GPLUS EDUCATION

Date : Time :

CHEMISTRY

Marks:

THE D-AND F-BLOCK ELEMENTS

Single Correct Answer Type

1.	On strongly heating AgN	O_3 we get:		
	a) AgNO ₂	b) Silver nitride	c) Ag	d) Ag_2O
2.	Transition metals in their	r compounds show:		
	a) Ionic bonds			
	b) Covalent bonds			
	c) Ionic and covalent bor	nds		
	d) Ionic and coordinate b			
3.	$4K_2Cr_2O_7 \xrightarrow{\text{Heat}} 4K_2CrO_4 -$	$+30_2 + X$ In the above rea	action, X is	
	a) CrO ₃	b) Cr ₂ O ₇	c) Cr_2O_3	d) CrO ₅
4.	Cynaide process is used f	for the extraction of		
	a) Au	b) Ag	c) Cu	d) Both (a) and (b)
5.	The colour of zinc sulphic	de is:		
	a) Yellow	b) White	c) Brown	d) Black
6.	The metal extracted by c	yanide process is	>	
	a) Silver	b) Copper	c) Iron	d) Sodium
7.	Which metal gives hydro	gen gas on heating with ho	t concentrated alkali?	
	a) Ag	b) Ni	c) Zn	d) Cu
8.	-	etal ions is not coloured?		
	a) Ti ³⁺	b) Fe ³⁺	c) V ²⁺	d) Zn ²⁺
9.	-	of Au and Ag ores is based	· · · · · · · · · · · · · · · · · · ·	
	a) NH ₃	b) HCl	c) HNO_3	d) KCN
10.	In the process of extracti	on of gold,		
	Roasted gold ore			
	$+CN^- + H_2O \xrightarrow{O_2} [X] +$	OH-		
	[X] + Zn -	$\rightarrow [Y] + Au$		
	Identify the complexes [X	Y] and [Y]		
	a) $X = [Au(CN)_2]^-, Y = $	$[\operatorname{Zn}(\operatorname{CN})_4]^{2-}$	b) $X = [Au(CN)_4]^{3-}, Y =$	$[\operatorname{Zn}(\operatorname{CN})_4]^{2-}$
	c) $X = [Au(CN)_2]^-, Y = $	$[\mathrm{Zn}(\mathrm{CN})_6]^{4-}$	d) $X = [Au(CN)_4]^-, Y = [$	$[\operatorname{Zn}(\operatorname{CN})_4]^{2-}$
11.	To dissolve argentite ore	which of the following is u	sed?	
	a) Na[Ag(CN) ₂]	b) NaCN	c) NaCl	d) HCl
12.		of transition metals is rela		red elelctrnos <i>n</i> as
	a) $\mu = n(n+2)^2$	b) $\mu = n^2(n+2)$	c) $\mu = \frac{n}{(n+2)}$	d) $\mu = \sqrt{n(n+2)}$
13.	Melting of Zn metal and t	then pouring it into cold wa	iter gives:	
	a) Zn dust	b) Granulated Zn	c) Hard Zn metal	d) Soft Zn metal
14.	Percentage of gold in Foo	ol's gold is		•
	a) Zero	b) 8	c) 16	d) 30
15.	Copper sulphate is comm	nercially made from copper	scrap by:	
	a) Dissolving in hot conc			
	b) Action of dilute sulphu	ıric acid and air		
	c) Heating with sodium s	sulphate		

	d) Heating with sulphur					
16.	Which of the following compounds has colour but no unpaired electrons?					
	a) KMnO ₄					
	b) K ₂ MnO ₄					
	c) MnSO ₄					
	d) MnCl ₂					
17.	Mercury forms amalgams	with all except:				
	a) Al	b) Zn	c) Ni	d) Fe		
18.	Granulated Zn is obtained	•	,			
	a) Suddenly cooling molte	•				
	b) Adding molten Zn to wa					
	c) Heating Zn 100 to 150°					
	d) Dropping molten Zn dro					
19.	In the first transition serie	= = =	on enters:			
	a) $5d$ -orbital	b) 4 <i>d</i> -orbital	c) 3 <i>d</i> -orbital	d) 2 <i>d</i> -orbital		
20.	Identity the ore not contain	•		.,		
	=	b) Siderite	c) Carnallite	d) Chalcopyrites		
21.	Purest form of iron is	-,	-,	,		
		b) Pig form	c) Wrought iron	d) Steel		
22.	Which metal adsorbs hydr	, ,	, 0	,		
	a) Pd	b) K	c) Al	d) Zn		
23.	The most abundant ore of		,	,		
	a) Haematite	b) Limonite	c) Magnetite	d) Siderite		
24.	Metallic silver may be obta		, 0	,		
	a) Heating it in the current	766	b) Fusing it with sand			
	c) Treating with carbon m		d) Fusing it with Na ₂ CO ₃			
25.	Choose the correct statem					
	a) Transition elements have	ve low melting points.	ATION			
	b) Transition elements do					
	c) Transition elements exh					
	d) Transition elements sho					
26.	Bessemer's converter is us					
	a) Cast iron	b) Pig iron	c) Steel	d) Wrought iron		
27.	Number of electrons prese	ent in the outermost orbit o	of Fe atom is:			
	a) 3	b) 1	c) 2	d) 4		
28.	Which will reduce acidified	d potassium dichromate so	olution?			
	a) Potash alum	b) Mohr's salt	c) Chile saltpetre	d) White vitriol		
29.	The lanthanoids contraction	on relates to				
	a) Atomic radii		b) Atomic as well as M^{3+}	radii		
	c) Valence electrons		d) Oxidation states			
30.	Transition metals show pa	ramagnetism due to				
	a) High lattice energy		b) Characteristics configu	ration		
	c) Variable oxidation state	S	d) Unpaired electrons			
31.	'Mercury' tree can be prep	ared:				
	a) By mixing up mercuric	thiocyanate and gum				
	b) By adding Nessler's rea	gent to a ammonium salt s	olution			
	c) By pouring little mercui	ry into AgNO ₃ solution				
	d) By heating mercuric chl	oride				
32	When excess of SnCl ₂ is ad	ded to a solution of HgCla	a white ppt, turning to gre	v is obtained. This grev		

	colour is due to the format	tion of:		
	a) Hg ₂ Cl ₂	b) SnCl ₄	c) Sn	d) Hg ₂
33.	Among the following, the		=	
	a) $(NH_4)_2(TiCl_6)$	b) $K_2Cr_2O_7$	c) $K_3[Cu(CN)_4]$	d) VOSO ₄
34.	All the metals form oxides			
	a) Copper	b) Barium	c) Silver	d) Lead
35.	Cinnabar is an ore of:			
	a) Lead	b) Zinc	c) Silver	d) Mercury
36.	Heating mixture of Cu ₂ O a			
	a) Cu ₂ SO ₃	b) CuO + CuS	c) $Cu + SO_3$	d) $Cu + SO_2$
37.	The substance that sublim			
	a) MgCl ₂	b) AgCl	c) HgCl ₂	d) NaCl
38.	Actinides			
	a) Have variable valency		b) Include element 12	
	c) Are all synthetic elemen		d) Have only short lived is	otopes
39.	The $3d$ -transition series co			
	a) 22 to 30	b) 21 to 30	c) 21 to 31	d) 21 to 29
40.	Which of the following is r			
	a) Variable oxidation state		b) Formation of coloured compounds	
	c) Formation of interstitia	•	d) Natural radioactivity	
41.	An element which is highly			
	a) Au	b) Mn	c) Hg	d) Ca
42.				
	a) Nitrogen	b) Oxygen	c) CO ₂	d) Ar
43.	Calamine is	7		
	a) CaCO ₃	b) MgCO ₃	c) ZnCO ₃	d) $CaCO_3 + CaO$
44.	Which series of elements l		75 1 1 7 7 7 7 7	
	a) F, Cl, Br, I	b) Na, K, Rb, Cs	c) Li, Be, B, C	d) Fe, Co, Ni, Cu
45.	Which transition elements			N 0 0
4.6	a) Cu, Zn	b) Ru, Os	c) Ag, Au	d) Cu, Cr
46.	When I ⁻ is oxidized by Mi			D 10-
4.77	a) $10\frac{1}{3}$	b) I ₂	c) $10\frac{1}{4}$	d) IO ⁻
47.	Which of the following cor	npounds is used as the stai	rting material for the prepa	ration of potassium
	dichromate?	0 (Classes alama)		
	a) K_2SO_4 . $Cr_2(SO_4)_3$. $24H_2$			
	b) PbCrO ₄ (Chrome yellow	v)		
	c) FeCr ₂ O ₄ (Chromite)	J\		
40	d) PbCrO ₄ . PbO (Chrome r	-		an adma af tha blada?
40.	Which metal makes steel s			
40	a) Mn Which form of iron is least	b) Al	c) W	d) C
49.			a) Mild ataal	d) Wrought stool
ΕO	a) Hard steel	b) Cast iron	c) Mild steel	d) Wrought steel
50.	Amalgams are:			
	a) Always solid			
	b) Highly coloured alloys	orgumi as one of the senter	ato	
		ercury as one of the conter	11.5	
[1	d) Compounds of mercury Which of the following is a			
31.	Which of the following is a a) Hg ₂ Cl ₂	_	c) HgCl ₂	d) NaHCO2
	a i 1122012	บาบสวบภ	C1 112G12	u i Naliuuz

52.	Addition of high proportions of manganese makes s	teel useful in making rails	s of rail roads because
	manganese;		
	a) Gives hardness to steel and can remove oxygen a	nd sulphur	
	b) Helps the formation of oxides of iron		
	c) Can show highest oxidation state of +7		
	d) None of the above		
53.	Pick out the correct statements from the following.		
	I. Cobalt (III) is more stable in octahedral comple	xes.	
	II. Zinc forms coloured ions or complexes.		
	III. Most of the d -block elements and their compound	nds are ferromagnetic.	
	IV. Osmium shows (VIII) oxidation state.		
	V. Cobalt (II) is more stable in octahedral complex	es.	
	a) 1 and 2 b) 1 and 3	c) 2 and 4	d) 1 and 4
54.	Ferrous sulphate on heating gives:		
	a) SO ₃ b) SO ₂	c) Fe_2O_3	d) All of these
55.	Hydrometallurgy is based on		-
	a) Calcination b) Roasting	c) Oxidation	d) Reduction
56.		e following statements is	incorrect?
	a) In addition to the normal oxidation state, the zer complexes.	=	
	b) In the highest oxidation state, the transition meta	al shows hasic character a	nd form cationic complexes
	In the highest oxidation state of the first five tran		_
	c) are used for bonding.	isition elements (se to imi	, an the 13 and 14 electrons
	Once the d^5 configuration is exceeded, the tender	ncy to involve all the 2d o	lastrons in handing
	d) decreases.	ncy to involve an the 30 e.	lections in boliding
57.	Which one of the following pairs of elements is called	nd 'chamical twins' bacaus	co of their very similar
37.	chemical properties?	ed chemical twins becaus	se of their very sillinar
	a) Mn and W b) Mo and Tc	c) Fe and Re	d) Hf and Zr
E0	Which one of the following exist in the oxidation sta		uj III aliu Zi
50.	a) B b) Al	c) Ce	d) Ga
EΩ	Excess of KI reacts with CuSO ₄ solution and then Na	•	-
39.		1_2 3_2 0_3 solution is added t	o it. which of the statement is
	incorrect for this reaction?	a) Cu I in formed	d) Freelined I. in moderned
60	a) CuI ₂ is formed b) Na ₂ S ₂ O ₃ is oxidised	c) Cu ₂ I ₂ is formed	d) Evolved I ₂ is reduced
60.	Which is formed when iron reacts with carbon?) F C	D.E. C
<i>c</i>	a) FeC_2 b) Fe_3C	c) FeC ₃	d) Fe ₂ C
61.	From sodium agrentocyanide Na[Ag(CN) ₂], silver is		
	a) Tin b) Zinc	c) Mercury	d) Calcium
62.	Which is used for electrical purposes?		
	a) German silver b) Beryllium bronze	c) Constantan	d) Fool's gold
63.	Monel metal is an alloy of?		
	a) Cu, Ni, Fe, Mn b) Cu, Sn, Zn	c) Cu, Sn, P	d) Cu, Zn
64.	Which metal is not used for making coins?		
	a) Gold b) Silver	c) Nickel	d) Tungsten
65.	Which is not true?		
	a) ZnS is white solid which turns yellow on exposur	e to light	
	b) ZnS is precipitated on passing H ₂ S to aqueous Na	a_2 Zn O_2	
	c) Basic zinc carbonate is ZnCO ₃ . 3Zn(OH) ₂		
	d) $HgCl_2$ reacts with $NH_3(g)$ to give $[Hg(NH_3)_4]Cl_2$		
66.	Gold is extracted by hydrometallurgical process, ba	sed on its property	

	a) Of being electropositive	b) Of being less reac	tive	
	c) To form complexes which are water soluble	d) To form salts whi	d) To form salts which are water soluble	
67.	Which is less reactive?			
	a) Fe b) Ni	c) Pt	d) Co	
68.	Thermal decomposition of zinc nitrate gives:			
	a) Zn b) ZnO	c) $Zn(NO_2)_2$	d) NO	
69.	Copper nitrate on strongly heating gives:			
	a) Cu b) Cupric oxide	c) Cuprous oxide	d) cupric nitrate	
70.	Which compound is used as a purgative in medici	ne?		
	a) HgCl ₂ b) Hg ₂ Cl ₂	c) CuCl	d) CuCl ₂	
71.	Correct formula of calomel is			
	a) HgCl ₂ b) HgCl ₂ . H ₂ O	c) Hg ₂ Cl ₂	d) HgSO ₄	
72.	The reaction of K ₂ Cr ₂ O ₇ with NaCl and conc H ₂ SO	O ₄ gives		
	a) CrO_2Cl_2 b) Cr_2O_3	c) CrCl ₃	d) CroCl ₂	
73.	A compound in which a metal ion $M^{x+}(Z=25)$ has	s a spin only magnetic mo	oment of $\sqrt{24}BM$. The number of	
	unpaired electrons in the compound and the oxid			
	a) 4 and 2 b) 5 and 3	c) 3 and 2	d) 4 and 3	
74.	From an aqueous solution of zinc sulphate, norma	_		
	a) Passing CO ₂	J	1 1 2	
	b) Warming with NaHCO ₃			
	c) Adding Na ₂ CO ₃			
	d) Boiling with CaCO ₃			
75.	The catalyst used for the hydrogenation of vegeta	ble oils for making marg	arine is:	
	a) Cu b) Na	c) Ni	d) Zn	
76.	Which of the following compound is expected to h	be coloured?		
	a) Ag_2SO_4 b) CuF_2	c) MgF ₂	d) CuCl	
77.	Copper can be extracted from:	CATION	•	
	a) Kupfer-nickel b) Dolomite	c) Malachite	d) Galena	
78.	Refining of impure copper with zinc impurity is to	be done by electrolysis	using electrodes as	
	Cathode Anode			
	a) Pure copper Pure zinc	b) Pure zinc P	ure copper	
	c) Pure copper Impure copper	d) Pure zinc I	mpure zinc	
79.	Molten Ag absorbs about times of O_2 :			
	a) 10 b) 20	c) 40	d) 80	
80.	Which of the following ion is diamagnetic?			
	a) Nd ³⁺ b) La ³⁺	c) Tb ³⁺	d) Er ³⁺	
81.	A red solid is insoluble in water. However, it beco	mes soluble if some KI is	added to water. Heating the red	
	solid in a test tube results in liberation of some vi	olet coloured fumes and	droplets of a metal appear on	
	the cooler parts of the test tube. The red solid is			
	a) $(NH_4)_2Cr_2O_7$ b) HgI_2	c) HgO	d) Pb ₃ O ₄	
82.	Of the following outer electronic configurations o	f atoms, the highest oxid	ation state is achieved by which	
	one of them?			
	a) $(n-)d^8$, ns^2 b) $(n-1)d^5$, ns^1	c) $(n-1)d^3$, ns^2	d) $(n-1)d^5$, ns^2	
83.	The oxidation number of Mn in the product of alk	aline oxidative fusion of	MnO_2 is	
	a) 2 b) 3	c) 4	d) 6	
84.	Iron sheets are galvanized mainly to:			
	a) Harden the surface			
	b) Increase lustre			
	c) Prevent action of water			

	d) Prevent action of oxyg	en and water			
85	Copper metal is not used				
00.	a) In taps and water connections				
	b) As an alloy in high spe				
	c) In electric motor coils	ed di ilis			
	d) In brass utensils				
06	•				
86.	In the equation,	O 4[M(CN)]= + 4	OII-		
	-	$O_2 \rightarrow 4[M(CN)_2]^- + 4$	Un		
	Identify the metal <i>M</i>	h) I	a) Cilmon	J) 7:	
07	a) Copper	b) Iron	c) Silver	d) Zinc	
87.		nickel is carried out by using	-	D 60	
00	a) I ₂	b) Cl ₂	c) HCl	d) CO	
88.	Lanthanide contraction is				
	a) Shielding by 4 <i>f</i> -electron		b) Atomic number		
	c) Effective nuclear charg	•	d) Size of $4f$ -orbitals		
89.	Which of the following io				
	a) Cu ⁺	b) Cu ²⁺	c) V ⁵⁺	d) Ti ⁴⁺	
90.	Pig iron:				
	a) Contains carbon and o	ther impurities			
	b) Is pure form of iron				
	c) Is same as wrought iro	on			
	d) Is same as steel				
91.	In aqueous solution Eu ²⁺	ion acts as	P		
	a) An oxidizing agent	b) A reducing agent	c) An acid	d) All of these	
92.	Transition elements form	complexes because of:			
	a) Small cation size	b) Vacant <i>d</i> -orbitals	c) Large ionic charge	d) All are correct	
93.	•	ating with BaO at 1100° C		,	
	a) Ba + ZnCl ₂	b) BaCdO ₂	c) BaZnO ₂	d) $BaO_2 + Zn$	
94.	-	ivalent ion has the largest a			
	a) Ce	b) Pm	c) La	d) Lu	
95.	•	ion, on reacting with acidif	*		
	-	netic moment (in BM) are, r			
	a) 6 and 6.93	b) 5 and 5.92	c) 5 and 4.9	d) 4 and 5.92	
96	Which of the following is	=	cy o and my	aj Tana 5172	
70.	a) SO ₂	b) B ₂ O ₃	c) ZnO	d) Na ₂ O	
97		nic configuration of Cr ²⁺ io	-	a) Na ₂ o	
77.	a) $4s^03d^4$	b) $3p^64s^2$	c) $4s^23d^2$	d) $4s^23d^0$	
00	Which of the following or	•	c) 45 3u	u) 43 3u	
90.			a) Malaghita	d) Calamina	
00	a) Argentite	b) Haematite	c) Malachite	d) Calamine	
99.	Chinese white is:	1.) 700	-) 7C + DCO	1) 7 0	
100	a) ZnS	b) ZnCO ₃	c) $ZnS + BaSO_4$	d) ZnO	
100		portant member of the lan	thanides. Which of the follo	wing statement about	
	cerium is incorrect?				
	•	n states of cerium are +3 an	nd +4		
	b) Cerium (IV) acts as an				
		e of cerium is not known in			
		e of cerium is more stable t			
101	-	sorbed from white light, th			
	a) Yellow	b) Orange	c) Blue	d) Violet	

GPLUS EDUCATION

102.	Which forms interstitial co	ompounds?		
	a) Fe	b) Ni	c) Co	d) All of these
103.	Steel that is resistant to ac	cids is:		
	a) Carbon steel	b) Molybdenum steel	c) Stainless steel	d) Nickel alloy steel
104.	Hardness of transition ele	ments is due to:		
	a) Large atomic size			
	b) Metallic bonding			
	c) Covalent bonds			
	d) High ionization energy			
105.	Which does not possess al	_		
	a) C	b) Sn	c) Fe	d) P
106.	· · ·	is added to acidified potas:	sium dichromate, a blue co	lour is produced due to
	formation of			2
	a) CrO_3	b) Cr ₂ O ₃	c) CrO ₅	d) CrO ₄ ²⁻
107.	In the extraction of Ag, Ag			
	a) HCl	b) HNO ₃	c) KCN	d) H_2SO_4
108.	The meniscus of mercury	=		
	a) Convex upwards	b) Concave	c) Plane	d) Convex inwards
109.	The iron obtained from th			
	a) Pig iron	b) Cast iron	c) Wrought iron	d) Steel
110.		g has strongest metallic bo	=	N 9
	a) Fe	b) Sc	c) V	d) Cr
111.	The alloy which contains	700-7) n	D 0
440	a) Brass	b) Bell metal	c) Bronze	d) German silver
112.		generally used in tip of nib		D.E. C
110	a) Os, Ir	b) Pt, Cr	c) V, Fe	d) Fe, Cr
113.		f the following metals invol	73 1 1 2 3 15 1	J) C
111	a) Fe	b) Ag	c) Al	d) Cu
114.	CuCl absorbs	L) CO	-) II CO	4) CO
115	a) CO ₂	b) SO ₂	c) H ₂ SO ₄	d) CO
115.	CrO_3 dissolves in aqueous		a) CrO2-	4) C*(OII)
116	a) CrO_4^{2-}	b) $Cr(OH)_3^-$	c) CrO_7^{2-}	d) Cr(OH) ₂
110.	a) Titanium	b) Vanadium	ts ore with dilute cyanide s c) Silver	d) Zinc
117	German silver alloy conta	=	c) slivel	u) Zilic
11/.	a) Zinc, silver and copper	iiiis	b) Nickel ,silver and copp	or
	c) Germanium ,silver and	connor	d) Zinc, nickel and copper	
110	Copper metal of high puri	• •	u) Zinc, meker and copper	
110.	a) Carbon reduction	b) Hydrogen reduction	c) Electrolytic method	d) Thermite process
110	•	omide in hypo solution is d	•	uj Thermite process
117.	a) Ag_2SO_3	b) $Ag_2S_2O_3$	c) $[Ag(S_2O_3)]$	d) $[Ag(S_2O_3)_2]^3$
120	Which of the following is a		c) [ng(3203)]	u) [/1g(3203)2]
120.	a) Invar	b) Solder	c) Magnalium	d) Type metal
121	Consider the following sta	•	c) Magnanum	uj Type metai
141.	_	sic among hydroxides of la	nthanides	
	-	ss almost the same ionic rac		
	(III) Ce^{4+} can act as an ox		***	
	Which of the above is/are			
	a) (I) and (III)	b) (II) and (III)	c) (II) only	d) (I) only
			, , , ,	2 K 2 2

122. Iodide of Millon's base			
a) K ₂ [Hgl ₄]	b) $^{\text{Hg}} <_{\text{O} \longrightarrow \text{Hg}}^{\text{NH}_2}$	c) [Hg ₂ O.NH ₂ OH].H ₂ O	d) Hg(NH ₂)I + Hg
123. The alloy of steel that	is used for making automo	bile parts and utensils is:	
a) Stainless steel	b) Nickel steel	c) Tungsten steel	d) Chromium steel
124. Which is used as subst	•	, ,	,
a) Rolled gold	b) White gold	c) Purple of Cassius	d) Faraday's gold
125. The highest oxidation			,, . 80
a) +7	b) +8	c) +6	d) +5
126. $Cl_2 + HgO \rightarrow ?$	2) 10	<i>o</i> , 10	, 1 o
a) $Cl_2O + HgCl$	b) $Cl_2O + HgCl_2$	c) ClO + HgCl	d) $ClO + HgCl_2$
, -		· -	alanced) $Zn + conc. HNO_3 -$
$\operatorname{Zn}(\operatorname{NO}_3)_2 + \overline{X} + \operatorname{H}_2 O$			
	$(NO_3)_2 + Y + H_2O(B)$		
	the compounds X and Y res	enactivaly ara	
a) NO_2 and NO	b) NO_2 and NO_2	c) NO and NO ₂	d) NO ₂ and NH ₄ NO ₃
		belong to transition elemen	
_	; electronic configurations	belong to transition elemen	us:
a) KL $3s^2p^6d^5$, $4s^1$			
b) KL $3s^2p^6d^{10}$, $4s^2p^3$			
c) KL $3s^2p^6d^{10}$, $4s^24p^2$			
d) KLM $4s^2p^6d^{10}$, $5s^2$		_	
	of a transition metal ion is	s $\sqrt{15}$ BM. Therefore, the nu	mber of unpaired electrons
present in it, is		and the second	
a) 3	b) 4	c) 1	d) 2
130. Which is not true in ca			
a) They are malleable		LCATION	
	ting and boiling points	JCATION	
		nexagonal close packed stru	cture only
	oxidation states although		
	solution is possible when	metal ion in the compound	
a) Paired electrons		b) Lone pair of electro	ns
c) Unpaired electrons		d) None of these	
132. Carbon in wrought iro	n is present as		
a) Silicon carbide		b) Iron carbide	
c) Graphite		d) Partly iron carbide a	and partly as graphite
133. An element is in M^{3+} f	orm. Its electronic configu	ration is $[Ar]3d^1$, the ion is	
a) Ca ²⁺	b) Sc ⁺	c) Ti ⁴⁺	d) Ti ³⁺
134. Each transition series	contains:		
a) 12 elements	b) 10 elements	c) 14 elements	d) 8 elements
135. Lanthanide contractio	n is caused due to		
a) The appreciable shi	elding on outer electrons l	by $4f$ -electrons from the nu-	clear charge.
b) The appreciable shi	elding on outer electrons l	by $5d$ -electrons from the nu	clear charge.
	nuclear charge from Ce to 1	-	G
_	-	4f-electrons from the nucle	ear charge.
136. The properties of Zr a			S
a) Both belong to <i>d</i> -bl		b) Both belong to same	e group of Periodic Table
c) Both have similar ra		d) Both have same nun	
-		_	and NO. These forms can be

	differentiated by :						
	a) Estimating the concentration of iron						
	b) Measuring the concentration of CN ⁻ .						
	c) Measuring the solid state magnetic moment						
	d) Thermally decomposing the compound						
138		made by heating rods of ire	on embedded in charcoal p	owder. The process is			
	known as						
	a) Case hardening	b) Tempering	c) Sheradizing	d) Annealing			
139	. A substance which is not	-					
	a) $Cr(ClO_4)_3$	b) KMnO ₄	c) TiCl ₃	d) VOBr ₂			
140	_	s is expected to show simila	-				
	a) FeCl ₃ and CuCl ₂	b) VOCl ₂ and CuCl ₂	c) VOCl ₂ and FeCl ₂	d) FeCl ₂ and MnCl ₂			
141	. Lunar caustic is chemical	· ·					
	a) Silver chloride	b) Silver nitrate	c) Sodium hydroxide	d) Potassium nitrate			
142	. Lanthanoids and actinoid						
	a) Electronic configuration	on					
	b) Oxidation state						
	c) Ionisation energy						
	d) Formation of complex						
143	. Horn silver is:						
	a) AgCl	b) Ag ₂ S	c) SnS	d) $AgNO_3$			
144	. Silver nitrate solution giv	ves a red precipitate with:					
	a) Sodium iodide	b) Potassium chloride	c) Calcium nitrate	d) Sodium chromate			
145	. Of the following outer ele	ectronic configurations of a	toms, the highest oxidation	state is achieved by which			
	one of them?						
	a) $(n-1)d^8 ns^2$	b) $(n-1)d^5 ns^1$	c) $(n-1)d^3 ns^2$	d) $(n-1)d^5 ns^2$			
146	. Powdered silver ore is tr	eated with NaCN solution a	nd air is bubbled through t	he mixture to give:			
	a) AgCN	b) Ag	c) Ag(CN) ₂	d) Na[Ag(CN) ₂]			
147	. Chromium has most stab	le oxidation state of:					
	a) +5	b) +3	c) +2	d) +4			
148	. Cuprous salts are genera	lly colourless while cuprou	s oxide is:				
	a) Green	b) Blue	c) Red	d) Yellow			
149	. Which of the following m	anganese oxide is amphote	eric?				
	a) MnO ₂	b) Mn_2O_3	c) Mn_2O_7	d) MnO			
150	. Impurities of Cu and Ag f	rom gold are removed by					
	a) Boiling impure gold w	ith dil.H ₂ SO ₄	b) Boiling impure gold w	ith conc.H ₂ SO ₄			
	c) Electrolytically		d) Both (b) and (c)				
151	. Identify the incorrect sta	tement among the followin	g				
	d-block elements show		La and Lu have partial	ly filled d -orbitals and no			
	a) chemical properties an		b) ther partially filled or				
	c) The chemistry of vario	ous lanthanoids is very	13.4.6. 1.E.C. 1.1.1	11 1 1 1 1			
	similar.	, and the second	d) $4f$ and $5f$ -orbitals are	equally shielded.			
152	. Which of the following io	ns form most stable compl	ex compound?				
	a) Mn ²⁺	b) Ni ²⁺	c) Fe ²⁺	d) Cu ²⁺			
153	•	photography because they		,			
	a) Photosensitive	1 0 1)					
	b) Soluble in hyposolutio	n					
	c) Soluble in NH ₄ OH						
	d) Insoluble in acids						

GPLUS EDUCATION	WEB: WWW.GPLUSEDUCAT	TON.ORG PHONI	E NO: 8583042324 Page 10
a) BaCl ₂	b) AgNO ₃	c) NH ₄ SCN	d) None of these
	inguished by Fe ³⁺ ion by:		
a) Fixed valency	b) Catalytic property	c) Paramagnetism	d) Colour
172. Which of the follow	ing is not a property of transition	on elements?	
a) CuS	b) PbS	c) ZnS	d) CdS
171. Which sulphide has	, 0	, 0	,
a) AgI	b) AgBr	c) AgCl	d) None of these
$170. \text{ NH}_3 \text{ does not form}$		c, and 1 303	u) 503
a) $CuSO_4$. $5H_2O$	b) CuSO ₄ .H ₂ O	c) $CuO + SO_3$	d) SO ₃
,	us copper sulphate on heating d	•	uj G
a) V^{3+}	b) Ti ³⁺	c) Mn ³⁺	d) Cr ³⁺
c) $2Cu_2S + 3O_2$ — 168. Which of the follow		d) FeO + SiO ₂ \rightarrow FeSiO	\cup_3
a) $2\text{FeS} + 30_2 \rightarrow 2$	-	b) $Cu_2O + FeS \rightarrow Cu_2$	
·	n that does not take place durin		
a) V ²⁺	b) Cr ²⁺	c) Mn ²⁺	d) Fe ²⁺
	nave largest value of magnetic n		D E 2+
	s in $3d$ -orbital of V^{2+} , Cr^{2+} , Mn^2		d 6 respectively. Which of the
a) Sc	b) Ti	c) Mn	d) Zn
	ent that exhibits maximum num		
d) It is a primary sta	andard		
c) Oxidation state o	firon is +3	CHITOIA	
b) It is a double salt	Canus EDIII	CATION	
a) It decolourises K			
	ing statements is not true for M	lohr's salt?	
a) Cu and Ar	b) Cu and Cr	c) Cr and Ar	d) Fe and Ag
163. Aufbau law is not va			
a) $FeCl_3$	b) HgCl ₂	c) CaCl ₂	d) MgCl ₂
162. Which of the follow	ing compounds volatises on hea	ating?	
a) Ti ²⁺ and V ²⁺	b) Cr ²⁺ and Fe ²⁺	c) Cr ³⁺ and Mn ²⁺	d) V^{2+} and Sc^{3+}
	ing pair will have effective mag		
a) (i) only	b) (i) and (ii)	c) (ii) and (ii)	d) All of these
	ck elements are paramagnetic		
(ii) All d and f -bloc	k elements form coloured ions		
(i) All the d and f -b	lock elements are metals		
160. The correct stateme	ent(s) among the following is/a	re;	
a) Cr	b) Cu	c) Co	d) Zn
159. Stainless steel has in	-	- -	
c) $M^{4+} > MO_2^{2+} > 1$		d) $MO_2^{2+} > MO_2^+ > M^4$	
a) $M^{4+} > M^{3+} > M$	_	b) $MO_2^+ > MO_2^{2+} > M^3$	
158. In <i>M</i> is element of a	ctinoids series, the degree of co	omplex formation decreas	es in the order
a) Hot blast of air	b) Carbon monoxide	c) Carbon	d) Silica
157. In blast furnace, iro		,	, , ,
a) Fe	b) An alkali metal	c) Silver	d) Mercury
156. Essential constituer	-	o) amoroaamo aom	a, 1101 0 00 11101 000
a) Auric chloride	b) Aurous chloride	c) Chloroauric acid	d) Aurous nitrate
 a) Heating NH₄NO₂ 155. Gold dissolves in aq 	, , ,	c) $Mg_3N_2 + H_2O$	d) Na(Comp.)+ H ₂ O ₂
	ating gives a gas which is also g		d) No (Comm.) II O
154 (NII) Cn O on ho	ating gives a gas which is also g	irron hr	

174. Which one of the followi	ng transition metal ions is o	diamagnetic?	
a) Co ²⁺	b) Ni ²⁺	c) Cu ²⁺	d) Zn ²⁺
175. Elements of group 11 an	d 12 are:		
a) Normal elements	b) Transition elements	c) Alkaline earth metals	d) Alkali metals
176. Hard steel contains:			
a) No carbon	b) 0.6-1.5% carbon	c) 5% carbon	d) 0.5-0.2% carbon
177. Iron, once dipped in cond	centrated $ m H_2SO_4$, does not $ m c$	displace copper from sulpha	ate solution, because:
a) It is less reactive than	copper		
b) A layer of sulphate is o	deposited on it		
c) A layer of oxide is dep	osited on it		
d) None of the above			
178. Which shows a jump in s			
a) Co	b) Ni	c) Zn	d) Cu
179. Manganese steel contain			_
a) Fe + C + Mn	b) Fe + C + Al	c) Fe + Mn	d) Fe + Mn+ Cr
180. Which sets are the transi			
a) Ti, Zr, Hf	b) V, Nb, Ta	c) Rh, Rb, Pd	d) All of these
181. The extraction of nickel i			
a) The formation of Ni(C			
b) The decomposition of		(0)	
	ermal decomposition of Ni(
	alytic decomposition of Ni	(CO) ₄	
182. Cu ₂ 0 is:	h) Connon(II) avido	a) Dad avida of common	d) Cumuia avida
a) Black oxide of copper183. Number of electrons train	704	c) Red oxide of copper	d) Cupric oxide
	and MnO_4^{2-} , are respectively		agent to give
a) 3, 5, 4 and 1			d) 5, 4, 3 and 1
184. When metallic copper co	b) 4, 3, 1 and 5		•
This is chemically known		ire, a green power/pasty co	ating can be seen over it.
a) Copper carbonate-cop		b) Copper carbonate-cop	ner hydrovide
c) Copper sulphate-copp		d) Copper sulphide-coppe	-
185. German silver is an alloy	•	a) copper surplinae copp	er earbonate
a) Copper, zinc and nicke			
b) Copper and silver	•		
c) Copper and tin			
d) Copper, zinc and silve	r		
186. Incorrect statement is			
a) Atomic radii of Zr and	Hf are same because of lan	thanide contraction	
b) Zn and Hg do not show			
	_	hanide hydroxides decreas	es
d) Protactinium is transı	ıranic element	·	
187is the best conducto	r of electricity among coina	nge metals:	
a) Ag	b) Cu	c) Au	d) All of these
188. Cu ²⁺ ions give precipitat	e with K_4 Fe(CN) ₆ . The cold	our of precipitate is:	
a) Blue	b) Green	c) Red	d) Brown
189. Across the lanthanide se	ries, the basicity of lanthan	ide hydroxides	
a) Increases		b) Decreases	
c) First increases and the	en decreases	d) First decreases and the	en increases
190. A blue colouration is not	obtained when:		

	b) Copper sulphate solution reacts with $K_4[Fe(CN)_6]$					
	c) Ferric chloride reacts with sodium ferrocyanide					
	d) Anhydrous white $CuSO_4$ is dissolved in water					
191.	Useful lanthanoid member is:					
	a) Cerium b) Lanthanum	c) Neodymium	d) Lutetium			
192.	Which of the following has got incompletely filled f -	subshell?	•			
	a) Gadolinium b) Lutetium	c) Lawrencium	d) Tantalum			
193.	Silver nitrate is usually supplied in coloured bottles	because it is:				
	a) Oxidized in air					
	b) Decomposed in sunlight					
	c) Explodes in sunlight					
	d) Reactive towards air in sunlight					
194.	Mercury is purified by:					
	a) Solidifying					
	b) Distillation in vacuum					
	c) Treatment with dil. HNO ₃					
	d) Electrolytic method					
195.	Pt black is					
	a) Pt metal mixed with MnO ₂					
	b) Velvety black power obtained by reduction of PtC	$ m l_4$ with glucose or sodium f	ormate			
	c) Pt metal coated with black colour					
	d) None of the above	>				
196.	'Hydride gap' is referred to which region of the Perio	odic Table?				
	a) Groups 3, 4 and 5 b) Groups 5, 6 and 7	c) Groups 4, 5 and 6	d) Groups 7, 8 and 9			
197.	Which of the following electronic configuration repr	esents the maximum magn	etic moment?			
	a) d^3 b) d^2	c) d ⁸	d) d^6			
198.	Volatile metals Zn, Cd and Hg are purified by:	AHON .				
	a) Liquation b) Distillation	c) Cupellation	d) Electrolysis			
199.	Zinc, cadmium and mercury are:					
	a) <i>d</i> -block elements b) <i>p</i> -block elements	c) s-block elements	d) f-block elements			
200.	Select the incorrect statement about transition elem	ents				
	a) The last electron enters in the d -orbital					
	b) Their properties are in between s and p -block elle	ements				
	c) Scandium is the transition element with smallest $$	atomic radii				
	d) Their common oxidation state is +3					
201.	Which of the following types of metals form the mos	t efficient catalysts?				
	a) Alkali metals	b) Alkaline earth metals				
	c) Transition metals	d) All of these				
202.	In the reaction $SnCl_2 + 2HgCl_2 \rightarrow A + SnCl_4$, A is:					
	a) Hg ₂ Cl ₂ b) Hg	c) HgCl	d) HgCl ₃			
203.	Mohr salt is made up of which combination of salt?					
	a) Ammonium sulphate and potash.	b) Ammonium sulphate a	_			
	c) Ammonium sulphate and copper sulphate.	d) Ammonium sulphate a	nd magnesium sulphate.			
204.	Maximum oxidation state is presented by:					
	a) CrO_2Cl_2 and MnO_4^- b) MnO_2	c) $[Fe(CN)_6]^{3-}$ and $[Co(Cl)_6]^{3-}$	Nd) MnO			
205.	Lanthanides are					
	a) 14 elements in the sixth period (atomic no. $= 90 \text{ t}$					
	b) 14 elements in the seventh period (atomic no. $=$ 9	90 to 103) that are filling 5	f sub level.			

a) Ammonium hydroxide dissolves in copper sulphate

	-	-	to 71) that are filling $4f$ su 58 to 71) that are filling $4f$	
206	. By annealing, steel	entii periou (atomic no. –	36 to 71) that are ining 4)	Sub-level.
200	a) Becomes soft		b) Becomes liquid	
	-	++1 ₀		film of Eo O
207	c) Becomes hard and brit		d) Is covered with a thin	$100 \mathrm{re}_3 \mathrm{O}_4$
207	=	und is widely used in tanni	=	D. V. CO. C. (CO.) 2411
000	a) Cr_2O_3	b) CrO ₂ Cl ₂	c) CrCl ₃	d) K_2SO_4 . $Cr_2(SO_4)_3$. $24H_2$
208	Purple of cassius is	13.70	2011 1.4	200
	a) Copper solution	b) Platinum solution	c) Gold solution	d) Copper solution
209		SO ₂ is bubbled through a so	=	-
	a) Cu	b) Cu ₂ Cl ₂	c) CuSO ₄	d) CuS
210		react with cold water but re		
	a) C, Ca, SO ₂	b) Fe, Al, Cl ₂	c) CO ₂ , Na, Mg	d) C, Fe, Mg
211	. Which metal has the high	est melting point?		
	a) Pt	b) W	c) Pd	d) Au
212	. Choose the correct reacti	on to prepare mercurous c	chloride (calomel)	
	a) $HgCl_2 + Hg \stackrel{\Delta}{\rightarrow}$	b) Hg + $Cl_2 \rightarrow$	c) $HgCl_2 + SnCl_2 \rightarrow$	d) Both (a) and (c)
213		ductility in coinage metals	increase in the order:	
210	a) Cu, Ag, Au	b) Au, Ag, Cu	c) Ag, Au, Cu	d) Ag, Cu, Au
214	. An acidified solution of K		c) rig, ria, ca	aj 11g, da, 11a
211	a) Sulphates	b) Sulphites	c) Nitrates	d) Ferric salts
215	. Magnetite is:	b) Suiplines	c) Milacs	d) I ciric saits
213	a) $2\text{Fe}_2\text{O}_3$. $3\text{H}_2\text{O}$	b) FeS ₂	c) Fe ₃ O ₄	d) Fe ₂ O ₃
216		-	- c) re ₃ 0 ₄	$\mathbf{u}_1 \mathbf{r} \mathbf{e}_2 \mathbf{o}_3$
210	Least paramagnetic prop		~) M:	4) C
217	a) Fe	b) Mn	c) Ni	d) Cu
217		dium, etc., are called noble	metais because:	
	a) Alfred Nobel discovered		CATION	
	= = = = = = = = = = = = = = = = = = =	s many common reagents	27112011	
	c) They are shining, lustr			
0.4.0	d) They are found in nativ			
218	-	entiferous lead is purified b		n =
		b) Froth floatation	c) Cupellation	d) Reaction with KCN
219	. Paris green is:			
	a) $Cu(CH_3COO)_2$	b) $Cu_3(AsO_3)_2.2H_2O$	c) $Cu(CH_3COO)_2$.3Cu(As	$Od) Co(AlO_2)_2$
220	. Variable valency is show	•		
	a) Normal elements	b) Transition elements	c) Typical elements	d) None of these
221	. Which statement about H	lg is correct?		
	a) Hg is the only liquid m			
	b) Hg ²⁺ salts are more st	able than Hg ₂ ²⁺ salts		
	c) Hg forms no amalgam	with iron and platinum		
	d) All of the above			
222	. Most abundant transition	element is:		
	a) Fe	b) Sc	c) Os	d) None of these
223	. Which one of the followir	ng acts as an oxidizing ager	nt?	
	a) Np ⁴⁺	b) Sm ²⁺	c) Eu ²⁺	d) Yb ²⁺
224	. Which of the oxide of ma	,		•
_	a) MnO ₂	b) Mn ₂ O ₃	c) Mn_2O_7	d) MnO
225	· -	,	neating AgNO ₃ above its me	
	a) $2AgNO_3 \rightarrow 2Ag + 2NO_3$	=	b) $2AgNO_3 \rightarrow 2Ag + N_2$	= -
	, , , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , , ,	-

c) $2AgNO_3 \rightarrow 2AgN$		d) $2AgNO_3 \rightarrow 2Ag + 2$	$2NO + 2O_2$
226. Which of the following	• •) (10)	D.M. C.I
a) CuCl ₂	b) CaCl ₂	c) CdCl ₂	d) None of these
	a precipitate with excess of l		d) 7500
a) HgCl ₂	b) HgNO ₃	c) FeSO ₄	d) ZnSO ₄
228. Thermite is a mixtur a) Zn powder	b) K metal	c) No. Ua	d) Al novedor
229. Ruby copper is:	b) K illetai	c) Na–Hg	d) Al powder
a) Cu_2O	b) Cu(OH) ₂	c) CuCl ₂	d) Cu ₂ Cl ₂
230. The actinoids showing	, , , <u>-</u>	c) cuci ₂	$u_1 c u_2 c i_2$
a) U, Np	b) Pu, Am	c) Np, Pu	d) Am, Cm
231. Which match is inco		c) Np, I u	uj Aili, Cili
	ocess – manufacture of pota	ssium carbonato	
	ss – manufacture of steel	ssium carbonate	
	orest process – extraction of	cilver	
	nanufacture of phenol	311701	
232. Carbon content of	nandiacture of phenor		
	n those of cast iron and wrou	ight iron	
_	ween those of steel and wrou	_	
•	n between those of steel and	•	
d) Steel is higher tha		cust if off,	
,	ng pair is coloured in aqueou	s solution?	
a) Sc^{3+} , Co^{2+}	b) Ni ²⁺ , Cu ⁺	c) Ni ²⁺ , Ti ³⁺	d) Sc ³⁺ , Ti ³⁺
234. $ZnSO_4$ on heating to		cj ivi , ii	aj se ', ii
a) $ZnO + SO_2 + O_2$	b) Zn + SO ₂	c) $ZnS + O_2$	d) $Zn + SO_2 + O_2$
	itial of transition metals is	· -	u) 211 + 302 + 02
a) Less	b) More	c) Equal	d) None of these
236. Spiegeleisn is an allo		ej Equal	a) None of these
a) Fe, Co and Cr	b) Fe, Co and Mg	c) Fe, Mg and C	d) Fe, C and Mn
•	ng group of transition metals	, ,	,,
a) Cu, Ag, Au	b) Ru, Rh, Pd	c) Fe, CO, Ni	d) Os, Ir, Pt
238. Cadmipone is a mixt	•	-,,,	,,
a) CdS and BaSO ₄	b) CaSO ₄ and BaS	c) CaS and ZnSO ₄	d) CaSO ₄ and ZnS
			the property indicated against
it?	, , , , , , , , , , , , , , , , , , ,		
	: increasing number of oxida	tion states	
	+ < Mn ³⁺ : increasing magne		
	: increasing melting points		
•	: increasing 2 nd ionization er	ithalpy	
	oxidation number of iron and	• •	y.
a) +3,+2	b) +3,+6	c) +2,+6	d) +2,+3
•	h gives oxygen on moderate	•	
a) Zinc oxide	b) Mercuric oxide	c) Aluminium oxide	d) Ferric oxide
242. The form of iron hav	ing the highest carbon conte	<u>-</u>	-
a) Cast iron	b) Wrought iron	c) Stainless steel	d) Mild steel
243. An ore of silver is:		-	•
a) Argentite	b) Stibnite	c) Haematite	d) Bauxite
244. Roasting of HgS in ai		•	•
a) HgO	b) HgSO ₃	c) HgSO ₄	d) Hg

245. Transuranic elements b	negins with		
a) Np	b) Cm	c) Pu	d) U
246. A solution when diluted			-
	ecreases due to dissolution l	= =	
= = =	lves in NH ₄ OH/NH ₄ Cl is:		
a) $Zn(OH)_2$	b) $Al(OH)_3$	c) $Mg(OH)_2$	d) $Ca(OH)_2$
247. Which of the following			, , , , ,
a) Their compounds are	e generally coloured.	b) They can form ionic or	covalent compounds.
c) Their melting and bo	oiling points are high.	d) They do not exhibit va	riable valency.
248. Which one of the follow		acidified KMnO ₄ solution?	
a) SO ₂	b) FeCl ₃	c) H_2O_2	d) FeSO ₄
249. Which of the following	pairs of elements cannot for	n an alloy?	
a) Zn, Cu	b) Fe, Hg	c) Fe, C	d) Hg, Na
250. Which is known as purp	ole of Cassius?		
a) Colloidal silver solut	ion		
b) Colloidal gold solution	on		
c) Aqueous solution of	soap		
d) As ₂ S ₃ colloidal solut	ion		
251. Which of the following	ionic species will impart colo	our to an aqueous solution?	
a) Cu ⁺	b) Zn ²⁺	c) Cr ³⁺	d) Ti ⁴⁺
252. The outer electronic co	nfiguration of Gd (At. No 64)	is	
a) $4f^3 5d^56s^2$	b) $4f^8 5d^0 6s^2$	c) $4f^4 5d^4 6s^2$	d) $4f^75d^1s^2$
253. Mercury is a liquid met	al because	2	
a) It has a completely fi	lled s-orbital.		
b) It has a small atomic			
	lled d -orbital that prevents a		ls.
d) It has a completely fi	lled d - orbital that causes d	-d overlapping.	
254. Composition of azurite	mineral is	ALION	
a) CuCO ₃ .CuO	b) $Cu(HCO_3)_2$. $Cu(OH)_2$	c) $2CuCO_3$. $Cu(OH)_2$	d) $CuCO_3$. $2Cu(OH)_2$
255. What would happen wh	=	hromate is treated with an	excess of dilute nitric acid?
a) Cr^{3+} and $Cr_2O_7^{2-}$ are			
b) $Cr_2O_7^2$ and H_2O are f			
c) CrO_4^{2-} is reduced to	+ 3 state of Cr		
d) None of the above			
256. Zn gives H ₂ gas with H ₂			
	ng agent when react with HN	0_3	
b) HNO ₃ is weaker acid			
-	eries Zn is above hydrogen		
	n preference to hydronium i		
257. Which of the following	_		
a) Wurtzite	b) Iron pyrites	c) Chalcocite	d) Silver glance
258. When steam is passed of	=		
a) FeO	b) Fe_2O_3	c) Fe_3O_4	d) FeSO ₄
259. In the electrolytic refini			
a) Graphite is at the and		b) The impure metal is at	
c) The metal ion get red		d) Acidified zinc sulphate	e is the electrolyte.
260. Which pair of lanthanid			
a) Np, Pu	b) Pu, Gd	c) Fm, Ho	d) Pr, Ho
261. One of the following me	etals forms a volatile compou	and this property is tak	en advantage for its

	extraction. This metal is			
	a) Iron	b) Nickel	c) Cobalt	d) Tungsten
262	•	steel by reducing the amo	5	
	a) Blast furnace	b) Pyrite burner	c) Bessemer's converter	
263	•	ng forms a complex of coord	=	=
	a) Cu ⁺	b) Ag ⁺	c) Ni ²⁺	d) Fe ²⁺
264	•	nic number of La = 57) is 1.	,	,
	closest to the radius of Li		00 1	5
	(Atomic number of $Lu=7$			
	a) 1.60 Å	b) 1.40 Å	c) 1.06 Å	d) 0.85 Å
265		hanges to deoxyhaemoglob	,	a) oloo II
_00	a) Diamagnetic to param		b) Paramagnetic to diamagnetic	agnetic
	c) Diamagnetic to ferror	_	d) Paramagnetic to ferro	•
266	. Which statement is incor	=	a) i aramagnetie to ierro.	magnetic
200	a) Silver glance mainly co			
	b) Gold is found in native			
	c) Zinc blende mainly con			
	d) Copper pyrites also co			
267	'. Amongst TiF_6^{2-} , CoF_6^{3-} , CoF_6^{3-}			
207		7, Cu=29,Ni=28) the colour	rless snecies are	
	-	b) TiF ₆ ²⁻ and CoF ₆ ³⁻ ,	-	d) TiF^{2-} and $Cu_{-}Cl_{-}$
268		ies of transition metal ions,		
200	configuration is:	ics of transition inetal lons,	the one where an inetar lo	iis have su cicci onic
	a) Ti ³⁺ , V ²⁺ , Cr ³⁺ , Mn ⁴⁺	731		
	b) Ti ⁺ , V ⁴⁺ , Cr ⁶⁺ , Mn ⁷⁺			
	c) Ti ⁴⁺ , V ³⁺ , Cr ²⁺ , Mn ³⁺	2		
	d) Ti ²⁺ , V ³⁺ , Cr ⁴⁺ , Mn ⁵⁺			
260		ction with ammonium hydr	ovido givos	
209	a) HgO	zuon with allimollium nyth	b) Hg ₂ 0	
	c) NH ₂ —Hg—Hg—Cl		d) HgNH ₂ Cl	
270	Steel resistant to acid is:		u) ligivii ₂ ci	
270	a) Carbon steel	b) Molybdenum steel	c) Stainlass staal	d) Nickel steel
271	. Non-stoichiometric comp		c) stalliess steel	uj Mickel Steel
2/1	a) Alkali metals	Journa's are formed by.		
	b) Transition elements			
	c) Noble gases			
	d) More than one of the a	phovo alaments		
272	d, More than one of the a. d-block elements genera			
2/2	a) Covalent hydrides	b) Metallic hydrides	c) Interstitial hydrides	d) Salt-like hydrides
273		ed blood cells of human blo	•	uj sait-like liyurides
273	a) Fe	b) Ra	c) Co	d) All of these
274	=	oit both vertical and horizor	•	a) fin of these
2,1	a) Inert gas elements	nt both vertical and norizor	itai siiiiiai ities ai e.	
	b) Representative elements	nts		
	c) Rare elements	1160		
	d) Transition elements			
275	Which occurs in nature in	n free state?		
2/3	a) Fe	b) Co	c) Ni	d) Pt
276	*	solution of to give a wh		ajit
_, 0	Zo io passea in aqueous	SSEASON OF THE CO SIVE A WIL	prodipitate of Alloi	

a) ZnCl ₂	b) $\operatorname{Zn}(\operatorname{NO}_3)_2$	c) (CH ₃ COO) ₂ Zn	d) None of these
	ving are d -block elements but n	_	
a) Cu, Ag, Au	b) Zn, Cd, Hg	c) Fe, Co, Ni	d) Ru, Rh, Pd
278. Which is the least s) A 1	D.A. D
a) AgCl	b) Ag ₂ S	c) AgI	d) AgBr
	ving elements is alloyed with co	= =	D. A
a) Bismuth	b) Zinc	c) Lead	d) Antimony
280. When KMnO ₄ reac			
a) Only FeSO ₄ is ox			
b) Only KMnO ₄ is o			
	d and KMnO ₄ is reduced		
d) None of the abo			
	ch metal leaves metallic globule		
a) $Cu(NO_3)_2$	b) AgNO ₃	c) NaNO ₃	d) $Pb(NO_3)_2$
282. Mond process is us			
a) Co	b) Ni	c) Mo	d) Zn
	oitate will be obtained when K ₄		
a) Fe(II) ions	b) Cu(II) ions	c) Fe(III) ions	d) Cu(I) ions
	ients of German silver are		
a) Ag + Cu	b) Ag + Zn	c) Cu + Zn	d) Cu + Sn
-	sed to air for sometime. It beco	=	
a) K	b) Cu	c) Zn	d) Al
	how variable valency, because:	1 11	
	two electrons in outermost sub	shells	
b) Their <i>d</i> -subshel			
c) Their <i>d</i> -subshel	_		
d) They are relativ		CATION	
	nt uses of ferrous sulphate is in	tne:	
a) Manufacture of			
b) Manufacture of			
c) Preparation of h	• • •		
d) Preparation of s	uipnur dioxide		
288. Blue vitriol is:	h) 7m50 7H 0	c) CuSO ₄ . 5H ₂ O	d) FeSO ₄ . 7H ₂ O
a) CuSO ₄ . 7H ₂ O	b) ZnSO ₄ . 7H ₂ O	c_1 cuso ₄ , sn_2o	uj res0 ₄ . / n ₂ 0
a) Complete d -sub	variable valency because of shell b) Inert pair effect	c) 4s ² -subshell	d) None of these
	ving statement (s) is/are correc		
	yn colour with ammonium thiod		Tous and lettic ions:
, ,	n colour with potassium ferricy		
	olour with potassium thiocyana		
-	=		
	recipitate with potassium ferri		
=	$(NO_3)_2$ and $Cu_2(CH_3COO)_4$. $2H_2$		n d) Dimon dimon
a) Dimer, monome		c) Monomer, monome	r d) Dimer, dimer
	st stable at room temperature?	a) 7n0	d) Sh. O
a) CuO	b) Ag ₂ 0 ving metal is correctly matched	c) ZnO with its ore?	d) Sb ₂ O ₃
	ong metaris correctly matched Dre	WILLIES OF C:	
a) Zinc	Calamine	b) Silver Il	menite
c) Magnesium	Cassiterite	•	zurite
c) magnesium	Gassiterite	a) IIII — A	Zuric

294. Iron is obtained on large scale	e from haematite(Fe ₂ O ₃	3):	
a) By reduction			
b) By oxidation			
c) By reduction followed by o	xidation		
d) By oxidation followed by re	eduction		
295. Which oxide of manganese is	amphoteric?		
a) MnO b)	MnO_2	c) Mn_2O_7	d) Mn_2O_3
296. Which among the following m	etals does not dissolve	in aqua regia?	
a) Pt b) i	Pd	c) Au	d) Ir
297. The one which has lowest ox.	no. of Hg:		
a) $Hg(NO_2)_2$ b)	HgCl ₂	c) $Hg(NO_3)_2$	d) Hg ₂ Cl ₂
298. The fraction of chlorine precip	pitated by AgNO ₃ soluti	on from [Co(NH ₃) ₅ Cl]Cl ₂ is	S:
	2/3	c) 1/3	d) 1/4
299. Which statement is correct?	•	,	,
a) Cd rods are used in atomic	reactors to slow down	nuclear reaction	
b) Cd is a good absorber of ne			
c) CdS is used as pigment			
d) All of the above			
300. Acidified solution of chromic a	acid on treatment with	hydrogen peroxide vields	
a) CrO ₅ + H ₂ O		b) $H_2Cr_2O_7 + H_2O + O_2$	
c) $Cr_2O_3 + H_2O + O_2$		d) $CrO_3 + H_2O + O_2$	
301. Substance used in glazing pot	terv is:	uj dro3 + 1120 + 02	
	ZnCl ₂	c) Alum	d) Calome
302. The brown ring complex comp	_		-
a) +1 b)		c) $+3$	d) +4
303. For the four successive transit		,	
		c and co), the stability of	L Oxidation state will be
there in which of the following	g order?		
there in which of the following	g order?	ATION	
a) Cr > Mn > Co > Fe	g order? PLUS EDUC	ATION	
a) Cr > Mn > Co > Feb) Mn > Fe > Cr > Co	g order?	ATION	
a) Cr > Mn > Co > Feb) Mn > Fe > Cr > Coc) Fe > Mn > Co > Cr	g order? PLUS EDUC	ATION	
 a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr 	PLUS EDUC	ATION	
 a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 	Fe = 26, Co = 27)		1-2
 a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho 	Fe = 26, Co = 27) ds can't be used to prep		de?
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h	Fe = 26, Co = 27) ds can't be used to prep neated zinc		de?
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor	Fe = 26, Co = 27) ds can't be used to prepleated zinc ride over heated zinc		de?
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂	Fe = 26, Co = 27) ds can't be used to preparently properties of the contract		de?
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with	Fe = 26, Co = 27) ds can't be used to prepareted zinc ride over heated zinc $_2 \cdot 2H_2O$ a mercury (II) chloride		de?
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with 305. Prussian blue is due to format	Fe = 26, Co = 27) ds can't be used to prepare to the control of t	pare anhydrous zinc chloric	
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with 305. Prussian blue is due to format a) Fe[Fe(CN) ₆] ₃ b)	Fe = 26, Co = 27) ds can't be used to preparently be used to preparently considerable over heated zinc $_2 \cdot 2H_2O$ a mercury (II) chloride tion of $Fe_2[Fe(CN)_6]$	pare anhydrous zinc chloric c	d) $Fe_3[Fe(CN)_6]$
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with 305. Prussian blue is due to format a) Fe[Fe(CN) ₆] ₃ b) 3	Fe = 26, Co = 27) ds can't be used to prepare to the standard since and the standard since are supported by the standard standar	pare anhydrous zinc chloric chloric chloric chloric chloric chloric chloric chloric factors c for c	d) Fe ₃ [Fe(CN) ₆]
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with 305. Prussian blue is due to format a) Fe[Fe(CN) ₆] ₃ b) 306. For which one of the following a) CrO ₄ ²⁻ b)	Fe = 26, Co = 27) ds can't be used to prepare to the desired zinc ride over heated zinc $_2 \cdot 2H_2O$ a mercury (II) chloride tion of Fe ₂ [Fe(CN) ₆] g ions, the colour is not Cu(NH ₃) ₄ ²⁺	pare anhydrous zinc chloric c	
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with 305. Prussian blue is due to format a) Fe[Fe(CN) ₆] ₃ b) 306. For which one of the following a) CrO ₄ ² b) 307. Which of the following statem	Fe = 26, Co = 27) ds can't be used to prepare to the standard since and since are supported by the standard since are supported by the supported by the standard since are su	pare anhydrous zinc chloric chloric chloric chloric chloric chloric chloric chloric factors c for c	d) Fe ₃ [Fe(CN) ₆]
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with 305. Prussian blue is due to format a) Fe[Fe(CN) ₆] ₃ b) 306. For which one of the following a) CrO ₄ ² b) 307. Which of the following statem a) La(OH) ₃ is less basic than I	Fe = 26, Co = 27) ds can't be used to prepare to the standard since and since are supported by the standard since and support to the standard since are supported by the supported by the standard since are supp	c) Fe ₄ [Fe(CN) ₆] ₃ due to a $d-d$ transition? c) Ti(H ₂ O) ₆ ³⁺	d) Fe ₃ [Fe(CN) ₆]
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with 305. Prussian blue is due to format a) Fe[Fe(CN) ₆] ₃ b) 306. For which one of the following a) CrO ₄ ² b) 307. Which of the following statem	Fe = 26, Co = 27) ds can't be used to prepare to the standard since and since are supported by the standard since and support to the standard since are supported by the supported by the standard since are supp	c) Fe ₄ [Fe(CN) ₆] ₃ due to a $d-d$ transition? c) Ti(H ₂ O) ₆ ³⁺	d) Fe ₃ [Fe(CN) ₆]
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with 305. Prussian blue is due to format a) Fe[Fe(CN) ₆] ₃ b) 306. For which one of the following a) CrO ₄ ² b) 307. Which of the following statem a) La(OH) ₃ is less basic than I	Fe = 26, Co = 27) ds can't be used to prepare to the desired zinc ride over heated zinc $_2 \cdot 2H_2O$ a mercury (II) chloride tion of $Fe_2[Fe(CN)_6]$ g ions, the colour is not $Cu(NH_3)_4^{2+}$ tent is not correct? Lu(OH) ₃ adius of Ln ³⁺ ions decre	c) Fe ₄ [Fe(CN) ₆] ₃ due to a $d-d$ transition? c) Ti(H ₂ O) ₆ ³⁺	d) Fe ₃ [Fe(CN) ₆]
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with 305. Prussian blue is due to format a) Fe[Fe(CN) ₆] ₃ b) 306. For which one of the following a) CrO ₄ ² b) 307. Which of the following statem a) La(OH) ₃ is less basic than I b) In lanthanide series ionic reserved.	Fe = 26, Co = 27) ds can't be used to prepare the ated zinc ride over heated zinc $_2 \cdot 2H_2O$ a mercury (II) chloride tion of $Fe_2[Fe(CN)_6]$ g ions, the colour is not $Cu(NH_3)_4^{2+}$ tent is not correct? $Lu(OH)_3$ adius of Ln^{3+} ions decreated are diamagnetic	c) Fe ₄ [Fe(CN) ₆] ₃ due to a $d-d$ transition? c) Ti(H ₂ O) ₆ ³⁺	d) Fe ₃ [Fe(CN) ₆]
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with 305. Prussian blue is due to format a) Fe[Fe(CN) ₆] ₃ b) 3 306. For which one of the following a) CrO ₄ ² b) 3 307. Which of the following statem a) La(OH) ₃ is less basic than I b) In lanthanide series ionic racc) Zn, Cd, Hg are colourless ar	Fe = 26, Co = 27) ds can't be used to prepare the attention of the colour is not $Cu(NH_3)_4^{2+}$ then the solution of $Cu(NH_3)_4^{2+}$ then the colour is not correct?	c) $Fe_4[Fe(CN)_6]_3$ due to a $d-d$ transition? c) $Ti(H_2O)_6^{3+}$ ease	d) Fe ₃ [Fe(CN) ₆]
a) Cr > Mn > Co > Fe b) Mn > Fe > Cr > Co c) Fe > Mn > Co > Cr d) Co > Mn > Fe > Cr (At. Nos. Cr = 24, Mn = 25, 304. Which of the following metho a) Passing dry chlorine over h b) Passing dry hydrogen chlor c) Heating the crystal of ZnCl ₂ d) Distilling metallic zinc with 305. Prussian blue is due to format a) Fe[Fe(CN) ₆] ₃ b) 306. For which one of the following a) CrO ₄ ² b) 307. Which of the following statem a) La(OH) ₃ is less basic than I b) In lanthanide series ionic r c) Zn, Cd, Hg are colourless ar d) Mn shows maximum oxida 308. Which of the following lantha	Fe = 26, Co = 27) ds can't be used to prepare the attention of the colour is not $Cu(NH_3)_4^{2+}$ then the solution of $Cu(NH_3)_4^{2+}$ then the colour is not correct?	c) $Fe_4[Fe(CN)_6]_3$ due to a $d-d$ transition? c) $Ti(H_2O)_6^{3+}$ ease	d) Fe ₃ [Fe(CN) ₆]

	a) Mixture of potassium ferricyanide and animonium ferric citrate of ferric oxalate
	b) Sodium nitroprusside
	c) Prussian blue
	d) None of the above
310.	Colour in transition metal compounds is attributed to:
	a) Small sized metal ions
	b) Absorption of light in the UV region
	c) Complete <i>ns</i> -subshell
	d) $d - d$ transition
311.	Which is not ferromagnetic?
	a) Fe b) Co c) Ni d) V
312.	Various methods have been employed for protecting iron from rusting. Which of the following is incorrect?
	a) Zinc plating is more permanent than chrome plating
	b) Zinc protects iron but gets corroded itself
	c) Tin plating is cheap but unreliable
	d) None of the above
313.	A clock spring is heated to a high temperature and then suddenly plunged into cold water. This treatment
010.	will cause the metal to become:
	a) Soft and ductile
	b) More springy than before
	c) Hard and brittle (case hardening)
	d) Strongly magnetic
31 <i>1</i> .	Which has the lowest melting point?
317.	a) Cs b) Na c) Hg d) Sn
315	The temperature of the slag zone in the metallurgy of iron using blast furnace is
313.	a) 1200-1500°c b) 1500-1600°c c) 400-700°c d) 800-1000°c
216	Oxygen is absorbed by molten Ag, which is evolved on cooling and the silver particles are scattered; the
310.	phenomenon is known as:
217	
317.	Which of the following statements regarding copper salts is not true?
	a) Copper(I) Disproportionates into Cu and Cu(II) in aqueous solution Copper(I) can be stabilized by the formation of insoluble complex compounds such as Cu(II and
	Copper(I) can be stabilised by the formation of insoluble complex compounds such as $CuCl_2^-$ and $Cu(CN)_2^-$
	• • •
	c) Copper(I) oxide is red powder
210	d) Hydrated CuSO ₄ is Cu(H ₂ O) ₄]SO ₄ . H ₂ O
318.	Which compound cannot be prepared?
210	a) Zn(OH) ₂ b) Cd(OH) ₂ c) Hg(OH) ₂ d) HgCl ₂
319.	The colour of solution obtained by adding excess of KI in the solution of HgCl ₂ is:
220	a) Orange b) Brown c) Red d) Colourless
320.	Which of the following is the correct sequence of atomic weights of given elements?
224	a) $Co > Ni > Fe$ b) $Fe > Co > NI$ c) $Fe > Ni > Co$ d) $Ni > Co > Fe$
321.	Which of the following is known as lunar caustic when in the fused state?
	a) Silver nitrate b) Silver sulphate c) Silver chloride d) Sodium sulphate
322.	Silver chloride dissolves in a solution of ammonia but not in water because:
	a) Ammonia is a better solvent than water
	b) Silver ion forms a complex ion with ammonia
	c) Ammonia is a stronger base than water
	d) The dipole moment of water molecule is higher than that of ammonia molecule
323.	Which metal is ferromagnetic?

) C	1) [) <i>T</i>	15. 41
a) Cr	b) Fe	c) Zn	d) Al
324. Which of the following		-) Al (CO)	1) 7 60 711 0
a) ZnCl ₂	b) MgSO ₄ · 7H ₂ O	c) Al ₂ (SO ₄) ₃	d) ZnSO ₄ • 7H ₂ O
	of steel to temperature muc		
a) Annealing	b) Hardening	c) Tempering	d) Case hardening
326. "925 fine silver" mean	•	1.) 0.2 f 0/ A 1.7 f 0/ A	3
a) 7.5 % of Ag and 92.5		b) 92.5 % Ag and 7.5% (LU
c) 80% Ag and 20% Co		d) 90% Ag and 10% Cu	
327. The compound used in) 7. ()	D.C. Cl
a) NaCl	b) HgCl ₂	c) ZnCl ₂	d) CaCl ₂
328. In photography we use		.) A -Cl	D. AD
a) AgI	b) NH ₃	c) AgCl	d) AgBr
	man silver have one commor		D. C.
a) Zn	b) Fe	c) Al	d) Cu
	for making joins in jewellery		D. C. I
a) Zn	b) Cu	c) Ag	d) Cd
_	elements has the maximum	_	D. G.
a) V	b) Ti	c) Mn	d) Cr
332. Fulminating gold is:			
a) CuFeS ₂			
b) FeS ₂			
c) $Au(NH_2) = NH \text{ or } A$	uN ₂ H ₃		
d) AuCl ₃			
333. The transition metal p	700 1 100	2.371	Day
a) Fe	b) Co	c) Ni	d) Na
	nethod to protect bottom of	_	
a) Coating with red lea		b) Connecting with 'Pb'	block
c) Connecting with 'M	The state of the s	d) White tin plating	
335. The reaction $MnO_4^- + R$	$e \rightarrow \text{MnO}_4^2$ takes place in:		
a) Basic medium			
b) Acidic medium			
c) Neutral medium	1.		
d) Both acidic and bas		C 1 110	
	making cathode containers		D. F.
a) Zn	b) Bi	c) Cr	d) Fe
, ,	re made by heating iron rods	s embedded in charcoal po	wder. This process is known
as) al	D. A
a) Tempering	b) Case hardening	c) Sherardising	d) Annealing
	sed for the extraction of lead		
a) Self reduction and c		b) Self reduction and ele	•
c) carbon reduction ar		d) Cyanide process and	carbon reduction
339. The most stable oxidat			D
a) +2	b) +4	c) 0	d) +3
	anoids, which of the followin	_	
	ecrease in the radii of the me	embers with increasing ato	mic number in the series.
•	nibit +3 oxidation state.		
	properties the separation of l		
al i	lectrons results in the forma	tion of compounds in +4 st	cate for all members of the
series.			

341. The matte obtained in th	ne extraction of copper cont	tains:	
a) FeSiO ₂	b) SiO ₂ + FeS	c) FeS + Cu ₂ S	d) $CuS + SiO_2 + FeO$
342. The electronic configura	ntion of actinoids can to be a	assigned with degree of cer	tainty because of
a) Overlapping of inner	orbitals		
b) Free movement of ele	ectrons over all the orbitals		
c) Small energy differen	ice between 5 f and 6 d level	ls	
d) None of the above			
343. In Mac Arthur forrest m	ethod, silver is extracted fro	om the solution of Na[Ag(C	N) ₂] by the use of
a) Fe	b) Mg	c) Cu	d) Zn
344. Transition elements are	coloured		
a) Due to unpaired d -ell	ectrons	b) Due to small size	
c) Due to metallic natur		d) All of the above	
345. Which one of the elemen	nts with the following outer	orbital configurations may	exhibit the largest number
of oxidation states?			
a) $3d^24s^2$	b) $3d^34s^2$	c) $3d^54s^1$	d) $3d^54s^2$
346. Lanthanide contraction			
a) f -orbitals are incomp			
b) f -orbital electrons ar	•		
	e out on the surface of atom		
	poor shielders of nuclear c	-	
347. Silver nitrate produces a	a black stain on skin due to:		
a) Its corrosive action			
b) Its reduction to metal			
c) Its strong reducing ac	76		
d) The formation of a co	mplex compound		
348. The most stable ion is:		2.1	21
a) Mn ²⁺	b) Sc ⁴⁺	c) Fe ²⁺	d) Mn ³⁺
349. The $+3$ ion of which one			
a) La	b) Lu	c) Gd	d) Ce
350. Calomel may be freed fr			12. 4
a) dil HNO ₃	b) dil. H ₂ SO ₄	c) Water	d) Aqua regia
351. One of the following is fa			
a) It can evolve hydroge	en from H ₂ S		
b) It is metal	- L		
c) It has high specific he			
d) It is less reactive than	1 Н ₂		
352. Brass is an alloy of:	h) Cu and Cn	a) 7n and Cn	d) Cu. In and an
a) Zn and Cu	b) Cu and Sn	c) Zn and Sn	d) Cu, Zn and sn
353. Maximum paramagnetis			4) Eo
a) Mn	b) Co	c) Ni	d) Fe
354. The metal used for making	•		d) Chromium
a) Manganese	b) Aluminium	c) Lead	d) Chromium
355. Which of the following r seawater?	netais has been used in mak	ang boats because it has re	sistance to corrosion by
	k) C.,	a) N:	J) TT:
a) W	b) Cu	c) Ni	d) Ti
356. Which ore contains both		a) Chalconymita	d) Malachita
a) Cuprite Δ	b) Chalcocite	c) Chalcopyrite	d) Malachite
357. $K_2Cr_2O_7 \xrightarrow{\Delta} K_2CrO_4 + O_2$	$_2 + X$. In the above reaction	X is	
a) CrO ₃	b) Cr ₂ O ₇	c) Cr ₂ O ₃	d) CrO ₅

358. Blood red colour sol	ution is produced when ferric ch	nloride solution is treated	with:
a) KCN	b) KSCN	c) KCNO	d) $K_3[Fe(CN)_6]$
359. The group of metals	which is known as ferrous meta	ıls is:	
a) Fe, Co, Ni	b) Ru, Rh, Pd	c) Os, Ir, Pt	d) Cr, Mn, Cu
360. In the chemical reac	tion;		
$Ag_2O + H_2O + 2e^{-}$	→2Ag + 2OH ⁻		
a) Water is oxidised	b) Electrons are reduced	c) Silver is oxidised	d) Silver is reduced
361. Which is not correct	for transition metals?		
a) Variable oxidatio	n states		
b) Complex formation			
c) Partially filled d-c			
d) All the ions are co			
	$f[Ag(CN)_2]^-$ is zero. How many		
a) Zero	b) 4	c) 3	d) 1
363. The first man-made			
a) Os	b) Na	c) Zr	d) Tc
-	ng, the lowest degree of parama	gnetism per mole of the co	ompound at 298 K will be
shown by			
a) MnSO ₄ .4H ₂ O	b) NiSO ₄ .6H ₂ O	c) FeSO ₄ .6H ₂ O	d) CuSO ₄ .5H ₂ O
	oes not dissolve in hot, dil. HNO_3		
a) HgS	b) PbS	c) CuS	d) CdS
366. Heteropoly acids are			
a) Be	b) Fe	c) Mo	d) Cr
- ' '	hloride is heated and the vapour	so evolved are cooled, the	e substance on sublimation
thus collected consis			
a) Mercury and mer		b) Mercury (II) chloride	
	nercury (II) chloride	d) Mercury	
368. Steel contains:	OPLUS EDUC	ALION	
a) 2.5–4.5%C	b) 0.5–1.5%C	c) 0.12-0.25%C	d) 1–2%C
	ed in photography because they	are:	
a) Photosensitive			
b) Soluble in hypo so			
c) Soluble in NH ₄ OF			
d) Insoluble in acids			
	d wedding ring has become disc		
	er. Which of the following treatm	ents would restore it to its	s original condition?
a) Place it in hot str			
	lute hydrochloric acid		
c) Heat it gently in a			
d) Heat it in chloring			
371. Oxidation state of H		.) m	1) (7)
a) Zero	b) One	c) Two	d) Three
	of iron from an iron oxide ore, lin		
a) An oxidizing ager		c) A flux	d) A precipitating agent
	imber of copper in the complex f		
a) 4	b) 2	c) 6	d) 5
	lister copper" it is melted in a fu	rnace and is stirred with g	reen logs of wood. The
purpose is:	olved gases in the blister copper		
a i i u expel ule ulssu	orveu gases iii uie biistei copper		

	b) To bring the impurities	to surfaces and oxidise the	em		
	c) To increase the carbon	content of copper			
	d) To reduce the metallic	oxide impurities with hydr	oca	rbon gases liberated fro	m the wood
375.	Permanent magnets are go	enerally made of alloys of			
	a) Mn	b) Co	c)	Pb	d) Zn
376.	Which metal sulphide is no	ot black?			
	a) NiS	b) CoS	c)	CuS	d) ZnS
377.	The white solid that turns	black on addition of NH ₄ O	H is	s:	
	a) AgCl	b) PbCl ₂		Hg_2Cl_2	d) Hg_2I_2
378.	, ,	oresents ammonium molyb	_	<u> </u>	, 02 2
	a) $(NH_4)_2MoO_4$	-		$(NH_4)_2MoO_3$	d) NH ₄ . 12MoO ₃
379.	Gold and silver are called	= -	- ,	(4)23	, 4
<i>.</i>	a) They do not normally re				
	b) Even acids cannot disso				
	c) They are used in jewell				
	d) They are worn by noble	•			
200			٥f	Du ³⁺ ic	
300.		ellow. The expected colour b) Red			d) Croon
201	a) Yellow	*	Cj	Blue	d) Green
381.	Which is not an ore of iron		- 3	Caraltanita	Ditterment
202	a) Haematite	b) Magnetite	-	Cassiterite	d) Limonite
382.		olution to CuSO ₄ solution,			
	a) [Cu(NH ₃)] ⁺	b) $[Cu(NH_3)_4]^{2+}$	c)	[Cu(NH3)2]2+	d) None of these
383.	Other forms of iron can be				
	a) Cast iron	b) Wrought iron	c)	Pig iron	d) Steel
384.	The variety of iron having				
	a) Pig iron	b) Cast iron	c)	Wrought iron	d) Steel
385.	Most of the transition met	als are paramagnetic due t	o tł	ne presence of:	
		b) Completed <i>f</i> -orbitals	c)	Unpaired electrons	d) None of these
386.	Spelter is:				
	a) Impure Cu	b) Impure zinc	c)	ZnO	d) CuO
387.	Which of the following is p	hilosopher's wool?			
	a) ZnO	b) HgO	c)	Ag_2O	d) CuO
388.	The density of transition r	netalsin a series.			
	a) Gradually increases	b) Gradually decreases	c)	Remains constant	d) None of these
389.	Silver containing lead as in	npurity is purified by	_		-
	a) Poling	b) Cupellation	c)	Lavigation	d) Distillation
390.		ments is present as the imp		_	•
	a) Phosphorus	b) Manganese		Carbon	d) Silicon
391.	The magnetic moment of (-	-,		,
	a) 2.73	b) Zero	c)	1.93	d) 1.73
392	Percentage of nickel in nic		c,	1170	u) 1170
3,21	a) 1.5%	b) 3.5%	c)	6.5%	d) 8.5%
303	The formula of mercurous	-	C	0.5 /0	u) 0.5 /0
373.	a) Hg ⁺	b) Hg ₂ ⁺	a)	11,2+	d) None of these
204	, ,	·	Cj	Hg_2^{2+}	d) None of these
394.	Which pair consists only a		,	0.07.0	D.M. O.Al O
20-	a) CrO_3 , Mn_2O_7	b) ZnO_2 , Al_2O_3	-	CaO, ZnO	d) Na_2O , Al_2O_3
395.		the following metals invol			12.0
	a) Fe	b) Ag	c)	Al	d) Cu
396.	Nessler's reagent is:				

) IZII I	1 2 77 77 7	N. H. I. I. N. OH	DIZILLANDI
a) KHgI ₄	b) K ₂ HgI ₄	c) $K_2HgI_4 + NaOH$	d) KHgl ₄ + NaOH
397. Mac Arthur and Forest	· -		12.0
a) Cu	b) Ag and Au	c) Fe	d) Cr
398. Which is the chief ore o			
a) Galena	b) Copper pyrites	c) Sphalerite	d) Siderite
399. Spiegeleisen is an alloy			
a) Fe and Mn	b) Fe, Mn and C	c) Fe, Mn and Cr	d) Fe and Cr
400. Among the following io			
a) Cu ⁺	b) Cu ²⁺	c) Fe ²⁺	d) Mn ²⁺
401. Transition elements exl		es only. This is because of	:
a) Their large size of th			
b) Their electropositive			
c) Their electronegative			
d) Their paramagnetic			
402. Transition metal with lo	ow oxidation number will a	ct as	
a) An oxidizing agent	b) A base	c) An acid	d) None of these
403. The composition of bell	metal is		
a) Cu + Sn	b) Cu + Ni	c) Cu + Zn	d) Cu + Ag
404. The most correct stater	nent for transition metals is	5:	
a) They possess low b.p).		
b) They exhibit inert pa	ir effect		
c) They exhibit variable	e oxidation states		
d) They do not possess	catalytic property	2	
405. During the process of el	lectrolytic refining of coppe	r, some metals present as	impurity settle as 'anode
1)			
mud'.			
mud. These are			
These are a) Fe and Ni	b) Ag and Au	c) Pb and Zn	d) Se and Ag
These are	b) Ag and Au ion M^{x+} (Z = 24) has a spi	c) Pb and Zn n only magnetic moment o	
These are a) Fe and Ni 406. A compound of a metal	b) Ag and Au ion M^{x+} (Z = 24) has a spir ctrons in the compound are	n only magnetic moment o	
These are a) Fe and Ni 406. A compound of a metal	ion M^{x+} (Z = 24) has a spir	n only magnetic moment o	
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele	ion M^{x+} (Z = 24) has a spin ectrons in the compound are b) 4	n only magnetic moment c e:	of $\sqrt{15}$ Bohr Magnetons. The
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2	ion M^{x+} (Z = 24) has a spin ectrons in the compound are b) 4	n only magnetic moment c e:	of $\sqrt{15}$ Bohr Magnetons. The
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe	ion M^{x+} (Z = 24) has a spin ectrons in the compound are b) 4 nent is: b) Sc	n only magnetic moment c e: c) 5	of $\sqrt{15}$ Bohr Magnetons. The
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem	ion M^{x+} (Z = 24) has a spin ectrons in the compound are b) 4 nent is: b) Sc	n only magnetic moment c e: c) 5	of $\sqrt{15}$ Bohr Magnetons. The
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai	ion M^{x+} (Z = 24) has a spin ectrons in the compound are b) 4 nent is: b) Sc r gives:	n only magnetic moment o e: c) 5 c) Os	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is:	ion M^{x+} (Z = 24) has a spin ectrons in the compound are b) 4 nent is: b) Sc r gives:	n only magnetic moment of e: c) 5 c) Os c) Gold nitride	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O	ion M^{x+} (Z = 24) has a spin ectrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ .7H ₂ O	of √15 Bohr Magnetons. The d) 3 d) Co d) AuCl
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O 410. The metal which liberate	ion M^{x+} (Z = 24) has a spin ectrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ .7H ₂ O H solution is:	of √15 Bohr Magnetons. The d) 3 d) Co d) AuCl
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O 410. The metal which liberate a) Zn	ion M^{x+} (Z = 24) has a spin ctrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O tes hydrogen from hot NaO b) Cu	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ . 7H ₂ O H solution is: c) Ag	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co d) AuCl d) NiSO ₄ . $5\text{H}_2\text{O}$
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O 410. The metal which liberate a) Zn 411. A yellow precipitate will	ion M^{x+} (Z = 24) has a spin ctrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O tes hydrogen from hot NaO b) Cu	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ . 7H ₂ O H solution is: c) Ag dded to a solution of:	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co d) AuCl d) NiSO ₄ . $5H_2O$ d) Fe
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O 410. The metal which liberate a) Zn 411. A yellow precipitate will a) KIO ₃	ion M^{x+} (Z = 24) has a spin ctrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O tes hydrogen from hot NaO b) Cu ll be obtained if AgNO ₃ is ac b) KI	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ . 7H ₂ O H solution is: c) Ag dded to a solution of: c) CHI ₃	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co d) AuCl d) NiSO ₄ . $5\text{H}_2\text{O}$
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O 410. The metal which liberat a) Zn 411. A yellow precipitate will a) KIO ₃ 412. Which form of iron has	ion M^{x+} (Z = 24) has a spin ctrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O tes hydrogen from hot NaO b) Cu ll be obtained if AgNO ₃ is ac b) KI	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ . 7H ₂ O H solution is: c) Ag dded to a solution of: c) CHI ₃	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co d) AuCl d) NiSO ₄ . $5H_2O$ d) Fe
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O 410. The metal which liberat a) Zn 411. A yellow precipitate will a) KIO ₃ 412. Which form of iron has a) Cast iron	ion M^{x+} (Z = 24) has a spin ctrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O tes hydrogen from hot NaO b) Cu ll be obtained if AgNO ₃ is ac b) KI	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ . 7H ₂ O H solution is: c) Ag dded to a solution of: c) CHI ₃	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co d) AuCl d) NiSO ₄ . $5H_2O$ d) Fe
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O 410. The metal which liberat a) Zn 411. A yellow precipitate wil a) KIO ₃ 412. Which form of iron has a) Cast iron b) Wrought iron	ion M^{x+} (Z = 24) has a spin ctrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O tes hydrogen from hot NaO b) Cu ll be obtained if AgNO ₃ is ac b) KI	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ . 7H ₂ O H solution is: c) Ag dded to a solution of: c) CHI ₃	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co d) AuCl d) NiSO ₄ . $5H_2O$ d) Fe
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O 410. The metal which liberat a) Zn 411. A yellow precipitate will a) KIO ₃ 412. Which form of iron has a) Cast iron b) Wrought iron c) Steel	ion M^{x+} (Z = 24) has a spin ctrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O tes hydrogen from hot NaO b) Cu ll be obtained if AgNO ₃ is and b) KI lowest percentage of carbo	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ . 7H ₂ O H solution is: c) Ag dded to a solution of: c) CHI ₃	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co d) AuCl d) NiSO ₄ . $5H_2O$ d) Fe
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O 410. The metal which liberate a) Zn 411. A yellow precipitate will a) KIO ₃ 412. Which form of iron has a) Cast iron b) Wrought iron c) Steel d) All have same percer	ion M^{x+} (Z = 24) has a spinotrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O tes hydrogen from hot NaO b) Cu ll be obtained if AgNO ₃ is ac b) KI lowest percentage of carbo	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ . 7H ₂ O H solution is: c) Ag dded to a solution of: c) CHI ₃	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co d) AuCl d) NiSO ₄ . $5H_2O$ d) Fe
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O 410. The metal which liberat a) Zn 411. A yellow precipitate wil a) KIO ₃ 412. Which form of iron has a) Cast iron b) Wrought iron c) Steel d) All have same percer 413. The element that does in	ion M^{x+} (Z = 24) has a spinotrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O tes hydrogen from hot NaO b) Cu ll be obtained if AgNO ₃ is ac b) KI lowest percentage of carbo	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ . 7H ₂ O H solution is: c) Ag dded to a solution of: c) CHI ₃ n?	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co d) AuCl d) NiSO ₄ . $5H_2O$ d) Fe d) CH_2I_2
These are a) Fe and Ni 406. A compound of a metal number of unpaired ele a) 2 407. Lightest transition elem a) Fe 408. AuCl ₃ when heated in ai a) Gold oxide 409. White vitriol is: a) CuSO ₄ . 5H ₂ O 410. The metal which liberate a) Zn 411. A yellow precipitate will a) KIO ₃ 412. Which form of iron has a) Cast iron b) Wrought iron c) Steel d) All have same percer	ion M^{x+} (Z = 24) has a spinor ctrons in the compound are b) 4 nent is: b) Sc r gives: b) Gold perchlorate b) FeSO ₄ . 7H ₂ O tes hydrogen from hot NaO b) Cu Il be obtained if AgNO ₃ is acob) KI lowest percentage of carbo htage not form a nitride is: b) Mg	n only magnetic moment of e: c) 5 c) Os c) Gold nitride c) ZnSO ₄ . 7H ₂ O H solution is: c) Ag dded to a solution of: c) CHI ₃ n?	of $\sqrt{15}$ Bohr Magnetons. The d) 3 d) Co d) AuCl d) NiSO ₄ . $5\text{H}_2\text{O}$ d) Fe d) $C\text{H}_2\text{I}_2$

 a) Chromate ions are reduced. b) Chromate ions are oxidised. c) Mono centric complex is converted into dicentric d) Oxygen gets removed from chromate ions. 415. Copper exhibits only +2 oxidation state in its stable a) Copper is transition metal in +2 state. b) +2 state compounds of copper are formed by ex c) Electron configuration of copper in +2 state is [Additional compounds of copper in +2 state is [Additional copper gives coloured compounds in +2 state. 416. In blast furnace the highest temperature is in: a) Reduction zone b) Slag zone 417. Anhydrous ferric chloride is prepared by a) Dissolving Fe(OH)3 in concentrated HCl. c) Passing dry HCl over heated iron scrap. 418. Green vitriol is 	e compounds. Why?	er heated iron scrap.
a) FeSO ₄ . 7H ₂ O b) ZnSO ₄ . 7H ₂ O	c) CuSO ₄ . 5H ₂ O	d) CaSO ₄ . $\frac{1}{2}$ H ₂ O
419. Photographic films or plates have as an essential a) Silver bromide b) Silver oxide 420. During the extraction of gold the following reaction $Au + CN^{-} + H_{2}O \xrightarrow{O_{2}} [X]$ $[X] + Zn \longrightarrow [Y] + Au$	c) Silver thiosulphate	d) Silver nitrate
X and Y are respectively a) $[Au(CN)_2]^-$ and $[Zn(CN)_6]^{4-}$ c) $[Au(CN)_4]^{3-}$ and $[Zn(CN)_4]^{2-}$	b) [Au(CN) ₄] ^{2–} and [Zn(C d) [Au(CN) ₂] [–] and [Zn(Cl	· •-
421. Second series of transition elements starts with: a) Yttrium b) Chromium 422. The electronic configuration of chromium is a) $[Ne]3s^23p^63d^44s^2$	c) Zinc b) [Ne]3s ² 3p ⁶ 3d ⁵ 4s ¹	d) Scandium
c) [Ne] $3s^23p^53d^54s^2$ 423. Which of the following belongs to the actinoid series	d) [Ne] $3s^23p^53d^64s^1$	
a) Y b) Ta	c) U	d) Lu
 424. Which of the following statements is not true in reg a) All their ions are colourless b) They show variable valency c) They readily form complex compounds d) Their ions contain partially filled <i>d</i>-elelctron level 		
425. Sterling silver: a) Is an alloy of Ag + Cu b) Contains 80% Ag + 20% Cu c) Is used in jewellery d) All of the above		
 426. The impurity of sulphur makes the iron: a) Fibrous b) Red short 427. In Cu (Z = 29): a) 13 electrons have spin in one direction and 16 el b) 14 electrons have spin in one direction and 15 el c) All the electrons have spin in one direction d) None of the above 		d) Malleable

428. Which of the following has the maximum number	of unpaired d -elelments?	
a) Fe ²⁺ b) Cu ⁺	c) Zn	d) Ni ³⁺
429. Zn cannot displace the following ions from their ac	queous solutions:	•
a) Ag ⁺ b) Cu ²⁺	c) Fe ²⁺	d) Na ⁺
430. The lanthanide contraction is responsible for the f	act that	
a) Zr and Zn have the same oxidation state	b) Zr and Hf have abou	t the same radius
c) Zr and Nb have similar oxidation state	d) Zr and Y have about	
431. Prussian blue is formed when:	•	
a) Ferrous sulphate reacts with FeCl ₃		
b) Ferric sulphate reacts with K ₄ [Fe(CN) ₆]		
c) Ferrous ammonium sulphate reacts with FeCl ₃		
d) Ammonium sulphate reacts with FeCl ₃		
432. On the extraction of iron, the slag produced is		
a) CO b) FeSiO ₃	c) MgSiO ₃	d) CaSiO ₃
433. In the purification of copper by electrolysis, which		, ,
a) Acidic solution of Cu(II) sulphate is used		
b) H ₃ O ⁺ ion is discharged at cathode		
c) Anode is made of Impure copper		
d) OH ⁻ is discharged at anode		
434. $HgCl_2$ is reduced to Hg_2Cl_2 by:		
a) CH ₃ COOH b) CCl ₄	с) НСООН	d) NH ₃
435. Among the following the compound that is both pa	-	
a) $K_2Cr_2O_7$ b) $(NH_4)_2[TiCl_6]$	c) VOSO ₄	d) $K_3[Cu(CN)_4]$
436. Ferrous sulphate (FeSO ₄ . 7H ₂ O) is known as	c) v0004	uj 113[0u(011)4]
a) Vermillion b) Glauber's salt	c) Green vitriol	d) Mohr's salt
437. Identify the reaction that does not take place in a l	•	uj Moin 3 sait
a) $CaCO_3 \rightarrow CaO + CO_2$	b) $CaO + SiO_2 \rightarrow CaSi$	0-
c) $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$	d) $CO_2 + C \rightarrow 2CO$	03
438. The number of incomplete orbitals in inner transit		
a) 3 b) 4	c) 2	d) 1
439. The final step in the metallurgical extraction of Cu	,	,
converter. The reaction taking place is:	metar from eu pyrites takt	es place in a besseller
a) $Cu_2S + O_2 \rightarrow 2Cu + SO_2$		
b) $4Cu_2O + FeS \rightarrow 8Cu + FeSO_4$		
c) $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$		
d) $Cu_2S + 2FeO \rightarrow 2CuO + 2Fe + SO_2$		
440. The smelting of iron in a blast furnace involves the	e following processes:	
a) Combustion b) Reduction	c) Slag formation	d) All of these
441. The flux used in the smelting of copper is:	c) siag for mation	uj Ali oi tilese
a) Limestone b) Magnesia	c) Silica	d) Coke
442. The magnetic moment of a salt containing Zn ²⁺ ior	•	u) coke
	c) 5.92	d) 2
	•	d) 2
443. The common metal in brass, bronze and german s a) Cu b) Mg		d) 7n
, ,	c) Al	d) Zn
444. Which of the following is not a member of $3d$ -tran		d) Cu
a) Fe b) Co	c) Au	d) Cu
445. The formula of azurite is	a) (u(0 20-(011)	4) Cheo - Chi(OII)
a) CuCO ₃ . Cu(OH) ₂ b) 2CuCO ₃ . Cu(OH) ₂	c) CuCO ₃ .2Cu(OH) ₂	d) CuSO ₄ . Cu(OH) ₂

a) Fe ₃ O ₄	b) Fe ₂ O ₃	c) FeCO ₃	d) FeS ₂
447. A substance which	n turns blue when treated with wa	ater is:	
a) CuSO ₄	b) CuSO ₄ . 5H ₂ O	c) CoSO ₄	d) $Au_2(SO_4)_3$
448. Which metal does			
a) Fe	b) Cu	c) Ag	d) Zn
449. Which of the follow	wing is correct?		
a) Calomel is mero	curic chloride		
b) Calomel is wide	ly used as an antiseptic		
c) Calomel is used	medically as purgative		
d) Calomel is freel	y soluble in water		
450. The process used i	in obtaining metallic silver from a	rgentite is:	
a) Fused mixture	of Ag ₂ S and KCl is electrolysed		
b) Ag ₂ S is reduced	l with CO		
c) Ag ₂ S is roasted	to $\mbox{Ag}_2\mbox{O}$ which is reduced with \mbox{C}		
d) Treating with N	IaCN solution followed by metal d	isplacement with zinc	
451. Which one of the f	ollowing pairs of substances on re	eaction will not evolve $ m H_2$ g	gas?
a) Iron and H ₂ SO ₄	(aq)		
b) Iron and steam			
c) Copper and HCl	l(g)		
d) Sodium and eth	yl alcohol		
452. Which statement a	about group 12 elements is wrong	g?	
a) Zinc forms an a	lloy with copper		
b) Zn ₂ +is stable	- h	2	
c) Mercury gives o	compounds with +1 and +2 valen	cies	
d) Hg is a liquid el	ement		
453. Which of the follow	wing is coated over iron articles to	o protect iron from corrosi	on?
a) Paint	b) Zinc metal	c) Tin metal	d) All of these
454. The gas obtained b	by reactions of K_4 Fe(CN) ₆ with co	onc. H ₂ SO ₄ is	
a) H ₂ S	b) CO	c) NO ₂	d) CO ₂
455. Blister copper is			
a) Impure Cu		b) Cu alloy	
c) Pure Cu		d) Cu having 1% impurit	y
456. Effective magnetic	moment of Sc ³⁺ ion is		
a) 1.73	b) 0	c) 5.92	d) 2.83
457. ZnS containing mi	nute traces of MnS becomes:		
a) Deliquescent	b) Phosphorescent	c) Hygroscopic	d) None of these
458. Platinum metal ca	n be dissolved in:		
a) Hot concentrate	ed hydrochloric acid		
b) Hot concentrate	ed nitric acid		
c) Hot dilute sulph	nuric acid		
d) A mixture of hy	drochloric and nitric acids		
459. Ruthenium carbor	ıyl is:		
a) $Ru(CO)_4$	b) Ru(CO) ₅	c) $Ru(CO)_8$	d) Ru(CO) ₆
460. Preparation of loo	king mirrors involves the use of:		
a) Red lead			
b) Ammoniacal sil	ver nitrate		
c) Ammoniacal Ag	NO ₃ +red lead		
d) Ammoniacal Ag	NO_3 +red lead + HCHO		
461. In the dichromate	dianion:		

	a) 4 Cr—0 bonds are equ	ivalent			
	b) 6 Cr—0 bonds are equ	ivalent			
	c) all Cr—0 bonds are equivalent				
	d) all Cr—O bonds are no	n-equivalent			
462	. In the electrolytic purifica	ation of copper some gold is	s found in the:		
	a) Cathode	b) Cathode mud	c) Anode mud	d) None of these	
463	Percentage of gold in 21.6	carat gold is:			
	a) 21.6	b) 90	c) 10	d) 70	
464	. An explosion takes place	when conc. H ₂ SO ₄ is added	to KMnO ₄ . Which of the foll	lowing is formed?	
	a) Mn_2O_7	b) MnO ₂	c) MnSO ₄	d) Mn_2O_3	
465	. Which statement is not co	· -	•	, 2 0	
	a) Fe(CO) ₅ reacts with Br	: ₂ Cl ₄			
		re usually formed with trans	sition metals		
		rm mono metallic carbonyl			
		$Ni(CO)_4$ to give Ni is used ir		nd's process	
466		dation state of the first tran		F	
	a) +2	b) +6	c) +8	d) +4	
467	. Which of the following is	•		,	
	a) Duralumin : Al + Cu -		b) German silver: Cu + Z	n + C	
	c) Gun metal: Cu + Zn +		d) Solder: Pb + Al	, ,	
468		ncrease in iron, its hardnes			
100	a) Decreases	b) Increases	c) Remains same	d) None of these	
469	. Which oxide of Mn is acid		c) Remains same	a) None of these	
107	a) MnO	b) Mn ₂ O ₇	c) Mn ₂ O ₃	d) MnO ₂	
470		(I_2) can be used to distinguing		uj imioz	
170	a) Formic acid and acetic		b) Acetaldehyde and buta	none	
	c) Formaldehyde and pro		d) All of the above	none	
<i>4</i> 71	. KMn 0_4 in basic medium i		d) All of the above		
7/1	a) Strong oxidising agent		b) Strong reducing agent		
	c) Strong hydrogenating a		d) Poor reducing agent		
472		agent anged inof periodic table			
4/2	a) Three series	b) Six series	c) Two series	d) Four series	
172	•	ig metals is extracted by a c	•	d) Four series	
4/3	a) Copper	b) Iron	-	d) Magnasium	
474	,	on from Ioment of Mn ⁴⁺ ion is nearl	c) Aluminium	d) Magnesium	
4/4			-	J) □ DM	
475	a) 3 BM	b) 6 BM	c) 4 BM	d) 5 BM	
4/5	Coinage alloy has the com		-) A 7 A	J) A = 1 F = 1 C ==	
456	a) Ag + Cu + Ni	b) Au + Ag + Cu	c) $Au + Zn + Ag$	d) Ag + Fe + Cu	
4/6	-	used for sterilization of sur	=	D. 7. 0	
	a) HgCl ₂	b) ZnCl ₂	c) Hg_2Cl_2	d) ZnO	
477	. Rusting of iron in moist ai				
	a) Loss of electrons by Fe				
	b) Gain of electrons by Fe				
	c) Neither gain nor loss o	f electrons			
	d) Hydration of Fe				
478		red compound with acetic a	cid and potassium ferrocya	nide is obtained from a salt	
	solution containing:				
	a) Cu	b) Cd	c) Sn	d) Hg	
479	. What is the oxidation stat	e of iron in Mohr's salt?			

a) +3	b) 0	c) +2	d) +1
480. Chrome green is	h) Characiana anlah ata	a) Characiana anida	d) Character ablant de
a) Chromium nitrate	b) Chromium sulphate	c) Chromium oxide	d) Chromium chloride
481. Which lanthanoid compo	ound is used as a most pow	eriui iiquid iasers aiter dis	solving it in selenium
oxychloride?	15.57		D.G. 1. 1. 1.
a) Cerium oxide	b) Neodymium oxide	c) Promethium sulphate	
482. A transition metal ion ex	lists in its highest oxidation	_	
a) A chelating agent		b) A central metal in a co	oordination compound
c) An oxidising agent	a	d) A reducing agent	
483. For d -block elements the	e first ionisation potential i		
a) $Zn > Fe > Cu > Cr$		b) $Sc = Ti < V = Cr$	
c) $Zn < Cu < Ni < Co$		d) $V > Cr > Mn > Fe$	
484. Metallic bond is stronger		alkali and alkaline earth me	etals because of:
	rons including d -electrons		
b) Large size of the atom	ıs		
c) Paramagnetism			
d) Diamagnetism			
485. Automobile engine block	ks are made up of:		
a) Stainless steel			
b) Nickel-chromium stee	el		
c) Cast iron			
d) Wrought iron			
486. Silver amalgam is used in			
a) Silvering of mirror	b) Filling of teeth	c) Both (a) and (b)	d) None of these
487. Which statement is not c	and the same of th		
-	e oxidises a secondary alco		
-	nate is a weaker oxidising		dichromate
	nate is a stronger oxidizing	substance	
d) All of the above staten			
488. The pair of metals which			
a) Al, Cu	b) Zn, Cd	c) Pb, Sn	d) Zn, Al
489. The catalytic activity of t	the transition metals and th	ieir compounds is ascribed	to their
a) Magnetic behavior			
b) Chemical reactivity			
	ple oxidation states and the	eir complexing ability	
d) Unfilled <i>d</i> -orbitals			
490. Acidified potassium dich	romate is treated with hyd	rogen sulphide. In the reac	ction the oxidation number of
chromium:	_		
a) Increases from +3 to			
b) Decreases from +6 to	+3		
c) Remains unchanged			
d) Decreases from +6 to			
491. Zinc reacts with conc. H_2			
a) ZnSO ₄	b) ZnCO ₃	c) Zn	d) None of these
492. In which metal's metallu	= =		
a) Na	b) Ag	c) Fe	d) Hg
493. A metal which is 'not' aff			
can be used to give a con	nplex which finds its applic	ation for toning in photogr	
a) Au	b) Ag	c) Hg	d) Cu

GPLUS EDUCATION

494. Lithopone, a white pigm	ent, consists of:		
a) Al ₂ O ₃ and CaCO ₃	b) BaS and PbSO ₄	c) ZnS and BaSO ₄	d) PbS and MgO
495. The aqueous solution co	ontaining which one of the f	ollowing ions will be colour	less?
a) Ti ³⁺	b) Mn ²⁺	c) Sc ³⁺	d) Fe ²⁺
496. Among the lanthanoids	which was obtained by synt	thetic methods?	
a) Lu	b) Pm	c) Pr	d) Gd
497. The tendency to show c	omplex formation is maxim	um in:	
a) s-block elements	b) p-block elements	c) <i>d</i> -block elements	d) f-block elements
498. $5f$ -level is successively	-		
a) Lanthanoids	b) Actinoids	c) Rare gases	d) Transition elements
499. Potassium manganate (
	aqueous KMnO ₄ solution		
b) MnO ₂ is fused with K			
	with KMnO ₄ in presence of	f strong alkali	
d) KMnO ₄ reacts with co			
500. The sandstone in some		S. * .	
a) Carbon filters	b) Compressed air	c) Limestone	d) Sulphuric acid
501. Copper sulphate solutio			DIV CC (CNI) 1
a) $K_3[Cu(CN)_4]$	b) CuCN	c) Cu(CN) ₂	d) $K_2[Cu(CN)_4]$
502. Which of the following i			J) 7 . 2+
a) Ti ³⁺	b) Sc ³⁺	c) Mn ²⁺	d) Zn ²⁺
503. The colour of Mohr's sal			d) Dlug
504. Of the ions Zn ²⁺ , Ni ²⁺ an		c) Violet	d) Blue
a) All three are coloured	76	211-30, $111-20$, $11-24$)	
b) All three are colourle			
-	ss and Ni ²⁺ and Cr ³⁺ are co	loured	
	and Zn ²⁺ and Cr ³⁺ are cold		
505. A reagent that can separ		our less	
a) NaOH	b) HCl	c) H ₂ S	d) NaNO ₂
506. KMnO ₄ in basic medium	•	0) 1120	a) 1.a
a) K_2MnO_4	b) MnO ₂	c) Mn(OH) ₂	d) Mn ²⁺
507. Which of the following 6		-	,
a) Ag	b) Fe	c) Cu	d) V
508. Transition metals form	complexes in their zero oxid	dation state. The example of	•
a) $Mn_2(CO)_{10}$	b) [Cu(NH ₃) ₄]Cl ₂	c) Zn ₂ [Fe(CN) ₆]	d) $[Ag(NH_3)_2]OH$
509. Which one of the follow	ing properties would you n	ot expect copper to exhibit?	
a) Malleability			
b) High thermal conduc	tivity		
c) Low electrical condu	ctivity		
d) Ductility			
510. Calomel is:			
a) Hg ₂ Cl ₂ and Hg	b) HgCl ₂	c) $Hg + HgCl_2$	d) Hg ₂ Cl ₂
511. Which of the following r	-	ping in photography?	
a) $AgNO_3 + NaBr \rightarrow Ag$			
b) $AgBr + 2NH_3 \rightarrow [Ag$			
	\rightarrow Na ₃ [Ag(S ₂ O ₃) ₂] + NaBr		
	$C_6H_4O_2 + 2HBr + 2Ag$		
512. Extraction for zinc from	zinc blende is achieved by		

a) Electrolyt	ic reduction		
-	followed by reduction with carbon		
	followed by reduction with another	metal	
d) Roasting f	followed by self reduction		
513. Chromium c	ompound used in tanning of leather	is:	
a) Cr_2O_3	b) CrO ₂ Cl ₂	c) CrCl ₃	d) K_2SO_4 . $Cr_2(SO_4)_3$. $24H_2$
514. FeSO ₄ . (NH ₄	$_{2}$ SO ₄ . 6H ₂ O is called		
a) Green salt	b) Glauber's salt	c) Mohr's salt	d) Alum
515. When MnO ₂	is fused with KOH, a coloured comp	pound formed, the product	and its colour is
a) K_2MnO_4 ,	purple colour b) KMnO4, purple	c) Mn ₂ O ₃ , brown	d) Mn ₃ O ₄ , black
516. Anhydrous (CuCl ₂ and CuBr ₂ exist as:		
a) Monomer	b) Dimer	c) Trimer	d) polymer
517. From a solut	tion of $CuSO_4$, the metal used to reco	over copper is :	
a) Na	b) Ag	c) Hg	d) Fe
518. When MnO_4	is fused with KOH, a coloured comp	oound is formed. The produ	ct and its colour is
	purple colour	b) Mn ₂ O ₃ , brown	
c) Mn ₂ O ₄ , bl		d) KMnO ₄ , purple	
· ·	58) is an important member of the	lanthanides. Which of the f	ollowing statements about
cerium is inc			
-	non oxidation state of cerium are +		
-	kidation state of cerium is more stal		ate.
•	kidation state of cerium is not know	n in solutions.	
	V) acts as an oxidizing agent.		
	is used for filament of electric bulb		
a) Pt	b) Fe	c) W	d) Cu
	t show variable valency like <i>d</i> -block	k elements because	
a) It is low n	nelting	LCATION	
	is complete TPLUS E	DOWLION	
c) It is a soft		1.6	
-	rons are present in the outermost o		
	bin the iron shows oxidation state:		D + 4
a) +2	b) +3	c) +1	d) +4
	ol's gold' is used for a mineral which		D.C. doubles and all the
a) Iron pyrit	, ,, ,	c) Cinnabar	d) Cadmium sulphide
	solution of CuSO ₄ and NH ₄ OH gives	a deep blue complex of:	
	onium sulphate		
	onium hydroxide		
•	exametaphosphate		
d) None of th			
	of steel are removed by adding:	a) Cand	d) Criegoloigen
a) C	b) Ni	c) Sand	d) Spiegeleisen
	TiO ₂ and BaSO ₄ is called	a) White nigment	d) None of these
a) Titanox	b) Lithopone	c) White pigment	d) None of these
	following has highest b.p.? b) Ti	a) Eo	d) Co
a) Cr	•	c) Fe	d) Co
a) Fe, Co, Ni	o of metals is known as Pt-metals? b) Ag, Au, Cu	c) 7n Cd Ua	d) Ru, Rh, Pd
529. The compou		c) Zn, Cd, Hg	uj nu, nii, ru
	spinel compound	b) Interstitial compo	ınd
a j ri livi illdi	apinei compound	o j milei suliai compol	anu

c) Coordination compound		d) Double salt compound			
530. Iron exhibits $+2$ and $+3$ oxidation states. Which of the following statements about iron is incorrect?					
a) Ferrous compounds are relatively more ionic than the corresponding ferric compounds.					
b) Ferrous compounds are less volatile than the corresponding ferric compounds.					
c) Ferrous compounds are more easily hydrolysed than the corresponding ferric compounds.					
d) Ferrous oxide is more basi	c in nature than the fer	ric oxide.			
531. Iron is manufactured from the	e ore				
a) Haematite b)	Cryolite	c) Bauxite	d) Chalcopyrite		
532. After partial roasting the sulp	hide ore of copper is re	educed by:			
a) Reduction by carbon b)	Electrolysis	c) Self reduction	d) Cyanide process		
533. The bonds presents in the str	ucture of dichromate ic	on are			
a) Four equivalent Cr— O bonds only.					
b) Six equivalent Cr — O bonds and one O— O bond.					
c) Six equivalent Cr — O bonds and one Cr— Cr bond.					
d) Six equivalent Cr — O bond					
534. Cu ²⁺ ions would be reduced t			adileons.		
	KCl solution	c) K ₂ CO ₃ solution	d) K_2SO_4 solution		
535. Which one of the following ele		· - ·	uj K ₂ 50 ₄ solution		
_	Oxygen	c) Sulphur	d) Graphite		
536. Percentage of silver in Germa	• •	c) Suiphui	u) drupinte		
	2.5%	c) 10%	d) Zero percent		
537. Oxford process is used in extr		C) 1070	uj zero percent		
a) Fe b)		c) Pt	d) Ni		
538. One of the product formed wh	1 70	,	uj M		
	$\operatorname{Cr}_2(\operatorname{SO}_4)_3$	c) Cr_2O_3	d) CrO ₄ Cl ₂		
539. Addition of $K_4[Fe(CN)_6]$ solu			u) di 04 di 2		
	Ferri – ferrocyanide		d) None of these		
540. The reaction between copper			a) Hone of these		
	SO ₃	c) H ₂	d) Cu ⁺ ions		
541. Red hot steel rod on suddenly	-	· -	.,		
-	Hard and brittle	c) Tough and ductile	d) Fibrous		
542. Which of the following is obta		=	•		
	Na[AuCl ₂]	c) Na[AuCl ₃]	d) Na[AuCl ₄]		
543. Lanthanum is grouped with f	3	, , ,) [1]		
a) It has partially filled f -orbi					
b) It has both partially filled f					
c) The properties of lanthanu		ne elements of 4 <i>f</i> -block			
d) It is just before Ce in the Pe		,			
544. The point of dissimilarity bet		ictinides is			
a) Three outermost shells are		b) They show oxidation st	tate of +3 (common)		
c) They are called inner trans	sition elements	d) They are radioactive in			
545. Which of the following is called		•			
_	$MgSO_4.7H_2O$	c) $Al_2(SO_4)_3$	d) ZnSO ₄ . 7H ₂ O		
546. Which metal is purified by Pa		, <u>.</u>	· -		
	Au	c) Fe	d) Sb		
547. Which of the following have h					
_	s- block elements	c) <i>d</i> -block elements	d) None of the above		
548. Ferric oxide in furnace is redu	aced by:				
a) C b)	H_2	c) CO	d) CO ₂		

549. Which statement is incor	rect?		
a) Iron belongs to 3 <i>d-</i> tra	nsition series of the period	ic table	
b) Iron belongs to f-bloc	k of the periodic table		
c) Iron belongs to first tr	ansition series		
d) Iron belongs to group	VIII of the periodic table		
550. In India, iron is obtained	from the ore:		
a) Cassiterite	b) Azurite	c) Haematite	d) Cryolite
551. The Fe ²⁺ ion is:			
a) Blue	b) Light green	c) Very dark green	d) Yellow
552. Which ion in aqueous me	edium has orange colour?		
a) Cr ₂ O ₇ ²⁻	b) Cr ³⁺	c) MnO ₄	d) MnO ₄ ²⁻
553. The compound widely us	sed in making reference ele	ctrode is:	
a) ZnCl ₂	b) CuSO ₄	c) Hg ₂ Cl ₂	d) HgCl ₂
554. Which statement is incor	rect about transition eleme	ents	
a) All elements form com	plexes		
b) All are paramagnetic			
c) All show variable vale	ncy		
d) All are not coloured io	ns		
555. The magnetic moment of	a transition metal ion is 3.8	87 BM. The number of unpa	aired electrons present in it
is			
a) 2	b) 3	c) 4	d) 5
556. Which of the following is	a lanthanoid?		
a) Ta	b) Rh	c) Th	d) Lu
557. The flux used in solderin	g is:		
a) HgO	b) ZnO	c) CdO	d) None of these
558. Ferric sulphate on heatin	ng gives:		
a) SO_2 and SO_3	b) SO ₂ only	c) SO ₃ only	d) S only
559. The raw materials fed in	to the blast furnace for mak	ting iron are:	
a) FeO, CaCO ₃ and coke			
b) Fe_2O_3 , CaO and coke			
c) Fe_2O_3 , $CaCO_3$ and cok	te		
d) $\mathrm{Fe_3O_4}$, $\mathrm{Ca(OH)_2}$ and $\mathrm{condent}$	oke		
560. Which statement about of	orrosive sublimate is incor	rect?	
a) It is prepared by heati	ng mercury in chlorine		
b) It reduces stannic chlo	oride		
c) It oxidizes stannous cl	nloride		
d) It sublimes readily			
561. Chalcopyrites is an ore o	f		
a) Gallium	b) Copper	c) Calcium	d) Magnesium
562. Siderite is an ore of			
a) Cu	b) Al	c) Ag	d) Fe
563. Which one of the following	ng metals, is extracted on si	melting of its ore in blast fu	rnace?
a) Iron	b) Sodium	c) Potassium	d) Magnesium
564. Chromium is used in mal	king:		
a) Bronze	b) Brass	c) Stainless steel	d) Electrodes
565. Which lanthanide compo			
a) CeO ₂	b) $Ce(OH)_3$	c) Lu(OH) ₃	d) $Tb(OH)_3$
566. In the extraction of Zn, th	ne formation of blue flame is	s due to the burning of:	
a) ZnO	b) C	c) Zn	d) CO

567. Among the following the	coloured compound is		
a) CuCl	b) $K_3[Cu(CN)_4]$	c) CuF ₂	d) $[Cu(CH_3CN)_4]BF_4$
568. What is the correct order	r of spin only magnetic mor	nent (in BM) of $\mathrm{Mn^{2+}}$, $\mathrm{Cr^{2+}}$	
a) $Mn^{2+} > V^{2+} > Cr^{2+}$	b) $V^{2+} > Cr^{2+} > Mn^{2+}$	c) $Mn^{2+} > Cr^{2+} > V^{2+}$	d) $Cr^{2+} > V^{2+} > Mn^{2+}$
569. Stainless steel contains:			
a) 50%Cr	b) 2.5%Cr	c) 14%Cr	d) 2%Cr
570. KMnO ₄ (acidic/alkaline)	is not decolourized by		
a) Mohr salt	b) Oxalic acid	c) Benzene	d) Propene
571. A solution of $Cr(NO_3)_2$ sl	lowly turns green when cor	centrated HCl is added to i	t. It is due to the formation
of:			
a) CrCl ₃	b) Cr ₂ O ₃	c) CrO_4^{2-}	d) Chloro complexes
572. Which is not an ore of go	ld?		
a) Syvanite	b) Calaverite	c) Covellite	d) Bismuth aurite
573. Silver iodide is used to p	roduce artificial rain becaus	se:	
a) It is easily prepared			
b) Its structure is ice-like)		
c) It can easily be spraye	d at high altitude		
d) It is insoluble in rain v	vater		
574. The chemical formula of	azurite is:		
a) Cu(OH) ₂ .2CuCO ₃	b) $CuSO_4$. $3Cu(OH)_2$	c) $Cu(OH)_2$. $CuCO_3$	d) CuFeS ₂
575. The magnetic moment (i	n BM) of Zn ²⁺ ion according	g to spin-only formula is	
a) Zero	b) 1.73	c) 2.84	d) 3.87
576. Zinc reacts with very dilu	ate nitric acid to produce:	2	
a) NO	b) NH ₄ NO ₃	c) NO ₂	d) H ₂
577. Which of the following m	ay be colourless?		
a) Fe ³⁺	b) Cr ³⁺	c) Cu ²⁺	d) Cu ⁺
578. Fe ore is concentrated by	F EDII/	LACITAL	
a) Magnetic treatment	b) Froth floatation	c) Electrolysis	d) Roasting
579. In the extraction of copp	er, the metal formed in the	Bessemer's converter is du	e to the reaction:
a) $Cu_2S \rightarrow 2Cu + S$			
b) $2Cu_2O \rightarrow 4Cu + O_2$			
c) $2Cu_2S + 3O_2 \rightarrow 2Cu_2$	$0 + 2SO_2$		
d) $2Cu_2O + Cu_2S \rightarrow 6Cu_2$	$+S0_2$		
580. In the case of d -block ele	ments:		
a) Outermost and penult	imate shells are incomplete	2	
b) Both penultimate and	prepenultimate shells are i	ncomplete	
c) Outermost shell is inc	omplete		
d) Innermost shell is inco	omplete		
581. In electrorefining of copp	per, some gold is deposited	as	
a) Cathode	b) Electrode	c) Cathode mud	d) Anode mud
582. What effect is noticed on	shaking dilute sulphuric ac	cid with a small quantity of	anhydrous copper
sulphate?			
•	ves to form a colourless sol		
b) The white solid dissol	ves to form a green solution	1	
-	blue but does not dissolve		
	ves to form a blue solution		
583. A magnetic moment of 1	_	-	
a) $[Cu(NH_3)_4]^{2+}$	b) [Ni(CN) ₄] ²⁻	c) TiCl ₄	d) [CoCl ₆] ^{4–}
584. In general, the transition	elements exhibit their high	nest oxidation states in thei	r compounds with elements

like:			
a) C	b) S	c) S and P	d) F and O
585. Silver, mercur	y and lead have been placed in s	same group of qualitative anal	ysis, because they form:
a) Carbonates	soluble in dilute HNO ₃		
b) Nitrates			
c) Insoluble ch	llorides		
d) Same type o	of coloured compounds		
$586. K_2 Cr_2 O_7$ on sta	rong heating gives:		
a) K ₂ CrO ₄	b) Cr ₂ O ₃	c) O ₂	d) All of these
587. KMnO ₄ on hea	ting above 200°C gives:		
	$O_2 + MnO_2$ b) $K_2MnO_4 + MnO_4$	$_2 + O_2$ c) MnO ₂ + O ₂	d) None of the above
	fions formed on dissolving one		.6H ₂ O is:
a) 4	b) 5	c) 3	d) 6
589. Acidic nature	of $Zn(OH)_2$ is shown from the fo	ormation of the following comp	pound with the formula:
a) Na ₂ ZnO ₂	b) Na ₂ CO ₃	c) NaZnO ₂	d) None of these
590. The reason for	the stability of Gd ³⁺ ion is		
a) Half-filled 4	f sunshell		
b) Completely	filled $4f$ subshell		
c) Possesses tl	ne general electronic configurat	tion of noble gases	
d) Empty 4 <i>f</i> si	ubshell		
591. Rio Tinto proc	ess is used for extraction of:		
a) Cu	b) Ag	c) Al	d) Au
592. An alloy of Co,	Ni and Fe used in permanent m	nagnets is:	
a) Invar	b) Nichrome	c) Alnico	d) None of these
593. Bordeaux mixt	ture consists of lime and:	1	
a) FeSO ₄	b) CuSO ₄	c) Cu(NO ₃) ₂	d) AgNO ₃
594. Larger numbe	r of oxidation states are exhibit	ed by the actinoides than those	e by the lanthanoides, the main
reason being	(U) PLUS E D	UCATION	
a) 4 <i>f</i> - orbitals	more diffused than the $5f$ -orbi	itals	
b) Lesser ener	gy difference between 5 f and 6 $$	d than between $4f$ and $5d$ -orl	bitals
c) More energ	y difference between 5 f and 6 d	l than between $4f$ and $5d$ -orbi	itals.
d) More reacti	ve nature of the actinoides than	the lanthanoides	
595. F_2 is formed by	y reacting K ₂ MnF ₆ with		
a) MnF ₄	b) SbF ₅	c) KSbF ₆	d) MnF ₃
_	atomic size with increase in ato		
a) <i>f-</i> block	b) d -block	c) High atomic masses	d) Radioactive series
	is based on distribution law?		
a) Mond's pro	•	c) Cupellation process	
	eagent used for dissolving cellu		
a) CuSO ₄ .5H ₂ 0		c) Cu(NH ₃) ₄ SO ₄	d) $Cu(CH_3COO)_2$. $Cu(OH)_2$
	oloured ions by transition meta	als signifies	
	of light from UV range		
b) Emission of	_		
	unpaired electrons in s and p o		
	tary colours to the absorbed lig		
	ich is very little affected by tem		
a) Co	b) Ni	c) Cu	d) Al
601. Which of the fo	ollowing pair of transition meta oment?	I ions, have the same calculate	ed values

a) Ti^{2+} and V^{2+}	b) Fe ²⁺ and Cu ²⁺	c) Cr ²⁺ and Fe ²⁺	d) Co ²⁺ and Ti ²⁺	
602. Which of the following i	,	o, ar amare	.,	
a) Curium	b) Californium	c) Erbium	d) Americium	
603. Philosopher's wool whe		-	,	
a) BaZnO ₂	b) Ba + ZnO ₂	c) BaCdO ₂	d) $BaO_2 + Zn$	
604. Brass is an alloy of Cu w	_	oj Badao ₂	a, bas ₂ + En	
a) Al	b) Sn	c) Ag	d) Zn	
605. Actinides and lanthanid		·) **8	u, 2	
a) Formation of complete		b) Oxidation state		
c) Ionization energy		d) Electronic configurati	on	
606. Cuprous chloride is obta	nined from cunric chloride	a) Breetrome comigarati		
a) By heating cupric chl				
	cupric chloride containing I	HCl		
c) By heating cupric chloride with conc. HCl and copper turnings				
d) By passing H ₂ over C		sper carmings		
607. The properties of cast iron, wrought iron and steel are different because they have:				
a) Different contents of	=	are afficient because they i	nave.	
b) Different contents of	=			
c) Traces of different ele				
d) Traces of different iro				
608. Variable valency is a ger				
a) s-block	b) <i>p</i> -block	c) d-block	d) All of these	
609. The inner transition elements			-	
a) $(n-1) d$ —orbitals	ments are the elements in w	men the daded electrons g	0 (0)	
b) $(n-2)$ f -orbitals				
c) $(n-1)$ <i>d</i> -orbitals and	d(n-1) f-orbitals			
d) $(n-1)$ d-orbitals and				
610. The compound insoluab		ΓΔΤΙΩΝ		
a) Mercurous nitrate	io in water is	b) Mercurous chloride		
c) Mercuric nitrate		d) Mercurous perchlorat	·e	
611. A carbonate ore is		a) Moreare as peremera		
a) Carnallite	b) Limonite	c) Siderite	d) Horn silver	
612. Near the top of a blast fu	•	_		
iron by:			naes are recaesed to spengy	
a) Carbon	b) CO	c) CO ₂	d) Limestone	
613. Black Jack is an ore of	-,	-, 2	,	
a) Cr	b) Sn	c) Zn	J) NI:	
614. Which of the following s			(1 I IVI	
· ·		c) Zii	d) Ni	
a i Manganese sait gives	tatements is correct?	•	a) Ni	
	tatements is correct? violet borax bead test in the	e reducing flame	•	
b) Ferric ions give a dee	tatements is correct? violet borax bead test in the p green precipitate on addin	e reducing flame ng potassium ferricyanide s	solution	
b) Ferric ions give a deec) On boiling a solution	tatements is correct? violet borax bead test in the p green precipitate on addin having K ⁺ , Ca ²⁺ , HCO ⁻ 3 ions	e reducing flame ng potassium ferricyanide : , we get a precipitate of K ₂ :	solution Ca(CO ₃) ₂	
b) Ferric ions give a deec) On boiling a solutiond) From a mixed precipi	tatements is correct? violet borax bead test in the p green precipitate on addin having K ⁺ , Ca ²⁺ , HCO ₃ ions tate of AgCl and AgI, ammo	e reducing flame ng potassium ferricyanide : , we get a precipitate of K ₂ ! nia solution dissolves only	solution Ca(CO ₃) ₂	
b) Ferric ions give a deec) On boiling a solutiond) From a mixed precipit615. The element showing ox	tatements is correct? violet borax bead test in the p green precipitate on addinating K^+ , Ca^{2+} , HCO_3^- ions tate of AgCl and AgI, ammoratidation states of $+2$, $+3$, $+4$	e reducing flame ng potassium ferricyanide s , we get a precipitate of K ₂ nia solution dissolves only 1, +6 and +7 is:	solution Ca(CO ₃) ₂ AgCl	
b) Ferric ions give a dee c) On boiling a solution d) From a mixed precipi 615. The element showing ox a) Cr	tatements is correct? violet borax bead test in the p green precipitate on addin having K ⁺ , Ca ²⁺ , HCO ₃ ions tate of AgCl and AgI, ammon sidation states of +2, +3, +4	e reducing flame ng potassium ferricyanide : , we get a precipitate of K ₂ ! nia solution dissolves only	solution Ca(CO ₃) ₂	
 b) Ferric ions give a dee c) On boiling a solution d) From a mixed precipie 615. The element showing ox a) Cr 616. When H₂S is passed three 	tatements is correct? violet borax bead test in the p green precipitate on addin having K ⁺ , Ca ²⁺ , HCO ₃ ions, tate of AgCl and AgI, ammon tidation states of +2, +3, +4 b) Mn ough HgCl ₂ we get:	e reducing flame ng potassium ferricyanide : , we get a precipitate of K ₂ ! nia solution dissolves only 1, +6 and +7 is: c) Co	solution Ca(CO ₃) ₂ AgCl d) V	
 b) Ferric ions give a dee c) On boiling a solution d) From a mixed precipi 615. The element showing ox a) Cr 616. When H₂S is passed three a) HgS 	tatements is correct? violet borax bead test in the p green precipitate on addin having K ⁺ , Ca ²⁺ , HCO ₃ ions, tate of AgCl and AgI, ammon kidation states of +2, +3, +4 b) Mn ough HgCl ₂ we get: b) HgS + Hg ₂ S	e reducing flame ng potassium ferricyanide s , we get a precipitate of K ₂ nia solution dissolves only 1, +6 and +7 is:	solution Ca(CO ₃) ₂ AgCl	
 b) Ferric ions give a dee c) On boiling a solution d) From a mixed precipie 615. The element showing ox a) Cr 616. When H₂S is passed three 	tatements is correct? violet borax bead test in the p green precipitate on addin having K ⁺ , Ca ²⁺ , HCO ₃ ions, tate of AgCl and AgI, ammon kidation states of +2, +3, +4 b) Mn ough HgCl ₂ we get: b) HgS + Hg ₂ S	e reducing flame ng potassium ferricyanide : , we get a precipitate of K ₂ ! nia solution dissolves only 1, +6 and +7 is: c) Co	solution Ca(CO ₃) ₂ AgCl d) V	

a) Negative	b) Positive	c) Zero	d) None of these	
619. Auric chloride on reaction				
a) Au	b) AuCl	c) Au ₂ SO ₄	d) $Au_3(SO_4)_2$	
620. Which of the following is	=			
a) ZnCl ₂	b) Hg ₂ Cl ₂	c) HgCl ₂	d) CdCl ₂	
621. Which of the following is	correct?			
a) Duralumin : Al + Cu +	Mg + Ag	b) German silver : Cu + Zı	n + C	
c) Gun metal : CU + Zn +	·Sn	d) Solder : Pb + Al		
622. A certain metal will liber	ate hydrogen from dilute ac	cids. It will react with water	to form hydrogen only	
when the metal is heated	l and water is in the form of	steam. The metal is probal	oly	
a) Iron	b) Potassium	c) Copper	d) Mercury	
623. Calomel reacts with amn	nonium hydroxide to form:			
a) Hg(NH ₂)Cl	b) H ₂ N—Hg—Hg—Cl	c) Hg ₂ O	d) HgO	
624. An example of double sa	lt is:			
a) Bleaching powder		c) Hypo	d) Potash alum	
625. Bronze is a mixture of	7 41 (703	<i>y y</i> 1	,	
a) Pb + Sn	b) Cu + Sn	c) Cu + Zn	d) Pb + Zn	
626. The element present in g	•	· · · · · · · · · · · · · · · · · · ·	-,,	
a) Co	b) Cu	c) Sc	d) Ti	
627. Pure conc. HNO ₃ makes:		•	•	
a) Fe(NO_3) ₃	b) Fe_3O_4	c) FeO	d) Fe ₂ O ₃	
628. Thermite process is used		c) reo	u) re ₂ 0 ₃	
		c) PbO ₂	d) CvO	
a) Cr_2O_3	b) Al_2O_3		d) CuO	
629. The slag obtained during	, the smerting process in the	e extraction of copper from	copper pyrites is composed	
mainly of:	L) E-CiO	-) C-C:O	1) C:O	
a) Cu ₂ S	b) FeSiO ₃	c) CuSiO ₃	d) SiO ₂	
630. The mineral from which				
a) Galena	b) Pyrite	c) Malachite	d) Chalcopyrite	
631. Metal oxides which deco				
a) ZnO	b) CuO	c) Al_2O_3	d) HgO	
632. The correct formula for o	` '			
a) [Ag, (NH ₃)]Cl	b) [Ag, (NH ₃) ₂]Cl	c) $[Ag, (NH2)2]Cl$	d) [Ag, $(NH_4)_2$]Cl	
633. Which metal is used to a	dd to gold to make it hard?			
a) Cu	b) Ag	c) Ni	d) Zn	
634 . On igniting Fe_2O_3 at 140	00°C, the product obtained	is		
a) Fe ₂ O ₃ melt	b) FeO	c) Fe_2O_3	d) Metallic iron	
635. Cosmetic powders and z	inc ointments contain:			
a) ZnCl ₂	b) ZnO	c) ZnCO ₃	d) ZnSO ₄	
636. An aqueous solution of F	eSO_4 , $Al_2(SO_4)_3$ and chrom	e alum is heated with exces	ss of Na_2O_2 and filtered. The	
materials obtained are:				
a) A colourless filtrate and a green residue				
b) A yellow filtrate and a	green residue			
c) A yellow filtrate and a	brown residue			
d) A green filtrate and a				
637. A transition element X has		in its +3 oxidation state. Its	s atomic number is	
a) 25	b) 26	c) 22	d) 19	
638. The carbon content of:	<i>)</i> = -	,	<i>)</i>	
	n that of steel and wrought i	iron		
a, dasciron is in betwee.	that of steel and wrought in			

c) Steel is in between	n that of cast iron and wrough	nt iron	
d) Wrought iron is in	between that of steel and ca	st iron	
639. If a compound absor	bs violet colour from light, it	will be :	
a) Yellow	b) Orange	c) Blue	d) Green
640. Which of the two hav	ve almost similar size?		
a) $_{22}$ Ti and $_{40}$ Zr	b) ₄₁ Nb and ₇₃ Ta	c) ₃₉ Y and ₅₇ La	d) ₂₀ Ca and ₃₁ Ir
641. A white precipitate is	s formed on adding KI to CuS	0_4 solution. It is of	
a) Cu ₂ I ₂	b) CuI ₂	c) Cu ₂ S	d) Cu ₂ SO ₄
642. Which of the following	ng is coloured compound?		
a) CuF ₂	b) CuI	c) NaCl	d) MgCl ₂
	Zn ²⁺ ion gives a white ppt. w	which on adding excess of N	aOH dissolves. In this solutior
Zn exists in:	h) Anionia nont	a) Dath (a) and (b)	d) Nama of these
a) Cationic part	b) Anionic part	c) Both (a) and (b)	d) None of these
	omide ion in alkaline mediun		D.M. O.B.O
a) MnBr ₄	b) MnOBr ₂	c) MnO ₂ , BrO ₃	d) MnO, BrO
645. Cyanide process is us) D:	D F
a) Ag	b) Ni	c) Pt	d) Zn
	ng weights less when weighte	=	D vval
a) ScCl ₃	b) FeCl ₃	c) TiCl ₃	d) VCl ₃
-	ing used in the treatment of s	steel is:	
	n atmosphere of ammonia		
	bright redness and then cooli		
	right redness and then coolin	g by plunging in air	
d) None of the above	The state of the s	,	
648. Duraluminium is an	alloy contains:		
a) Mg + Al			
b) $Mg + Cu + Al + M$	n + Si	CATION	
c) Mg + Cu	GPLUS EDU	CALION	
d) Cu + Al			
649. Gun metal is			
a) Cu + Zn	b) $Cu + Sn + Zn$	c) Cu + Sn	d) Zn + Sn
650. The tempering of ste			
a) Hard	b) Soft	c) Heavy	d) Brittle
	ition reacts with KCN to give		
a) CuCN	b) Cu(CN) ₂	c) $K_3[Cu(CN)_4]$	d) $K_2[Cu(CN)_4]$
	hich impart purple colour to		
a) Copper oxide	b) Chromium oxide	c) Lead oxide	d) Manganese oxide
	itial compounds makes the tr		
a) More soft	b) More ductile	c) More metallic	d) More brittle
654. The purest zinc is ma	•		
a) Electrolytic refinii	_	b) Zone refining	
c) The van- Arkel me	ethod	d) The Mond process	
	ng ions has a magnetic mome	nt of 5.93 BM?	
(At. no. $V=23$, $Cr=24$	•		
a) Mn ²⁺	b) Fe ²⁺	c) Cr ²⁺	d) V ³⁺
656. $K_2Cr_2O_7 \xrightarrow{\Delta} K_2CrO_4 +$	$+ 0_2 + X$		
In the above reaction			
a) CrO ₃	b) Cr ₂ O ₇	c) Cr ₂ O ₃	d) CrO ₅
657. Soft and pliable steel	· - ·	- - 0	

a) Tempering	b) Nitriding	c) Annealing	d) None of these		
658. The highest magnetic m	oment is shown by the tran	sition metal ion with the ou	iter electronic configuration		
a) $3d^2$	b) 3 <i>d</i> ⁷	c) $3d^5$	d) $3d^9$		
659. Which substance can be used in the preparation of making ink?					
a) Ag	b) AgNO ₃	c) AgBr	d) $PbCO_3 Pb(OH)_2$		
660. Which of the following of	compounds volatilises on he	eating?	,		
a) MgCl ₂	b) HgCl ₂	c) CaCl ₂	d) FeCl ₃		
661. Identify the statement v	which is not correct regardir	ng copper sulphate	, ,		
a) It reacts with NaOH a	nd glucose to give Cu ₂ O	b) It gives CuO on strong	heating in air		
c) It reacts with KCl to g	rive Cu ₂ Cl ₂	d) It reacts with KI to giv			
662. In solid CuSO ₄ . 5H ₂ O, co	pper is coordinated to:	,			
a) 4 water molecules	b) 5 water molecules	c) 1 sulphate molecule	d) 1 water molecule		
663. The grey cast iron conta	ins:		·		
a) Iron carbide	b) Silicon carbide	c) Silicon dioxide	d) Graphite		
664. When excess of sodium	thiosulphate is added to dil	$AgNO_3$ solution a soluble of	compound X is formed.		
	S_2O_3 solution is added to co				
_	btained. Which is correct pa				
a) X is Ag_2S and Y is Na	$_{3}[Ag(S_{2}O_{3})_{2}]$				
b) X is $Na_3[Ag(S_2O_3)_2]$					
c) X is $Ag_2S_2O_3$ and Y is					
d) X is $Ag_2S_2O_3$ and Y is	$Na_3[(S_2O_3)_2]$				
665. Which of the following i					
a) Mn_2O_3	b) MnO ₂	c) Mn ₂ O ₇	d) MnO		
666. A developer used in pho	tography is:	_ , <u>-</u> ,			
a) A weak acid	b) A weak base	c) A mild reducing agent	d) An oxidizing agent		
667. Potassium permangana	te acts as an oxidant in alkal	line and acidic media. The f	inal products formed from		
$KMnO_4$ in the two conditions are respectively					
a) MnO ²⁻ and Mn ³⁺	b) Mn ³⁺ and Mn ²⁺	c) Mn ²⁺ and Mn ³⁺	d) MnO ₂ and Mn ²⁺		
668. The general electronic of	onfiguration of transition el	lement is :			
a) $(n-1)d^{1-5}$	b) $(n-1)d^{1-10} ns^1$	c) $(n-1)d^{1-10}$ ns^{0-2}	d) None of these		
669. Mohr's salt is a:					
a) Normal salt	b) Acid salt	c) Basic salt	d) Double salt		
670. Gun metal is an alloy of:		•	·		
a) Cu and Al	b) Cu, Sn and Zn	c) Cu, Zn and Ni	d) Cu and Sn		
671. A metal gives two chlori	des 'A and 'B'. 'A' gives blac	k precipitate with NH ₄ OH a	and 'B' gives white. With KI		
'B' gives a red precipitat	te soluble in excess of KI. 'A'	and 'B' are respectively:	-		
a) HgCl ₂ and Hg ₂ Cl ₂	b) Hg ₂ Cl ₂ and HgCl ₂	c) HgCl ₂ and ZnCl ₂	d) ZnCl ₂ and HgCl ₂		
672. Which of the following t	ransition metal ions will ha	ve definite value of magnet	ic moment?		
a) Sc ³⁺	b) Ti ³⁺	c) Cu ³⁺	d) Zn ²⁺		
673. In comparison to ferrou	s salts, ferric salts are:				
a) More stable	b) Less stable	c) Equally stable	d) None of these		
674. Fool's gold is	•				
a) CuFeS ₂	b) FeS ₂	c) CuS ₂	d) Cu ₂ O		
675. The material used for th	-	erter in the extraction of co	pper is:		
a) Silica	b) Lime	c) Iron	d) Cu		
a) Silica676. Articles made of copper	•	•	,		
	•	•	,		
676. Articles made of copper	•	•	,		

c) Coppe				
-	copper carbon			
		statements concerning trar	nsition elements is false?	
	re all metals.			
	-	nplex coordination compou		
-		ng their ions are mostly co		
	=	oxidation states always diff	fering by units of two.	
_		Pd(II) and Cu(II) ions		
a) All are	paramagnetic			
b) All are	diamagnetic			
		aramagnetic and Pd(II), Cu		
d) Sc (III), Ti (IV) are d	iamagnetic and Pd(II), Cu(I	I) are paramagnetic	
679. Nessler's	reagent is			
a) K ₂ HgI		b) $K_2HgI_4 + KOH$		d) $K_2HgI_2 + KOH$
680. The spin	only magnetic	moment of Fe ²⁺ ion (in BN	Л) is approximately.	
a) 4		b) 7	c) 5	d) 6
681. Which of	the following	is not correct about transit	ion metals?	
a) Their	compounds ar	e generally coloured	b) They can form ionic	or covalent compounds
c) Their	melting and bo	oiling points are high	d) They do not exhibit	variable valency
682. In the me	tallurgy of iro	n, when limestone is added	l to the blast furnace, the c	alcium ion ends up as :
a) Slag		b) Gangue	c) Metallic calcium	d) Calcium carbonate
683. KI and Ci	ıSO ₄ solutions	on mixing produce		
a) Cu ₂ I ₂	$+ K_2SO_4$	b) $Cu_2I_2 + I_2 + K_2SO_4$	c) $CuI_2 + K_2SO_4$	d) $CuI_2 + I_2 + K_2SO_4$
684. Which or	e of the follow	ring statements is false?		
a) During	g roasting, moi	sture is removed from the	ore.	
b) The or	e is freed fron	ո almost all nonmetallic imյ	purities.	
c) Calcin	ation of ore is	carried out in the absence o	of any blast of air.	
d) The co	ncentrated zir	nce blend is subjected to ca	lcination during its extrac	tion by pyrometallurgy.
685. Knowing	that the chem	istry of lanthanoids (Ln) is	dominated by its +3 oxid	ation state, which of the
following	statements is	incorrect?		
a) Becau	se of the large	size of the Ln (III) ions the	bonding in its compounds	s is predominantly ionic in
charac	ter.			
b) The io	nic sizes of Ln	(III) decrease in general w	ith increasing atomic num	lber.
c) Ln (III) compounds a	are generally colourless.		
d) Ln(III)	hydroxide ar	e mainly basic in character.	i	
686. Bell meta	l is an alloy of	:		
a) Zinc a	nd copper	b) Copper and nickel	c) Zinc and lead	d) Copper and tin
687. Chemical	name of verm	ilion is:		
a) Mercu	ric sulphide	b) Mercurous sulphide	c) Zinc sulphide	d) Cadmium sulphide
688. The stain	less steel deve	eloped in India contains the	following special compor	ients:
a) Vanad	ium and cobal	t		
b) Nickel	and magnesiu	ım		
-	nese and chro			
d) Alumi	nium and zinc			
689. Maximur	n number of o	xidation states of the transi	tion metals is derived from	n the following configuration:
a) <i>ns-</i> ele				-
b) $(n-1)$)d-electrons			
c) $(n + 1)$)d-electrons			
d) $ns + ($	(n-1)d-electr	ons		

690. It is always advisable n	ot to cover egg yolk or must	ard with silver cutlery be	cause:
a) Silver reacts with wa	ater of egg yolk to form AgO	Н	
b) Silver reacts with su	lphur of egg yolk forming bl	ack Ag ₂ S	
c) Silver reacts with eg	g yolk forming Ag ₂ SO ₄ whic	h is a poisonous substanc	e
d) Silver attracts UV lig	ht of the atmosphere, therel	oy spoiling the food	
691. Which of the following	is not oxidized by 0 ₃ ?		
a) FeSO ₄	b) KMnO ₄	c) KI	d) K ₂ MnO ₄
692. Mercury is transported	in metal containers made o	f:	
a) Silver	b) Lead	c) Iron	d) Aluminium
693. Which may be consume	ed in the elemental form by	human beings?	
a) Zn	b) Cu	c) Ag and Cu	d) Fe
694. Which one of the eleme	ents is a d -block element?		
a) As	b) Pt	c) Pb	d) Ra
695. Which metal does not r	react with CuSO ₄ solution?	·	•
a) Fe	b) Zn	c) Mg	d) Ag
696. Transition metal ions s	•	, 0	, ,
a) They absorb light		b) They emit light	
c) They are paramagne	etic	d) They exhibit $d-d$ t	ransition
697. Rinnmann's green is:		y riney eministe ar ar e	
a) ZnO.CoO	b) A green pigment	c) Both (a) and (b)	d) None of these
698. Which of the following	, , ,		a) None of these
a) V^{3+}	b) Cr ³⁺	c) Co ²⁺	d) Sc ³⁺
699. Pig iron is manufacture		ej do	a, se
a) An electric furnace	a using.		
b) A blast furnace	4		
c) An open hearth furn	ace		
d) None of the above			
700. Blue vitriol is	C WOLLIS FDU	CATION	
a) CuSO ₄	b) CuSO ₄ • 5H ₂ O	c) Cu ₂ SO ₄	d) CuSO ₄ · H ₂ O
701. Each coinage metal has		$c_1 cu_2 so_4$	uj cu304 1120
a) 18 electrons in their			
b) 8 electrons in the ou	_		
c) 2 electrons in the ou			
d) 8 electrons in penult			
702. Gold exhibits the varial			
a) $+2$, $+3$	b) +1, +3	c) +2, +4	d) +1, +2
703. Transition metals and t	=	•	uj +1, +2
a) Detergents	b) Insecticides	c) Catalysis	d) None of these
704. Gravity separation pro-	-	•	u) None of these
a) Calamine	b) Haematite	c) Chalcopyrite	d) Bauxite
•	,	c) chalcopyrite	u) bauxite
705. The composition of ma		a) CuCO (Cu(OII)	4) ((OII)
a) CuFeS ₂	b) CuCO ₃	c) CuCO ₃ . Cu(OH) ₂	d) Cu(OH) ₂
		· · · · · · · · · · · · · · · · · · ·	iron (Fe) are respectively 23,
	one of these may be expected	-	= =
a) V	b) Cr	c) Mn	d) Fe
707. Zinc white is a better w		e pecause It:	
a) Has more covering p			
b) Is not blackened by t	me action of H ₂ S		
CLIS SOUIDIA IN MATAR			

d) Becomes yellow when heated			
708. A yellow ppt. is formed when H ₂ S i	s passed through an	acidified solution of:	
a) Co ²⁺ ions b) Cd ²⁺	ions c	e) Cu ²⁺ ions	d) Ni ²⁺ ions
709. Which metal does not react with w	ater or steam?		
a) K b) Na	C	c) Ca	d) Cu
710. Verdigris is			
a) Basic lead b) Basic	copper acetate c	e) Basic lead acetate	d) None of the above
711. The percentage of carbon is same i	n:		
a) Cast iron and pig iron			
b) Cast iron and steel			
c) Pig iron and steel			
d) Pig iron and wrought iron			
712 FeSO ₄ $(NH_4)_2SO_4 \cdot 6H_2O$ is called	:		
		e) Mohr's salt	d) Alum
713. Which do not decolourise KMnO ₄ a	queous solution?		
a) $C_2O_4^{2-}$ b) HSO_3^{-}	=	CO_3^{2-}	d) SO_3^{2-}
714. Among the following pair of ions, t			•
a) V^{2+} , VO^{2+} b) Cr^{2+}		Ti ⁺ , Ti ³⁺	d) Cu ⁺ , Cu ²⁺
715. Green vitriol is formed by		, ,	., ,
	$+ H_2O + CO_2$ c	$(1) \text{ FeS}_2 + \text{CO} + \text{CO}_2$	d) $FeS_2 + CO$
716. Densities of transition metals are:	2 2) 2	, 2
a) Low b) Very	low) High	d) Very high
717. Mercury sulphide on heating with)))@
a) $Hg(NO_3)_2$ b) $HgCl_3$		Hg(NO_2) ₂	d) Hg ₂ Cl ₂
718. All metal chlorides are soluble in w	The same of the sa		
a) Ag, Pb, Hg b) Na, K		r) Zn, Cu, Cd	d) Ba, Sr, Li
719. $K_3[Co(NO_2)_6]$ is:		,,	,,,
	ard's blue c	r) Rinnmann's green	d) Blue vitriol
720. Group 11 or IB elements are comm)	,
a) Coinage metals			
b) Transition metals			
c) Typical elements			
d) Representative elements			
721. Most common oxidation states of C	Ce (cerium) are		
a) +3, +4 b) +2, +	•	r) +2, +4	d) +3, +5
722. The metal present in insulin is:		, · - , · ·	, , , , ,
a) Cu b) Fe	C	r) Zn	d) Mg
723. Transition elements form alloys ea		•	w) · · · · · · · · · · · · · · · · · · ·
a) Same atomic number	ony seedase eney no		
b) Same electronic configuration			
c) Nearly same atomic size			
d) None of the above			
724. Muntz metal is an alloy of:			
a) Cu and Sn b) Cu ar	ıd 7n c	e) Ag and Zn	d) Zn and Mn
725. A metal forms a volatile carbonyl c		· -	=
metal is:	ompound und und p	. oporty is taken davantag	500 of the charaction, The
a) Iron b) Nicke		r) Cobalt	d) Titanium
726. The temperature of blast furnace t		•	•
furnace to about 1900°C at the bot			

GPLUS EDUCATION

	lowest temperature (~ 50	0°C) is:		
	a) $3\text{Fe}_2\text{O}_3 + \text{CO} \rightarrow 2\text{Fe}_3\text{C}$	$O_4 + CO_2$		
	b) $Fe_2O_3 + CO \rightarrow 2FeO +$	- CO ₂		
	c) $Fe_2O_3 + 3CO \rightarrow 2Fe +$			
	d) $Fe_2O_3 + CO \rightarrow 2Fe + CO$	$CO_2 + \frac{1}{2}O_2$		
727.	Adam's catalyst is:	_		
	a) Pt and PtO	b) Pt	c) Pt and PtO ₂	d) Pt ₂ O and PtO
728.	Which one of the following	g statement is not true with	n regard to transition eleme	ents?
	a) They readily form comp	plex compounds.	b) They show variable oxi	dation states.
	c) All their ions are colour	less.	d) Their ions contain part	ially filled d -electrons.
729.	The element which forms	a coloured chloride is:		
	a) Sb	b) Na	c) Zn	d) Cr
730.	In which of the following i	metallic bond is strongest?		•
	a) V	b) Fe	c) Cr	d) Sc
731.	Which metal cation forms	-	,	,
	a) Zn ²⁺	b) Cd ²⁺	c) Hg ²⁺	d) All of same strength
732.	The equilibrium $Cr_2O_7^{2-}$ +	,	-)8	
	a) Exists in acidic medium			
	b) Exists in basic medium	•		
	c) Exists in neutral mediu	m		
	d) Does not exist			
733.	Atomic radii of Ti, Zr and I	Hf varv		
, 55.	a) Ti $> Zr > Hf$	b) Ti $< Zr < Hf$	c) Ti $< Hf < Zr$	d) Ti $\langle Zr = HF \rangle$
734	•	transition metal monoxide	•	a) 11 (21 111
, 5 1	(At. no of Ti = 22, V=23, C		tonows the order	
	a) $TiO > VO > CrO > FeC$	· ·	b) VO > CrO > TiO > FeO)
	c) $Cr0 > V0 > Fe0 > TiC$		d) $TiO > FeO > VO > CrO$	
735		, o give an acid. The colour o		,
, 55,	a) Green	b) Blue	c) Violet	d) Red
736	Which of the following is a		c) violet	a) nea
, 50.	a) Aqueous CuSO ₄ solution		b) Aqueous AgNO ₃ solution	on
	c) Aqueous NaCl solution		d) Aqueous NaOH solutio	
737	Which belongs to the actir		d) Aqueous Naon solutio	11
/3/	a) Ce	b) Cf	c) Ca	d) Cs
738	Pudding process is used in	•	c) da	u) us
730.	a) Steel	b) Cast iron	c) Wrought iron	d) Pig iron
720	•	emove lead impurities from	, ,	u) rig iron
/37	a) Leaching with dilute Na	-	III SIIVEI!	
	b) Parkes process	aciv solution		
	c) Leaching with dilute Na	CN in procence of air		
	d) Electrolytic purification			
740			nraduced when ammonius	m dishramata is used in fire
740.	works?	ine green coloured powder	produced when allimonidi	m dichromate is used in fire
		h) CnO	a) Cn O	4) C*O(O)
711	a) Cr Which of the following is	b) CrO ₃	c) Cr_2O_3	d) $CrO(O_2)$
/41.	Which of the following is a	-	a) V O	d) NiO
742	a) V_2O_3	b) CuO	c) V_2O_5	d) NiO
742.	NH ₃ forms complex with:	P) C4C0	a) A a C l	d) All of these
	a) CuSO ₄	b) CdSO ₄	c) AgCl	d) All of these

743. Transition metals are less reactive because of their:		
a) High ionization potential and low melting point		
b) High ionization potential and high melting point		
c) Low ionization potential and low melting point		
d) Low ionization potential and high melting point		
744. The metal that does not displace hydrogen from an a	icid is:	
a) Hg b) Zn	c) Al	d) Ca
745. Percentage of gold in 18 carat gold is		
a) 75.0% b) 20.0%	c) 80.0%	d) 38.67%
746. The correct order of ionic radii of Y^{3+} , La^{3+} , Eu^{3+} an	d Lu ³⁺ is	
a) $Y^{3+} < La^{3+} < Eu^{3+} < Lu^{3+}$	b) $Lu^{3+} < Eu^{3+} < La^{3+} <$	Y ³⁺
c) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$	d) $Y^{3+} < Lu^{3+} < Eu^{3+} < Eu^{3+} < Eu^{3+}$	
747. Coinage metals show the properties of	,	
a) Inert elements b) Normal elements	c) Typical elements	d) Transitional elements
748. When steel is heated red hot and then slowly cooled		,
a) Annealing b) Hardening	c) Tempering	d) Nitriding
749. Which form contains the maximum percentage of ca)
a) Wrought iron b) Cast iron	c) Malleable iron	d) Steel
750. During the extraction of copper, the impurity (FeS) i		•
ore with silica and coke. The molecular formula of sl		5 the contaminated copper
a) $FeSiO_3$ b) Fe_2O_3	c) FeSi (solid)	d) FeSi (vapour)
751. The correct order of $E^{\circ}_{M^{2+}/M}$ values with negative si		
	gir for the four successive (cicinents Gr, Mil, i e and Go
is	h) $C_{2} > E_{2} > M_{22} > C_{2}$	
a) $Mn > Cr > Fe > Co$	b) $Cr > Fe > Mn > Co$	
c) Fe $> Mn > Cr > Co$	d) $Cr > Mn > Fe > Co$	
752. Which of the following is the chief ore of copper?) C F C	1) (, (0, (0, (0, (0, (0, (0, (0, (0, (0,
	c) CuFeS ₂	d) CuCO ₃ . Cu(OH) ₂
753. The catalytic activity of transition metals and their c	ompounds is ascribed mair	nly to:
a) Their magnetic behavior		
b) Their unfilled <i>d</i> -orbitals		
c) Their ability to adopt variable oxidation states		
d) Their chemical reactivity		
754. Which is used for stopping bleeding?		
a) Ferric chloride b) Mohr's salt	c) Green vitriol	d) Sodium nitroprusside
755. On heating $ZnCl_2$. H_2O the compound obtained is:	()	n = -
a) ZnCl ₂ b) Zn(OH)Cl	c) $Zn(OH)_2$	d) ZnO
756. Yellow mercury (II) oxide is obtained when		_
a) Hg is heated in excess of air at 623 K	b) HgCl ₂ is treated with N	
c) HgS is roasted in air	d) $Hg(NO_3)_2$ is heated in	
757. From gold aurocyanide Na[Au(CN) ₂], gold can be pr		
a) Zn b) Hg	c) Ag	d) None of these
758. Arrange Ce ³⁺ , La ³⁺ , Pm ³⁺ and Yb ³⁺ in increasing or		
a) $Yb^{3+} < Pm^{3+} < Ce^{3+} < La^{3+}$	b) $Ce^{3+} < Yb^{3+} < Pm^{3+} <$	
c) $Yb^{3+} < Pm^{3+} < La^{3+} < Ce^{3+}$	d) $Pm^{3+} < La^{3+} < Ce^{3+} <$	< Yb ³⁺
759. Black HgS:		
a) Dissolves in conc. HCl on boiling		
b) Dissolves in boiling HCl + a crystal of $KClO_3$		
c) Dissolves in NaOH		

d) None of the above

760. The actinoids exhibit i	more number of oxidation	states in general than the la	nthanoids. This is because		
a) The $5f$ -orbitals are more buried than the $4f$ -orbitals.					
b) There is a similarity	b) There is a similarity between $4f$ and $5f$ -orbitals in their angular part of the wave function.				
c) The actinoids are m	ore reactive than the lanth	nanoids.			
d) The $5f$ -orbitals ext	end further from the nucle	us than the $4f$ -orbitals.			
761. Hair dyes contain					
a) Copper nitrate	b) Gold chloride	c) Silver nitrate	d) Copper sulphate		
762. A scarlet red precipita	te is obtained on treating r	nercuric chloride solution v	vith:		
a) H ₂ S	b) KI	c) NaOH	d) NH ₄ OH		
763. Which of the following	g statements is wrong?				
a) An acidified solutio	n of K ₂ Cr ₂ O ₇ liberates iodi	ine from iodides			
b) In acidic solution d	ichromate ions are convert	ted to chromate ions			
c) Ammonium dichro	mate on heating undergoes	s exothermic decomposition	to give Cr ₂ O ₃		
d) Potassium dichrom	ate is used as a titrant for l	Fe ²⁺ ions			
764. In the electroplating of	f gold the electrolyte used	is:			
a) Gold chloride					
b) Gold nitrate					
c) Gold sulphate					
d) Potassium aurocya	nide				
765. Silver is extracted from	n argentiferous lead by:				
a) Mond's process	b) Parkes process	c) Haber's process	d) Bergius process		
766. Aqua regia reacts with	n Pt to yield:				
a) $Pt(NO_3)_4$	b) H ₂ PtCl ₆	c) PtCl ₄	d) PtCl ₂		
767. Agrentite is an ore of		_			
a) Fe	b) Al	c) Cu	d) Ag		
	·	,	ns from the following orbits		
a) <i>ns</i>	b) <i>ns</i> and <i>np</i>		d) $(n-1)d$		
•			obtained by floating molten		
		before glass. The metal can	_		
a) Na	b) Mg	c) Hg	d) Sn		
770. How is limestone used	l in Fe extraction?	, 0	,		
a) Oxidation of Fe ore		b) Reduction of Fe ore			
c) Formation of slag		d) Purification of Fe fo			
_	s roasted in excess of air, a	mixture of CuO + FeO is fo			
		eduction of CuO. The flux ac	•		
a) SiO ₂ which is an aci		b) Lime stone, which is	_		
c) SiO ₂ , which is a bas	ic flux	d) CaO, which is a basi	c flux		
		ohr magneton, (μ _β)]of Ni ²⁺	in aqueous solution would be		
(Atomic number of Ni			•		
a) 2.84	b) 4.90	c) 0	d) 1.73		
773. Which of the following		<i>5) 5</i>	, :		
a) HgS	b) Hg ₂ Cl ₂	c) HgCl ₂	d) ZnSO ₄		
774. The formula of sodium	,	0) 118012	u, 2112 0 4		
a) Na ₄ [Fe(CN) ₅ NOS]	b) Na ₂ [Fe(CN) ₅ NO]	c) NaFe[Fe(CN) ₆]	d) Na ₂ [Fe(CN) ₆ NO ₂]		
775. Which set represents					
a) Zn, Cd, Hg	b) Sc, Ti, V	c) Cu, Ag, Au	d) Cr, Fe, Mn		
776. When calomel reacts v	_		a, a, . o,		
a) NH ₂ —Hg— Cl	b) Hg ₂ Cl ₂ NH ₃	c) $Hg(NH_3)_2Cl_2$	d) HgCl ₂ NH ₃		
	,	ransition metal ion with the			

a) 3 <i>d</i> ²	b) 3 <i>d</i> ⁵	c) 3 <i>d</i> ⁷	d) 3 <i>d</i> ⁹	
778. Identify the alloy containing a non-metal as a constituent in it:				
a) Bell metal	b) Bronze	c) Invar	d) Steel	
779. Chemical name of	corrosive sublimate is:	•	•	
a) Mercurous chlo	ride b) Zinc chloride	c) Mercuric chloride	d) Aluminium chloride	
•	with CuSO ₄ solution and then N	•	•	
is incorrect for this				
a) Cu ₂ I ₂ formed		b) Cul ₂ is formed		
c) $Na_2S_2O_3$ is oxid	ised	d) Evolved I ₂ is reduced		
	ourless, while cupric ion is colou			
-	illed p and d -orbiatls			
•	a completed d -orbital and cupr	ic ion has incomplete d -orb	oital	
	incomplete d -orbital and cupric	=		
	ired electrons in d -orbital	1		
	ollowing is a diamagnetic ion?			
a) Co ²⁺	b) Cu ²⁺	c) Mn ²⁺	d) Sc ³⁺	
	ving oxides of chromium is ampl	,	, 50	
a) CrO	b) Cr ₂ O ₃	c) CrO ₃	d) CrO ₅	
784. Cast iron is manufa		0) 0.03	,	
a) Pig iron and pou				
b) Steel and pourir	•			
	nd pouring into moulds			
d) Iron ore and por		>		
785. The number of $3d$ -				
a) 8	b) 10	c) 6	d) 12	
	f Fe from Fe ₂ O ₃ , the reducing ag	,	u) 12	
a) C	b) Al	c) Electrolytic reduction	a d) Cu	
•	ts are good conductors of curren		. ay cu	
a) They are metals		t becauser		
b) They are all soli				
	electrons in outer energy orbits			
d) All of the above	sections in outer energy ersits			
•	low when hot and white when co	old. The compound is :		
a) Al_2O_3	b) PbO	c) CaO	d) ZnO	
	nas photographic effect reacts wi	•	-	
` '	llt on heating gives brown vapou		sait (b) to give a pare yenow	
Identify A , B and C		11 01		
a) AgNO ₃ , NaBr, Ag		c) AgNO ₃ , NaBr, AgCl ₂	d) AgCl, NaBr, AgBr ₂	
790. Silver possesses m		cj rigito3, itabi, riguiz	a) rigal, Nabi, rigbi 2	
a) It is a noble met				
b) It is coated with				
c) Valency electrons absorb white light completely d) Valency electrons absorb and eject white light				
	of manganese in $(NH_4)_2MnBr_2$ is	c		
a) 3.87 BM	b) 5.91 BM	c) 4.89 BM	d) 2.82 BM	
792. Which transition metal is used for the reduction of steam to hydrogen?				
a) Mg	b) Fe	c) Sc	d) Pt	
· -	nents are more metallic than the	•	•	
a) Electron pairs in		b) Availability of d -orbit	-	
aj Liection pans n	i di Dituio	by meanability of a Orbit	all for boliding	

c) The electron in d-orbitals

d) Unpaired electron in metallic orbitals

794. Cerium can show the oxidation state of +4 because:

- a) It resembles alkali metals
- b) It has very low value of IE
- c) Of its tendency to attain noble gas configuration of xenon
- d) Of its tendency to attain f° configuration

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 47