GPLUS EDUCATION

Dat Tin	ne :	PHYSICS
Ma	rks:	WAVE OPTICS
	Sin	gle Correct Answer Type
1.	The phenomenon of polarization of light	indicates that
	a) Light is a longitudinal wave	
	b) Light is a transverse wave	
	c) Light is not a wave	
	d) Light travels with the velocity of 3×1	
2.	Diffraction and interference of light sugg	
	a) Nature of light is electro-magnetic	b) Wave nature
2	c) Nature is quantum	d) Nature of light is transverse
3.		gen in interstellar space is due to the interaction called the
		the energy of the emitted wave is nearly c) 7×10^{-8} Joule d) 10^{-24} Joule
4	a) 10^{-17} <i>Joule</i> b) 1 <i>Joule</i> The fringe width in Young's double slit e	
4.	a) Wavelength increases	xperiment increases when
	b) Distance between the slits increases	
	c) Distance between the source and scre	en decreases
	d) The width of the slits increases	en decreases
5.	Biological importance of Ozone layer is	7
0.	a) It stops ultraviolet rays	b) Ozone rays reduce green house effect
	c) Ozone layer reflects radio waves	d) Ozone layer controls O_2/H_2 radio in atmosphere
6.		ncident on a glass plate, 25% of light is reflected by upper surface
		surface. The ratio of maximum to minimum intensity in
	interference region of reflected rays is	·
	/1 3\ ² /1 3\ ²	
	$\left(\frac{1}{2} + \sqrt{\frac{3}{8}}\right)$, 5
	a) $\left(\frac{1}{1}, \frac{1}{\sqrt{3}}\right)$ b) $\left(\frac{1}{\sqrt{3}}\right)$	$\frac{c}{8}$
	$\left(\frac{1}{2} - \sqrt{\frac{1}{8}}\right)$ $\left(\frac{1}{2} - \sqrt{\frac{1}{8}}\right)$	
7.	A beam of ordinary unpolarised light pa	ses through a tourmaline crystal \mathcal{C}_1 and then it passes through
	another tourmaline crystal C_2 , which is	riented such that its principal plane is parallel to that of C_2 . The
	intensity if emergent light is I_0 . Now C_2 is	rotated by 60° about the ray. The emergent ray will have an
	intensity	
	a) $2I_0$ b) $I_0/2$	c) $I_0/4$ d) $I_0/\sqrt{2}$
8.	Which one of the following is INCORREC	T statement in the transmission of electromagnetic waves
	a) Ground wave propagation is for high	requency transmission
	b) Sky wave propagation is facilitated by	ionospheric
		s suitable for line of sight communication
	d) Space wave is used for satellite comm	unication
9.	Find the thickness of a plate which will p	roduce a change in optical path equal to half the wavelength λ of
	the light passing through it normally. Th	
	a) $\frac{\lambda}{4(\mu-1)}$ b) $\frac{2\lambda}{4(\mu-1)}$	c) $\frac{\lambda}{(\mu-1)}$ d) $\frac{\lambda}{2(\mu-1)}$
	, ,	
10.	Critical angle for certain medium is sin	(0.6). The polarizing angle of that medium is

GPLUS EDUCATION

	a) tan ⁻¹ [1.5]	b) sin ⁻¹ [0.8]	c) tan ⁻¹ [1.6667]	d) tan ⁻¹ [0.6667]
11.	Electromagnetic waves of	can be deflected by		
	a) Electric field only	b) Magnetic field only		d) None of these
12.	•	omagnetic waves in vacuur	n, its speed in a medium of	dielectric constant K and
	relative permeability μ_r			77
	a) $v = \frac{1}{\sqrt{v}}$	b) $v = c\sqrt{\mu_r K}$	c) $v = \frac{c}{\sqrt{u V}}$	d) $v = \frac{K}{\sqrt{E}}$
10				
13.	beam is	periment a minima is obse	rved when path difference	between the interfering
	a) λ	b) 1.5 <i>λ</i>	c) 2λ	d) 2.25 <i>λ</i>
14	•		•	ely polarized. The velocity of
11.	the refracted ray inside		e renected fight is complete	ery polarized. The velocity of
	a) 3×10^8	b) $\left(\frac{3}{\sqrt{2}}\right) \times 10^8$	c) $\sqrt{3} \times 10^{8}$	d) 0.5×10^8
15.	-	ic beam of light is incident	5	•
	formed on a screen place	ed perpendicular to the dire	ection of incident beam. At	the first maxima of the
	=	hase difference between th	e rays coming from the edg	ges of the slit is
	a) 0	b) $\frac{\pi}{2}$	c) π	d) 2π
16.	Light waves can be polar	2		
	a) Transverse	b) Of high frequency	c) Longitudinal	d) Reflected
17.	•	, , , ,	, ,	e red light is replaced by blue
	light	< L	>	
	a) No change	[N]		
	b) Diffraction bands bec	ome narrower and crowde	d together	
	c) Band become broader	-		
	d) Bands disappear altog		CATION	
18.		up for interference is shift	that the first of	
10	a) Becomes infinite	b) Decreases	c) Increases	d) Remain unchanged
19.	angle of refraction in gla	on a glass slab at the polaris	sing angle, suffers a deviation	on orzz ² . The value of the
	a) 56°	b) 68°	c) 34°	d) 22°
20	•	h 5900 Å emitted by any at		•
201	-			ne number of oscillations in
	this length will be	ence rengin i or bourum ne	5.1.6, cimo renguir le 2 , 1 e 110, 11	
	a) 4.068×10^8	b) 4.068×10^4	c) 4.068×10^6	d) 4.068×10^5
21.	•	if the first minimum is obs		light of wavelength 6980Å
	a) 0.2 mm	b) $2 \times 10^{-5} \text{ mm}$	c) $2 \times 10^5 \text{ mm}$	d) 2 mm
22.	In the context of Doppler	r effect in light, the term 're	ed shift' signifies	
	a) Decrease in frequency	1	b) Increase in frequency	
	c) Decrease in intensity		d) Increase in intensity	
23.	The condition for obtain	ing secondary maxima in th	-	_
	a) $a \sin \theta = n\lambda$	b) $a \sin \theta = (2n-1)\frac{\lambda}{2}$	c) $a \sin \theta = (2n - 1)\lambda$	d) $a \sin \theta = \frac{n\lambda}{2}$
24.	_	=	n for red light (660 <i>nm</i>) coi	ncides with first maximum
	of some other wavelengt		•	
	a) 4400 Å	b) 6600 Å	c) 2000 Å	d) 3500 Å
25.	Two nicol prism are first light transmitted is	crossed and then one of th	nem is rotated through60°.	The percentage of incident

	a) 1.25	b) 25.0	c) 37.5	d) 50	
26.		nm is illuminated by monoc	· ·	gth 500 <i>nm</i> . The distance	
		on either side on a screen		12.40	
0.	a) 5 <i>mm</i>	b) 0.5 <i>mm</i>	c) 1mm	d) 10mm	
27.	_	vith monochromatic light f	_	_	
		-		the change in fringe width is	
		between the slits is $10^{-3}m$	_	_	
	a) 6000 Å	b) 5000 Å	c) 3000 Å	d) 4500 Å	
28.		tance in glass of refractive			
	-	2.25 cm in a medium. The r			
0.0	a) 4/3	b) 3/2	c) 8/3	d) None of these	
29.	-	eriment, is performed in w			
	a) The fringe width will d		b) The fringe width will i		
20	c) The fringe width will r	_	d) There will be no fringe		
30.	Which of the following sh	-	a) V warra	d) None of these	
21	a) Ultraviolet rays	b) Infrared rays	c) X-rays	d) None of these	
31.		unpolarised beam be incide	ent on a crystal of $\mu = \sqrt{3}$, so	o that reflected beam is	
	polarised?	b) 60°	c) 90°	J) 00	
22	a) 45°	,	,	d) 0°	
34.	-	periment when wavelength		een is 40 <i>cm</i> from the sitts,	
	a) 0.024 <i>cm</i>	wide. What is the distance l b) 2.4 <i>cm</i>	c) 0.24 <i>cm</i>	d) 0.2 <i>cm</i>	
22	,	maxima in the Fraunhoffter			
33.	_	and the second s		of another wavelength, the	
		by 30%. The wavelength of		of another wavelength, the	
	a) 6000 Å	b) 4200 Å	c) 3000 Å	d) 1800 Å	
34.	•	propagating along north h		•	
34.	vector point towards	propagating along north in	as its electric field vector d	ipwarus, its magnetic neiu	
	a) North	b) East	c) West	d) Downwards	
35.	-	3 cm contains the same nun			
	·	nonochromatic light. If the n	refractive index of water is	4/3, then refractive index	
	of glass is				
	a) 5/4	b) 3/2	c) 5/3	d) 16/15	
36.		ngth 600 nm from a distant			
	resulting diffraction pattern is observed on a screen 2 m away. The distance between the first dark fringes				
	on either side of the centr		a) 2.4 am	d) 2.4 mm	
27	a) 1.2 cm	b) 1.2 mm	c) 2.4 cm	d) 2.4 mm	
37.		third Polaroid whose polar		that no light is emitted from	
	-	aced between these polaro	_	-	
	Polaroid will be	accu between these polaro	ids, then the intensity of high	gnt emerging from the last	
		$\langle I_0 \rangle$	(I_0)		
	a) $\left(\frac{I_0}{8}\right) \sin^2 2\theta$	b) $\left(\frac{I_0}{4}\right) \sin^2 2\theta$	c) $\left(\frac{0}{2}\right) \cos^4 2\theta$	d) $I_0 \cos^4 \theta$	
38.	Two slits separated by a	distance of 1 mm are illumi	nated with red light of way	velength 6.5×10^{-7} m. the	
interference fringes are observed on a screen place 1 m from the slits. The distance between					
	fringe and the fifth bright	fringe is equal to			
	a) 0.65 mm	b) 1.63 mm	c) 3.25 mm	d) 4.88 mm	
39.		5 W/m^2 are striking a meta			
	a) $0.166 \times 10^{-8} N/m^2$	b) $0.332 \times 10^{-8} N/m^2$	c) $0.111 \times 10^{-8} N/m^2$	d) $0.083 \times 10^{-8} N/m^2$	

40.	The principle of superposition is basic to the phenom				
	a) Total internal reflection	b) Interference			
	c) Reflection	d) Refraction			
41.	3		ce between the screen and		
	source is 1m. If the fringe width on the screen is 0.06				
	a) 6000 Å b) 4000 Å	c) 1200 Å	d) 2400 Å		
42.	In an interference experiment, third bright fringe is o		_		
	nm. What should be the wavelength of the light sour	ce in order to obtain 5 th bı	right fringe at the same		
	point?				
	a) 500 nm b) 630 nm	c) 750 nm	d) 420 nm		
43.	Light passes successively through two polarimeter to				
	dextro rotatory solution of concentration $60kgm^{-3}$	and specific rotation 0.01 r	$ad m^2 kg^{-1}$. The second		
	tube contains laevo rotatory solution of concentration	on $30kg/m^3$ and specific re	otation $0.02radm^2kg^{-1}$.		
	The net rotation produced is				
	a) 15° b) 0°	c) 20°	d) 10°		
44.	For the sustained interference of light, the necessary	condition is that the two s	sources should		
	a) Have constant phase difference	b) Be narrow			
	c) Be close to each other	d) Of same amplitude			
45.	The electromagnetic waves travel with a velocity				
	a) Equal to velocity of sound	b) Equal to velocity of lig	ht		
	c) Less than velocity of light d) None of these				
46.	A parallel monochromatic beam of light is incident n	ormally on a narrow slit. A	A diffraction pattern is		
	formed on a screen placed perpendicular to the direc	ction of incident beam. At	the first maximum of the		
	diffraction pattern, the phase difference between the	e rays coming from the edg	ges of the slit is		
	a) 0 b) $\frac{\pi}{2}$	c) π	d) 2π		
47.	A light source approaches the observer with velocity	c 0.8 c . The Doppler shift for	or the light of wavelength		
		'ATION	0 0		
	5500Å is a) 4400 Å b) 1833 Å	c) 3167 Å	d) 7333 Å		
48.	A parallel beam of monochromatic light of wavelength	,	,		
101	of width $0.001mm$. The light is focused by a convex k				
	minimum will be formed for the angle of diffraction e	_	the focus plane. The first		
	a) 0° b) 15°	c) 30°	d) 60°		
49	In a Young's experiment, two coherent sources are p	,	,		
17.	metre away. If it produces the second dark fringe at a				
	wavelength of monochromatic light used would be	a distance of 1 mm from th	ie central il ilige, the		
	a) $60 \times 10^{-4} cm$ b) $10 \times 10^{-4} cm$	c) $10 \times 10^{-5} cm$	d) 6×10^{-5} cm		
50	For what distance is ray optics a good approximation	-			
50.	is 500 nm	i when the aperture is 4mi	m whice and the wavelength		
	a) 32 m b) 64 m	c) 16 m	d) 8 m		
5 1	Two waves having the intensities in the ratio of 9:1 μ	•			
51.	minimum intensity is equal to	orounce interference. The	adio of maximum to		
	a) 10:8 b) 9:1	c) 4.1	d) 2.1		
5 2		c) 4:1	d) 2:1		
34.	If the intensities of the two interfering beams in Your		t be I_1 and I_2 , then the		
	contrast between the maximum and minimum intens	·	n I		
	a) I_1 is much greater than I_2	b) I_1 is much smaller than	_		
E2	c) $I_1 = I_2$	d) Either $I_1 = 0$ or $I_2 = 0$			
55.	A wave is propagating in a medium of electric dielect The wave impedance of such a medium is	une constant 2 and relative	e magnetic permeability 50.		

	a) 5 Ω	b) 376.6 Ω	c) 1883 Ω	d) 3776 Ω	
54.	Consider the following s	tatements about electroma	ignetic waves and choose th	ne correct ones	
			00 times smaller than light		
	-	re used in the treatment of	-	·	
		ays are not electromagnetic	•		
		e not electromagnetic in na			
	-	ves exhibit polarization wh			
	a) S1, S4 and S5	b) S3, S4, and S5	c) S1, S3 and S5	d) S2, S3 and S4	
55	-		matic source. The shape of	= = = = = = = = = = = = = = = = = = =	
001	formed on a screen is	serment uses a monocin of	made sourcer The shape of	the interior ence it inges	
	a) Hyperbola	b) Circle	c) Straight line	d) Parabola	
56.		•	lit using a light of waveleng	•	
00.			on θ of the first secondary n		
		_			
	a) $\sin^{-1}\left(\frac{-}{3}\right)$	b) $\sin^{-1}\left(\frac{s}{4}\right)$	c) $\sin^{-1}\left(\frac{1}{4}\right)$	d) $\tan^{-1}\left(\frac{-}{3}\right)$	
57.	V_o and V_E represent the	velocities, μ_o and μ_E the re-	fractive indices of ordinary	and extraordinary rays for a	
	doubly refracting crysta				
	a) $V_o \ge V_E$, $\mu_o \le \mu_E$ if the	e crystal is calcite	b) $V_o \le V_E$, $\mu_o \le \mu_E$ if the	e crystal is quartz	
	c) $V_o \le V_E$, $\mu_o \ge \mu_E$ if the	e crystal is calcite	d) $V_o \ge V_E$, $\mu_o \ge \mu_E$ if the	e crystal is quartz	
58.			ve require two sources whic		
	a) Nearly the same freque	iency			
	b) The same frequency				
	c) Different wavelength	S 1.	>		
	d) The same frequency a	and having a definite phase	relationship		
59.		The state of the s	th four times the width of tl	ne second slit. The ratio of	
	the maximum intensity	to the minimum intensity in	n the interference fringe sy:	stem is	
	a) 2:1	b) 4 : 1	c) 9:1	d) 8 : 1	
60.	Which of the following v	vaves have the maximum w	vavelength		
	a) X-rays	b) I.R. rays	c) UV rays	d) Radio waves	
61.	In Young's experiment,	one slit is covered with a bl	ue filter and the other (slit)	with a yellow filter. Then	
	the interference pattern				
	a) Will be blue	b) Will be yellow	c) Will be green	d) Will not be formed	
62.	A slit of width <i>a</i> is illum	nated by red light of wavel	ength 6500Å. If the first m	inimum falls at $\theta = 30^{\circ}$, the	
	value of a is				
	a) 6.5×10^{-4} mm	b) 1.3 micron	c) 3250Å	d) 2.6×10^{-4} cm	
63.	In Young's double slit ex	speriment the wavelength o	of light was changed from 7	000Å to 3500Å. While	
	doubling the separation between the slits which of the following is not true for this experiment				
	a) The width of the fringes changes				
	b) The colour of bright f	_			
	,	een successive bright fringe	es changes		
	,	een successive dark fringes	•		
64.		s not electromagnetic in na	-		
	a) X-rays	b) Gamma rays	c) Cathode rays	d) Infrared rays	
65.	•	n using two independent	, ,	, ,	
	a) Sodium lamps	Q	b) Fluorescet tubes		
	c) Lasers		d) Mercury vapour lamp	S	
66.		sting of wavelength 590 nn	n and an unknown wavelen		
	-	=		en. The central maximum of	
	0	11 0	4		

	4th bright fringe of the unital 393.4 nm If white light is used in the complementary to that of a) 90° change of phase in b) 180° change of phase is c) 145° change of phase is d) 45° change of phase in Energy stored in electron a) Electrical energy	known light. From this dat b) 885.0 nm e Newton's rings experime oserved in the transmitted one of the reflected waves none of the reflected wave one of the reflected wave one of the reflected wave one of the reflected waves hagnetic oscillations is in the b) Magnetic energy	es es	known light is d) 776.8 nm he reflected light is nt. This is due to d) None of these
			found to be 30° per mm at	,
	-	. The value of constant a w		λ – 3000A and
				9°
	a) $+\frac{1}{9}$ per mm	b) $-\frac{50^{\circ}}{9}$ per mm	c) $+\frac{1}{50}$ per mm	d) $-\frac{9^{\circ}}{50}$ per mm
70.	Evidence for the wave na	ture of light cannot be obta	ined from	
	a) Reflection	b) Doppler effect	c) Interference	d) Diffraction
71.	_		flected wave is 180° when l	
	a) Enters into glass from		b) Enters into air from gla	
72	c) Enters into glass from		d) Enters into water from	_
12.	light. Under this case	eriment, a giass piate is pia	aced before a slit which abs	orbs hair the intensity of
	a) The brightness of fring	as decresses		
	b) The fringe width decre			
	c) No fringes will be obse			
			inges have finite light inten	sity
73.	Wavefront means	JPLUS EDUL	AIIUN	,
	a) All particles in it have s	same phase		
	b) All particles have oppo	site phase of vibrations		
		me phase, rest are in oppos	site phase	
	d) None of these			
74.		ergy density of an electrom	agnetic wave of wavelengt	h λ travelling in free space
	is given by	n^2	a p2	D
	a) $\frac{B^2}{2\lambda}$	b) $\frac{B^2}{2\mu_0}$	c) $\frac{2B^2}{\mu_0\lambda}$	d) $\frac{B}{\mu_0 \lambda}$
75	270	7 0	$\mu_0 \lambda$ f the reflected an refracted	1 0
73.	each other, the index of re		i the reflected an remacted	rays are perpendicular to
		_	2	
	a) $\frac{1}{2}$	b) $\sqrt{\frac{3}{2}}$	c) $\frac{3}{2}$	d) 1.732
	2	V	L	
76.			lescribed by $E = E_0 \sin(kx)$	$-\omega t); B = B_0 \sin(kx -$
	ωt). Which of the following	= =		1) NI Cal
77	a) $E_0 k = B_0 \omega$	b) $E_0\omega = B_0k$	c) $E_0 B_0 = \omega k$	d) None of these
77.			in the field of view of mono	-
	obtained in the same field		f wavelength 6000 Å, then	me number of fringes
	a) 60	b) 90	c) 40	d) 1.5
	u, 00	0) 70	<i>5)</i> 10	aj 110

GPLUS EDUCATION

70	A 1 11 C' 11 C' 1 1 1 1	1	1 ((00 :1 1 1)
78.	An unpolarised beam of intensity I_0 is incident on a	pair of nicols making an an	gle of 60° with each other.
	The intensity of light emerging from the pair is		
	a) I_0 b) $I_0/2$	c) $I_0/4$	d) $I_0/8$
79.	What is ozone hole		
	a) Hole in the ozone layer	b) Formation of ozone la	
	c) Thinning of ozone layer in troposphere	d) Reduction in ozone thi	ckness in stratosphere
80.	Which of the following is electromagnetic wave		
	a) X-rays and light waves	b) Cosmic rays and sound	d waves
	c) Beta rays and sound waves	d) Alpha rays and sound	waves
81.	Two coherent sources of intensity ratio 1:4 produce		
	a) 1 b) 0.8	c) 0.4	d) 0.6
82.	A single slit is used to observe diffraction pattern wi	•	•
	the diffraction pattern would	8	8
	a) Remain unchanged b) Become narrower	c) Recome broader	d) Disappear
83	Unpolarised light falls on two polarizing sheets place	•	
05.	between the characteristic directions of the sheets if	-	-
			ansmitted light is one-timu
	the maximum intensity of the first transmitted beam		1) 150
0.4	a) 75° b) 55°	c) 35°	d) 15°
84.	The idea of the quantum nature of light has emerged		
	a) Interference	b) Diffraction	
	c) Radiation spectrum of a black body	d) Polarization	
85.	A new system of units is evolved in which the values	of μ_0 and ϵ_0 are 2 and 8 re	espectively. Then the speed
	of light in this system will be		
	a) 0.25 b) 0.5	c) 0.75	d) 1
86.	In Young's double slit experiment, the 8th maximum	n with wavelength λ_1 is at a	distance d_1 from the
	central maximum and the 6th maximum with a wave	elength λ_2 is at a distance a	d_2 . Then (d_1/d_2) is equal to
	a) $\frac{4}{3} \left(\frac{\lambda_2}{\lambda_1} \right)$ b) $\frac{4}{3} \left(\frac{\lambda_1}{\lambda_2} \right)$	$3(\lambda_2)$	d) $\frac{3}{4} \left(\frac{\lambda_1}{\lambda_2} \right)$
	a) $\frac{4}{3} \left(\frac{\lambda_2}{\lambda_1} \right)$ b) $\frac{4}{3} \left(\frac{\lambda_1}{\lambda_2} \right)$	$(\frac{1}{4} \frac{1}{\lambda_1})$	$\frac{\mathrm{d}}{4} \left(\frac{\lambda_2}{\lambda_2} \right)$
87.	In Young's double slit experiment, the distance betw	een the two slits is made h	alf, then the fringe width
	will become		_
	a) Half b) Double	c) One fourth	d) Unchanged
88.	The phenomenon which does not take place in sound	•	j
	a) Scattering b) Diffraction	c) Interference	d) Polarisation
89.	A mixture of light, consisting of wavelength 590 nm	-	-
0,1	double slit and gives rise to two overlapping interfer	•	-
	both lights coincide. Further, it is observed that the t	-	
	4th bright fringe of unknown light. From this data, the		_
	a) 393.4 nm b) 885.0 nm	c) $442.5 nm$	d) 776.8 <i>nm</i>
00	In an interference experiment, third bright fringes as		
90.		-	_
	nm. What should be the wavelength of the light sour	rce in order to obtain 5 m bi	right irringe at the same
	point?	. 400	1) 750
0.1	a) 630 nm b) 500 nm	c) 420 nm	d) 750 nm
91.	Which of the following is not a property of light		
	a) It requires a material medium for propagation		
	b) It can travel through vacuum		
	c) It involves transportation of energy		
	d) It has finite speed		
92	In a Young's double slit experiment, distance between	en sources is 1 mm and dis-	tance hetween the screen

and sources is 1 m. If the fringe width on the screen is 0.06 cm, then λ is

				•
	a) 6000 Å	b) 4000 Å	c) 1200 Å	d) 2400 Å
93.	A star is moving away fro	m the earth with a velocity	of $100 km/s$. If the velocity	y of light is $3 \times 10^8 m/s$
	then the shift of its spectr	al line of wavelength 5700	Å due to Doppler's effect w	vill be
	a) 0.63Å	b) 1.90Å	c) 3.80Å	d) 5.70Å
94.	In Young's double slit exp	eriment, the aperture scree	en distance is 2 m. The slit	width is 1 mm. Light of
	600 nm is used. If a thin p	plate of glass ($\mu - 1.5$) of the	nickness 0.06 mm is placed	over one of the slits, then
	there will be a lateral disp	placement of the fringes by		
	a) Zero	b) 6 cm	c) 10 cm	d) 15 cm
95.	In the Young's double slit	experiment, the central ma	axima are observed to be I_0	. If one of the slits is
	covered, then the intensit	y at the central maxima wil	ll become	
	a) $\frac{I_0}{2}$	b) $\frac{I_0}{\sqrt{2}}$	c) $\frac{I_0}{4}$	d) I_0
	_	y 2	4	u) 1 ₀
96.	Brewster's angle in terms	of refractive index (n) of t	he medium	
	a) $tan^{-1}[\sqrt{n}]$	b) $\sin^{-1}[n]$	c) $\sin^{-1}\left[\sqrt{n}\right]$	d) $tan^{-1}[n]$
97.	A slit of width a is illumin	ated with a monochromation	c light of wavelength $ \lambda$ froi	m a distant source and the
	diffraction pattern is obse	rved on a screen placed at	a distance D from the slit.	To increase the width of the
	central maximum one sho	ould		
	a) Decrease <i>D</i>		b) Decrease a	
	c) Decrease λ		d) The width cannot be ch	nanged
98.	Consider the following sta	atements in case of Young's	double slit experiment.	
	•	if we use an ordinary exten		
			well collimated beam of lig	ght.
	II. A slit S is not neede	d if we use a spetially cohe	rent source of light.	
	Which of the above statem	ent are correct?		
	a) (i)And (iii)	b) (ii) and (iii)	c) (i)and (ii)	d) (i), (b) and (iii)
99.			ringes are obtained on a scr	
				the charge in fringe width is
	_		n, the wavelength of light u	sed is
	a) 6000 Å	b) 5000 Å	c) 3000 Å	d) 4500 Å
100.	Direction of the first secon	ndary maximum in the Frai	unhoffer diffraction patteri	ı at a single slit is given by
	(a is the width of the slit)			
	a) $a \sin \theta = \frac{\lambda}{2}$	b) $a\cos\theta = \frac{3\lambda}{2}$	c) $a \sin \theta = \lambda$	d) $a \sin \theta = \frac{3\lambda}{2}$
404	Z	۷		-
101.	,	-	a point where the path diff	
	is $\frac{\lambda}{6}$ where (λ is wavelength	th of the light) is I . If I_0 der	notes the maximum intensi	ty, then
	$\frac{I}{I_0}$ is equal to			
	-0	<i>[</i> 5	1	2
	a) $\frac{1}{2}$	b) $\frac{\sqrt{3}}{2}$	c) $\frac{1}{\sqrt{2}}$	d) $\frac{3}{4}$
102	2	2	V Z	т
104.	•		eams reflected from success	paration d . The angle θ that
	constructively is (where <i>i</i>	=	ams renected from success	nve planes may interfere
	where t	ι — 1, Δ,)		
	14 //			

b) $\tan^{-1}\left(\frac{n\lambda}{d}\right)$

c) $\sin^{-1}\left(\frac{n\lambda}{2d}\right)$ d) $\cos^{-1}\left(\frac{n\lambda}{2d}\right)$

103. S₁ And S₂ are two coherent sources. The intensity of both sources are same. If the intensity at the point of maxima is 4 Wm⁻², the intensity of each source is

a) $1 \, \text{Wm}^{-2}$

b) 2 Wm^{-2}

c) 3 Wm^{-2}

104. A single slit Fraunhofer diffraction pattern is formed with white light. For what wavelength of light the third secondary maximum in the diffraction pattern coincides with the second secondary maximum in the pattern for red light of wavelength 6500Å?

a) 4400 Å

b) 4100 Å

c) 4642,8 Å

d) 9100 Å

105. In diffraction from a single slit, the angular width of the central maxima does not depend on

a) λ of light used

- b) Width of slit
- c) Distance of slits from screen
- d) Ratio of λ and slit width
- 106. The Young's double slit experiment is performed with blue and with green light of wavelength 4360 Å and 5460 Å respectively. If x is the distance of 4^{th} maxima from the central one, then

a) x(blue) = x(green)

b) x(blue) > x(green)

c) x(blue) < x(green)

d) x(blue)/x(green) = 5400/4360

107. TV waves have a wavelength range of 1-10 meter. Their frequency range in MHz is

a) 30-300

b) 3-30

c) 300-3000

d) 3-3000

108. λ_a and λ_m are the wavelength of a beam of light in air and medium respectively. If θ is the polarising angle, the correct relation between λ_a , λ_m and θ is

a) $\lambda_a = \lambda_m \tan^2 \theta$

c) $\lambda_a = \lambda_m \cot \theta$

d) $\lambda_m = \lambda_a \cot \theta$

109. Which of the following cannot be polarized?

a) Ultraviolet rays

b) Ultrasonic waves

b) $\lambda_m = \lambda_a \tan^2 \theta$

c) X-rays

d) Radiowaves

110. In a biprism experiment, 5th dark fringe is obtained at a point. If a thin transparent film is placed in the path of one of waves, then 7th bright fringes is obtained at the same point. The thickness of the film in terms of wavelength l and refractive index μ will be

a) $\frac{1.5\lambda}{(\mu-1)}$

d) $\frac{2.5\lambda}{(\mu-1)}$

111. The wavelength of the matter waves is independent of

b) Momentum

c) Velocity

112. The graph showing the dependence of intensity of transmitted light on the angle between polarizer and analyser, is

113. In young's double slit experiment $\frac{d}{d} = 10^{-4} (d = \text{distance between slits}, D = \text{distance of screen from the})$ slits). At a point P on the screen resultant intensity is equal to the intensity due to the individual slit I_0 . Then the distance of point P from the central maximum is $(\lambda = 6000 \text{ Å})$

a) 0.5 mm

b) 2 mm

c) 1 mm

- 114. If white light is used in the Newton's rings experiment, the colour observed in the reflected light is complementary to that observed in the transmitted light is complementary to that observed in the transmitted light through the same point. This is due to
 - a) 90° change of phase in one of the reflected waves
 - b) 180° change of phase in one of the reflected waves

	c) 145° change of phase i	n one of the reflected wave	S	
	d) 45° change of phase in	one of the reflected waves		
115.	In Fresnel's biprism ($\mu =$	1.5) experiment the distant	ice between source and bip	orism is $0.3\ m$ and that
	between biprism and scre	een is $0.7m$ and angle of pri	sm is 1°. The fringe width	with light of wavelength
	6000 Å will be		· ·	
	a) 3 <i>cm</i>	b) 0.011 <i>cm</i>	c) 2 cm	d) 4 cm
116.		d to be coherent if they are	•	-,
		it sources emitting light of t		
	b) A single point source			
	c) A wide source			
		nitting light of different way	velengths	
117	-		_	ly polarized. The velocity of
11/1	the refracted ray inside the		renected fight is complete	ly polarizedi. The velocity of
	a) 3×10^8	b) $\left[\frac{3}{\sqrt{2}} \right] \times 10^8$	c) $\sqrt{3} \times 10^{8}$	d) 0.5×10^8
112	A heam of light of wavele	ngth 600 nm from a distant		1 mm wide and the
110.	_	_	_	etween the first dark fringes
	on either side of the centi		2 in away. The distance be	tween the mot dark minges
	a) 1.2 cm	b) 1.2 mm	c) 2.4 cm	d) 2.4 mm
119	Frequency of wave is 6 ×	-	c) Li i cili	u) 2.1 mm
117.	a) Radiowave	b) Microwave	c) X-ray	d) None of these
120	,		•	e the order of magnitude of
120.	-	rder that this effect may be	_	e the order of magnitude of
	a) 10,000 Å	b) 1 cm	c) 10 Å	d) 100 Å
121		The same and the s	•	0 <i>W</i> . The maximum value of
141.	electric field at a distance		verage power output of oo	o w. The maximum value of
	a) $64.7 V/m$	b) 57.8 <i>V/m</i>	c) 56 72 V/m	d) 54.77 <i>V/m</i>
122		ve, the amplitude of electric		
122.	-	along z-axis. The average e		-
	a) 1.1×10^{-11}	b) 2.2×10^{-12}	c) 3.3×10^{-13}	d) 4.4×10^{-14}
122	,	experiment, the spacing be	-	-
143.	_	e slits and wavelength of lig		
		e shis and wavelength of high $b)$ 1.5 cm	•	d) 2.0 <i>cm</i>
124	a) 1.0cm Which of the following di		c) 0.5cm	•
124.	polarized light	agrams represent the varia	tion of electric field vector	with time for a circularry
	polarized light		Í	Ī
	a) $ \vec{E} $	$ \overrightarrow{E} $	$c)$ $ \vec{E} $	$ \vec{E} $
	a) 121	b) \vec{E}	c) 121	d)
	<i>t</i> →	<u>t</u> →	<i>t</i> →	
	v	•	l→	$t \rightarrow$
125.		a wire, on increasing diam	•	
	a) Decreases		b) Increases	
	c) Remains unchanged		d) Increasing or decreasing	ng will depend on
			wavelength	
126.		0^{-3} m falls on a slit of widtl	h $4 imes 10^{-3}$ m. The angular (dispersion of the central
	maximum will be			
	a) 30°	b) 60°	c) 90°	d) 180°

127.	The intensity of gamma ra	ndiation from a given sourc	ce is I . On passing through 3	36 mm of lead, it is reduced
	to $\frac{I}{8}$. The thickness of lead	which will reduce the inte	nsity to $\frac{I}{2}$ will be	
	a) 18 mm	b) 12 mm	c) 6 mm	d) 9 mm
128.	In the Young's double slit	experiment, a mica slip of	thickness t and refractive in	ndex μ is introduced in the
			es pattern will be displaced	
	a) $\frac{d}{D}(\mu-1)t$	b) $\frac{D}{d}(\mu-1)t$	c) $\frac{d}{(u-1)D}$	d) $\frac{D}{d}(\mu-1)$
129.	In a hinrism experiment h	ny using light of wavelengt	h5000 Å, 5mm wide fringes	s are obtained on a screen
			on between the two cohere	
	a) 1.0 mm	b) 0.1 mm	c) 0.05 mm	d) 0.01 mm
130.		-	attern is obtained on a scre	,
		_	At certain point P on the so	
		Frence $S_1P - S_2P$ in micr		or con time a dark it mige is
	a) 0.75	b) 1.5	c) 3.0	d) 4.5
131.			olarizer of cross sectional a	•
			es with an angular frequen	
		ough the polarizer per rev		oy 01 0 111 1 ww/ 51 1 110
	a) 10^{-4} Joule	b) 10^{-3} Joule	c) 10^{-2} Joule	d) 10^{-1} Joule
132.	In a wave, the path differe	•	, ,	a) 10 Joure
	_	_	1	., λ
	a) $\frac{\pi}{2\lambda}\phi$	b) $\frac{\pi}{\lambda}\phi$	c) $\frac{\lambda}{2\pi}\phi$	$d)\frac{\lambda}{\pi}\phi$
133.	Which one of the followin	g property of light does no	t support wave theory of lig	ght?
	a) Light obeys laws of refl			
	b) Light waves get polariz	ed		
	c) Light shows photoelect	ric effect		
	d) Light shows interferen	ce		
134.	Light waves travel in vacu	ium along the y – axis. Whi	ch of the following may rep	oresent the wavefront?
		b) $x = constant$		d) $x + y + z = $ constant
135.	In the given arrangement,	S_1 and S_2 are coherent so	urces (shown in figure). Th	e point <i>P</i> is a point of
	S_1			
	*			
	$d \longrightarrow P$			
	•			
	$\frac{\mathbf{I}}{S_2}$			
	a) Bright fringe	b) Dark fringe	c) Either dark or light	d) None of the above
136		,	nts A, B and C respectively.	•
100.	-	=	intensities at these point w	
	a) 169:16:256	b) 256 : 16 : 169	c) 256:16:196	d) 256 : 196 : 16
137.	Irreducible phase differen			,
	a) π	b) 12π	c) $12\pi \times 10^6$	d) $\pi \times 10^6$
138	•		apart. The wavelength of	_
100			The fringe width in 9 (mm)	=
	a) 1.5	b) 0.015	c) 2.0	d) 0.15
139	•	=	e at a certain point and a ce	
10).			it is the direction of the mag	

that point and instant

c) $4240 \, km/s$

d) None of these

moving away from us, will be

b) 3240 *km/s*

a) 6480 km/s

151.	1. A radio receiver antenna that is 2 m long is oriented along the direction of the electromagnetic wave and receives a signal of intensity $5 \times 10^{-16} W/m^2$. The maximum instantaneous potential difference across th two ends of the antenna is			_
	a) 1.23 <i>μV</i>	b) 1.23 <i>mV</i>	c) 1.23 V	d) 12.3 mV
152.		art from each other and illu	minated with a light of way	
	-		listance between third darl	-
	fringe is			
	a) 1.5 mm	b) 0.75 mm	c) 1.25 mm	d) 0.625 mm
153.	In Young's double slit expe	eriment, distance between	two sources is 0.1 mm. The	distance of screen from
	the source is 20 cm. Wavel	length of light used is 5460	Åhen angular position of f	irst dark fringe is
	a) 0.08°	b) 0.16°	c) 0.20°	d) 0.32°
154.	The maximum distance up	oto which TV transmission	from a TV tower of height <i>l</i>	ι can be received is
	proportional to			
	a) $h^{1/2}$	b) <i>h</i>	c) <i>h</i>	d) h^2
155.	In Young's double slit expe	eriment, the intensity on th	e screen at a point where p	ath difference λ is K . What
	will be the intensity at the	point where path difference	ce is $\lambda/4$	
	a) $\frac{K}{4}$	b) $\frac{K}{2}$	c) <i>K</i>	d) Zero
	7	4		
156.		_	ween the slit is haled and t	he distance between the
	slits and screen is doubled	I. The fringe-width will		
	a) Be halved		b) Be doubled	
	c) Be quadrupled	0 1 1 1 1 1 1 1 1 1 1	d) Remain unchanged	
157.		first dark and bright band	formed in Young's double s	lit experiment with band
	width B is	1) p	D	2 D
	a) $\frac{B}{4}$	b) <i>B</i>	c) $\frac{B}{2}$	d) $\frac{3B}{2}$
158	1	tements indicates that ligh	4	2
150.	a) Light waves can travel i		b) Light waves show inter	ference
	c) Light waves can be pola		d) Light waves can be diffi	
159.	· -	eriment, the central bright:		docod
		ity than the other bright fri	-	
	b) As it is wider than the o			
	c) As it is narrower than the			
		tead of monochromatic ligl	ht	
160.		-	ant galaxy is found to be in	creased by 0.5% as
		ng from a terrestrial source	• •	·
	a) Stationary with respect	~	Ç Ç	
	b) Approaching the earth			
	c) Receding from the earth	h with the velocity of light		
	d) Receding from the earth	h with a velocity equal to 1.	$.5 \times 10^6 m/s$	
161.	In Fresnel's biprism exper	iment is held in water inste	ead of air, then what will be	the effect on fringe width
	a) Decreases	b) Increases	c) No effect	d) None of these
162.	The radiation pressure (in	(N/m^2) of the visible light	is of the order of	
	a) 10^{-2}	b) 10 ⁻⁴	c) 10^{-6}	d) 10^{-8}
163.	Two stars are situated at a	distance of 8 light year fro	om the earth. These are to l	oe just resolved by a
	telescope of diameter 0.25	5 m. If the wavelength of lig	ght used is 5000Å, then the	distance between the stars
	must be			
	a) 3×10^{10} m	b) 3.35×10^{11} m	c) 1.95×10^{11} m	d) 4.32×10^{10} m

164	one slit is double of that f	from other slit. If I_m be the i	vider than other, so that am maximum intensity, the res	
	interfere at phase differe			
	$a) \frac{I_m}{9} (4 + 5\cos\phi)$	b) $\frac{I_m}{3} \left(1 + 2\cos^2\frac{\phi}{2} \right)$	c) $\frac{I_m}{5} \left(1 + 4\cos^2\frac{\phi}{2} \right)$	$d)\frac{I_m}{9}\left(1+8\cos^2\frac{\phi}{2}\right)$
165	Air has refractive index 1	.0003. The thickness of air	column, which will have on	e more wavelength of
	yellow light (6000Å) than	n in the same thickness of v	acuum is	
	a) 2 mm	b) 2 <i>cm</i>	c) 2 m	d) 2 <i>km</i>
166	In Young's double slit exp	eriment, the 7 th maximum	wavelength λ_1 is at a distar	ice d_1 and that with
	wavelength λ_2 is at a dist	ance d_2 . Then (d_1/d_2) is		
	a) (λ_1/λ_2)	b) (λ_2/λ_1)	c) $(\lambda_1^2/\lambda_2^2)$	d) $(\lambda_2^2/\lambda_1^2)$
167	The angular resolution of		e at a wavelength of 5000	is of the order of
	a) 10 ⁶ rad	b) 10 ⁻² rad	c) 10 ⁻⁴ rad	d) 10^{-6} rad
168.	•	ce of destructive interferen	•	.,
	_			$(2n+1)\lambda$
	a) nλ	b) $n(\lambda + 1)$	c) $\frac{(n+1)\lambda}{2}$	d) $\frac{(2n+1)\lambda}{2}$
169	A beam of electron is use increased, then	d in an <i>YDSE</i> experiment. T	The slit width is d. When the	e velocity of electron is
	a) No interference is obse	erved	b) Fringe width increases	
	c) Fringe width decrease		d) Fringe width remains s	
170			fringes is 0.20° for sodium l	
170		ped in water, then angular	•	ight of wavelength 5090 A.
	a) 0.11°	b) 0.15°	c) 0.22°	d) 0.30°
171	•	e of two coherent sources o		u) 0.30
1/1		distribution does not very		
	-	distribution does not very	with time	
	b) Increased	distribution shanges with	time	
		distribution changes with	ATION	
172	d) Decreased			C
1/2	-		s closed fully, then in the in	terierence pattern
	_	served, no interference pat	tern will exist	
	b) The bright fringes will	•		
	c) The bright fringes will	become fainter		
	d) None of the above			-
173.			and thickness $t = 2.5 \times 10^{-5}$	
			ow much will be the shift in	
			etween slits and screen is 10	00 cm
	a) 5 <i>cm</i>	b) 2.5 <i>cm</i>	c) 0.25 <i>cm</i>	d) 0.1 <i>cm</i>
174	A beam of light of wavele	ngth 600 nm from a distan	ce source falls on a single sl	it 1.00 mm wide and the
	resulting diffraction patte	ern is observed on a screen	2m away. The distance bet	ween the first dark fringes
	on either side of the centr	al bright fringe is		
	a) 1.2 cm	b) 1.2 mm	c) 2.4 cm	d) 2.4 mm
175	A light wave is incident n	ormally over a slit of width	$24 \times 10^{-5} cm$. The angular	position of second dark
	fringe from the central m	axima is 30°. What is the w	avelength of light	
	a) 6000 Å	b) 5000 Å	c) 3000 Å	d) 1500 Å
176.	•	•	\mathfrak{d}_1 coincides with ninth brig	•
0			en the possible wavelength	
	a) $400 nm$ and $450 nm$	b) 425 <i>nm</i> and 400 <i>nm</i>	_	d) 450 <i>nm</i> and 400 <i>nm</i>
177			ridth 0.1 mm. The second n	•
1//	the angle of diffraction of		radi o.1 mm. The Second II	minium win be formed for

	a) 0.08 rad	b) 0.06 rad	c) 0.12 rad	d) 0.012 rad
178	In double slit experiment	, the angular width of the fr	ringes is 0.20° for the sodiu	m light ($\lambda = 5890$ Å). In
	Order to increase the angular width of the fringes by 10%, the necessary change in the wavelength is			
	a) Increase of 589 Å	b) Decrease of 589 Å	c) Increase of 6479 Å	d) Zero
170		gle slit diffraction experime	•	
1/5		-	ent with sit witth 0.0 mm.	if yellow light is replaced
	by <i>X</i> -rays then the patter		12.37 1166	
	a) That the central maxim		b) No diffraction pattern	
	c) More number of fringe		d) Less number of fringes	
180		ce experiment, the distance		
	from the slits. The wavele	ength of light is $8.0 imes 10^{-5}$ c	cm. The distance between s	successive fringes is
	a) 0.24 cm	b) 3.2 cm	c) 1.28 cm	d) 0.32 cm
181	The angle of incidence at	which reflected light is tota	ally polarized for reflection	from air to glass (refractive
	index n) is	G		G ,
	•	(1)	(1)	. 14.3
	a) $\sin^{-1}(n)$	b) $\sin^{-1}\left(\frac{1}{n}\right)$	c) $\tan^{-1}\left(\frac{1}{n}\right)$	d) $tan^{-1}(n)$
182	Unpolarized light of inten	sity $32Wm^{-2}$ passes throu	gh three polarizers such th	at transmission axes of the
	-	makes an angle 30° with e	-	
	•	that of the first. The intensi		
	a) $32 Wm^{-2}$	b) $3Wm^{-2}$	c) $8Wm^{-2}$	
100				d) $4 W m^{-2}$
183			onochromatic light of wave	elength λ is incident on slits.
	The ratio intensity of S_3 a	$\operatorname{nd} S_4$ is		
	$+ S_2 + S_4 -$			
	l_0 $\frac{\lambda D}{2d}$	41 1		
	l_0 d l_0	[4]		
	$\rightarrow \frac{a}{S_2}$			
	→ ^C 33			
	↓			
	$\uparrow \dot{s}_1$	TRAILIS FINE	ΔΤΙΩΝ	
	<i>D</i> →	SILTON FINE	27112011	
	a) Zero	b) ∞	c) 4:1	d) 1:4
184	· ·	nnot be explained on the ba	asis of wave nature of light	?
	IV. Polarization			
	V. Optical activity			
	VI. Photoelectric effect			
	VII. Compton effect			
	a) (iii) and (iv)	b) (ii) and (iii)	c) (i)and (iii)	d) (ii) and (iv)
185				Then the angular spread of
		either side if incident light i	-	S I
	a) 1/5 rad	b) 4 rad	c) 5 rad	d) 6 rad
106		wes of light are I and $4I$. The		-
100		es of light are I and 41. The	e maximum intensity of the	resultant wave after
	superposition is	12.07	3.463	Dorr
	a) 5 <i>I</i>	b) 9 <i>I</i>	c) 16 <i>I</i>	d) 25 <i>I</i>
187	=	ght around corners of obsta		
	a) Reflection	b) Diffraction	c) Refraction	d) Interference
188	The ratio of maximum an	d minimum intensities of tw	wo sources is 4 :1. The rati	o of their amplitudes is
	a) 1:3	b) 3:1	c) 1:9	d) 1:16
189	In Young's double slit exp	eriment, the distance betw	een slits is 0.0344 mm. The	e wavelength of light used is
	-	ılar width of a fringe forme		
	a) 1°	b) 2°	c) 3°	d) 4°
	,	- <i>y -</i> -	- <i>)</i> -	· y - *

400	A.1. C.1.	l. VDOD	DI 10 CIAL CATA A	1 6 1		
190.	190. A beam of electron is used in an YDSE experiment. The slit width is d. When the velocity of electron is					
	increased, then					
	a) No interference is obs					
	b) Fringe width increase					
	c) Fringe width decrease					
101	d) Fringe width remains		11	11.		
191.		screen in Young's double s				
	S_1 and S_2 have a path difference of S_1	ference of 0 and $\frac{\lambda}{4}$ respectiv	ely. The ratio of intensities	at		
	Pand Q will be					
	a) 3:2	b) 2:1	c) $\sqrt{2}:1$	d) 4:1		
192.	Wave nature of light follo					
	a) Light rays travel in a s					
		nomena of reflection and re	fraction			
	c) Light exhibits the phe					
	, ,	omena of photoelectric effe	rt			
193.		central maximum of the dif		slit (of width $'a'$)		
1,0.	experiment, with λ as the		inaction pattern in a single	on what w		
	-		. 2λ	λ		
	a) $\frac{3\lambda}{2a}$	b) $\frac{\lambda}{2a}$	c) $\frac{2\lambda}{a}$	d) $\frac{\lambda}{a}$		
194.		periment, if monochromation	light is replaced by white l	ight		
	a) All bright fringes beco					
		colours between violet and	l red			
	, ,	e is white, all other fringes a				
	d) No fringes are observe					
195.		he distance between slits is	0.28 mm and distance betv	veen slits and screen is		
		central bright fringe and th				
	used light			o o		
	a) 5000 Å	b) 6000 Å	c) 7000 Å	d) 9000 Å		
196.		xperiment(slit distance d)	monochromatic light of			
		d the fringe pattern observ		slits.		
	The angular position of t					
	_	// 1) \	•	/(n+1)		
	a) $\sin^{-1}\left(\frac{n\lambda}{d}\right)$	b) $\sin^{-1}\left(\frac{\left(n+\frac{1}{2}\right)\lambda}{d}\right)$	c) $\sin^{-1}\left(\frac{n\lambda}{m}\right)$	d) $\sin^{-1}\left(\frac{\left(n+\frac{1}{2}\right)\lambda}{L}\right)$		
	$\begin{pmatrix} d \end{pmatrix}$	$d \int$	(L)	$ \setminus L $		
197.	<i>n</i> coherent source of inte	ensity I_0 are superimposed a	at a point, the intensity of th	ne point is		
		b) $\frac{I_0}{I_0}$		d) None of these		
	a) nI_0	$\frac{n}{n}$	c) $n^2 I_0$,		
198.	When a compact disc is i	lluminated by small source	of white light, coloured ban	ds are observed. This is		
	due to					
	a) Dispersion	b) Diffraction	c) Interference	d) Reflection		
199.	If Young's double slit exp	periment, is performed in w	ater			
	a) The fringe width will o	decrease	b) The fringe width will in	icrease		
	c) The fringe width will i	remain unchanged	d) There will be no fringe			
200.	For the constructive inte	rference the path difference	e between the two interferi	ng waves must be equal to		
	a) $(2n+1)\lambda$	b) $2n\pi$	c) <i>nλ</i>	d) $(2n+1)\frac{\lambda}{2}$		
		,	,	L		
201.	•	<i>CP</i> represents a wavefront uctive interference at <i>P</i> bet	=	- ·		

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 16

a)	cos θ	_	3λ
aj	COS O	_	24

b)
$$\cos \theta = \frac{\lambda}{4d}$$

(۲	0	0		λ
C	sec o	$-\cos\theta$	=	\overline{d}

d)
$$\sec \theta - \cos \theta = \frac{4\lambda}{d}$$

202. In two separate set-ups of the Young's double slit experiment, fringes of equal width are observed when
lights of wavelengths in the ratio $1:2$ are used. If the ratio of the slit separation in the two cases is $2:1$, the
ratio of the distances between the plane of the slits and the screen in the two set-ups is

a) 4:1

h	١1	٠	1
v,	1		1

203. A beam of circularly polarised light us completely absorbed by an object on which it falls. If U represents absorbed energy and ω represents angular frequency, then angular momentum transferred to the object is given by

a) $\frac{U}{\omega^2}$

b) $\frac{U}{2\omega}$

c) $\frac{U}{\omega}$

d) $\frac{2U}{\omega}$

204. In an interference experiment, the spacing between successive maxima or minima is

a) $\lambda d/D$

b) $\lambda D/d$

c) dD/λ

d) $\lambda d/4D$

205. A light has amplitude *A* and angle between analyser and polarizer is 60°. Light is reflected by analyser has amplitude

a) $A\sqrt{2}$

b) $A/\sqrt{2}$

c) $\sqrt{3}A/2$

d) A/2

206. In Young's double slit experiment, the wavelength of the light used is doubled and distance between two slits is half of initial distance, the resultant fringe width becomes

a) 2 times

b) 3 times

c) 4 times

d) 1/2 times

207. The maximum intensity of fringes in Young's experiment is I. If one of the slit is closed, then the intensity at that place becomes I_o . Which of the following relation is true

a) $I = I_o$

b) $I = 2I_0$

c) $I = 4I_0$

d) There is no relation between I and I_o

208. Which one of the following phenomena is not explained by Huygen's construction of wavefront

a) Refraction

b) Reflection

c) Diffraction

d) Origin of spectra

209. The wave theory of light was given by

a) Maxwell

b) Planck

c) Huygen

d) Young

210. In a Young's double slit experiment, the central point on the screen is

a) Bright

b) Dark

c) First bright and then dark

d) First dark and then bright

211. The speed of electromagnetic wave in vacuum depends upon the source of radiation

a) Increases as we move from γ -rays to radio waves b) Decreases as we move from γ -rays to radio waves

c) Is same for all of them

d) None of these

212. Which of the following is conserved when light waves interfere

a) Intensity

b) Energy

c) Amplitude

d) Momentum

213. In Young's double slit experiment, the slit width and the distance of slits from the screen both are doubled.

The fringe width

a) Increases

b) Decreases

c) Remains unchanged

d) None of these

214. In Young's double slit experiment, when violet light of wavelength 4358 Å is used, the 84 fringe are seen in the field of view, but when sodium light of certain wavelength is used, then 62 fringes are seen in the field of view, the wavelength of sodium light is

a) 6893 Å

b) 5904 Å

c) 5523 Å

d) 6429 Å

215. Select the right option in the following

	a) Christian Huygens, a contemporary of Newton established the wave theory of light by assuming that light waves were transverse					
	b) Maxwell provided the	theoretical evidence that li	ght is transverse wave			
	c) Thomas Young experir	nentally proved the wave h	oehavior of light and Huyge	ns assumption		
	d) All the statements give	en above, correctly answers	s the question "what is light	t?"		
216	16. In Young's double slit experiment with sodium vapour lamp of wavelength 589 nm and the slits 0.589 mm apart, the half angular width of the central maximum is					
	a) $\sin^{-1} 0.01$	b) sin ⁻¹ 0.0001	c) sin ⁻¹ 0.001	d) $\sin^{-1} 0.1$		
217		supports the theory that m		a) 3111 - 0,1		
217	a) Electron momentum	b) Electron diffraction	c) Photon momentum	d) Photon diffraction		
210	. To observe diffraction the		c) i noton momentum	d) i noton dimaction		
210			h) Chould be much larger	than the wavelength		
	a) Should be of the same		b) Should be much larger	than the wavelength		
240	c) Have no relation to wa	-	d) Should be exactly $\lambda/2$	1		
219			to glass $(n = 1.5)$ at the po	olarizing angle		
	a) Reflected beam is pola					
		d beams are partially polar				
	• • • • • • • • • • • • • • • • • • • •	nat almost all the light is re	flected			
	d) All of the above					
220	=	erference experiment, the s	slit separation is made 3 fol	d. The fringe width		
	becomes					
	a) 1/3 times	b) 1/9 times	c) 3 times	d) 9 times		
221	. when monochromatic lig	ht is replaced by white ligh	t in Fresnel's biprism arrar	ngement, the central fringe		
	is	Selection of	P			
	a) Coloured	b) White	c) Dark	d) None of these		
222	. A rocket is going towards	s moon with a speed \emph{v} . The	astronaut in the rocket ser	nds signals of frequency \emph{v}		
	towards the moon and re	ceives them back on reflec	tion from the moon. What v	will be the frequency of the		
	signal received by the ast	ronaut (Take $v \ll c$)	A THOUSAN			
		b) $\frac{c}{c-2v}v$	2v	d) $\frac{2c}{v}v$		
	a) $\frac{c}{c-v}v$		$\frac{c}{c}v$	$\frac{u}{v}v$		
223	. The transverse nature of	light is shown by				
	a) Interference of light		c) Polarisation of light	d) Dispersion of light		
224	. Soap bubble appears colo	oured due to the phenomen	on of			
	a) Interference	b) Diffraction	c) Dispersion	d) Reflection		
225	. H-polaroid is prepared by	У				
	a) Orienting herapathite	crystal in the same directio	n in nitrocellulose			
	b) Using thin tourmaline					
	, ,	cohol and then heated with	n dehydration agent			
		cohol and then impregnati				
226	,) mm, the distance between		
	-	ing fringe width by 3×10^{-1}	_			
	_	way from the slits by 5 cm	•			
	b) The screen is moved by	,				
	c) The screen is moved by					
227	d) Both (a) and (b) are co		truo monoshuomatia lial-t-	Avaryon of Maryolan ath 1 th -		
221		=	two monochromatic light v	waves of wavelength λ , the		
	path difference should be			2		
	a) $(2n-1)\frac{\lambda}{4}$	b) $(2n-1)\frac{\lambda}{2}$	c) n\lambda	d) $(2n+1)\frac{\lambda}{2}$		

GPLUS EDUCATION

228.	Two coherent sources se	parated by distance d are ra	adiating in phase having wa	welength λ . A detector		
	moves in a big circle around the two sources in the plane of the two sources. The angular position of $n=4$					
	interference maxima is given as					
	$\begin{pmatrix} \longleftarrow d \longrightarrow \\ S_1 & S_2 \end{pmatrix}$					
	a) $\sin^{-1}\frac{n\lambda}{d}$	b) $\cos^{-1}\frac{4\lambda}{d}$	c) $\tan^{-1}\frac{d}{4\lambda}$	d) $\cos^{-1}\frac{\lambda}{4d}$		
	Young's experiment estab					
	a) Light consists of waves	3	b) Light consists of particle	les		
	c) Light consists of neither	er particles nor waves	d) Light consists of both p	articles and waves		
230.	In Young's double slit into	erference pattern the fringe	e width			
	a) Can be changed only by	y changing the wavelength	of incident light			
	b) Can be changed only by	y changing the separation b	between the two slits			
	c) Can be changed either	by changing the wavelengt	h or by changing the separa	ation between two sources		
		and hence cannot be chang				
231.		the distance between fifth				
	a) 1 mm	b) 2 mm	c) 3 mm	d) 4 mm		
232.		ectromagnetic waves have				
	a) Microwaves	b) Audible waves	c) Ultrasonic waves	d) Radiowaves		
233.		t waves, the angle between				
	a) 0°	b) 90°	c) 45°	d) 80°		
234.	-	th 60 <i>cm</i> , behaves as a conv	ex lens, If wavelength of inc	cident light is 6000 A, then		
	radius of first half period		_			
	a) $36 \times 10^{-8} m$	b) $6 \times 10^{-8} m$	c) $\sqrt{6} \times 10^{-8} m$	d) $6 \times 10^{-4} m$		
235.		raction pattern obtained wi	at the first time to	_		
	=	n minimum, the phase diffe	rence between the wavelet	s from the opposite edges		
	of the slit is	π				
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) π	d) 2π		
236.	•	he distance between the dis	sc and the screen is decreas	ed, the intensity of central		
	bright spot will			,		
	a) Increase	b) Decrease	c) Remain constant	d) None of these		
237.	A star is going away from	the earth. An observer on t	the earth will see the wavel	ength of light coming from		
	the star					
	a) Decreased					
	b) Increased					
	c) Neither decreased nor	increased				
	d) Decreased or increased	d depending upon the veloc	city of the star			
238.	All components of the ele	ctromagnetic spectrum in v	acuum have the same			
	a) Energy	b) Velocity	c) Wavelength	d) Frequency		
239.	In a biprism experiment,	by using light of wavelengt	h 5000 Å, 5 mm wide fringe	s are obtained on a screen		
	1.0 <i>m</i> away from the cohe	erent sources. The separation	on between the two cohere	nt sources is		
	a) 1.0 <i>mm</i>	b) 0.1 <i>mm</i>	c) 0.05 mm	d) 0.01 mm		
240.		on of the sun is 25 days and		Doppler shift for the light		
		itted from the surface of th	e sun will be			
	a) 0.04 Å	b) 0.40 Å	c) 4.00 Å	d) 40.0 Å		

GPLUS EDUCATION

241.		iment the distance between ringe width is found to be 0. b) 5000Å		s 2 mm and the screen is at of the light used is d) 6000Å
	•			•
242.	_	s, propagating in the same d	_	rence δ . After they
	superpose, the intensity	of the resulting wave will be	• •	
	a) $\cos \delta$	b) $\cos(\delta/2)$	c) $\cos^2(\delta/2)$	d) $\cos^2 \delta$
243.	Light from two coherent	sources of the same amplitu	ide A and wavelength λ illu	minates the screen. The
	=	aximum is I_0 . If the sources	-	
	be	0	· · · · · · · · · · · · · · · · · · ·	r
				L
	a) $4I_0$	b) 2 <i>I</i> ₀	c) I_0	d) $\frac{I_0}{2}$
244	The wavelength of light of	observed on the earth, from	a moving star is found to d	4
211.	to the earth the star is	boser ved on the earth, ir on	a moving star is round to a	cerease by 0.0370. Relative
		1 ' (4 5 . 405 /		
	a) Moving away with a ve			
	b) Coming closer with a v			
	c) Moving away with a ve			
	d) Coming closer with a v	velocity of $1.5 \times 10^4 m/s$		
245.	A grating which would be	e most suitable for construc	ting a spectrometer for the	visible and ultraviolet
	region, should have		-	
	<i>o</i> ,	Outgoing		
	Incoming	electrons		
	electrons	elections		
	T /			
	00°	_ di '		
	900			
	* 1	$\int d$		
		• • •		
		C COLL	1000000	
	Crys	stal plane	AHON .	
	$90^{\circ} + 90^{\circ}$			
		1.) 4.000 1: /) 10000 l' /	D 100000 P
	a) 100 lines/cm	b) 1000 lines/cm	c) 10000 lines/cm	d) 100000 lines/cm
246.	•	experiment, for which colo	•	
	a) Red	b) Green	c) Blue	d) Yellow
247.	Two identical radiators h	have a separation of $d = \lambda/4$	I where λ is the wavelength	of the waves emitted by
	either source. The initial	phase difference between tl	he sources is $\pi/4$. Then the	intensity on the screen at a
	distant point situated at a	an angle $ heta=30^\circ$ from the ra	adiators is (here I_o is intens	sity at that point due to one
	radiator alone)	9	, v	
	a) I_o	b) 2 <i>I</i> ₀	c) $3I_0$	d) $4I_o$
240		ne electromagnetic wave va	, ,	, ,
240.	-	· ·	•	e 27 m propagating along
		gy density of the magnetic fi		
	a) 13.29×10^{-12}	b) 8.86×10^{-12}	c) 17.72×10^{-12}	d) 4.43×10^{-12}
249.	Red light of wavelength 6	$525\ nm$ is incident normally	on an optical diffraction gr	rating with 2×10^5 lines/m.
	Including central principa	al maxima, how many maxii	ma may be observed on a s	creen which is far from the
	grating			
	a) 15	b) 17	c) 8	d) 16
250	•	mitter are directed normall		
_50.		or. Between positions of 14	= =	_
		-	successive maxima, the aet	ector travers a distance of
	0.14 m. The frequency of		3.0 · . 4.010 rx	D. C 4 0 10 T
	a) 1.5×10^{10} H	b) 10 ¹⁰ H	c) $3 \times 10^{10} \text{H}$	d) 6×10^{10} H
251.	The width of the diffracti	on band varies		

WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

	a) Inversely as the wavelength					
	b) Directly as the width of the slit					
	c) Directly as the distance between the slit and the screen					
		the source from which the				
252.		t polarising angle such that		-		
	a) 24°	b) 57°	c) 66°	d) 90°		
253.		a piece of glass for green lig	tht is 54.74°, then the angle	of minimum deviation for		
	an equilateral prism mad	_				
	[Given: $\tan 54.74^{\circ} = 1.4^{\circ}$	-	3.600	1) 200		
254	a) 45°	b) 54.74°	c) 60°	d) 30°		
Z54.	~	xperiment, constructive int	-	-		
	will be	e to the individual sources	are 4 and 9 units. The rest	iitant intensity at point P		
	a) 13 units	h) 25 units	a) <u>[07</u>	d) 5 units		
255	•	b) 25 units	c) $\sqrt{97}$ units	d) 5 units		
Z55.		noon is maximum because		·		
	a) Scattering is reduced a		b) Refraction of light is m			
256	c) Rays are incident almo		d) The sun is nearer to ea			
250.	minimum intensities will	two waves is 9:1. They are	producing interference. If	ie rauo oi maximum and		
	a) 10:8	b) 9 : 1	c) 4:1	d) 2:1		
257	Two sources of waves are		C) 4.1	u) 2 . 1		
237.	a) Both have the same an					
	b) Both produce waves of		>			
	=	f the same wavelength havi	nσ constant phase differen	re		
	d) Both produce waves ha	The Table	ng constant phase ameren			
258.	If white light is used in a l					
	a) Fringe pattern will be		1.0 777.00 5.1			
	b) All fringe will be colou		:ATION			
		white while others will be c	oloured			
	d) Central fringe will be d					
259.		n front of a narrow source.	When the point of observat	tion is $2 m$ from the disc,		
	then it covers first HPZ. T	he intensity at this point is	<i>I</i> . When the point of obser	vation is 25 <i>cm</i> from the		
	disc then intensity will be	· · · · · · · · · · · · · · · · · · ·	-			
	a) $\left(\frac{R_6}{R_2}\right)^2 I$	b) $\left(\frac{R_7}{R_2}\right)^2 I$	c) $\left(\frac{R_8}{R_2}\right)^2 I$	d) $\left(\frac{R_9}{R_2}\right)^2 I$		
	a) $\left(\frac{R_2}{R_2}\right)$ I	$(\overline{R_2})$ I	$CJ\left(\frac{R_2}{R_2}\right)$	$a_1\left(\frac{R_2}{R_2}\right)$ I		
260.	Fringes are obtained with	n the help of a biprism in th	e focal plane of an eyepiece	e distance 1 m from the slit.		
	A convex lens produces in	nages of the slit in two pos	itions between biprism and	l eyepiece. The distances		
	between two images of th	ne slit in two positions are4	$.05 \times 10^{-3}$ m and 2.90×10^{-3}) ^{–3} m respectively. The		
	distance between the slits	s will be				
	a) 3.43×10^{-3} m	b) 0.343m	c) 0.0343m	d) 43.3m		
261.	What should be refractive	e index of a transparent me	dium to be invisible in vacı	ıum?		
	a) 1	b) <1	c) >1	d) None of these		
262.	When light is incident on	a doubly refracting crystal,	two refracted rays-ordina	ry ray (0-ray) and extra		
	ordinary ray (E-ray) are	produced. Then				
	a) Both <i>O</i> -ray and <i>E</i> -ray a	are polarized perpendicula	r to the plane of incidence			
		are polarized in the plane o				
		endicular to the plane of ir				
		he plane of incidence and O	-ray perpendicular to the p	lane of incidence		
263.	The range of wavelength	of the visible light is				

	b) 4,000 Å to 8,000 Å		d) 10,000 Å to 15,000 Å
264. Huygen's principle of se a) Find the velocity of li	•	sed to b) Explain the particle be	shavior of light
c) Find the new position	-	d) Explain the particle be d) Explain photoelectric	_
265. If a source is transmitting			
	transmitted from the source		in wavelength or the
a) 36.6 m	b) 40.5 m	c) 42.3 m	d) 50.9 <i>m</i>
266. Two beams of light will	not give rise to an interfere	nce pattern, if	•
a) They are coherent			
b) They have the same v	•		
	arized perpendicular to eacl	h other	
d) They are not monoch		0.76	
267. In Young's double-slit e		is β . If entire arrangement :	is placed in a liquid of
refractive index n , the finds	=	ß	ß
a) $\frac{\beta}{n+1}$	b) $n\beta$	c) $\frac{\beta}{n}$	d) $\frac{\beta}{n-1}$
268. In a Young's double slit	experiment the intensity at	a point where the path diff	erence is $\frac{\lambda}{2}(\lambda)$ being the
wavelength of the light	used) is I . If I_0 denotes the r	naximum intensity.	ial to
		c) 1/2	d) 2 /4
a) $\frac{1}{\sqrt{2}}$	b) $\frac{\sqrt{3}}{2}$	c) 1/2	u) 3/4
269. In an experiment of Nev	vton's rings, the diameter of	f the 20 th dark ring was fou	nd to be 5.82 mm and that of
<u>-</u>	the radius of the plano-con		
a) 5646 Å	b) 5896 Å	c) 5406 Å	d) 5900 Å
270. Red light is generally us	ed to observe diffraction pa	ttern from single slit. If blu	e light is used instead of red
light, then diffraction pa	ittern		
a) Will be more clear	b) Will contract	c) Will expanded	d) Will not be visualized
271. In Young's double slit ex	The same of the sa	that it is the same of the sam	
	observed, x is the average di	istance between the adjace:	nt fringes and d being the
-	relength of light is given by	I d	1
a) $\frac{xd}{L}$	b) $\frac{xL}{d}$	c) $\frac{Ld}{x}$	d) $\frac{1}{Ldx}$
272. The critical angle of a ce			
_	(6)		•
a) $\tan^{-1}\left(\frac{4}{3}\right)$	b) $\tan^{-1}\left(\frac{3}{4}\right)$	c) $\tan^{-1}\left(\frac{3}{3}\right)$	d) $\sin^{-1}\left(\frac{4}{5}\right)$
273. In Young's double slit ex	kperiment, distance between	n two slits is 0.28 mm and o	listance between slits and
screen is 1.4 m. Distanc	e between central bright fri	nge and third bright fringe	is 0.9 cm, what is the
wavelength of light used	1?		
a) 4000 Å	b) 6000 Å	c) 3000 Å	d) 5000 Å
274. What is the minimum the	nickness of a thin film requir	red for constructive interfe	rence in the reflected light
from it?	C.1 (1) 4 W		
Given, the refractive ind		_	
	incident on the film = $60nn$		d) 200 nm
a) 100 <i>nm</i> 275. The Young's double slit	b) 300 nm	c) 50 nm	d) $200 nm$
_	experiment is performed wy. If x is the distance of 4^{th} r		_
a) $x(blue) = x (green)$	b) $x(blue) > x (green)$	c) $x(blue) < x (green)$	d) $\frac{x(\text{blue})}{x(\text{green})} \cdot \frac{5460}{4360}$

	76. Red light of wavelength 625 nm is incident normally on an optical diffraction grating with 2×10^5 lines/m. Including central principal maxima, how many maxima may be observed on a screen which is for				
	·	i principai maxima, now m	any maxima may be observ	red off a screen which is for	
	from the grating?	1-) 17	-) 0	1) 16	
0.77	a) 15	b) 17	c) 8	d) 16	
			nge to the intensity at a poin	nt one-quarter of the	
	distance between two frin	_			
	a) 2	b) 1/2	c) 4	d) 16	
	-		of the slits is slowly increase	ed to make it twice the	
		en in the interference patte			
	a) The intensities of maxis	ma increase while that of m	ninima decrease		
	b) The intensities of both	maxima and minima decre	ease		
	c) The intensities of both	maxima and minima remai	in the same		
	d) The intensities of both	maxima and minima increa	ase		
279.	The distance between the	first and the sixth minima $% \left(1\right) =\left(1\right) \left(1\right$	in the diffraction pattern o	f a single alit is 0.5 mm. The	
	screen is 0.5 m away from	the slit. If the wavelength	of light used is 5000 Å, the	n the slit width will be	
	a) 5 mm	b) 2.5 mm	c) 1.25 mm	d) 1.0 mm	
280.	The separation between s	uccessive fringes in a doub	ble slit arrangement is x . If the	he whole arrangement is	
		t will be the new fringe sep		5	
	The wavelength of light b				
	a) $1.5 x$	b) x	c) 0.75 x	d) 2 x	
201	Infrared radiation was dis	•	c) 0.73 x	u) 2 x	
201.			a) Wilholm Doontgon	d) Thomas Voung	
202	a) William Wollaston		c) Wilhelm Roentgen	-	
282.				$\cos(10^7 t + kx)\hat{j} V/m$, where	
		l metres respectively. It can	n be inferred that		
	(1) The wavelength λ is 1				
	(2) The wave number k is				
	(3) The wave amplitude is		'ATION		
	(4) The wave is propagati	\log along $+x$ direction	MITOIA		
	Which one of the followin	g pairs of statements is cor	rect		
	a) (3) and (4)	b) (1) and (2)	c) (2) and (3)	d) (1) and (3)	
283.	Two slits, 4 mm apart are	illuminated by light of way	velength600 Å. What will be	e the fringe width on a	
	screen placed 2 m from th	ne slits?			
	a) 0.12 mm	b) 0.3 mm	c) 3.0 mm	d) 4.0 mm	
284.	nth Bright fringe if red lig	$ht(\lambda_1 = 7500 \text{ Å})$ coincides	s with $(n+1)^{th}$ bright fring	ge of green	
	light($\lambda_2 = 6000 \text{ Å}$). The v			9 8	
	•		a) 2	4) 2	
205	a) 4	b) 5	c) 3	d) 2	
285.				tht of wavelength 6000 Å is	
	•	h at the same distance for λ			
	a) 0.04 cm	b) 0.4 cm	c) 0.14 cm	d) 0.45 cm	
286.	In an interference experin	nent, phase difference for p	points where the intensity i	s minimum is	
	(n = 1, 2, 3,)				
	a) $n\pi$	b) $(n + 1)\pi$	c) $(2n-1)\pi$	d) Zero	
287.	The ratio of intensities of	successive maxima in the d	liffraction pattern due to th	e single slit is	
	a) 1:4:9	b) 1:2:3	c) $1:\frac{4}{9\pi^2}:\frac{4}{25\pi^2}$	d) 1. 4 9	
)	16 16	
288.	The Young' experiment is	performed with the lights	of blue ($\lambda = 4360$ Å) and g	reen colour ($\lambda = 5460$ Å), if	
		nge from the centre is x , the			
	a) $v(Rluo) = v(Croon)$	h) $v(Rlue) > v(Creen)$	c) $x(Blue) < x(Green)$	d) $\frac{x(Blue)}{-5460}$	
	$a_j x (Diue_j - x (Green))$	$D_{j} \times (D_{j} \cup C_{j} - X_{j} \cup C_{j} \cup C_{j})$	$c_j \times (\text{Diuc}) \subset \times (\text{Orecii})$	$\frac{1}{x(Green)} - \frac{1}{4360}$	

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 23

	PLUS EDUCATION	WEB: WWW.GPLUSE	DUCATION ORG	PHONE NO: 8583042324 Pag	e 24
	a, 0.2 i	0) 1.2		uj viv	
	a) 0.24	b) 1.2	(c = speed of light) c) 30	d) 3.3	
500.	-	-	$(c)^{14}Hz$) ($c = \text{speed of light}$		ucncy
300		_		requency $6 \times 10^{14} Hz$. What freq	llency
	•	ne speed in a medium		oduce interference	
477.	a) Both are electron		-	gitudinal waves	
200		een the sound waves an	•	u uj 10 × 10 ° rad	
	wavelength 4800 A. a) 8×10^{-4} rad	The angular width of f b) 6×10^{-4} rad	first dark fringe on the scr c) 4×10^{-4} ra	teen distant 120 cm from slits wi d d) 16×10^{-4} rad	п ре
∠98 .				nd these are illuminated with lig	
200	-	stant, hence cannot be	-	and those are illustrated to 1 and 20	.l. 4 - C
	· -			g the separation between the two) slits
			paration between the two		1
			velength of incident light		
297.	-	it interference pattern	=		
	a) 2 <i>I</i>	b) 4 <i>I</i>	c) 5 <i>I</i>	d) 7 <i>I</i>	
	intensities at A and A	B is			
	difference between	the beams is $\pi/2$ at poi	nt A and π at point B .The	n the difference between the res	ultant
296.	. Two beams of light l	naving intensities \emph{I} and	4 <i>I</i> interfere to produce a	fringe pattern on a screen. The p	hase
	d) None of the above				
	c) Central fringes do				
	b) All fringes are of s			-	
-	a) Central fringe has	ion pattern negligible width than o	others		
295.				II	
	a) 1.062 <i>amp</i>		amp c) 1.062×10^{-1}		o
<u>-</u> , √1,			ue of displacement curre	_	Jiuge.
294			n 2 mm is connected in a	n electric circuit having source v	oltage
		o isolated sources	rom the same waverront	whereas interference is the inter	acuon
				whereas interference is the inter	action
		d from the same source		the interference is the interaction	.1 01
		om the same wavefron		the interference is the interestic	n of
	-			e source, whereas interference	is that
	of waves from a s		on dominal forms	a accuracy sub	ا جاء ا
			from a source whereas in	nterference is caused due to refr	action
293.		-	na of interference and dif		
00-	a) 25:1	b) 5 : 1	c) 9:4	d) 25 : 16	
		=	ities of the sources are in		
292.				rfere. The ratio of maximum into	ensity
	a) Infinite	b) Five	c) Three	d) Zero	
	in Young's double-sl	it experiment is			
291.	. The maximum numb	oer of possible interfere	ence maxima for slit-sepa	ration equal to twice the waveler	ngth
	*	l the distribution chang	ges with time		
	c) Decreased		,		
	•	l the distribution does	not varv with time		
270.	a) Increased	rence of two concreme.	odirees of fight, effer gy is		
290	•	•	sources of light, energy is	•	
	a) 0.033 Å	b) 0.33 Å	c) 3.3 Å	d) 33 Å	
	of light emitted by it	e curfaco ho 4320 Å th	a Hannlar chiff will ha / L		
207.	=			is is 7×10^8 metres. If the wavel	ciigui

301.	In Young's double slit experiment if the sli minima to that at maxima will be	ts widths are in the ratio 1:	9, the ratio of the intensities at
	a) 1 b) 1/9	c) 1/4	d) 1/3
302	Four independent waves are represented		u) 1/3
302.	VIII. $X_1 = a_1 \sin \omega t$	by equations	
	IX. $X_2 = a_1 \sin 2 \omega t$		
	X. $X_3 = a_1 \sin \omega_1 t$		
	XI. $X_4 = a_1 \sin(\omega t + \delta)$ Interference is possible between waves re	presented by equation	
	•		d) 1 and 4
202	a) 3 and 4 b) 1 and 2	c) 2 and 3	d) 1 and 4
303.	The ratio of intensities of consecutive max		
	a) 1:4:9 b) 1:2:3	c) $1:\frac{4}{9\pi^2}:\frac{4}{25\pi^2}$	d) 1: $\frac{1}{\pi^2}$: $\frac{9}{\pi^2}$
304.	The velocity of light emitted by a source <i>S</i>	observed by an observer O_{i}	who is at rest with respect to S is c .
	If the observer moves towards S with velocity	•	-
		, ,	
	a) $c + v$ b) $c - v$	c) <i>c</i>	d) $1 - \frac{v^2}{c^2}$
		,	$\sqrt{1-c^2}$
305.	A 20 cm length of a certain solution causes	s right handed rotation of 38	°. A 30 <i>cm</i> length of another
	solution causes left handed rotation of 24°	. The optical rotation caused	by 30 cm length of a mixture of the
	above solutions in the volume ratio 1:2 is	- }	
	a) Left handed rotation of 14°	b) Right handed	rotation of 14°
	c) Left handed rotation of 3°	d) Right handed	
306.	A stone thrown into still water, creates a c		
	distance measured from the centre of the	790	
	a) $r^{-1/2}$ b) r^{-1}	c) r^{-2}	d) $r^{-3/2}$
307.	A signal emitted by an antenna from a cert	,	,
	form of	DUCATION	
	a) Sky wave b) Ground wav	e c) Sea wave	d) Both (a) and (b)
308	Angular width (β) of central maximum of		
0001	a) Distance between slit and source	b) Wavelength of	
	c) Width of the slit	d) Frequency of l	9
309	Maxwell in his famous equation of electron		-
507.	a) a.c. current b) d.c. current	-	current d) Impedance
310	A beam of natural light falls on a system of	· •	
510.	polaroid is turned through 30° with response	_	_
	passes through the system will be	t to the preceding one. The p	ercentage of incluent intensity that
		c) 30%	d) 1204
211	a) 100% b) 50% The equations of two interfering ways an	· ·	d) 12%
311.	The equations of two interfering waves are interference at the math difference is	$e y_1 = b \cos \omega t \operatorname{and} y_2 = b \cot \omega t$	$s(\omega \iota + \varphi)$. For destructive
	interference the path difference is	-) 1000	1) 7200
212	a) 0° b) 360°	c) 180°	d) 720°
314.	Light of wavelength 589.3nm is incident n		_
	width of the central diffraction maximum		
040	a) 0.68° b) 1.02°	c) 0.34°	d) None of these
313.	Which one of the following is the property		electromagnetic wave in free space
	a) Electric and magnetic fields have a phase		
	b) The energy contribution of both electric		al
	c) The direction of propagation is in the d	irection of $\overrightarrow{B} imes \overrightarrow{E}$	
	d) The pressure exerted by the wave is the	e product of its speed and en	ergy density

314.	the sources is 20 cm. Wav	elength of light used is 540	two sources is 0.1 <i>mm</i> . The	of the first dark fringe is
~ · =	a) 0.08°	b) 0.18°	c) 0.20°	d) 0.313°
315.		_	s $1 \times 10^{-4} m$. If the distance	
			slit is reduced to half and w	vavelength is changed fron
	$6.4 \times 10^{-7} m$ to 4.0×10^{-7}	^{7}m , the value of new fringe	e width will be	
	a) $0.15 \times 10^{-4} m$	b) $2.0 \times 10^{-4} m$	c) $1.25 \times 10^{-4} m$	d) $2.5 \times 10^{-4} m$
316	If \vec{E} and \vec{B} are the electric	and magnetic field vectors	s of E.M. waves then the dire	ection of propagation of
	E.M. wave is along the dire			1 1 0
	a) \vec{E}	b) \vec{B}	c) $\vec{E} \times \vec{B}$	d) None of these
217	•		e fractional change in λ is 1,	•
317.	A neavenry body is recedi	_		
	a) <i>c</i>	b) $\frac{3c}{5}$	c) $\frac{c}{5}$	d) $\frac{2c}{r}$
318	In Voung's double slit eyn	3	e in between the double sli	3
310.	a) Intensity of fringes total		e in between the double sin	is. Then
	b) Only bright light is obse	, ,,		
	, , ,			
	c) Fringes of unequal wid		1	
240	-	nt and dark fringes is reduce		(0.00. 1. 1. 1.
319.			ter given an optical rotation	=
			is 66°, then concentration	
	a) $80 gL^{-1}$	b) 75 <i>gL</i> ⁻¹	c) $65 gL^{-1}$	d) $50 gL^{-1}$
320.			single slit diffraction patter	rn, then what will be its
	intensity when the slit wh	The state of the s		
	a) <i>I</i> ₀	b) $\frac{I_0}{2}$	c) 2 <i>I</i> ₀	d) $4I_0$
		Z		, ,
321.			mum with wavelength λ_1 is	at a distance d_1 and the
		elength λ_2 is at distance d_2		
	a) $\frac{\lambda_1}{\lambda_2}$	b) $\frac{\lambda_2}{\lambda_1}$	$c)\frac{\lambda_1^2}{2}$	d) $\frac{\lambda_2^2}{\lambda_2^2}$
	$^{\alpha j}$ λ_2	λ_1	λ_2^2	λ_1^2
322.	In an electromagnetic way	ve, the electric and magnet	izing fields are $100 Vm^{-1}$ a	nd $0.265 Am^{-1}$. The
	maximum energy flow is			
	a) $26.5 W/m^2$	b) $36.5 W/m^2$	c) $46.7 W/m^2$	d) None of these
323.	Two waves of same freque	ency and same amplitude f	rom two monochromatic so	ource are allowed to
	-	_	e difference is 0° and in oth	
	the intensities in the two	-		•
	a) 1:1	b) 2:1	c) 4:1	d) None of these
324.	Out of the following states		-	,
	_		ism, the emergent light is e	lliptically polarised
			action and total internal ref	• • •
	-	d to produce and analyse p		
		both doubly refracting crys		
225			square of its wavelength, A	Ha-Na lacor radiates
323.		-		
			8 <i>nm</i> . The intensity of focus	
226	a) $1.5 \times 10^{13} W/m^2$	b) $2.5 \times 10^9 W/m^2$		d) None of these
326.	•	•	ectromagnetic wave are or	iented along
	a) The same direction but			
	b) The same direction and	=		
	· · · · · · · · · · · · · · · · · · ·	r directions and are in pha		
	d) Mutually perpendicular	r directions and differ in pl	hase by 90°	

GPLUS EDUCATION

	• • • • • • • • • • • • • • • • • • • •	ain quantum nature of ligh		
	pattern produced by two	c) Diffraction identical slits, the intensity her if the slits is closed is I_0	d) Polarization at the slit of the central maximu Therefore	ım
a) $I = I_0$ b) $I = 2I_0$	·	0		
c) $I = 4I_0$				
d) I and I_0 are not	related to each other			
	zone of circular zone plate Ien the distance of first im	•	ncident light is 5893 Å. Source is	at a
a) 9 <i>m</i>	b) 12 <i>m</i>	c) 24m	d) 36 <i>m</i>	
			source to be v_A , v_B and v_C . The	_
			m the source with the same speed	d.
		nding space is vacuum eve		
_	hin film in the path of one	_	ns, the central fringe will shift by	7
a) 4λ	b) 3λ	f the film is (wavelength of c) 2λ	d) λ	
	•	•	ence and common wavelength λ v	will
_	structive interference at a		5	
a) 5λ		c) $\frac{4\lambda}{2}$	d) $\frac{11\lambda}{2}$	
			stance between the screen and sl	
			consecutive dark fringes (in mm) is
a) 0.25	b) 0.26	c) 0.27	d) 0.28	
334. By a monochroma	tic wave, we mean	la) A sin ala mass ad	is simple colour.	
a) A single ray	single wavelength	b) A single ray of d) Many rays of a		
, ,			nged in succession such that the	
	_	_	eceding one. The fraction of the	
	nsity that passes through			
a) $\frac{1}{64}$	b) $\frac{1}{32}$	c) $\frac{1}{256}$	d) $\frac{1}{512}$	
		electromagnetic spectrum	will the vibrational motion of	
molecules give ris a) Ultraviolet	e to absorption b) Microwaves	c) Infrared	d) Radio waves	
	•	-	tral fringe on introducing a mica	
- C		the mica sheet will be $(\mu =$	9	
a) 438×10^{-6} m	b) $538 \times 10^{-6} \text{ m}$		d) None of these	
•	•		articular point in space, the elect	ric
•	~	induction (B) along z -axis		
a) $3.1 \times 10^{-8}T$	b) $3 \times 10^{-5} T$	c) $3 \times 10^{-6} T$	d) $9.3 \times 10^{-6}T$	
339. Colours of thin film	ns result from			
Or				
• •		w brilliant colours. This is		
a) Dispersion of li	9	9 ,	, ,	
			ocket. He shines a 10 watt light	
			te direction. If his mass is $80 kg$,	
now long must he	need to reach a velocity o	II IIIS -		

a) 9 <i>s</i>	b) $2.4 \times 10^3 s$	c) $2.4 \times 10^6 s$	d) $2.4 \times 10^9 s$
341. Newton postulated h	is corpuscular theory on t		
a) Newton's rings		b) Colours of thin film	
c) Rectilinear propag		d) Dispersion of white	_
		ation of a wave was first give	=
a) Newton	b) Huygen	c) Maxwell	d) Fresnel
		t of polarizing angle. It is calle	
a) Brewster's law	b) Lambert's law	c) Malus's law	d) Bragg's law
-			ringe width is 1 <i>mm</i> . Light of
			ced over one of the slits, then
	l displacement of the fring		
a) 0 <i>cm</i>	b) 5 <i>cm</i>	c) 10 cm	d) 15 <i>cm</i>
345. If a star is moving to			
a) Red	b) Infrared	c) Blue	d) Green
346. Which rays are not the			
a) X-rays	b) Microwaves	c) α-rays	d) Radio waves
347. Light is an electroma	<u> </u>	vacuum is given by the expre	ssion
	b) $\int_{\varepsilon_0}^{\mu_0}$	c) $\frac{\varepsilon_o}{\mu_o}$	1
a) $\sqrt{\mu_o \varepsilon_o}$	b) $\frac{1}{\varepsilon_0}$	$\frac{c}{\mu_o}$	d) $\frac{1}{\sqrt{\mu_o \varepsilon_o}}$
348. If white light is used	V	V	•
a) No interference pa	-	erment	
b) White fringes are			
c) Central bright frin		1	
d) Central bright frin	-		
, ,	9	hase difference hetween the t	wo waves interfering at a point
	that point can be expresse		wo waves interfering at a point
is φ, the intensity at	— А	ϕ	
a) $I = \sqrt{A^2 + B^2 \cos^2 A}$	$^{2} \phi$ b) $I = \frac{1}{B} \cos \phi$	c) $I = A + B \cos \frac{\phi}{2}$	d) $I = A + B \cos \phi$
			the light wavefront incident on
the slit should be			
a) Spherical	b) Cylindrical	c) Plane	d) Elliptical
351. The region of the atn	a a anh ana aharra tuan aanh		
a) Lithosphere	nosphere above troposph	ere is known as	
aj Litilospilere	b) Uppersphere	ere is known as c) Ionosphere	d) Stratosphere
352. Which of the following	b) Uppersphere	c) Ionosphere	d) Stratosphere
, .	b) Uppersphere	c) Ionosphere	d) Stratosphered) Photoelectric effect
352. Which of the following a) Interference	b) Uppersphere ng phenomenon exhibits p b) Diffraction	c) Ionosphere particle's nature of light? c) Polarization	d) Photoelectric effect
352. Which of the following a) Interference	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength	c) Ionosphere particle's nature of light? c) Polarization	
352. Which of the following a) Interference 353. Due to Doppler's effective and the second se	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength	c) Ionosphere particle's nature of light? c) Polarization	d) Photoelectric effect
352. Which of the following a) Interference 353. Due to Doppler's effect Velocity of recession a) 2.5 km/s	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength of the star will be b) 10 km/s	c) Ionosphere particle's nature of light? c) Polarization n observed is 0.1Å for a star p c) 5 km/s	d) Photoelectric effect roducing wavelength 6000Å. d) 20 <i>km/s</i>
 352. Which of the following a) Interference 353. Due to Doppler's effective Velocity of recession a) 2.5 km/s 354. The figure shows four 	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength of the star will be b) 10 km/s ar pairs of polarizing sheet	c) Ionosphere particle's nature of light? c) Polarization n observed is 0.1Å for a star p c) 5 km/s ts, seen face-on. Each pair is n	d) Photoelectric effect roducing wavelength 6000Å. d) 20 km/s nounted in the path of initially
 352. Which of the following a) Interference 353. Due to Doppler's effective Velocity of recession a) 2.5 km/s 354. The figure shows four unpolarised light. The 	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength of the star will be b) 10 km/s ar pairs of polarizing sheet te polarizing direction of e	c) Ionosphere particle's nature of light? c) Polarization n observed is 0.1Å for a star p c) 5 km/s ts, seen face-on. Each pair is neach sheet (indicated by the d	d) Photoelectric effect roducing wavelength 6000Å. d) 20 km/s nounted in the path of initially
 352. Which of the following a) Interference 353. Due to Doppler's effective Velocity of recession a) 2.5 km/s 354. The figure shows four unpolarised light. The 	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength of the star will be b) 10 km/s ar pairs of polarizing sheet te polarizing direction of e -axis or a vertical y axis. R	c) Ionosphere particle's nature of light? c) Polarization n observed is 0.1Å for a star p c) 5 km/s ts, seen face-on. Each pair is neach sheet (indicated by the d	d) Photoelectric effect roducing wavelength 6000Å. d) 20 km/s nounted in the path of initially ashed line) is referenced to
 352. Which of the following a) Interference 353. Due to Doppler's effective Velocity of recession a) 2.5 km/s 354. The figure shows four unpolarised light. The either a horizontal x- 	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength of the star will be b) 10 km/s ar pairs of polarizing sheet te polarizing direction of e -axis or a vertical y axis. R	c) Ionosphere particle's nature of light? c) Polarization n observed is 0.1Å for a star p c) 5 km/s ts, seen face-on. Each pair is neach sheet (indicated by the d	d) Photoelectric effect roducing wavelength 6000Å. d) 20 km/s nounted in the path of initially ashed line) is referenced to
 352. Which of the following a) Interference 353. Due to Doppler's effective Velocity of recession a) 2.5 km/s 354. The figure shows four unpolarised light. The either a horizontal x- 	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength of the star will be b) 10 km/s ar pairs of polarizing sheet te polarizing direction of e -axis or a vertical y axis. R	c) Ionosphere particle's nature of light? c) Polarization n observed is 0.1Å for a star p c) 5 km/s ts, seen face-on. Each pair is neach sheet (indicated by the d	d) Photoelectric effect roducing wavelength 6000Å. d) 20 km/s nounted in the path of initially ashed line) is referenced to
 352. Which of the following a) Interference 353. Due to Doppler's effective Velocity of recession a) 2.5 km/s 354. The figure shows four unpolarised light. The either a horizontal x- 	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength of the star will be b) 10 km/s ar pairs of polarizing sheet te polarizing direction of e -axis or a vertical y axis. R	c) Ionosphere particle's nature of light? c) Polarization n observed is 0.1Å for a star p c) 5 km/s ts, seen face-on. Each pair is neach sheet (indicated by the d	d) Photoelectric effect roducing wavelength 6000Å. d) 20 km/s nounted in the path of initially ashed line) is referenced to
 352. Which of the following a) Interference 353. Due to Doppler's effective Velocity of recession a) 2.5 km/s 354. The figure shows four unpolarised light. The either a horizontal x- 	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength of the star will be b) 10 km/s ar pairs of polarizing sheet te polarizing direction of e -axis or a vertical y axis. R	c) Ionosphere particle's nature of light? c) Polarization n observed is 0.1Å for a star p c) 5 km/s ts, seen face-on. Each pair is neach sheet (indicated by the d	d) Photoelectric effect roducing wavelength 6000Å. d) 20 km/s nounted in the path of initially ashed line) is referenced to
 352. Which of the following a) Interference 353. Due to Doppler's effective Velocity of recession a) 2.5 km/s 354. The figure shows four unpolarised light. The either a horizontal x- 	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength of the star will be b) 10 km/s ar pairs of polarizing sheet te polarizing direction of e -axis or a vertical y axis. R	c) Ionosphere particle's nature of light? c) Polarization n observed is 0.1Å for a star p c) 5 km/s ts, seen face-on. Each pair is neach sheet (indicated by the d	d) Photoelectric effect roducing wavelength 6000Å. d) 20 km/s nounted in the path of initially ashed line) is referenced to
 352. Which of the following a) Interference 353. Due to Doppler's effective Velocity of recession a) 2.5 km/s 354. The figure shows four unpolarised light. The either a horizontal x- 	b) Uppersphere ng phenomenon exhibits p b) Diffraction ect, the shift in wavelength of the star will be b) 10 km/s ar pairs of polarizing sheet te polarizing direction of e -axis or a vertical y axis. R	c) Ionosphere particle's nature of light? c) Polarization n observed is 0.1Å for a star p c) 5 km/s ts, seen face-on. Each pair is neach sheet (indicated by the d	d) Photoelectric effect roducing wavelength 6000Å. d) 20 km/s nounted in the path of initially ashed line) is referenced to

of light is
ı purposes
ı purposes
ı purposes
ı purposes
6
c
C
ngo from
nge from
o angaina of
e spacing of
ght which
giit willeli
$< 10^6 m/s$.
,
corpuscles
1
s, can be
$=B_0\hat{\iota}$
ν.]
1
lengths λ
i e

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 P a g e | 29

and λ_2 . With the help of the figure identify which is the longer wavelength and their ratios.

- a) λ_2 is longer than λ_1 and the ratio of the longer to the shorter wavelength is 1.5
- b) λ_1 is longer than λ_2 and the ratio of the longer to the shorter wavelength is 1.5
- c) λ_1 and λ_2 are equal and their ratio is 1.0
- d) λ_2 is longer than λ_1 and the ratio of the longer to the shorter wavelength is 2.5
- 368. A ray of light is incident on the surface of a glass plate at an angle of incidence equal to Brewster's angle ϕ . If μ represents the refractive index of glass with respect to air, then the angle between reflected and refracted rays is

a)
$$90 + \phi$$

b)
$$\sin^{-1}(\mu\cos\phi)$$

d)
$$90^{\circ} - \sin^{-1}(\sin^{-1}\phi/\mu)$$

369. In the set up shown in Fig the two slits, S_1 and S_2 are not equidistant from the slit S. The central fringe at O

a) Always bright

- Either dark or bright depending on the position of d) Neither dark nor bright
- 370. If separation between screen and source is increased by 2%, what would be the effect on the intensity
 - a) Increases by 4%
- b) Increases by 2% c) Decreases by 2%
- d) Decreases by 4%
- 371. In a Young's double slit experiment the intensity at a point where the path difference is $\frac{\lambda}{6}(\lambda)$ being the wavelength of the light used) is I. If I_0 denotes the maximum intensity, I/I_0 is equal to

a)
$$\frac{1}{\sqrt{2}}$$

b)
$$\frac{\sqrt{3}}{2}$$

c)
$$\frac{1}{2}$$

d)
$$\frac{3}{4}$$

- 372. In an apparatus, the electric field was found to oscillate with an amplitude of 18 V/m. The magnitude of the oscillating magnetic field will be
 - a) $4 \times 10^{-6}T$
- b) $6 \times 10^{-8}T$
- c) $9 \times 10^{-9}T$
- d) $11 \times 10^{-11}T$
- 373. Two non-coherent sources emit light beams of intensities I and 4I. The maximum and minimum intensities in the resulting beam are
 - a) 9I and I
- b) 9I and 3I
- c) 5*I* and *I*
- d) 51 and 31
- 374. In a Young's experiment, one of the slits is covered with a transparen't sheet of thickness 3.6×10^{-3} cm due to which position of central fringe shifts to a position originally occupied by 30th fringe. The refractive index of the sheet, if $\lambda = 6000 \text{ Å}$, is
 - a) 1.5

b) 1.2

c) 1.3

- d) 1.7
- 375. In the far field diffraction pattern of a single slit under polychromatic illumination, the first minimum with the wavelength λ_1 is found to be coincident with the third maximum at λ_2 . So
 - a) $3\lambda_1 = 0.3\lambda_2$
- b) $3\lambda_1 = \lambda_2$
- c) $\lambda_1 = 3.5\lambda_2$
- d) $0.3\lambda_1 = 3\lambda_2$
- 376. Two waves of equal amplitude and frequency interfere each other. The ratio of intensity when the two waves arrive in phase to that when they arrive 90° out of phase is
 - a) 1:1

- b) $\sqrt{2} : 1$
- c) 2:1

d) 4:1

377.	In Young's experiment, the third bright band for light bright band for another source of light in the same an	rangement. Then the wave	elength of second source is
	a) 3600 Å b) 4000 Å	c) 5000 Å	d) 4500 Å
378.	Light appears to travel in straight lines since		
	a) It is not absorbed by the atmosphere	b) It is reflected by the atr	=
	c) Its wavelength is very small	d) Its velocity is very large	
379.	Air has refractive index 1.003, the thickness of air co	lumn, which will have one	more wave length of yellow
	light (6000 Å) than in the same thickness of vacuum	is	
	a) 2 mm b) 2 cm	c) 2 m	d) 2 km
380.	The phenomenon of interference is shown by		
	a) Longitudinal mechanical waves only	b) Transverse mechanical	waves only
	c) Electromagnetic waves only	d) All the above types of w	vaves
381.	A beam of light AO is incident on a glass slab ($\mu = 1.5$	54) in a direction as shown	in figure. The reflected ray
	OB is passed through a Nicol prism. On viewing thro	ugh a Nicole prism, we find	on rotating the prism that
	33° 0 33°		
	a) The intensity is reduced down to zero and remain	s 7ero	
	b) The intensity reduces down some what and rises a		
	c) There is no change in intensity	again	
	d) The intensity gradually reduces to zero and then a	again increases	
382	In Young's double slit experiment the amplitudes of the		ocnactively. The ratio of
302.	intensities of bright and dark fringes will be		
202	a) 3:1 b) 4:1	c) 2:1	d) 9:1
383.	In a YDSE bi-chromatic light of wavelengths 400 nm		
	is 0.1 mm and the distance between the plane of the		The minimum distance
	between two successive regions of complete darknes		1) 00
	a) 4 mm b) 5.6 mm	c) 14 mm	d) 28 mm
384.	Which if the following phenomena is not common to	_	
	a) Interference b) Diffraction	c) Coherence	d) Polarisation
385.	An electromagnetic wave of frequency $v = 3.0 MHz$	passes from vacuum into a	dielectric medium with
	relative permitivity $\varepsilon_r=4.0$. Then		
	a) Wavelength is doubled and the frequency remains	· ·	
	b) Wavelength is doubled and frequency becomes ha		
	c) Wavelength is halved and frequency remains unch	nanged	
	d) Wavelength and frequency both remain unchange	d	
386	The wave theory of light, in its original form, was firs	t postulated by	
	a) Issac Newton	b) Christian Huygens	
	c) Thomas Young	d) Augustin Jean Fresnel	
387.	A slit of width a is illuminated by white light. For red	light ($\lambda = 6500 \text{Å}$), the firs	st minima is obtained at
	$\theta = 30^{\circ}$. Then the value of a will be		
	a) 3250 Å b) $6.5 \times 10^{-4} mm$	c) 1.24 microns	d) $2.6 \times 10^{-4} cm$
388.	The angle of incidence of light is equal to Brewster's	•	•
	A. Reflected ray is perpendicular to refracted ray	U - / · ·	
	B. Refracted ray is parallel to reflected ray		
	C. Reflected light is polarized having its electric vector	or in the plane of incidence	
	D. Refracted light is polarized	, , , , , , , , , , , , , , , , , , ,	

389.	The Fraunhofer diffraction	n pattern of a single slit is f	c) (A) and (C) are true formed in the focal plane of	a lens of focal length 1 m.
	wavelength of light will be		ed at a distance of 5 mm fro	om central maximum, then
	a) 5000Å	b) 2500Å	c) 7500Å	d) 8500Å
390	•	•	•	,
570.			3 sin $(\omega t + \frac{1}{3})$ interfere at a	a point, the amplitude of the
	resulting wave will be abo			
	a) 7	b) 6	c) 5	d) 3.5
391.			t. The first minimum of the	
			distance of 2 m from the sl	
	a) 0.3 mm	b) 0.2 mm	c) 0.15 mm	d) 0.1 mm
392.		ct for a zone plate and a len	S	
	a) Zone plate has multi for			
		is whereas lens has multipl	le focii	
	c) Both are correct	1 1 1		
200	•	is whereas a lens has infini		
393.	=	nne electromagnetic wave i	s given by	
	$B_y = 2 \times 10^{-7} \sin(0.5 \times 1)$			
	This electromagnetic way			15.4
	a) A visible light	b) An infrared wave	c) A microwave	d) A radio wave
394.				ength of light used is 6000Å.
			screen is 1° , then value of a	
	a) 1 mm	b) 0.05 mm	c) 0.03 mm	d) 0.01 mm
395.		kness of a thin film require	ed for constructive interfer	ence in the reflected light
	from it?	6.1 60 4 5	.1. 6.1. 11.11.	.1 (1) (00)
			gth of the light incident on	
206	a) 100 nm	b) 300nm	c) 50 nm	d) 200 nm
396.	•	· ·	ained to be formed in a cer	<u> </u>
	= =		elength of light is changed	to 400 mm, number of
	-	me segment of the screen i	•	4) 30
207	a) 12	b) 18	c) 24	d) 30
397.	formed on a screen is	eriment uses a monochrom	atic source. The shape of th	ie interierence iringes
	a) Hyperbola	b) Circle	c) Straight line	d) Parabola
308		having the wavelength 30		u) rarabola
370.		b) 10^{15} cycles/s		d) 2000 avalag/a
200	a) $9 \times 10^{13} cycles/s$	• •	c) 90 cycles/s	d) 3000 cycles/s
377.		_	um are in phase initially. I	path of length L_2 through a
				nterference. The two waves
		=	se difference between the	
	_	_		
	a) $\frac{2\pi}{\lambda} (L_2 - L_1)$	b) $\frac{2n}{\lambda} (n_1 L_1 - n_2 L_2)$	c) $\frac{2\pi}{\lambda} (n_2 L_1 - n_1 L_2)$	d) $\frac{2\pi}{\lambda} \left(\frac{n_1 - n_2}{n_4 - n_2} \right)$
400	••	• •	א source falls on a single slit	1 2
	_	_	_	tween the first dark fringes
	on either side of the centr		a a.j. 1110 alouaitoe bol	
	a) 1.2 mm	b) 1.2 <i>cm</i>	c) 2.4 <i>cm</i>	d) 2.4 mm
		,		

of amplitudes

	a) 5:7	b) 7:4	c) 4:7	d) 7 : 5
402	•	,	e maximum intensity of 100	
102.			reducing its width then the	-
	a) 90	b) 89	c) 67	d) 81
403.	A polaroid is placed at 45	o to an incoming light of int	ensity I_0 . Now the intensity	of light passing through
	polaroid after polarization			
	a) I_0	b) $I_0/2$	c) $I_0/4$	d) Zero
404.	The electric field associate	ed with an e.m. wave in vac	cuum is given by $\vec{E} = \hat{\imath} 40$ c	$\cos(kz - 6 \times 10^8 t)$, where
			vely. The value of wave vec	
	a) $2m^{-1}$	b) $0.5m^{-1}$	c) $6m^{-1}$	d) $3m^{-1}$
405.		•	to glass $(n = 1.5)$ at the po	•
	a) Reflected beam is polar		9 () [
	•	l beams are partially polari	zed	
	=	at almost all the light is ref		
	d) All of the above	O		
406.	-	vith their principal planes i	naking an angle of 60°. The	percentage of incident
		asses through the system is		. 0
	a) 50%	b) 100%	c) 12.5%	d) 37.5%
407.	Specific rotation of sugar	solution is 0.01 SI units. 20	$0kgm^{-3}$ of impure sugar s	olution is taken in a
			ition of 0.4 <i>rad</i> is observed	
	of sugar is the sample is			
	a) 80%	b) 89%	c) 11%	d) 20%
408.	For skywave propagation	of a 10 MHz signal, what s	hould be the maximum ele	ctron density in ionosphere
	a) $\sim 1.2 \times 10^{12} m^{-3}$	b) $\sim 10^6 m^{-3}$	c) $\sim 10^{14} m^{-3}$	d) $\sim 10^{22} m^{-3}$
409.	In Young's double slit exp	eriment, let S_1 and S_2 be th	e two slits and C be the cen	tre of the screen. If
	$\angle S_1 C S_2 = \theta$ and λ is the w	vavelength, the fringe widtl	n will be	
	$\frac{\lambda}{2}$	J PLUS ELJUL	ATION	λ
	a) $\overline{\theta}$	b) ***	c) 2λ/θ	d) $\frac{\lambda}{2\theta}$
			→	
410.			and magnetic field $ec{E}$ and $ec{B}$	
	perpendicular to each oth	er. The direction of polariz	ation is given by $ec{X}$ and tha	t of wave propagation by \vec{k} .
	Then			
	a) $\vec{V} \vec{R}$ and $\vec{k} \vec{R} \vee \vec{F}$	h) vuit a tuit viti	\downarrow \rightarrow \rightarrow \rightarrow \rightarrow	
	$\alpha j \Lambda D $ and $\Lambda D \Lambda L$	$v_j x_{ E }$ and $\kappa_{ E } \times B$	c) $\vec{X} \vec{B} $ and $\vec{k} \vec{E} \times \vec{B} $	d) $\vec{X} \vec{E} $ and $\vec{k} \vec{B} \times \vec{E} $
411.			c) $X B$ and $k E \times B$ When the point of observat	
411.	A circular disc is placed in	front of a narrow source.		ion is at a distance of
411.	A circular disc is placed in 1 meter from the disc, the	n front of a narrow source. en the disc covers first HPZ	When the point of observat . The intensity at this point f consecutive amplitude of	ion is at a distance of is I_0 . The intensity at a
411.	A circular disc is placed in 1 meter from the disc, the	n front of a narrow source. en the disc covers first HPZ	When the point of observat . The intensity at this point	ion is at a distance of is I_0 . The intensity at a
	A circular disc is placed in 1 <i>meter</i> from the disc, the point distance 25 cm from a) $I_1 = 0.531I_0$	front of a narrow source. The the disc covers first HPZ in the disc will be (If ratio of b) $I_1 = 0.053I_0$	When the point of observat . The intensity at this point f consecutive amplitude of c) $I_1 = 53I_0$	ion is at a distance of is I_0 . The intensity at a HPZ is 0.9)
	A circular disc is placed in 1 <i>meter</i> from the disc, the point distance 25 cm from a) $I_1 = 0.531I_0$	front of a narrow source. The the disc covers first HPZ in the disc will be (If ratio of b) $I_1 = 0.053I_0$	When the point of observat . The intensity at this point f consecutive amplitude of c) $I_1 = 53I_0$	ion is at a distance of is I_0 . The intensity at a HPZ is 0.9) d) $I_1 = 5.03I_0$
	A circular disc is placed in 1 meter from the disc, the point distance 25 cm from a) $I_1 = 0.531I_0$ The pressure exerted by a	front of a narrow source. The the disc covers first HPZ in the disc will be (If ratio of b) $I_1 = 0.053I_0$	When the point of observat . The intensity at this point f consecutive amplitude of c) $I_1 = 53I_0$	ion is at a distance of is I_0 . The intensity at a HPZ is 0.9) d) $I_1 = 5.03I_0$
412.	A circular disc is placed in 1 meter from the disc, the point distance 25 cm from a) $I_1 = 0.531I_0$ The pressure exerted by a is the velocity of light] a) Ic	In front of a narrow source. Yen the disc covers first HPZ in the disc will be (If ratio of b) $I_1 = 0.053I_0$ an electromagnetic wave of b) Ic^2	When the point of observat . The intensity at this point f consecutive amplitude of c) $I_1 = 53I_0$ intensity $I(watts/m^2)$ on c) I/c	ion is at a distance of is I_0 . The intensity at a HPZ is 0.9) d) $I_1 = 5.03I_0$ a nonreflecting surface is [c
412.	A circular disc is placed in $1 meter$ from the disc, the point distance $25 cm$ from a) $I_1 = 0.531 I_0$. The pressure exerted by a is the velocity of light] a) Ic . Two polaroids are placed the second polaroid. If a the	in front of a narrow source. Yen the disc covers first HPZ in the disc will be (If ratio of b) $I_1 = 0.053I_0$ an electromagnetic wave of b) Ic^2 in the path of unpolarised third polaroid whose polari	When the point of observators. The intensity at this point of consecutive amplitude of C of C of C of C intensity C (watts/ C) on C of C beam of intensity C such the exact of axis makes an angle	ion is at a distance of is I_0 . The intensity at a HPZ is 0.9) d) $I_1 = 5.03I_0$ a nonreflecting surface is [c d) I/c^2 nat no light is emitted from θ with the polarization axis
412.	A circular disc is placed in 1 meter from the disc, the point distance $25 cm$ from a) $I_1 = 0.531I_0$ The pressure exerted by a is the velocity of light] a) Ic Two polaroids are placed the second polaroid. If a thof first polaroid, is placed	in front of a narrow source. Yen the disc covers first HPZ in the disc will be (If ratio of b) $I_1 = 0.053I_0$ an electromagnetic wave of b) Ic^2 in the path of unpolarised third polaroid whose polari	When the point of observators. The intensity at this point of consecutive amplitude of C and C intensity C and C are C and C intensity C and C beam of intensity C such the	ion is at a distance of is I_0 . The intensity at a HPZ is 0.9) d) $I_1 = 5.03I_0$ a nonreflecting surface is [c d) I/c^2 nat no light is emitted from θ with the polarization axis
412. 413.	A circular disc is placed in 1 meter from the disc, the point distance $25 cm$ from a) $I_1 = 0.531I_0$. The pressure exerted by a is the velocity of light] a) Ic . Two polaroids are placed the second polaroid. If a to of first polaroid, is placed polaroid will be	in front of a narrow source. Yen the disc covers first HPZ in the disc will be (If ratio of b) $I_1 = 0.053I_0$ an electromagnetic wave of b) Ic^2 in the path of unpolarised third polaroid whose polari	When the point of observators. The intensity at this point of consecutive amplitude of C of C of C of C intensity C (watts/ C) on C of C beam of intensity C such the exact of axis makes an angle	ion is at a distance of is I_0 . The intensity at a HPZ is 0.9) d) $I_1 = 5.03I_0$ a nonreflecting surface is [c d) I/c^2 nat no light is emitted from θ with the polarization axis
412. 413.	A circular disc is placed in 1 meter from the disc, the point distance $25 cm$ from a) $I_1 = 0.531I_0$ The pressure exerted by a is the velocity of light] a) Ic Two polaroids are placed the second polaroid. If a thof first polaroid, is placed	in front of a narrow source. Yen the disc covers first HPZ in the disc will be (If ratio of b) $I_1 = 0.053I_0$ an electromagnetic wave of b) Ic^2 in the path of unpolarised third polaroid whose polari	When the point of observators. The intensity at this point of consecutive amplitude of C of C of C of C intensity C (watts/ C) on C of C beam of intensity C such the exact of axis makes an angle	ion is at a distance of is I_0 . The intensity at a HPZ is 0.9) d) $I_1 = 5.03I_0$ a nonreflecting surface is [c d) I/c^2 nat no light is emitted from θ with the polarization axis

414.	In the spectrum of light of a luminous he 4747Å while actual wavelength of the line of the	ne is 4700Å. The relative velocity of the	
	respect to earth will be (velocity of light		C .1 .1
	a) $3 \times 10^5 m/s$ moving towards the eart		-
	c) $3 \times 10^6 m/s$ moving towards the eart	, ,	vay from the earth
415.	Two coherent sources of light can be ob	tained by	
	a) Two different lamps		
	b) Two different lamps but of the same p		
	c) Two different lamps of same power a	nd having the same colour	
	d) None of the above		
	Maximum diffraction takes place in a given		
	a) γ – rays	b) Ultraviolet light	
	c) Infrared light	d) Radiowaves	
417.	A single slit of width a is illuminated by pattern is measured as y . When half of the difference	he slit width is covered and illuminated	
	wavelength $600 nm$, the width of the dif a) The pattern vanishes and the width is		
		s zero b) $y/3$ d) None of these	
	c) 3 <i>y</i> If a torch is used in place of monochrom		zill hannon
410.	a) Fringe will appear for a moment then		ин парреп
	b) Fringes will occur as from monochron		
	-	matic light	
	c) Only bright fringes will appear		
410	d) No fringes will appear		+ -f+l-:-l 4 0 +l
419.	When one of the slits of Young's experin	The state of the s	
	central fringe shifts to a position origina		
	thickness of the sheet if the central fring		
		c) 7.6 mm	d) 3.2 mm
420.	If we observe the single slit Frunhofer d	_	dth <i>e,</i> the width of the
	central maxima is 2θ . On decreasing the	e slit width for the same λ	
	a) θ increases		
	b) θ remains unchanged		
	c) θ decreases		
	d) $\boldsymbol{\theta}$ increases or decreases depending o		
421.	The slits in a Young's double slit experin	•	-
	relative to the slits. The intensity at the $\boldsymbol{\alpha}$ point will be	-	closed, the intensity at this
	a) I_0 b) $I_0/4$	c) $I_0/2$	d) $4I_0$
422.	Two luminous point sources separated l		
	aperture of his eye is 2.5×10^{-3} m and	the wavelength of light used is 500 nm,	the distance of separation
	between the point sources just seen to b		
	a) 12.2 m b) 24.2 m	c) 2.44 m	d) 1.22 m
423.	Light appears to travel in straight lines s	since	
	a) It is not absorbed by the atmosphere	b) It is reflected by the at	mosphere
	c) Its wavelength is very small	d) Its velocity is very larg	-
424.	In a Young's double slit experimental ar		
	index μ is placed in front of the slit S_1 , the	_	
	- -	/	

- a) Decreases by $(\mu 1)t$
- c) Does not change

- b) Increases by $(\mu 1)t$
- d) Increases by μt
- 425. A ray of light of intensity I is incident on a parallel glass-slab at a point A as shown in fig. It undergoes partial reflection and refraction. At each reflection 25% of incident energy is reflected. The rays AB and A'B' undergo interference. The ratio $I_{\rm max}/I_{\rm min}$ is

a) 4:1

b) 8:1

c) 7:1

d) 49:1

- 426. An optically active compound
 - a) Rotates the plane polarized light
 - b) Changing the direction of polarized light
 - c) Do not allow plane polarized light to pass through
 - d) None of the above
- 427. In Young's double slit experiment, the length if band is 1 mm. The ring width is 1.021 mm. The number of fringe is
 - a) 45

b) 46

c) 47

- d) 48
- 428. A parallel beam of light of wavelength 3141.59Å is incident on a small aperture. After passing through the aperture, the beam is no longer parallel but diverges at 1° to the incident direction. What is the diameter of the aperture?
 - a) 180m
- b) 18µm
- c) 1.8m

- d) 0.18m
- 429. In a double slit interference experiment, the distance between the slits is 0.05 cm and screen is 2 m away from the slits. The wavelength of light is 6000\AA . The distance between the fringe is
 - a) 0.24 cm
- b) 0.12 cm
- c) 1.24 cm
- d) 2.28 cm
- 430. When a plane polarized light is passed through an analyser and analyser is rotated through 90°, the intensity of the emerging light
 - a) Varies between a maximum and minimum
- b) Becomes zero

c) Does not vary

- d) Varies between a maximum and zero
- 431. Which scientist experimentally proved the existence of electromagnetic waves
 - a) Sir J.C. Bose
- b) Maxwell
- c) Marconi
- d) Hertz
- 432. The dielectric constant of air is 1.006. The speed of electromagnetic wave travelling in air is $a \times 10^8 ms^{-1}$, where a is about
 - a) 3

b) 3.88

c) 2.5

- d) 3.2
- 433. Figure represents a glass plate placed vertically on a horizontal table with a beam of unpolarised light falling on its surface at the polarizing angle of 57° with the normal. The electric vector in the reflected light on screen *S* will vibrate with respect to the plane of incidence in a

57"57" 5	
a) Vertical plane	
c) Dlano malzing an anglo	

b) Horizontal plane

c) Plane making an angle of 45° with the vertical

- d) Plane making an angle of 57° with the horizontal
- 434. When the wavelength of light coming from a distant star is measured it is found shifted towards red. Then the conclusion is

a) The star is approaching the observer

b) The star recedes away from earth

c) There is gravitational effect on the light

d) The star remains stationary

435. What will be the angular width of central maxima in Fraunhoffer diffraction when light of wavelength 6000Å is used and slit width is 12×10^{-5} cm

a) 2 rad

b) 3 rad

c) 1 rad

d) 8 rad

436. In a Fresnel biprism experiment, the two positions of lens give separation between the slits as 16 cm and 9 cm, respectively. What is the actual distance of separation?

a) 12.5 cm

b) 12 cm

c) 13 cm

d) 14 cm

437. In a Young's double slit experiment, the two slits act as coherent sources of waves of equal amplitude A and wavelength λ . In another experiment with the same arrangement the two slits are made to act as incoherent sources of waves of same amplitude and wavelength. If the intensity at the middle point of the screen in the first case is I_1 and in the second case I_2 , then the ratio $\frac{I_1}{I_2}$ is

438. Two waves are represented by the equations $y_1 = a \sin \omega t$ and $y_2 = a \cos \omega t$. The first wave

a) Leads the second by π b) Lags the second by π c) Leads the second by $\frac{\pi}{2}$ d) Lags the second by $\frac{\pi}{2}$ 439. A thin mica sheet of thickness $2 \times 10^{-6} m$ and refractive index ($\mu = 1.5$) is introduced in the path of the first wave. The wavelength of the wave used is 5000 Å. The central bright maximum will shift

a) 2 fringes upward

b) 2 fringes downward

c) 10 fringes upward

440. Two beams of light of intensity I_1 and I_2 interfere to give an interference pattern. If the ratio of maximum intensity to that of minimum intensity is $\frac{25}{9}$, then $\frac{l_1}{l_2}$ is

a) 5/3

d) 16

441. The condition for diffraction of m th order minima is

a) $d \sin \theta_m = m\lambda, m = 1, 2, 3, ...$

b)
$$d \sin \theta_m = \frac{m\lambda}{2}, m = 1, 2, 3, ...$$

c) $d \sin \theta_m = (m+1)\frac{\lambda}{2}, m = 1, 2, 3, ...$

d)
$$d \sin \theta_m = (m-1)\frac{\lambda}{2}, m = 1, 2, 3, ...$$

442. A plane wavefront ($\lambda = 6 \times 10^{-7} m$) falls on a slit 0.4 mm wide. A convex lens of focal length 0.8m placed behind the slit focusses the light on a screen. What is the linear diameter of second maximum

b) 12mm

d) 9mm

443. Two beams of light will not give rise to an interference pattern, if

- a) They are coherent
- b) They have the same wavelength
- c) They are linearly polarized perpendicular to each other

- d) They are not monochromatic
- 444. A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum p and energy E, then
 - a) p = 0, E = 0
- b) $p \neq 0, E \neq 0$
- c) $p \neq 0, E = 0$
- d) $p = 0, E \neq 0$
- 445. Which of the following cannot be explained on the basis of wave nature of light?
 - (i) Polarization
 - (ii) Optical activity
 - (iii) Photoelectric effect
 - (iv) Compton effect
 - a) (ii) and (iv)
- b) (ii) and (iii)
- c) (i) and (iii)
- d) (ii) and (iv)
- 446. The magnetic field amplitude of an electromagnetic wave is $2 \times 10^{-7} T$. It's electric field amplitude if the wave is travelling in free space is :
 - a) $6Vm^{-1}$
- b) $60Vm^{-1}$
- c) $10/6Vm^{-1}$
- d) None of these
- 447. In the experiment of diffraction at a single slit, if the slit width is decreased, the width of the central maximum
 - a) Increases in both Fresnel and Fraunhoffer diffraction
 - b) Decreases both in Fresnal and Fraunhoffer diffraction
 - c) Increases in Fresnel diffraction but decreases in Fraunhoffer diffraction
 - d) Decreases in Fresnel diffraction but increases in Fraunhoffer diffraction
- 448. A star is moving towards the earth with a speed of $4.5 \times 10^6 m/s$. If the true wavelength of a certain line in the spectrum received from the star is 5890 Å, its apparent wavelength will be about ($c = 3 \times 10^8 m/s$)
 - a) 5890Å
- b) 5978Å
- c) 5802Å
- d) 5896Å

- 449. To observe diffraction, the size of an aperture
 - a) Should be of the same orders wavelength should be much larger than the wavelength
 - b) Should be much larger than the wavelength
 - c) Have no relation to wavelength
 - d) Should be exactly $\lambda/2$
- 450. In the set up shown in figure, the two slits S_1 and S_2 are not equidistant from the slit S. The central fringe at O is, then

- a) Always bright
- b) Always dark
- c) Either dark or bright depending on the position of *S*
- d) Neither dark nor bright
- 451. Two identical light sources S_1 and S_2 emit light of same wavelength λ . These light rays will exhibit interference if
 - a) Their phase differences remain constant
 - b) Their phases are distributed randomly
 - c) Their light intensities remain constant
 - d) Their light intensities change randomly
- 452. A parallel beam of light of wavelength 6000Å gets diffracted by a single silt of width 0.3 mm. The angular position of the first minima of diffracted light is
 - a) 6×10^{-3} rad
- b) 1.8×10^{-3} rad
- c) 3×10^{-3} rad
- d) 2×10^{-3} rad

	d in single slit diffraction expe	riment with slit width 0.6 m	nm. If yellow light is replaced
•	e pattern will reveal that		
a) No diffraction p		b) That the central ma	
c) Less number of	_	d) More number of fri	9
•	s P and Q as two equally intens		-
-	ion PQ is 5.0 m and phase of P	•	-
=	bservation equidistant from th	ne mid-point of PQ . The inte	ensity of radiations at A, B, C
will bear the ratio			
В			
P Q C			
a) 0:1:4		c) 0:1:2	
	iment, with monochromatic lig	_	——————————————————————————————————————
	slits. If the screen is moved by		-
	vavelength of light used is (give		
a) 4000 Å	b) 4500 Å	c) 5000 Å	d) 6000 Å
		thin air film. The minimum	thickness of the film such that
= =	ark in reflected light is		
a) $2.945 \times 10^{-7} m$	b) $3.945 \times 10^{-7} m$	c) $4.95 \times 10^{-7} m$	d) $1.945 \times 10^{-7} m$
457. Wave which canno			
a) X-rays	b) Infrasonic	c) Ultraviolet	d) Radiowaves
458. Which radiation in	n sunlight, causes heating effec		
a) Ultraviolet	b) Infrared	c) Visible light	.,
	solution $(n = 1.4)$ lies on the		
	ormal to the plate, two adjacen		erved at two wavelengths 400
and 630 nm. The	minimum thickness of the soap		
a) 420 nm	b) 450 nm	c) 630 nm	d) 1260 nm
	action arrangement, the scree		
found that for ligh	t of wavelengths λ_1 and λ_2 , the	e radius of 4th zone for λ_1 c	oincides with the radius of 5 th
zone for λ_2 . Then	the ratio λ_1 : λ_2 is		
a) $\sqrt{4/5}$	b) $\sqrt{5/4}$	c) 5/4	d) 4/5
461. Radio waves and v	visible light in vacuum have		
a) Same velocity b	out different wavelength	b) Continuous emissio	on spectrum
c) Band absorptio	n spectrum	d) Line emission spect	trum
462. Laser beams are u	sed to measure long distance b	oecause	
a) They are mono	chromatic	b) They are highly pol	arized
c) They are coher	ent	d) They have high deg	ree of parallelism
463. In a Young's doub	le-slit experiment the fringe wi	idth is $0.2mm$. If the wavele	ength of light used is increased
by 10% and the se	eparation between the slits is a	lso increased by 10%, the f	ringe width will be
a) 0.20 <i>mm</i>	b) 0.401 <i>mm</i>	c) 0.242 mm	d) 0.165 <i>mm</i>
464. In Young's experim	nent, using red light $(\lambda=6600)$	OÅ), 60 fringes are seen in t	he field of view. How many
fringes will be see	n by using violet light $(\lambda = 440)$	00Å)?	
a) 10	b) 20	c) 45	d) 90
•	wing represents an infrared wa	•	-
a) $10^{-4} cm$	b) $10^{-5} cm$	c) $10^{-6} cm$	d) $10^{-7} cm$
•	slit experiment, a third slit is r	•	e slits. Then
_	ual width are formed		

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 38

		nt and dark fringes is reduc	ced	
	c) Intensity of fringes total			
167	d) Only bright light is obs		ractive index μ is placed in $\mathfrak t$	the noth of one of the two
407	-	then the path difference c	· •	the path of one of the two
				(u - 1)
	a) $(\mu + 1)t$	b) $(\mu - 1)t$	c) $\frac{(\mu + 1)}{t}$	d) $\frac{(\mu-1)}{t}$
468	. In Huvgen's wave theory.	the locus of all points in th	e same state of vibration is	ι
	a) A half period zone	b) Oscillator	c) A wave-front	d) A ray
469	•	•	. If the red light changes wi	, ,
	will become	, , ,	0 0	0, 0
	a) Wider	b) Narrower	c) Fainter	d) Brighter
470	•	•	nally on a slit of width 2×1	, ,
		creen distant 50 cm will be		
		b) 312.5×10^{-4} cm	c) 312 cm	d) 312.5×10^{-5} cm
471.	. In the interference patter	•	o, o = =	, 012.0 10 0
	a) Created at the position		b) Destroyed at the position	on of minima
	c) Conserved but is redist		d) None of the above	
472	•		of a lens of focal length 1 m	and it is illuminated
	_		minima on either side of ce	
	separated by 4 mm. Widt	· ·		
	a) 0.1 mm	b) 0.2 mm	c) 0.3 mm	d) 0.4 mm
473	. The wave front due to a so			,
	a) Spherical	b) Cylindrical	c) Planar	d) None of these
474	· -		ration between the plates d	
			lel to the plates and drawn :	
		urrent through this area, v	vill be	
	a) i	b) $\frac{i}{2}$ LUS EDUÁ	c) i	d) None of these
		_	·-	
475	. Which one of the followin	~		
	a) Ultraviolet rays	b) Cosmic rays	c) X-rays	d) γ-rays
476	. The width of the diffraction			
	a) Inversely as the wavele	•		
	b) Directly as the width of			
	<u> </u>	between the slit and the s		
	•	the source from which the		
477.	In which of the following		he division of wavefront?	
	a) Young's double slit exp			
	b) Fresnel's biprism exper			
	c) Liyod's mirror experim			
4=0	d) Demonstration colours			
478		iment, on increasing the p	rism angle, fringe width wi	II
	a) Increase		b) Decrease	C 1
450	c) Remain unchanged	C	d) Depend on the position	
479	-	_	T/m^2 strikes a small mirror	
		oaching wave. The momen	itum transferred by the way	ve to the mirror each
	second will be		13.4040=81 / 2	
	a) $6.4 \times 10^{-7} kg - m/s^2$		b) $4.8 \times 10^{-8} kg - m/s^2$	
	c) $3.2 \times 10^{-9} kg - m/s^2$		d) $1.6 \times 10^{-10} kg - m/s^2$	

400.	intensity when the slit		um m the single sit um.	action pattern, then what will t	ie its
	a) 2 <i>I</i> ₀	b) 4 <i>I</i> ₀	c) <i>I</i> ₀	d) $\frac{I_0}{2}$	
	distance from the slits 3×10^{-5} m. If separation a) 4500 Å	. If the screen is mov on between the slits b) 3000 Å		d) 6000 Å	
	a) β	b) Å	c) 1 -	d) d	-
483.	The rectilinear propag				
	a) High Velocity	b) Large wavele			
484.	sources lies along y ax number of points when	is whereas a detecto re maxima are obser	or moves along $+ x$ axis. I rved is	nes the wavelength λ of the so Leaving the origin and far off po	
40=	a) 2	b) 3	c) 4	d) 5	
485.	What will be the angle slit of width 0.50 mm, a) 1×10^{-3} rad	using light of wavele	ength 500 nm?	te to Fraunhofer diffraction by rad d) 1.5×10^{-3} rad	,
	The intensity ratio of tinterference pattern. T	wo coherent source	s of light is $\it p$. They are in	terfering in some region and pr	
	a) $\frac{1+p}{2\sqrt{p}}$	b) $\frac{2\sqrt{p}}{1+p}$	c) $\frac{p}{1+p}$	$d)\frac{2p}{1+p}$	
487.	Two sources of same i the intensity at that po		a point and produced re	sultant <i>I</i> . When one source is re	emoved,
	a) I	b) I/2	c) I/4	d) <i>I</i> /3	
488.	Colours in thin films a		, ,	, ,	
	a) Diffraction phenom	enon	b) Scattering	phenomenon	
	c) Interference phenor	menon	d) Polarizatio	n phenomenon	
489.	Interference was obse and if the same light is a) No interference		-	resent, now the chamber is eva	acuated
	b) Interference with b	_			
	c) Interference with d				
400	-	_	e will be slightly increase		
490.	=		inite phase b) Of nearly the	ources which emit radiation ne same frequency	
	c) Of the same frequer		d) Of differen		
491.	10^{-4} m ² . The polarize	r rotates with an ang	gular frequency of 31.4 ra	polarizer of cross sectional are ds ^{–1} . The energy of light passi	
	through the polarizer J a) 10^{-4} J	per revolution Will b b) 10 ⁻³ J	c) 10 ⁻² J	d) 10 ⁻¹ J	

492.				e slits. When the apparatus
				0.2°. When the experiment
	is performed in air with s	same set up, the angular wi	dth of the fringe is	
	a) 0.4°	b) 0.27°	c) 0.35°	d) 0.15°
493.	The wave theory of light	was given by		
	a) Maxwell	b) Planck	c) Huygen	d) Young
494.	In Young's double slit exp	periment, the two slit act as	s coherent sources if equal	amplitude A and
			setup, the two slits are sou	=
				nid-point of the screen in the
	first case to that in the se		7 0	•
	a) 2:1	b) 1:2	c) 3:4	d) 4:3
495.	=	•	•	nm and the slits 0.589 mm
		idth of the central maximur		
	a) $\sin^{-1}(0.01)$	b) sin ⁻¹ (0.0001)	c) sin ⁻¹ (0.001)	d) $\sin^{-1}(0.1)$
496	• •			a speed of $3600 km/s$. The
T 70.		_	g away irom the earth with	a speed of 3000 km/s. The
	wavelength of light obser			
	$(c = 3 \times 10^8 m/s \text{ is the s})$		1)	
	a) Decrease by 5825.25 A	_f	b) Increase by 5966.75 Å	<u>.</u>
	c) Decrease by 70.75 Å		d) Increase by 70.75 Å	
497.			nimum intensities of the fri	nge system is 4:1. The
	amplitudes of the cohere	nt sources are in the ratio		
	a) 4:1	b) 3:1	c) 2:1	d) 1:1
498.	Consider Fraunhoffer dif	fraction pattern obtained v	vith a single slit at normal i	ncidence. At the angular
	position of first diffractio	n minimum, the phase diffe	erence between the wavele	ts from the opposite edges
	of the slit is	7		
	a) $\pi/4$	b) $\pi/2$	c) π	d) 2π
499.	Light waves can propaga	te through vacuum but sou	ınd waves cannot do so. Ma	rk the wrong statement
	a) Light waves are transv	verse electromagnetic wave	es and do not require any n	nedium for their
	propagation			
	b) Sound waves are longi	itudinal mechanical waves	and require inertial and ela	astic medium for their
	propagation			
		transparent media is same	<u>j</u>	
		transparent media is differ		
500.		c field of an electromagnet		
	a) In phase and parallel t	_		
		perpendicular to each other	er	
	c) In opposite phase and			
	d) In phase and perpendi	=		
501			l to illuminate the two slits	A and B. Interference
5011		_	he slits. Now if a thin glass	
	the path of the beam com	•	ne shesi itow n a tinn glass	place is placed normally in
		inig irom the site		
	A			
	C			
	В			

a) The fringes will disappear

- b) The fringe width will increase
- c) The fringe width will decrease
- d) There will be no change in the fringe width but the pattern shifts
- 502. In the diffraction pattern of a single slit
 - a) All bands are uniformly bright

b) All bands are uniformly wide

c) Central band is narrower

- d) Central band is wider
- 503. Maxwell's equations describe the fundamental laws of
 - a) Electricity only
- b) Magnetism only
- c) Mechanics only
- d) Both (a) and (b)
- 504. Which of the following diagrams represent the variation of electric field vector with time for a cirularly polarized light?

- 505. In Young's double slit experiment, slit separation is 0.6 mm and the separation between slit and screen is 1.2 m. The angular width is (the wavelength of light used is 4800 Å
 - a) 30 rad
- b) 8×10^{-4} rad
- d) 70.5 rad

506. The coherent formula for fringe visibility is

a)
$$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

b)
$$V = \frac{I_{\text{max}} + I_{\text{min}}}{I_{\text{max}} - I_{\text{min}}}$$
 c) $V = \frac{I_{\text{max}}}{I_{\text{min}}}$

c)
$$V = \frac{I_{\text{max}}}{I_{\text{min}}}$$

d)
$$V = \frac{I_{\min}}{I_{\max}}$$

- 507. Among the two interfering monochromatic sources A and B; A is ahead of B in phase by 66° . If the observation be taken from point P, such that $PB - PA = \lambda/4$. Then the phase difference between the waves from A and B reaching P is
 - a) 156°

b) 140°

c) 136°

d) 126°

- 508. The electromagnetic theory of light failed to explain
 - a) Photoelectric effect
- b) Polarization
- c) Diffraction
- d) Interference
- 509. Following figure shows sources S_1 and S_2 that emits light of wavelength λ in all directions. The sources are exactly in phase and are separated by a distance equal to 1.5λ . If we start at the indicated start point and travel along path 1 and 2, the interference produce a maxima all along

- a) Path 1
- b) Path 2
- c) Any path
- d) None of these

- 510. Wavefront of a wave has direction with wave motion
 - a) Parallel
- b) Perpendicular
- c) Opposite
- d) At an angle of θ

511.	. Heat radiations propagate	with the speed of		
0111	a) α -rays	b) β -rays	c) Light waves	d) Sound waves
512.		,, ,	on is 1 mm and the screen i	
	_		ance of 3rd minima from the	
	a) 0.50 mm	b) 1.25 mm	c) 1.50 mm	d) 1.75 mm
513.	An electromagnetic wave	travels along z-axis. Which	of the following pairs of sp	pace and time varying fields
	would generate such a wa	ve		
	a) E_x , B_y	b) E_y , B_x	c) E_z , B_x	d) E_y , B_z
514.	In double slit experiment,	for light of which colour th	ne fringe width will be mini	mum
	a) Violet	b) Red	c) Green	d) Yellow
515.	The two slits at a distance	of 1 mm are illuminated b	y the light of wavelength 6.	$5 \times 10^{-7} m$. The
	interference fringes are ol	oserved on a screen placed	at a distance of $1m$. The di	stance between third dark
	fringe and fifth bright frin	ge will be		
	a) 0.65 <i>mm</i>	-	c) 3.25 mm	d) 4.88 mm
516.	_	_	n certain region of free spa	ce is $9 \times 10^{-4} NC^{-1}$. Then
		l in the same region is of th		
	a) $27 \times 10^{-4}T$	b) $3 \times 10^{-12} T$	c) $\left(\frac{1}{3}\right) \times 10^{-12} T$	d) $3 \times 10^{12} T$
517.	. If for a calcite crystal μ_0 ar	nd μ_e are the refractive ind	ices of the crystal for O- ray	y and <i>E</i> -ray respectively,
	then along the optic axis o	of the crystal		
	a) $\mu_0 = \mu_e$	b) $\mu_e = \mu_0$		d) None of these
518.	The maximum intensity in	the case if n identical inco	herent waves, each of inter	nsity 2 Wm^{-2} is 32Wm^{-2} .
	The value of n is	S. A. 3		
	a) 4	b) 16	c) 32	d) 64
519.			with incident light of wave	_
		_	ary maximum is observed a	t an angle $\theta =$
	a) $\sin^{-1} \frac{1}{\sqrt{2}}$	b) $\sin^{-1}\frac{1}{4}$	c) $\sin^{-1}\frac{3}{4}$	d) $\sin^{-1} \frac{\sqrt{3}}{2}$
520.			ght of wavelength $\lambda = 500$	
			the slits. The central maxim	
	· -		eximum) will be at x equal	
	•		c) 0.5 <i>cm</i>	•
521.	•	c energy falling on a surtac	e is U, then the total mome	ntum delivered (for
	complete absorption) is		11	
	a) $\frac{U}{C}$	b) <i>cU</i>	c) $\frac{U}{c^2}$	d) c^2U
522.	<u> </u>	eriment, the fringes are dis	placed by a distance x whe	n a glass plate of one
	-		of the beams. When this pla	-
			2) x . The refractive index of	
	a) 1.75	b) 1.50	c) 1.25	d) 1.00
523.	Interference fringes are b	eing produced on screen X	Y by the slits S_1 and S_2 . In fi	gure, the correct fringe
	locus is			
	$S_1 \mid W_1$	W_3		
	$S_1 \mid W_1$ $S_2 \mid W_2$	W_4		
	a) PQ	b) W ₁ W ₂	c) W ₃ W ₄	d) <i>XY</i>
524.		-	7.8×10^{-5} cm and that of l	,
			coincides with n^{th} red band	

WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

	a) 4	b) 3	c) 2	d) 1
525.	•	eriment, the intensity of lig	•	•
		atio of the maximum inten	sity to the minimum inten	sity on the interference
	fringe pattern observed is			
	a) 34	b) 40	c) 25	d) 38
526.	In Young's double slit exp	eriment, the intensity on so	reen at a point where path	n difference is λ is K . What
	will be intensity at the poi	nt where path difference is	s /4 ?	
	a) <i>K</i> /4	b) <i>K</i> /2	c) <i>K</i>	d) zero
527.	Ozone is found in			
	a) Stratosphere	b) Ionosphere	c) Mesosphere	d) Troposphere
528.	•	periment, the slit separation	•	
		avelength 500 <i>nm</i> , the dist		
	a) 0.50 mm	b) 1.25 mm	c) 1.50 mm	d) 1.75 mm
529.	In the diffraction pattern of		c) 1.00	.,
0271	a) All bands are uniformly	_	b) All bands are uniforml	v wide
	c) Central band is narrow	-	d) Central band is wider	y Wide
E20	=	er ncident on a slit of width <i>d</i> . '		attorn is observed on a
550.				
		e linear width of the princip	oai maximum is equal to th	e width of the sift, if D
	equals	J	2.12	2.1
	a) $\frac{d^2}{2\lambda}$	b) $\frac{d}{\lambda}$	c) $\frac{2\lambda^2}{d}$	d) $\frac{2\lambda}{d}$
	2 70	71	и	u
531.		ntensity ratio 1 : 4 produce		
=	a) 1	b) 0.8	c) 0.4	d) 0.6
532.		Sec. Last	•	as blue light in it. What will
		recorded by an observer o		· ·
	a) 4600 Å	b) 5520 Å	c) 3680 Å	d) 3920 Å
533.		ntensities I_1 and I_2 produc		Γhe maximum intensity in
	the interference pattern w	vill be	AHUN .	
	a) $I_1 + I_2$	b) $I_1^2 + I_2^2$	c) $(I_1 + I_2)^2$	d) $(\sqrt{I_1} + \sqrt{I_2})^2$
534				A screen is placed at a large
551	-	he speed of the electrons is		-
	correct?	ne speed of the electrons is	mereased, which of the fo	nowing statement is
		ot observed on the screen i	n the case of electrons	
		ne central maximum of the		M 0000
	, ,		-	rease
		ne central maximum will de		
- 2-	, 0	ne central maximum will re		
535.		experiment, $I_1/I_2 = 16/9$. R		
	a) 1:49	b) 9:16	c) 16:9	d) 49:1
536.	_	'oung's double slit experim	ents then a very large num	nber of coloured fringes can
	be seen			
	=	ringes being closer to the c	-	
		being closer to the central v	white fringes	
	c) With a central white fri	nge		
	d) With a central black fri	nge		
537.	An oil flowing on water se	ems coloured due to interf	erence. For observing this	effect, the approximate
	thickness of the oil film sh	ould be		
	a) 100 Å	b) 10000 Å	c) 1 mm	d) 1 <i>cm</i>
538.	If the two waves represen	-	$a_2 = 3\sin(\omega t + \pi/3)$ interf	ere at a point, the amplitude
	of the resulting wave will		, ,	- *

a) 7 b) 5 c) 6 d) 3.5 539. Light is incident on a glass surface at polarizing angle of 57.5°. Then the angle between the incident ray and the refracted ray is a) 57.5° b) 115° c) 65° d) 205° 540. Two point sources X and Y emit waves of same frequency and speed but Y lags in phase behind X by $2\pi l$ radian. If there is a maximum in direction D the distance XO using in as an integer is given by a) $\frac{\lambda}{2}(n-l)$ b) $\lambda(n+l)$ c) $\frac{\lambda}{2}(n+l)$ d) $\lambda(n-l)$ 541. The limit of resolution of an optical instrument arises on account of a) Reflection b) Diffraction c) Polarization d) Interference 542. Huygen's conception of secondary waves a) Allow us to find the focal length of a thick lens b) Is a geometrical method to find a wavefront c) Is used to determine the velocity of light d) Is used to explain polarization
a) 57.5° b) 115° c) 65° d) 205° 540. Two point sources X and Y emit waves of same frequency and speed but Y lags in phase behind X by $2\pi l$ radian. If there is a maximum in direction D the distance XO using in as an integer is given by a) $\frac{\lambda}{2}(n-l)$ b) $\lambda(n+l)$ c) $\frac{\lambda}{2}(n+l)$ d) $\lambda(n-l)$ 541. The limit of resolution of an optical instrument arises on account of a) Reflection b) Diffraction c) Polarization d) Interference 542. Huygen's conception of secondary waves a) Allow us to find the focal length of a thick lens b) Is a geometrical method to find a wavefront c) Is used to determine the velocity of light
540. Two point sources X and Y emit waves of same frequency and speed but Y lags in phase behind X by $2\pi l$ radian. If there is a maximum in direction D the distance XO using in as an integer is given by
radian. If there is a maximum in direction D the distance XO using in as an integer is given by $a) \frac{\lambda}{2}(n-l) \qquad b) \lambda(n+l) \qquad c) \frac{\lambda}{2}(n+l) \qquad d) \lambda(n-l)$ 541. The limit of resolution of an optical instrument arises on account of a) Reflection b) Diffraction c) Polarization d) Interference 542. Huygen's conception of secondary waves a) Allow us to find the focal length of a thick lens b) Is a geometrical method to find a wavefront c) Is used to determine the velocity of light
a) $\frac{\lambda}{2}(n-l)$ b) $\lambda(n+l)$ c) $\frac{\lambda}{2}(n+l)$ d) $\lambda(n-l)$ 541. The limit of resolution of an optical instrument arises on account of a) Reflection b) Diffraction c) Polarization d) Interference 542. Huygen's conception of secondary waves a) Allow us to find the focal length of a thick lens b) Is a geometrical method to find a wavefront c) Is used to determine the velocity of light
a) $\frac{\lambda}{2}(n-l)$ b) $\lambda(n+l)$ c) $\frac{\lambda}{2}(n+l)$ d) $\lambda(n-l)$ 541. The limit of resolution of an optical instrument arises on account of a) Reflection b) Diffraction c) Polarization d) Interference 542. Huygen's conception of secondary waves a) Allow us to find the focal length of a thick lens b) Is a geometrical method to find a wavefront c) Is used to determine the velocity of light
a) $\frac{\lambda}{2}(n-l)$ b) $\lambda(n+l)$ c) $\frac{\lambda}{2}(n+l)$ d) $\lambda(n-l)$ 541. The limit of resolution of an optical instrument arises on account of a) Reflection b) Diffraction c) Polarization d) Interference 542. Huygen's conception of secondary waves a) Allow us to find the focal length of a thick lens b) Is a geometrical method to find a wavefront c) Is used to determine the velocity of light
a) $\frac{\lambda}{2}(n-l)$ b) $\lambda(n+l)$ c) $\frac{\lambda}{2}(n+l)$ d) $\lambda(n-l)$ 541. The limit of resolution of an optical instrument arises on account of a) Reflection b) Diffraction c) Polarization d) Interference 542. Huygen's conception of secondary waves a) Allow us to find the focal length of a thick lens b) Is a geometrical method to find a wavefront c) Is used to determine the velocity of light
541. The limit of resolution of an optical instrument arises on account of
541. The limit of resolution of an optical instrument arises on account of
541. The limit of resolution of an optical instrument arises on account of
a) Reflection b) Diffraction c) Polarization d) Interference 542. Huygen's conception of secondary waves a) Allow us to find the focal length of a thick lens b) Is a geometrical method to find a wavefront c) Is used to determine the velocity of light
542. Huygen's conception of secondary waves a) Allow us to find the focal length of a thick lens b) Is a geometrical method to find a wavefront c) Is used to determine the velocity of light
a) Allow us to find the focal length of a thick lensb) Is a geometrical method to find a wavefrontc) Is used to determine the velocity of light
b) Is a geometrical method to find a wavefrontc) Is used to determine the velocity of light
c) Is used to determine the velocity of light
d) is used to explain polarization
• •
543. When light is incident on a diffraction grating the zero order principal maximum will be a) One of the component colours b) Absent
c) Spectrum of the colours d) White
544. Intensity of light depends upon
a) Velocity b) Wavelength c) Amplitude d) Frequency
545. A beam of light consisting of two wavelengths 650 nm and 520 nm is used to illuminate the slit of a
Young's double slit experiment. Then the order of the bright fringe of the longer wavelength that coincide
with a bright fringe of the shorter wavelength at the least distance from the central maximum is
a) 1 b) 2 c) 3 d) 4
546. In Young's double slit experiment, if the widths of the slits are in the ratio 4:9, the ratio of the intensity at
maxima to the intensity at minima will be
a) 169:25 b) 81:16 c) 25:1 d) 9:4
547. If L is the coherence length and c the velocity of light, the coherent time is
a) cL b) $\frac{L}{c}$ c) $\frac{c}{L}$ d) $\frac{1}{Lc}$
548. Two light rays having the same wavelength λ in vacuum are in phase initially. Then the first ray travel a
path L_1 through a medium of refractive index n_1 , while the travel second ray travels a path of length L_2
through a medium of refractive index n_2 . The two waves are then combined to observe interference. The
phase difference the two waves is
a) $\frac{2\pi}{\lambda}(L_2 - L_1)$ b) $\frac{2\pi}{\lambda}(n_1L_2 - n_2L_1)$ c) $\frac{2\pi}{\lambda}(n_2L_1 - n_1L_2)$ d) $\frac{2\pi}{\lambda}(\frac{L_1}{n_1} - \frac{L_2}{n_2})$
κ
549. The wavelength of light visible to eye is of the order of
a) $10^{-2}m$ b) $10^{-10}m$ c) $1m$ d) $6 \times 10^{-7}m$
550. In single slit diffraction pattern a) Central fringe has negligible width than others b) All fringes are of same width
c) Central fringes do not exist d) None of the above
551. The velocity of a moving galaxy is 300 km s^{-1} and the apparent change in wavelength of a spectral line
emitted from the galaxy is observed as $0.5 nm$. Then, the actual wavelength of the spectral line is
a) 3000 Å b) 5000 Å c) 6000 Å d) 4500 Å

GPLUS EDUCATION

placed 2.5 m from the	he slits. The distance of the	m and illuminated with light e third bright fringe from the	centre will be	screen is
a) 1.5 <i>mm</i>	b) 3 mm	c) 6 mm	d) 9 mm	200
-	•	ting through which the first c	order diffraction is se	en at 32°.
a) 48°	ffraction will be seen at	b) 64°		
a) 48° c) 80°		d) There is no second	d order diffraction in	thic case
,	hould drive his car so that	the red signal of light appear		uns case
		relength for green colour = 5		
a) $1.5 \times 10^8 m/s$			d) $2 \times 10^8 m/s$	
,	-	te between the slits is 1 mm a	,	and screen
•	-	the central bright fringe, the		
be	minge is a new array in our		n wavelengen er ngm	doca wiii
a) 5000 Å	b) 6000 Å	c) 7000 Å	d) 8000 Å	
	•	oolaroids, which are arranged		hat the
		0° with respect to the preced		
-	ity that passes through th	-	Ö	
1			_{a)} 1	
a) $\frac{1}{64}$	b) $\frac{1}{32}$	c) $\frac{1}{256}$	d) $\frac{1}{512}$	
557. If the amplitude rati	o of two sources producir	ng interference is 3 : 5, the ra	tio of intensities at m	axima and
minima is				
a) 25:16	b) 5 : 3	c) 16:1	d) 25 : 9	
	ing is not an essential cond	**		
		ated in almost the same direc	tion or the two interf	ering waves
must intersect at	-	3		
=	ave the same period and v			
	the two waves must be ed	ત્રુપai iginate from the same source		
-	- The same of the	ouble slit experiment is λ . The	na intancity at a naint	on the
	2			
	_	I_0 denotes the maximum inte		or rand r ₀ is
a) 0.866	b) 0.5	c) 0.707	d) 0.75	
-		lifference between the light v	vaves reaching third	bright
	ral fringe will be $(\lambda = 600)$			
a) Zero	b) 2π	c) 4π	d) 6π	
=		ormly in all directions. The la	=	_
	_	d consumes 100W of power.	-	electric
	•	ation at a distance of $10m$ from 5.5×10^{-2}	-	
a) 1.34 V/m	b) $2.68 V/m$	c) $5.36 V/m$	d) $9.37 V/m$	
a) Velocity	ung m a medium, identity	the property that is indepen b) Wavelength	dent of the others	
c) Frequency		d) All these depend of	on each other	
	slit experiment the source	e illuminating the slits is cha		let The
width of the fringes	site experiment, the source	e mammating the sites is ena.	inged it offi blue to vie	red The
a) Increases	b) Decreases	c) Becomes unequal	d) Remains cor	nstant
		distance between screen and	•	
	•	The general condition for th		
a) $\frac{b^2}{L\lambda} >> 1$	b) $\frac{b^2}{L\lambda} = 1$	b^2	d) $\frac{b^2}{L\lambda} \neq 1$	
$\frac{dJ}{L\lambda} >> 1$	$\frac{D}{L\lambda} = 1$	c) $\frac{b^2}{L\lambda} < < 1$	$\frac{\mathrm{d}}{L\lambda} \neq 1$	
GPLUS EDUCATION	WEB: WWW.GPLUSEDU	JCATION.ORG PHON	NE NO: 8583042324	Page 46

_	ble slit experiment, I_o is the intage P a point P distant X from the cen		num and $oldsymbol{eta}$ is the fringe width.
· · · · · · · · · · · · · · · · · · ·	b) $4I_o \cos^2 \frac{\pi x}{\beta}$		d) $\frac{I_o}{4}\cos^2\frac{\pi x}{\beta}$
· · · · · · · · · · · · · · · · · · ·	s are easier to notice in the cas	•	•
a) Sound waves		b) Sound is perceived	S
	are mechanical waves	d) Sound waves are o	-
•	e experiment, the spacing betw		
	ools have their usual meanings		
			λd
a) $\frac{\lambda d}{D}$	b) $\frac{\lambda D}{d}$	c) $\frac{dD}{\lambda}$	d) $\frac{\lambda d}{4D}$
568. In Young's doubl	e slit experiment, the distance		and distance between the screen
and source is 1 n	n. If the fringe width on the scre	een is 0.06 <i>cm</i> , then $\lambda =$	
a) 6000 Å	b) 4000 Å	c) 1200 Å	d) 2400 Å
*	velength of light emitted by a st		
a) Stationary	3 3	b) Moving towards e	
c) Moving away	from earth	d) Information is inc	
, ,	idth 0.20 <i>mm</i> is illuminated wit	•	-
•	m the slit. The width of the cen	•	
a) 1 mm	b) 2 mm	c) 4 mm	d) 5 <i>mm</i>
,	of light is exhibited by	ej i nini	a, e mm
a) Photoelectric	_	b) Refraction and int	erference
c) Diffraction an		d) Diffraction and ph	
•	displacement of two waves are		
	The same of the sa		$+ n/3) y_2 = 3(\sin 3nt +$
· ·	n what is the ratio of their ampl		
a) 1:2	b) 2:1	c) 1:1	d) None of these
	gth $\lambda=5000$ Å falls normally of endicular to the direction of light		laced at a distance of $1m$ from diffraction pattern is situated at
5 mm from the c	entre of central maximum. The	width of the slit is	
a) 0.1 <i>mm</i>	b) 1.0 <i>mm</i>	c) 0.5 mm	d) 0.2 <i>mm</i>
574. In the phenomer	non of diffraction of light, when	blue light is used in the exp	periment instead of red light,
then	<u> </u>		
a) Fringes will b	ecome narrower	b) Fringes will becom	ne broader
c) No change in f	fringe width	d) None of the above	
575. The electromagn	etic wave having the shortest v	vavelength is	
a) X-rays	b) γ-rays	c) Infrared rays	d) Microwaves
576. An electromagne	etic wave, going through vacuur	n is described by $E = E_0$ si	$n(kx - \omega t)$. Which of the
	pendent of wavelength	v	•
a) <i>k</i>	b) ω	c) k/ω	d) $k\omega$
=	-	• •	h 4800 Å. One slit is covered by
			s plate of same thickness but of
	1.7. By doing so the central brig	-	-
Thickness of glas		in omito to original men or	igne ir inge ir em centre.
a) 8 μm	b) 6 μm	c) 4 µm	d) 10 μm
			of wavelength λ passing through
			between the planes of slits and
			its. The minimum value of d for
which there is da		. 2 om ene plane of the si	The minimum value of a lot

579. The figure shows a double slit experiment where P and Q are the slits. The path lengths PX and QX are $n\lambda$ and $(n + 2)\lambda$ respectively, where n is a whole number and λ is the wavelength. Taking the central fringe as zero, what is formed at X

a) First bright

- b) First dark
- c) Second bright
- d) Second dark
- 580. A parallel beam of fast moving electrons is incident normally on a narrow slit. A screen is placed at a large distance from the slit. If the speed of the electrons is increased, which of the following statement is correct
 - a) Diffraction pattern is not observed on the screen in the case of electrons
 - b) The angular width of the central maxima of the diffraction pattern will increase
 - c) The angular width of the central maxima will decrease
 - d) The angular width of the central maxima will remain the same
- 581. The Brewster angle for the glass-air interface is 54.74°. If a ray of light going from air to glass strikes at an angle of incidence 45°, then the angle of refraction is

angle of incidence 45°, then the all (Hint:
$$\tan 54.74^\circ = \sqrt{2}$$
)
a) 60°
b) 30°

582. In the adjacent diagram, CP represents a wavefront and AO & BP, the corresponding two rays. Find the condition on θ for constructive interference at P between the ray BP and reflected ray OP

a) $\cos \theta = 3\lambda/2d$

b) $\cos \theta = \lambda/4d$

c) $\sec \theta - \cos \theta = \lambda/d$

d) $\sec \theta - \cos \theta = 4\lambda/d$

583. In Young's double slit experiment intensity at a point is (1/4) of the maximum intensity. Angular position of this point is

a) $\sin^{-1}(\lambda/d)$

b) $\sin^{-1}(\lambda/2d)$

c) $\sin^{-1}(\lambda/3d)$

d) $\sin^{-1}(\lambda/4d)$

584. Two waves of intensity *I* undergo Interference. The maximum intensity obtained is

c) 21

585. If λ_v , λ_r and λ_m represent the wavelength of visible light x-rays and microwaves respectively, then

a) $\lambda_m > \lambda_x > \lambda_v$

b) $\lambda_v > \lambda_m > \lambda_y$

c) $\lambda_m > \lambda_v > \lambda_x$

d) $\lambda_v > \lambda_x > \lambda_m$

586. Two coherent sources of intensities, I_1 and I_2 produce an interference pattern. The maximum intensity in the interference pattern will be

	a) $I_1 + I_2$	b) $I_1^2 + I_2^2$	c) $(I_1 + I_2)^2$	d) $\left(\sqrt{I_1} + \sqrt{I_2}\right)^2$
587	. Light of wavelength 500n	am is used to form interfere	ence pattern in Young's dou	ble slit experiment. A
			ness $0.1nm$ is introduced in	-
	•	_	shift the cross wire due to	this is
	a) 100	b) 200	c) 300	d) 400
588	Conditions of diffraction i		а	D.M. C.I.
	a) $\frac{a}{\lambda} = 1$	b) $\frac{a}{\lambda} \gg 1$	c) $\frac{a}{\lambda} \ll 1$	d) None of these
589			esponding $ec{E}$ vector at any $ec{v}$	time is along the x-axis, the
	direction of \vec{B} vector at the	nat time is along		
	<i>x</i>			
	a) <i>y</i> -axis	b) <i>x</i> -axis	c) +z-axis	d) – <i>z</i> -axis
590	· If the separation between	n slits in Young's double slit	experiment is reduced to $\frac{1}{3}$	$\frac{1}{2}$ rd , the fringe width
	becomes n times. The val		J	•
	a) 3	b) $\frac{1}{3}$	c) 9	d) $\frac{1}{9}$
		3		u) 9
591	-	e not electromagnetic wave		1) V
E02	a) Cosmic rays	b) Gamma rays	c) eta -rays a width of 5 cm. The wavele	d) X-rays
374	the first minimum is form		a width of 5 cm, the wavele	ength of the inicrowaves if
	a) 2.5 cm	b) 2 cm	c) 25 cm	d) 2 mm
593	-	*	at will be critical angle for t	
	a) $\sin^{-1}\sqrt{3}$	b) $tan^{-1}\sqrt{3}$		d) $\sin^{-1} \frac{1}{\sqrt{3}}$
594	. Young's double slit exper	iment is carried out by usir	ng green, red and blue light,	one color at a time. The
	fringe widths recorded an	re eta_G , eta_R and eta_B , respective	ly. Then	
		b) $\beta_B > \beta_G > \beta_R$	c) $\beta_R > \beta_B > \beta_G$	d) $\beta_R > \beta_G > \beta_B$
595	. A polarizer is used to	_		
	a) Reduce intensity of light		b) Produce polarized light	
50 6	c) Increase intensity of lig	_	d) Produce unpolarised li	_
596	of this point is	beriment intensity at a poin	t is $(1/4)$ of the maximum i	intensity. Angular position
	a) $\sin^{-1}(\lambda/d)$	b) $\sin^{-1}(\lambda/2d)$	c) $\sin^{-1}(\lambda/3d)$	d) $\sin^{-1}(\lambda/4d)$
597	•	of light of wavelength λ by	a slit of width e, the size of	the central maximum on a
	screen at a distance b is	0.1.3	0.1.1	01.1
	a) $2b\lambda + e$	b) $\frac{2b\lambda}{a}$	c) $\frac{2b\lambda}{e} + e$	d) $\frac{2b\lambda}{e} - e$
598		experiment, the interferen	ce pattern is found to have	· ·
	bright and dark fringes as	s 9. This implies that		

599. A screen is placed 50*cm* from a single slit, which is illuminated with 6000Å light. If distance between the first and third minima in the diffraction pattern is 3mm, the width of the slit is

c) The amplitude ratio is 3 d) The amplitude ratio is 2

a) The intensities at the screen due to two slits are 5 units and 4 units respectively b) The intensities at the screen due to two slits are 4 units and 1 units respectively

	a) 0.1mm	b) 0.2 <i>mm</i>	c) 0.3mm	d) 0.4mm
600.		eriment, when two light wa		•
	a) Phase difference of 3π	,	b) Phase difference of $\frac{5\pi}{2}$,
	c) Path difference of 3λ		d) Path difference of $\frac{5\lambda}{2}$	
601.	-	by two identical slits, the i	ntensity of central maxima	is I . what will be the
	a) I/4	b) <i>I</i> /2	c) <i>I</i>	d) 2 <i>I</i>
602.	The fringe width is 2ω . If t	ence pattern which is obset the distance <i>D</i> is now doub	led, the fringe width will	-
603.	a) Become $\omega/2$ An optically active compo		c) Become ω	d) Become 4ω
	a) Rotates the plane polar	-		
	b) Changes the direction of		1	
		olarized light to pass throu	gn	
604	d) None of the above What is the affect on Freer	nel's biprism experiment w	than the use of white light i	c mada
004.	a) Fringe are affected	iei s bipi isin experiment w	b) Diffraction pattern is s	
	c) Central fringe is white a	and all are coloured	d) None of these	predd more
605.			•	n 3900 Å and 7800 Å. An oil
		is examined normally by r		
	a) 4308 Å, 5091 Å, 6222 Å	b) 4000 Å, 5091 Å, 5600 Å	c) 4667 Å, 6222 Å, 7000 Å	Å d) 4000 Å, 4667 Å, 5600 Å,
606.		the second dark fringe at a	-	ne fringes are observed one e central fringe, the
		b) 10×10^{-4} cm	c) 60×10^{-5} cm	d) 6×10^{-5} cm
607.	Monochromatic green ligh	it of wavelength 5×10^{-7} n ference pattern formed on	n illuminates a pair of slits	1mm apart. The separation
	a) 0.25 <i>mm</i>	b) 0.1 mm	c) 1.0 mm	d) 0.01 mm
608.	A very thin film that reflec	cts white light appears		
	a) Coloured	b) White	c) Black	d) Red
609.	The radius r of half period	l zone is proportional to		
	a) \sqrt{n}	b) $\frac{1}{\sqrt{n}}$	c) <i>n</i> ²	d) $\frac{1}{n}$
610.	The diffraction effect can be	be observed in		
	a) Only sound waves		b) Only light waves	
	c) Only ultrasonic waves	1. 1	d) Sound as well as light v	vaves
611.	Which of the following is a		2.24	
640	a) Quartz	b) Tourmaline	c) Mica	d) Selenite
612.	In Young's double slit expo	eriment, a minimum is obta	ained when the plane differ	rence of super imposing
	a) Zero	b) $(2n-1)\pi$	c) <i>n</i> π	d) $(n + 1)\pi$
613.	When an unpolarized light does not get transmitted is	t of intensity I_0 is incident ϵ	on a polarizing sheet, the in	ntensity of the light which
	a) $\frac{1}{2}I_0$	b) $\frac{1}{4}I_0$	c) Zero	d) I ₀

GPLUS EDUCATION

		flection maxima are observ	. When visible light is red at two wavelengths 420
a) $420 nm$	b) 450 <i>nm</i>	c) 630 nm	d) 1260 nm
615. In a double slit experime	,	•	-
screen is halved, then wh		its is increased to diffes wi	iereas their distance from
a) It remains same	b) Becomes 1/10	c) Becomes 1/20	d) Becomes 1/90
616. It is believed that the uni		-	
such a star will show	verse is expanding and nen	ice the distant stars are rec	eams from asi bigitt from
a) Shift in frequency tow	ards longer wavelengths		
	ards shorter wavelengths		
	out a decrease in intensity		
	ometimes towards longer ar	nd sometimes towards sho	ter wavelengths
617. The phenomenon of diffr	=		8
a) Huyghen	b) Newton	c) Fresnel	d) Grimaldi
618. An unpolarised beam of i	-	-	
	emergent plane polarized l	-	0 1
•			a^2
a) 2 <i>a</i> ²	b) a^2	c) $\sqrt{2}a^2$	d) $\frac{a^2}{2}$
619. Ray diverging from a poi	nt source form a wave fron	t that is	
a) Cylindrical	b) Spherical	c) Plane	d) Cubical
620. The maximum number o	f possible interference max	ima for slit-separation equ	al to twice the wavelength is
Young's double-slit expe	riment, is	>	
a) Infinite	b) Five	c) Three	d) Zero
621. Approximate height of oz	zone layer above the ground	d is	
a) 60 to 70 <i>km</i>	b) 59 km to 80 km	c) 70 km to 100 km	d) 100 km to 200 km
622. The frequencies of <i>X</i> -ray			c. Then
a) $a < b, b > c$	b) $a > b, b > c$	c) $a > b, b < c$	d) $a < b, b < c$
623. Two light sources are sai	d to be of coherent nature		
•	frequency and a varying pl		
	frequency and a constant p		
,	ant phase difference and di	•	
	ng phase difference and diff		
624. Two waves $y_1 = A_1 \sin(a)$	$\omega t - \beta_1$) and $y_2 = A_2 \sin(\omega t)$	$(t - \beta_2)$ superimpose to for	m a resultant wave whose
amplitude is			
a) $\sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\theta}$	$s(\beta_1 - \beta_2)$	b) $\sqrt{A_1^2 + A_2^2 + 2A_1A_2} \sin \theta$	$(\beta_1 - \beta_2)$
•	(1 /2)		(1 / 2)
c) $A_1 + A_2$		$d) A_1 + A_2 $	
625. In which of the following			
a) Young's double slit exp	•	b) Fresnel's biprism expe	
c) Lloyd's mirror experir		d) Demonstration colours	
626. In a certain double slit ex	-	_	
_		-	ource is replaced by another
9	00 Å, the fringe width will b		D 4 F
a) 0.5 mm	b) 1.0 mm	c) 1.2 mm	d) $1.5 mm$
627. If <i>n</i> represents the order	oi a naii period zone, the ai	rea of this zone is approxim	ratery proportional to $n^{\prime\prime\prime}$
where m is equal to	h) Half	c) One	d) Two
a) Zero 628 By Huygen's wave theory	b) Half y of light, we cannot explain	*	d) Two

	a) Interference	b) Diffraction	c) Photoelectric effect	d) Polarization		
629.	9. Two coherent waves are represented by $y_1=a_1\cos\omega t$ and $y_2=a_1\sin\omega t$, superimposed on each other					
	The resultant intensity is					
	a) $(a_1 + a_2)$	b) $(a_1 - a_2)$	c) $(a_1^2 + a_2^2)$	d) $(a_1^2 - a_2^2)$		
630.	When a compact disc is ill	uminated by a source of w	hite light, coloured 'lanes' a	are observed. This is due to		
	a) Dispersion	b) Diffraction	c) Interference	d) Refraction		
631.	In Young's double slit exp	eriment, if d , D and λ repre	esent, the distance between	the slits, the distance of		
	the screen from the slits and wavelength of light used respectively, then the band width is inversely					
	proportional to					
	a) λ	b) <i>d</i>	c) <i>D</i>	d) λ^2		
632.	In Young's double-slit exp	eriment, an interference p	attern is obtained on a scre	een by a light of wavelength		
	6000 Å, coming from the o	coherent sources S_1 and S_2	. At certain point P on the s	screen third dark fringe is		
		ference $S_1P - S_2P$ in micro		S		
	a) 0.75	b) 1.5	c) 3.0	d) 4.5		
633.	The ozone layer absorbs	,				
	a) Infrared radiations	b) Ultraviolet radiations	c) X-rays	d) γ-rays		
634.		source of unknown shape i	•	<i>,</i> , ,		
	a) Spherical	b) Cylindrical	c) Elliptical	d) Plane		
635.	In the phenomenon of inte	, ,	, 1	,		
	a) Destroyed at bright frin		b) Created at dark fringes	3		
	c) Conserved but it is redi	_	d) Same at all points			
636	•		e same state of vibration is	called		
	a) A half period zone	b) Oscillator		d) A ray		
637.			=	•		
	7. Through quantum theory of light we can explain a number of phenomena observed with light, it is necessary to retain the wave nature of light to explain the phenomenon of					
	a) Photoelectric effect	0	b) Diffraction			
	c) Compton effect	C CDII	d) Black body radiation			
638.	88. A. The wavelength of microwaves is greater than that of UV-rays					
	B. The wavelength of IR rays is lesser than that of UV-rays					
	-	owaves is lesser than that				
	_	est wavelength in the electr				
	Of the above statements	J	0 1			
	a) A and B are true	b) B and C are true	c) C and D are true	d) A and D are true		
639.	Huygens wave theory allo	•		,		
	a) The wavelength of the		b) The velocity of the way	<i>7</i> e		
	c) The amplitude of the w		d) The propagation of wave fronts			
640.			when yellow light us repla			
	fringe will be					
	a) Wider	b) Narrower	c) Brighter	d) Fainter		
641.	When a thin metal plate is	s placed in the path of one o	of the interfering beams of	light		
	a) Fringe width increases	•	b) Fringes disappear			
	c) Fringes become brighte	er	d) Fringes becomes blurr	ed		
642.	-			n light of wavelength 6000 Å		
	is used. Find the change in fringe width if the whole apparatus is immersed in water of refractive index					
	1.33.					
	a) 0.5 mm	b) 1 mm	c) 1.5 mm	d) 2 mm		
643.	•		is replaced by red light, the	-		
	a) Decrease		b) Increase	Ü		
	c) Pemain unaffected		d) First increase then dec	crosco		

644 In Voung's double	alit avnoniment the distance	hotavoon the tave elite is 0	1 mm and the wayslangth of light		
644. In Young's double slit experiment, the distance between the two slits is 0.1 mm and the wavelength of light used is $4 \times 10^{-7} m$. If the width of the fringe on the screen is $4 mm$, the distance between screen and slit is					
a) 0.1 mm	b) 1 <i>cm</i>	c) $0.1 cm$	d) $1 m$		
•	a certain solution causes righ	•			
	_		30 cm length of a mixture of the		
	it handed rotation of 24. The the volume ratio 1:2 is	le optical rotation caused by	7 50 cm length of a mixture of the		
		h) Dight handed water	ation of 140		
a) Left handed rot		b) Right handed rota			
c) Left handed rot		d) Right handed rota			
			e superimposed. What are the		
	nimum possible intensities ir	-	d) 01 and 21		
a) 5 <i>I</i> and <i>I</i>	b) $5I$ and $3I$	c) 9 <i>I</i> and <i>I</i>	d) 9 <i>I</i> and 3 <i>I</i>		
647. Which of following		a) Infrared rare	d) Illtragonia vyovog		
a) Radio waves	b) Ultraviolet rays	c) Infrared rays	d) Ultrasonic waves		
	tacle in order to observe diffi	raction of fight must be			
a) Of any order	lon				
b) Of the order of					
c) Much larger tha	_				
d) Much smaller th	_				
	nit from one place to a		d) Mattan		
a) Energy	b) Amplitude	c) Wavelength	d) Matter		
650. Select the right op	_	ou oatabliahad tha waxa tha	owy of light by a gayming that		
		on established the wave the	eory of light by assuming that		
light waves wer		1 1 1 1			
	led the compelling theoretica	1			
-	experimentally proved the w				
	nts give above, correctly answ	wers the question what is i	light		
651. Wave nature of lig			D. D. Constitution		
a) Interference	b) Photoelectric effe		d) Refraction		
		ne sitts is reduced to hall ar	nd the distance between the slit		
	oled, then the fringe width	la) 147;11 la a a com a la al f			
a) Will have decided		b) Will become half	After a		
c) Will be doubled		d) Will become four			
	ween a point source and scre	een is doubled, then intensi	ty of light on the screen will		
become	12.5.11) II 10	D 0 C 4		
a) Four times	b) Double	c) Half	d) One-fourth		
· ·		ectrum of light coming from	a star which is going away from		
	en in the wavelength of light				
a) There will be no	_				
	will move to infrared region	1 1			
*	will seems to shift to ultraviol	let side			
d) None of the abo					
		y of the maxima is l . If the w	idth of each slit is doubled, the		
intensity if the ma		N 44	13. r		
a) <i>I</i> /2	b) 2 <i>I</i>	c) 4 <i>I</i>	d) <i>I</i>		
_	656. Two slits, $4mm$ apart, are illuminated by light of wavelength 6000 Å. What will be fringe width on a screen				
placed 2 <i>m</i> from th					
a) 0.12 <i>mm</i>	b) 0.3 mm	c) 3.0 <i>mm</i>	d) 4.0 <i>mm</i>		
657. A spectral line λ = recession velocity		from a distant star is observ	ved as a 5200 Å. What will be		

650	•	b) $1.15 \times 10^7 m/s$	•	d) 1.15 <i>km/s</i>			
	_		d. The intensity of the eme I_0	ergent light is d) Zero			
	a) $\frac{I_0}{2}$	b) <i>I</i> ₀	c) $\frac{I_0}{4}$,			
659.	When a beam of light is us the light is	ed to determine the position	on of an object, the maximu	m accuracy is achieved if			
	a) Polarized		b) Of longer wavelength				
	c) Of shorter wavelength		d) Of high intensity				
660.	Three waves of equal freq	Three waves of equal frequency having amplitudes $10\mu m$, $4\mu m$, $7\mu m$ arrive at a given point with					
	successive phase difference	ce of $\frac{\pi}{2}$, the amplitude of the	e resulting wave in μm is gi	ven by			
	a) 4	b) 5	c) 6	d) 7			
661.	100π phase difference =	Path difference.					
	a) 10λ	b) 25λ	c) 50λ	d) 100λ			
662.			ness t and refractive index	· · · · · · · · · · · · · · · · · · ·			
			inges pattern will be displa				
	a) $\frac{d}{D}(\mu-1)t$	b) $\frac{D}{d}(\mu-1)t$	c) $\frac{d}{(u-1)D}$	d) $\frac{D}{I}(\mu-1)$			
	D	u	(10 -)2	ч			
663.	_	avei in a medium wnich nas e electromagnetic wave in	s relative permeability 1.3 a	and relative permittivity			
	a) $13.6 \times 10^6 m/s$	b) $1.8 \times 10^2 m/s$	c) $3.6 \times 10^8 m/s$	d) $1.8 \times 10^8 m/s$			
664	•	nerates a plane wave front?	•	u) 1.0 × 10 /11/5			
001.	a) α – rays	b) β – rays	c) γ – rays	d) None of these			
665.	•	e transverse in nature is ev		a) None of these			
0001	a) Polarization	b) Interference	c) Reflection	d) Diffraction			
666.	The theory associated wit	The Later	,				
a) Doppler's effect b) Special theory of relativity							
c) Huygen's wave theory d) None of the above							
667.	Pick out the longest wavel	ength from the following ty	ypes of radiations				
	a) Blue light	b) γ-rays	c) X-rays	d) Red light			
668.	_		ıng's double slit experimen				
			n the slits. At a point on the				
	one of the slits, certain wa	velengths are missing, figu	re. Some of these missing v	vavelengths are			
	12 012	12 012	01.7	01.7			
	a) $\lambda = \frac{b^2}{d}, \frac{2b^2}{3d}$	b) $\lambda = \frac{b^2}{2d}, \frac{3b^2}{2d}$	c) $\lambda = \frac{2b^2}{3d}$	d) $\lambda = \frac{3b^2}{4d}$			
		2d 2d liations has the least wavel	500	4a			
005.	a) γ -rays	b) β -rays	c) α-rays	d) X-rays			
670	· · · •	• •	•	· •			
J / U	70. A narrow slit of width 2 mm is illuminated by monochromatic light of wavelength 500 nm. The distant between the first minima on either side on a screen at a distance of 1 m is						
	a) 5 mm b) 0.5 mm c) 1 mm d) 10 mm						
671.	Wavelength of light of free	•	,	• • • • • • • • • • • • • • • • • • •			
	a) $2 \times 10^6 m$	b) $3 \times 10^6 m$	c) $4 \times 10^6 m$	d) $5 \times 10^6 m$			
672.	•		lue lights of wavelengths 60	•			
	respectively, the value of n from which the n^{th} red fringe coincides with $(n+1)$ the blue fringe is						

GPLUS EDUCATION

_	,				
Gpl	้นร	Ed	uc	atıo	n

	a) 5	b) 4	c) 3	d) 2			
673	673. A long straight wire of resistance R , radius a and length l carries a constant current l . The Poynting vector						
	for the wire will be						
	IR	b) $\frac{IR^2}{al}$	c) $\frac{I^2R}{al}$	I^2R			
	a) $\frac{IR}{2\pi al}$	$\frac{dl}{al}$	$\frac{c_{l}}{al}$	d) $\frac{I^2R}{2\pi al}$			
674	. A single slit of width d is i	lluminated by violet light o	f wavelength 400 nm and t	he width of the diffraction			
	patter is measured as y. V	When half of the slit width i	s covered and illuminated l	by yellow light of			
	wavelength 600 nm, the v	vidth of the diffraction patt	ern is				
	a) The pattern vanishes a	nd the width is zero					
	b) <i>y/</i> 3						
	c) 3y						
	d) None of the above						
675	. In Young's double slit exp	eriment, a minimum is obt	ained when the phase differ	rence of superimposing			
	waves is		-				
	a) Zero	b) $(2n-1)\pi$	c) <i>n</i> π	d) $(n + 1)\pi$			
676	. In the figure is shown You	ıng's double slit experimen	t. Q is the position of the fire	st bright fringe on the right			
			easured from Q . If the wave				
	$6000 \times 10^{-10} m$, then $S_1 B$	_	·	0 0			
	, 1						
	$S_1 \longrightarrow B$	• Q					
	<u> </u>	o					
	S ₂						
	Slit	P					
	a) $6 \times 10^{-6} m$	b) $6.6 \times 10^{-6} m$	c) $3.138 \times 10^{-7} m$	d) $3.144 \times 10^{-7} m$			
677	. A point source of electron	nagnetic radiation has an a	verage power output of 150	00 W. The maximum value			
	of electric field at a distan	ace of $3m$ from this source i	n Vm^{-1} is				
	a) 500	b) 100	c) $\frac{500}{3}$	d) $\frac{250}{3}$			
				J			
678			-	trum of a distant galaxy, H_lpha			
			alaxy with respect to earth				
	a) $2 \times 10^8 m/s$	b) $2 \times 10^7 m/s$	c) $2 \times 10^6 m/s$	d) $2 \times 10^5 m/s$			
679	. By corpuscular theory of	light, the phenomenon whi	ch can be explained is				
	a) Refraction	b) Interference	c) Diffraction	d) Polarization			
680	. When two coherent mond	ochromatic beams of intens	ity I and $9I$ interface, the po	ossible maximum and			
	minimum intensities of th	ne resulting beam are					
	a) 9 <i>I</i> and <i>I</i>	b) 9 <i>I</i> and 4 <i>I</i>	c) 16/and 4/	d) 16 <i>I</i> and <i>I</i>			
681	. A Young's double slit exp	eriment uses a monochrom	atic source. The shape of th	e interference fringes			
	formed on a screen is						
	a) Straight line	b) Parabola	c) Hyperbola	d) Circle			
682	. Which of the following ha	s/have zero average value	in a plane electromagnetic	wave			
	a) Both magnetic and electric fields b) Electric field only						
	c) Magnetic field only d) Magnetic energy						
683	33. In Young's double slit experiment if monochromatic light used is replaced by white light, then						
	a) No fringes are observed						
	b) Only central fringe is white, all other fringes are coloured						
	c) All bright fringes become white						
	d) All bright fringes have colours between violet and red						
684	84. In a given direction, the intensities of the scattered light by a scattering substance for two beams of light						

are in the ratio of 256:81. The ratio of the frequency of the first beam to the frequency of the second

beam is

) (4 405	1) 4 0) (4 OF	D.M. C.I
.	a) 64: 127	b) 1:2	c) 64:27	d) None of these
685	-	_	pattern is found to have an	intensity ratio between
	bright and dark fringes is	•		
	=		units and 4 units respective	
			re 4 units and 1 units, resp	ectively
	c) The amplitude ratio is			
	d) The amplitude ratio is			
686	In order to see diffraction			13.4
	a) 100 Å	b) 10,000 Å	c) 1 mm	d) 1 <i>cm</i>
687			rformed in water, the fringe	
	a) Will remain same	b) Will decrease	c) Will increase	d) Will be infinite
688	_	-	er maxima is 4.8 mm from	_
			second maxima from point	
	a) 5.1 mm	b) 5 mm	c) 40 mm	d) 5,2 mm
689	~	-	ines emitted from the two	ends of its equator, for an
	observer on the earth, wil	l show		
	a) Shift towards red end	,		
	b) Shift towards violet end		1. 11 .1	
		by one line and towards vio	olet end by other	
	d) No shift			- 9
690			is found to be red shifted b	y 5 Å. The speed with which
	the star is receding from t			F - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
			c) $3.39 \times 10^5 m/s$	
691			g from the Sun is $720~ ext{N/C.}$ '	The average total energy
	density of the electromag			
			c) $3.3 \times 10^{-3} J/m^3$	
692			200 kgm ⁻³ of impure suga	
		of length 20 cm and optical	l rotation is found to be 19°	P. The percentage of purity
	of sugar is			
	a) 20%	b) 80%	c) 95%	d) 89%
693	. The penetration of light ir			
	a) Polarization	b) Interference	c) Diffraction	d) Refraction
694	. Consider the following sta		-	
		sed to study the helical sur		
	=	n and not any particular lii		
	a) A and B are correct		b) A and B are wrong	
.	c) A is correct but B is wr	•	d) A is wrong but B is cor	
695			ities <i>I</i> and 4 <i>I</i> are superpose	ed. The maximum and
	-	ities in the resulting beam		Day lay
	a) 5 <i>I</i> and <i>I</i>	b) 5 <i>I</i> and 3 <i>I</i>	c) 9 <i>I</i> and <i>I</i>	d) 9 <i>I</i> and 3 <i>I</i>
696	-		ero order principal maximu	im will be
	a) Spectrum of the colour		b) White	
	c) One of the component		d) Absent	
697		-	n is found to be 0.4 <i>mm</i> . If the	= =
		active index 4/3 without o	iisturbing the geometrical a	arrangement, the new fringe
	width will be	la) 0 40 m····	a) 0 F2	d) 450
600	a) 0.30 mm	b) 0.40 mm	c) 0.53 mm	d) 450 micron
סאט	. According to Maxwell's hy	/potnesis, a changing elect	=	d) Proceuro radiant

699. A plane electromagnetic wave travelling along the X-direction has a wavelength of 3 mm. The variation in the electric field occurs in the Y-direction with an amplitude 66 V m^{-1} . The equations for the electric and magnetic fields as a function of x and t are respectively

$$E_{y} = 33\cos \pi \times 10^{11} \left(t - \frac{x}{c}\right)$$
a)
$$B_{z} = 1.1 \times 10^{-7} \cos \pi \times 10^{11} \left(t - \frac{x}{c}\right)$$

$$E_{y} = 11\cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$$
b)
$$B_{y} = 11 \times 10^{-7} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$$

$$E_{x} = 33\cos \pi \times 10^{11} \left(t - \frac{x}{c}\right)$$
c)
$$B_{x} = 11 \times 10^{-7} \cos \pi \times 10^{11} \left(t - \frac{x}{c}\right)$$

$$E_{y} = 66\cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$$
d)
$$B_{z} = 2.2 \times 10^{-7} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$$

- 700. Polarizing angle for water is 53°4'. If light is incident at this angle on the surface of water and reflected, the angle of refraction is
 - a) 53°4′
- b) 126°56′
- c) 36°56′
- d) 30°4′
- 701. In a Young's double slit experiment (slit distance d) monochromatic light of wavelength λ is used and the figure pattern observed at a distance L from the slits. The angular position of the bright fringes are

a)
$$\sin^{-1}\left(\frac{N\lambda}{d}\right)$$

b)
$$\sin^{-1}\left(\frac{\left(N+\frac{1}{2}\right)\lambda}{d}\right)$$
 c) $\sin^{-1}\left(\frac{N\lambda}{L}\right)$

c)
$$\sin^{-1}\left(\frac{N\lambda}{L}\right)$$

d)
$$\sin^{-1}\left(\frac{\left(N+\frac{1}{2}\right)\lambda}{L}\right)$$

- 702. Which of the following statements is true, when spherical waves fall on a plane refracting surface, separating two media

 - a) The reflected waves form spherical wave fronts
 b) The reflected waves form plane wave fronts
 - c) The refracted waves form plane wave fronts
 - d) There are no refracted waves
- 703. In a YDSE bi-chromatic light of wavelengths 400 nm and 560 nm are used. The distance between the slits is $0.1 \, mm$ and the distance between the plane of the slits and the screen is 1m. The minimum distance between two successive regions of complete darkness is
 - a) 4 mm
- b) 5.6 mm
- c) 14 mm
- d) 28 mm
- 704. Doppler's effect in sound in addition to relative velocity between source and observer, also depends while source and observer or both are moving. Doppler effect in light depends only on the relative velocity of source and observer. The reason of this is
 - a) Einstein's mass energy relation
- b) Einstein's theory of relatively

c) Photoelectric effect

- d) None of these
- 705. In Young's double slit experiment the two slits are d distance apart. Interference pattern is observed on a screen at a distance D from the slits. A dark fringe is observed on the screen directly opposite to one of the slits. The wavelength of light is

c) $\frac{D^2}{d}$

- 706. The diffraction effect can be observed in
 - a) Only sound waves

b) Only light waves

c) Only ultrasonic waves

- d) Sound as well as light waves
- 707. Plane polarized light is passed through a polaroid. On viewing through the polaroid we find that when the polariod is given one complete rotation about the direction of the light, one of the following is observed

- a) The intensity of light gradually decreases to zero and remains at zero
- b) The intensity of light gradually increases to a maximum and remains at maximum
- c) There is no change in intensity
- d) The intensity of light is twice maximum and twice zero
- 708. What causes change in the colours of the soap or oil films for the given beam of light
 - a) Angle of incidence
- b) Angle of reflection
- c) Thickness of film
- d) None of these
- 709. Radio waves diffract around building although light waves do not. The reason is that radio waves
 - a) Travel with speed larger than c

b) Have much larger wavelength than light

c) Carry news

- d) Are not electromagnetic waves
- 710. Electromagnetic radiation of highest frequency is
 - a) Infrared radiations
- b) Visible radiation
- c) Radio waves
- d) γ-rays

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 58