S Which one of the followin a) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² ,5 b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , 5s ² 5p c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , , 5s ² 5p ⁶ d) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ , Which of the following is a a) HCIO The lattice energy of lithiu a) LiF > LiCl > LiBr > Lil c) LiCl > LiF > LiBr > Lil	b) O ₂ g represents noble gas con 4s ² 4p ⁶ 4d ¹⁰ , p ⁶ 5d ⁶ ,6s ² 4s ² 4p ⁶ 4d ¹⁰ p ⁶ 5d ¹ , 6s ² 4s ² 4p ⁶ 4d ¹⁰ 4s ² 4p ⁶ 4f ¹⁴ ,5s ² 5p ⁶ 5d ¹ more acidic in nature? b) HCIO ₂ am halides in the following	c) SO ₃ figuration? c) HCIO ₃ order b) LiI > LiBr > LiCl > LiF d) LiBr > LiCl > LiF	d) HCIO4		

3.	Which one of the followin		oracare and pressure.	
400	a) P_4O_{10} is a white solid		b) SO ₂ is a colourless gas	
400	c) SO ₃ is a colourless gas		d) No ₂ is brown gas	
133	3 Amongst H ₂ O, H ₂ S, H ₂ Se and H ₂ Te one having high			
4.				
	a) H ₂ S because of hydrog	en bonding	b) H ₂ Se because of lower:	molecular weight
	c) H ₂ Te because of higher		d) H ₂ O because of hydrog	
133	Which of the following ac	id posses oxidising, reducir	ng and complex forming pro	perties?
5.				
	a) HCl	b) H ₂ SO ₄	c) HNO ₂	d) HNO ₃
133	The number of π -bonds p	resent in NCl ₃ is:		
6.				
400	a) 1	b) 2	c) 3	d) None of these
	Ammonium chloride is re	moved from its mixture by	:	
7.	a) Filtration	b) Distillation	c) Sublimation	d) A magnet
133	•	hen ammonia gas meets wi		d) A magnet
8.	Willie Shioke is formed w	nen ammoma gas meets w	tur.	
0.	a) Water	b) HCl	c) H ₂ SO ₄	d) HNO ₃
133	Pure Cl ₂ is prepared on he		7 2 4	, 3
9.	2 1 1	0		
	a) NaCl	b) PtCl ₄	c) CuCl ₂	d) All of these
134	Liquid ammonia is used in	n refrigeration because of it	ts	
0.				
	a) High dipole moment	i i	b) High heat of vaporisation	on
	c) High basicity	Cours EDITE	d) All of the above	
	The acid used in soft drin	ks is:	MULIA	
1.	a) II DO	h) II DO	a) IIDO	4) II DO
124	a) H ₃ PO ₄ Which of the elements of	b) H ₃ PO ₃ group VA does not show all	c) HPO ₃	d) H ₃ PO ₂
2.	willen of the elements of	group vA does not snow an	iotropy:	
	a) N	b) Bi	c) P	d) As
134				
3.	•			•
	a) Calcium phosphide		b) Phosphine	
	c) Phosphorus		d) Phosphorus pentoxide	
134	It is possible to obtain oxy	gen from air by fractional	distillation because:	
4.	a) Oxygen is in different g	group of periodic table from	n nitrogen	
		• •		
	b) Oxygen is more active to	than nitrogen		
	b) Oxygen is more active tc) Oxygen has higher boil	than nitrogen ing point than nitrogen		
4.	b) Oxygen is more active tc) Oxygen has higher boild) Oxygen has lower dens	than nitrogen ing point than nitrogen		
 4. 134 	b) Oxygen is more active tc) Oxygen has higher boil	than nitrogen ing point than nitrogen		
4.	 b) Oxygen is more active to c) Oxygen has higher boil d) Oxygen has lower dens NH₃ is an example of: 	than nitrogen ing point than nitrogen sity than nitrogen	c) Metallic hydride	d) Interstitial hydride
4. 134 5.	 b) Oxygen is more active to c) Oxygen has higher boil d) Oxygen has lower dens NH₃ is an example of: a) Molecular hydride 	than nitrogen ing point than nitrogen sity than nitrogen b) Polymeric hydride	c) Metallic hydride rmed is:	d) Interstitial hydride
4. 134 5.	 b) Oxygen is more active to c) Oxygen has higher boil d) Oxygen has lower dens NH₃ is an example of: a) Molecular hydride 	than nitrogen ing point than nitrogen sity than nitrogen		d) Interstitial hydride
3.	In the electrothermal proda) Calcium phosphidec) PhosphorusIt is possible to obtain oxy	cess, the compound displac	eed by silica from calcium p b) Phosphine d) Phosphorus pentoxide distillation because:	hosphate is

134 7.	Among the halogens, the	one which is oxidized by ni	itric acid is	
/ ·	a) Iodine	b) Bromine	c) Fluorine	d) Chlorine
134	Which is most basic of th	•		,
8.				
	a) Na ₂ O	b) BaO	c) As_2O_3	d) Al_2O_3
	Which is stronger acid?			
9.	-) II C-O	F) II CO	-) II T-O	T) II O
125	a) H ₂ SeO ₄	b) H ₂ SO ₄ th hypochlorite anion, can f	c) H ₂ TeO ₄	d) H ₂ O
0.	Ammoma on reaction wi	ui ny poemorne amon, can i	OTIII	
01	a) NO	b) N ₂ H ₄	c) NH ₄ Cl	d) HNO ₂
135	Which of the following co		, ,	, 2
1.		•		
	a) N ₄ , NCl ₅ , PO ₂	b) N ₂ , NCl ₃ , NO ₂	c) PCl ₅ , P ₂ O ₅ , NCl ₃	d) PO ₂ , P ₄ , NCl ₃
	Oxidation of ammonia by	CuO yields:		
2.	N. 1.	1) 1/2) W0	Davo
125	a) N ₂	b) N ₂ O ₅	c) NO	d) NO ₂
3.	For chrome plating the el	lectrolytic bath contains:		
٥.	a) HClO ₄ and conc H ₂ SO	₄ b) Chromic acid and conc	· Ic) KaCraOa	d) Chromic sulphate
135		gen is present in a sealed c		•
4.		n and ozone becomes equal		_
	a) 50	b) 60	c) 30	d) 40
135	What is the correct order	of occurrence (% by weigh	nt) in air of Ne, Ar and Kr?	
5.				
405	a) Ne>Ar>Kr	b) Ar>Ne>Kr	c) Ar>Kr>Ne	d) Ne>Kr>Ar
	The source of most of the	e noble gases is:	MITOIA	
6.	a) Decay of radioactive m	ninerals		
	b) The atmospheric air	merais		
	c) The natural gases com	ing out of the earth		
	d) The decay of rocks			
135	Incorrect statement for p	yrophosphorus acid H ₄ P ₂ (O ₅ is	
7.				
	a) It contains p in +5 oxi		b) It is dibasic acid	-, ,
125	c) It is strongly reducing		d) In contains one P—O—	-P bond
	$SO_2 + H_2S \rightarrow \text{product. The}$	e final product is		
8.	a) H ₂ O+S	b) H ₂ SO ₄	c) H ₂ SO ₃	d) H ₂ S ₂ O ₃
135	,			osphoric acid and not witl
9.		cid because concentrated s		
	a) More volatile	b) Less stable	c) A weaker acid	d) An oxidizing agent
136	Fertilizer having the high	est nitrogen percentage is:		
0.				
	a) Calcium cyanamide	b) Urea	c) Ammonium nitrate	d) Ammonium sulphate
	Which gas is evolved by t	the treatment of magnesiun	n with very dilute solution	on HNO ₃ ?
1.	a) N-	h) NO.	a) II.	ብ) በ ⁻ ሀ
	a) N ₂	b) NO ₂	c) H ₂	d) H ₂ O

	In colour discharge tubes, which is used?				
2.	a) No	h) An	a) Vn	d) Ho	
136	a) NeWhich of the following hyd	b) Ar drogen halides has the high	c) Kr	d) He	
3.	which of the following hy	ar ogen nandes has the high	iest boiling point.		
0.	a) HI	b) HBr	c) HCl	d) HF	
136	Which of the following sta	•	,	,	
4.	C				
	a) HF is stronger than HCl				
	b) Among halide ions, iodi	ide is the most powerful re	ducing agent		
	c) Radon is obtained from				
	d) Xe is most reactive gas				
	In which of the following of	chlorine is not used:			
5.	a) As gamminida	h) As avidant	a) As sutting to al	d) As disinfestant	
126	a) As germicideSolubility of iodine in water	b) As oxidant	c) As cutting tool	d) As disinfectant	
6.	Solubility of loutile iii wat	er may be mereased by auc	mig		
0.	a) Chloroform		b) Potassium iodide		
	c) Carbon disulphide		d) Sodium thiosulphate		
136	Platinum, palladium and in	ridium are called noble me	•		
7.					
	a) Alfred nobel discovered	d them			
	b) They are found in nativ	The state of the s	P		
	c) They are shining lustro	- No. 1.40			
126	d) They are inert towards		, TA71	1:11 1 D +	
		-	vater. When water born ger	ms are killed. But	
8.	a) CaCl ₂ and Cl ₂	troyed. It is due to disprop b) $CaCl_2$ and $Ca(ClO_3)_2$	c) CaO and Cl ₂	d) CaO, Cl ₂ and CaCl ₂	
136	Marshall's acid is:	b) caciz and ca(cio3)2	c) dao and di ₂	uj cao, ci2 and caci2	
9.					
	a) H ₂ S ₂ O ₅	b) H ₂ S ₂ O ₈	c) H ₂ SO ₃	d) H ₂ SO ₅	
137	The word neon signifies:	, <u>, , , , , , , , , , , , , , , , , , </u>	, <u>,</u>	, 2 5	
0.					
	a) New	b) Old	c) Strange	d) None of these	
137	Paramagnetic oxide is:				
1.		12.44.6			
107	a) NO	b) N ₂ O ₄	c) P_4O_6	d) N_2O_5	
	Fluorosis disease is caused	a due to the reaction of	with excess of fluorine in	tne boay.	
2.	a) Ca	b) Mg	c) Fe	d) K	
137	Among the halogens, the o	, ,		u) K	
3.	rimong the harogens, the c	me which is oxidised by in	irie deld 13		
٥.	a) Fluorine	b) Iodine	c) Chlorine	d) Bromine	
137	Which has the lowest boil		,	,	
4.					
	a) NH ₃	b) PH ₃	c) SbH ₃	d) BiH ₃	
137	The elements S, Se, Te can have two positive oxidation states. Which one of the following is correct?				
5.					
	a) +4 and +6	b) +2 and +4	c) +4 and +8	d) +2 and +6	

137	The basicity of orthophosphoric acid is						
6.							
	a) 2	b) 4	c) 3	d) 5			
137	Which sulphide is used in the manufacture of "strike anywhere" matches?						
7.							
	a) P_2S_5	b) P_2S_3	c) Sb ₂ S ₃	d) None of these			
137	Euchlorine is a mixture of						
8.							
	a) $Cl_2 + ClO_2$	b) $Cl_2 + Cl_2O$	c) $Cl_2O_3 + ClO_2$	d) $Cl_2O + Cl_2O_3$			
137	Liquid oxygen:						
9.							
	a) Is an important consti						
	b) Is used for artificial re	spiration with CO ₂					
	c) Mixed with finely divid	ded carbon is explosive					
	d) All of the above						
138	Acetic acid is added while	e preparing a standard solu	ition of CuSO ₄ • 5H ₂ O to pre	event:			
0.							
	a) Hydration	b) Reduction	c) Hydrolysis	d) Complex formation			
138	XeF ₂ molecule is						
1.							
	a) Square planar		b) Trigonal bipyramidal				
	c) Trigonal planar		d) Linear				
	Iodine is placed between	two liquids C ₆ H ₆ and water	er:				
2.							
	a) It dissolves more in C ₆ H ₆						
	b) It dissolves more in water						
	c) It dissolves equally in both						
	d) Does not dissolve in bo		AHON				
	Which of the following ox	kide of nitrogen is the anhy	dride of HNO ₃ ?				
3.	2.370	13.37.0) W 0	D. V. G.			
400	a) NO	b) N ₂ O ₃	c) N_2O_5	d) N_3O_4			
	The most stable allotropi	c form of sulphur is:					
4.	a) Dhambia adalam	la) Managa Planta analashara	a) Dlanda adlalam	1) El			
120	a) Rhombic sulphur	b) Monoclinic sulphur	c) Plastic sulphur	d) Flowers of sulphur			
	Permonosuipnuric acid is	8 Permonosulphuric acid is known as					
5.							
	-> N(l-) C/ 1	c) Carla basada a ad d	D Maria Calana			
120	a) Marshall's acid	b) Caro's acid	c) Sulphuric acid	d) None of these			
		b) Caro's acid pper and hot conc. H ₂ SO ₄ g		d) None of these			
138 6.	The reaction between co	pper and hot conc. $ m H_2SO_4$ g	ives:	·			
6.	The reaction between copa) SO ₃	opper and hot conc. H_2SO_4 g		d) None of these			
6. 138	The reaction between co	opper and hot conc. H_2SO_4 g	ives:	·			
6.	The reaction between copa) SO ₃ Chlorine bleaches only in	opper and hot conc. H_2SO_4 g b) SO_2 the:	rives: c) Cu(OH) ₂	d) H ₂			
6. 138 7.	The reaction between copa.) SO ₃ Chlorine bleaches only in a) Absence of acid	opper and hot conc. H_2SO_4 g	ives:	·			
6.1387.138	The reaction between copa) SO ₃ Chlorine bleaches only in	opper and hot conc. H_2SO_4 g b) SO_2 the:	rives: c) Cu(OH) ₂	d) H ₂			
6. 138 7.	The reaction between copa.) SO ₃ Chlorine bleaches only in a) Absence of acid HNO ₃ oxidises:	pper and hot conc. H ₂ SO ₄ g b) SO ₂ the: b) Presence of alkali	c) Cu(OH) ₂ c) Absence of moisture	d) H ₂			
6. 138 7. 138 8.	The reaction between copa a) SO ₃ Chlorine bleaches only in a) Absence of acid HNO ₃ oxidises: a) H ₂ O ₂	b) SO ₂ the: b) Presence of alkali b) H ₂ S	rives: c) Cu(OH) ₂	d) H ₂			
6. 138 7. 138 8.	The reaction between copa.) SO ₃ Chlorine bleaches only in a) Absence of acid HNO ₃ oxidises:	b) SO ₂ the: b) Presence of alkali b) H ₂ S	c) Cu(OH) ₂ c) Absence of moisture	d) H ₂			
6. 138 7. 138 8.	The reaction between copa a) SO ₃ Chlorine bleaches only in a) Absence of acid HNO ₃ oxidises: a) H ₂ O ₂	b) SO ₂ the: b) Presence of alkali b) H ₂ S	c) Cu(OH) ₂ c) Absence of moisture	d) H ₂			

139 In the isolation of fluorine, a number of difficulties were encountered. Which statement is correct?

0.

1.

a) The potential required for the discharge of the fluoride ions is the lowest

b) Fluorine reacts with most glass vessels

c) Electrolysis of aqueous HF gives ozonized oxygen

d) All of the above

139 Match List I with List II and select the answer using the codes given below:

Code	List	Code	List II
Α	XeF ₄	1	Distorted
			octahedral
В	XeF ₆	2	Tetrahedral
С	XeO ₃	3	Square
			planar
D	XeO_4	4	Trigonal
			pyramidal

a) A-4,B-1,C-3,D-2 b) A-2,B-3,C-1,D-4

c) A-1,B-4,C-2,D-3

d) A-3,B-1,C-4,D-2

139 Which of the following elements is radioactive?

2.

a) Oxygen

b) Selenium

c) Polonium

d) Tellurium

139 When SO₂ is passed through acidified solution of H₂S:

3.

a) H₂SO₃ is formed

b) H₂SO₄ is formed

c) Sulphur sol is formed

d) H₂SO₅ is formed

139 Which one of the following reactions of Xenon compounds is not feasible?

4.

a) $3XeF_4 + 6H_2O \rightarrow 2Xe + XeO_3 + 12HF + 1.5 O_2$

b) $2XeF_2 + 2H_2O \rightarrow 2Xe + 4HF + O_2$

c) $XeF_6 + RbF \rightarrow Rb[XeF_7]$

d) $XeO_3 + 6HF \rightarrow XeF_6 + 3H_2O$

139 Which blue liquid is obtained on reacting equimolar amounts of two gases at -30°c?

5.

a) N₂O

b) N_2O_3

c) N_2O_4

d) N_2O_5

139 Which one is most electronegative?

6.

a) 0

b) F

c) H

d) Cl

139 NH₃ gas is dried over:

7.

a) Anhydrous CaCl₂

b) P_2O_5

c) Quick lime

d) Conc. H₂SO₄

139 The largest bond angle exists in:

8.

a) H₂Se

b) NH₃

c) H_2O

d) H₂S

139 Increasing order of strength of oxo-acids of chlorine is:

9.

a) $HClO < HClO_2 < HClO_3 < HClO_4$

b) $HClO_4 < HClO_2 < HClO < HClO_3$

c) $HClO < HClO_2 < HClO_3 < HClO_4$

d) None of the above

140 The correct order of bond angles and stability of hydrides given below is:

0.

a) $NH_3 > PH_3 > AsH_3 > SbH_3$

b) $NH_3 > AsH_3 > PH_3 > SbH_3$

	$CJ SDH_3 > ASH_3 > PH_3 > NH_3$					
4.40	d) $PH_3 > NH_3 > AsH_3 > SbH_3$					
	The reaction of P ₄ with ac	queous NaOH gives				
1.	a) P(OH) ₃	b) P ₂ O ₅	c) P(OH) ₅	d) PH ₃		
140	, , ,		- , ,	, -		
2.	140 $[X] + H_2SO_4 \rightarrow [Y]$ a colourless gas with irritating smell. $[Y] + K_2Cr_2O_7 + H_2SO_4 \rightarrow$ Green solution $[X]$ 2. $[Y]$ are:					
	a) SO_3^{2-} , SO_2	b) Cl ⁻ , HCl	c) S ²⁻ , H ₂ S	d) CO ₃ ²⁻ , CO ₂		
140	The smell of nitrogen diox	xide is:		· •		
3.						
	a) Pleasant	b) Pungent	c) Not known	d) All are wrong		
140	The gas obtained when un	rea reacts with nitrous acid	l is:			
4.						
	a) N ₂	b) NO	c) N ₂ 0	d) NO ₂		
	The species that does not	contain peroxide ion is				
5.	a) PbO ₂	b) H ₂ O ₂	a) SaO	d) PaO		
140	Phosphine is prepared by		c) SeO ₂	d) BaO ₂		
6.	i nospiniie is prepared by	the reaction of				
0.	a) P and HNO ₃	b) P and H ₂ So ₄	c) P and NaOH	d) P and H ₂ S		
140	Which of the following do		,	2		
7.						
	a) $Na_2S_2O_3$	b) NH ₄ OH	c) NaNO ₃	d) Na ₂ CO ₃		
140	The oxidizing property of	nitric acid is due to:				
8.		7				
	a) Its concentration	CAY				
	b) The positive valency of	TOLLIC EDILIC	'ATION			
	c) Its dilution	polocula and the presence of	of nitrogen in its highest sta	to of ovidation		
140	•	lothermic nature and redu	•	te of oxidation		
9.	The reaction showing ene	iothernic nature and read	etion of halogen is.			
	a) $F_2 + \frac{1}{2} O_2 \longrightarrow F_2 O$					
	- Z					
	b) $Cl_2 + O_2 \rightarrow Cl_2O$					
	c) $F_2 + H_2O \rightarrow 2HF + \frac{1}{2}O_2$					
	d) None of the above					
	41 Calcium carbide when heated with nitrogen forms:					
0.						
	a) Ca ₃ N ₂	b) Ca(CN) ₂	c) CaCN ₂	d) Ca(CNO) ₂		