GPLUS EDUCATION

Date: Time: Marks:

TEST ID: 622 PHYSICS

MOTION IN A PLANE

Single Correct Answer Type

1.	If a person can throw a stone to maximum height of h metre vertically, then the maximum distance
	through which it can be thrown horizontally by the same person is

a) $\frac{h}{2}$

b) h

c) 2h

d) 3h

A pendulum bob on a 2 m string is displaced 60° from the vertical and then released. What is the speed of the bob as it passes through the lowest point in its path

a) $\sqrt{2} m/s$

b) $\sqrt{9.8} \, m/s$

c) $4.43 \, m/s$

d) $1/\sqrt{2} \, m/s$

A wheel is subjected to uniform angular acceleration about its axis. Initially its angular velocity is zero. In the first 2 sec, it rotates through an angle θ_1 . In the next 2 sec, it rotates through an additional angle θ_2 . The ratio of θ_2/θ_1 is

a) 1

b) 2

c) 3

d) 5

A car is moving in a circular horizontal track of radius 10m with a constant speed of 10 ms⁻¹. The angle made by the rod with track is

a) Zero

b) 30°

c) 45°

d) 60°

A cyclist is travelling on a circular section of highway of radius 2500 ft at the speed of 60 mile h^{-1} . The cyclist suddenly applies the brakes causing the bicycle to slown sown at constant rate. Knowing that after 8 s the speed has been reduced to 45 mileh $^{-1}$. The acceleration of the bicycle immediately after the brakes have been applied is

a) 2 ft/s^2 b) 4.14 ft/s^2 c) 3.10 ft/s^2 d) 2.75 ft/s^2 Two stones are projected from the same speed but making different angels with the horizontal. Their horizontal ranges are equal. The angle of projection of one is $\pi/3$ and the maximum height reached by it is 102 m. Then maximum height reached by the other in metre is

a) 336

b) 224

c) 56

d) 34

7. A particle moves in circle of radius 25 cm at the rate of two revolutions per second. The acceleration of particle is

a) $2\pi^2 \text{ms}^{-2}$

b) $4\pi^2 \text{ms}^{-2}$

c) $8\pi^2 \text{ms}^{-2}$

d) $\pi^2 \text{ms}^{-2}$

A small particle of mass m is projected at an angle θ with the x-axis with an initial velocity v_0 in the x-yplane as shown in the figure. At a time $t < \frac{v_0 \sin \theta}{q}$, the angular momentum of the particle is

a) $-mgv_0t^2\cos\theta$ j

b) $mgv_0t\cos\theta \hat{\mathbf{k}}$

c) $-\frac{1}{2}mgv_0t^2\cos\theta \hat{\mathbf{k}}$ d) $\frac{1}{2}mgv_0t^2\cos\theta \hat{\mathbf{i}}$

When a body moves in a circular path, no work is done by the force since

a) force and displacement are perpendicular other b) the force is always away from the center

	c) there is no displace	ment	d) there is no net force			
10.	Consider a vector $\vec{F} =$	$4\hat{i} - 3\hat{j}$. Another vector that	is perpendicular to F is			
	a) 4î + 3ĵ	b) 6ĵ	c) 7ĵ	d) 3î – 4ĵ		
11.		with a velocity 200 ms ⁻¹ at		•		
		-	-	$100 \mathrm{ms}^{-1}$, the second particle		
		ards. What is the velocity of	•	, p p		
	•	0° angle with horizontal	b) $200 \mathrm{ms^{-1}}$ making 60)° angle with horizontal		
	c) 300 ms^{-1}	g	d) 200 ms^{-1}			
12.	•	attained by a projectile is in	,	ng its speed of projection.		
	_	angle of projection. The per				
	a) 5%	b) 10%	c) 15%	d) 20%		
13.	•	on an overbridge of radius <i>F</i>	•	-		
10.		ng on the overbridge, the no		mstant speed. His the		
	a) Increases	b) Decreases	c) Remains the same	d) Fluctuates		
14	•			efficient of friction is 0.3 and		
	-	avity 10ms^{-2} , the maximun				
	a) 30	b) 81	c) 108	d) 162		
15	•	moving in a circle of radius	•	•		
13.	centripetal force is	inoving in a circle of radius	1 m with an angular verses	tey of 27 datan, see. The		
	a) 10 <i>N</i>	b) 20 <i>N</i>	c) 30 <i>N</i>	d) 40 <i>N</i>		
16		nit vectors is also a unit vec		-		
101	a) $\sqrt{2}$	b) $\sqrt{3}$	c) $\sqrt{4}$	d) $\sqrt{7}$		
17				· ·		
17.	A force $\vec{F} = -K(y\hat{i} + x\hat{j})$ (where K is a positive constant) acts on a particle moving in the $x - y$ plane. Starting from the origin, the particle is taken along the positive x -axis to the point $(a, 0)$ and then parallel					
		a). The total work done by $\frac{1}{2}$	_			
4.0	a) $-2Ka^2$	b) $2Ka^2$	c) $-Ka^2$	d) Ka^2		
18.				T_2 be the times of flights in		
		e product of the two times o	mgnts is directly proporti	onal to		
	a) $\frac{1}{R^2}$	b) $\frac{1}{R}$	c) <i>R</i>	d) <i>R</i> ²		
19.			orizontal has a range of 200	m. If the time of flight is 5 s.		
	A projectile shot into air at some angle with the horizontal has a range of 200 m. If the time of flight is 5 s, then the horizontal component of the velocity of the projectile at the highest point of trajectory is					
	a) 40 ms ⁻¹	FJ	b) 0 ms ⁻¹	F		
	c) 9.8 ms ⁻¹		,	of projection of the projectile		
20.	•	$1 \overrightarrow{B} = 4\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$, then angl		1 , , , , , , , , , , , , , , , , , , ,		
	a) $\sin^{-1}(25/29)$	b) $\sin^{-1}(29/25)$		d) $\cos^{-1}(29/25)$		
21.		frictionless track which ends	, , ,	, , ,		
	· ·	terms of D so that it may ju	•			
	a) $h = \frac{5}{2}D$	b) $h = \frac{3}{2}D$	c) $h = \frac{5}{4}D$	d) h = 2D		
22.	A particle moves in a d	circular path with decreasing	g speed. Choose the correct	statement		
	a) Angular momentun	n remains constant				
	b) Acceleration (\vec{a}) is	towards the centre				
	c) Particle moves in a	c) Particle moves in a spiral path with decreasing radius				
	d) The direction of an	gular momentum remains co	onstant			
23.	A stone of mass 1 kg	tied to a light inextensible st	ring of length $L = \frac{10}{3}m$ is w	hirling in a circular path of		
				to the minimum tension in the		
	-	aken to be $10m/\sec^2$, the s	-			

a) 20 <i>m/sec</i>	b) $10\sqrt{3}m/sec$	c) $5\sqrt{2}m/sec$	d) 10 <i>m/sec</i>
	•		•
	=	s/sec, with which the body	should move so that it does
a) 4	,		d) 1
	_		
=	=		
	,	,	d) 1 : 3
		is $\mathbf{v} = 3\mathbf{i} + 2\mathbf{j}$ (in ms ⁻¹). The	e speed of the projectile at
	-	a) 1 ma=1	d) Zana
-	*		d) Zero
	-		d) 985.9 ms $^{-2}$
,	•	_	,
		ie of radius r, under a centr	ipetai force
•			
a) The potential energy o	the particle is zero		
	<i>I</i>		
c) The total energy of the	particle is $-\frac{\kappa}{2r}$		
d) The Kinetic energy of t	he particle is $-\frac{k}{-}$	>	
A nlumb line is suspende	r d from a ceiling of a car m	noving with horizontal acce	leration of a What will he the
		ioving with norizontal acce	iciation of all what will be the
		$a_{\alpha} = 1$ (a)	$\frac{1}{2}$
a) tan $\left(\frac{-}{g}\right)$	b) $\tan^{-1}\left(\frac{a}{a}\right)$	$\left(\frac{-g}{g}\right)$	a) cas $-\left(\frac{a}{a}\right)$
		ce of 20 m. Then the velocit	
,	,	•	d) 24 ms^{-1}
		le of 45° to the horizontal. A	t the highest point during its
0			
•	• •	· ·	d) Zero
_			
. ,	to hit a target 5 km away	. Assume the muzzle speed	to be same and the air
~ ~	- 1	13	
	=		arget 5 km away
			6.1 1 11.1 1
		out which point on the plane	e of the circle, will the angular
_	e remain conserveu?	h) on the giraumforonce	of the girale
			of the circle
- -	ched on it makes 10 rots		nany rotations will it make in
•			iany rotations will it make in
	=		d) 30
	•	•	•
-		ica o, co inicial vectors 21	, of and i i if the area of
		b) 5 units in $x - v$ plane)
-			
	horizontally with veloci		
	A body moves along a circ and the body is 0.5. The a not leave the path is ($g = a$) 4 Two particles of equal may other dividing the length plane. Ratio of tensions in a) 4:3 The velocity of projection the highest point of the transparant a) 3 ms ⁻¹ The centripetal acceleration as $m = \frac{k}{r^{2'}}$ where k is a constant a) 7 ms moved and the potential energy of the divided by the first and the potential energy of the divided by the first and the potential energy of the divided by the first and the potential energy of the divided by the first and the projection, one can hope for the first and the first and the projection is not possible to hit a target c) prediction is not possible to hit a target c) prediction is not possible to hit a target c) prediction is not possible to hit a target c) prediction is not possible to hit a target c) prediction is not possible a) possible to hit a target c) prediction is not possible to hit a target c) prediction is not possible to hit a target c) prediction is not possible to hit a target c) prediction is not possible a) possible to hit a target c) prediction is not possible to hit a target c) prediction is not possible to hit a target c) prediction is not possible to hit a target c) prediction is not possible to hit a target c) and the particle a	A body moves along a circular path of radius 5 m. and the body is 0.5. The angular velocity, in radian not leave the path is $(g = 10 \mathrm{ms}^{-2})$ a) 4 b) 3 Two particles of equal mass are connected to a ropother dividing the length of rope in the ratio 1 : 2 plane. Ratio of tensions in the smaller part to the call $4:3$ b) 1 : 4 The velocity of projection of an oblique projectile in the highest point of the trajectory is a) 3 ms ⁻¹ b) 2 ms ⁻¹ The centripetal acceleration of a body moving in a a) 98.5 ms ⁻² b) 198.5 ms ⁻² A particle of mass m is moving in a horizontal circle $\frac{k}{r^{2}}$ where k is a constant. a) The potential energy of the particle is zero b) The potential energy of the particle is $-\frac{k}{r}$ c) The total energy of the particle is $-\frac{k}{r}$ d) The Kinetic energy of the particle is $-\frac{k}{r}$ A plumb line is suspended from a ceiling of a car mangle of inclination with vertical? a) $\tan^{-1}\left(\frac{a}{g}\right)$ b) $\tan^{-1}\left(\frac{g}{a}\right)$ A monkey can jump a maximum horizontal distantal 10 ms ⁻¹ b) $14 \mathrm{ms}^{-1}$ A ball is projected with kinetic energy K at an angilight, its kinetic energy will be a) K b) $K/\sqrt{2}$ A bullet fired at an angle of 30° with the horizontal projection, one can hope to hit a target 5 km away resistance is negligible a) possible to hit a target 5 km away resistance is negligible a) possible to hit a target 5 km away c) prediction is not possible A particle undergoes uniform circular motion. Abomomentum of the particle remain conserved? a) center of the circle When a ceiling fan is switched on, it makes 10 rota the next $4 s$? (Assuming uniform angular acceleratal) 10 b) 20 The adjacent sides of a parallelogram are represented parallelogram is a) 5 units along z -axis c) 3 units in $x - z$ plane	A body moves along a circular path of radius 5 m. The coefficient of friction be and the body is 0.5. The angular velocity, in radians/sec, with which the body not leave the path is $(g=10\text{ms}^{-2})$ a) 4 b) 3 c) 2 Two particles of equal mass are connected to a rope AB of negligible mass such the dividing the length of rope in the ratio $1:2$ from B . The rope is rotated plane. Ratio of tensions in the smaller part to the other is (ignore effect of gra a) $4:3$ b) $1:4$ c) $1:2$ from B . The rope is rotated plane. Ratio of tensions in the smaller part to the other is (ignore effect of gra a) $4:3$ b) $1:4$ c) $1:2$ from B . The rope is rotated plane. Ratio of tensions in the smaller part to the other is (ignore effect of gra a) $4:3$ c) $1:2$ from B . The rope is rotated plane. Ratio of tensions in the smaller part to the other is (ignore effect of gra a) $4:3$ c) $1:2$ from B . The rope is rotated plane. Ratio of tensions in the smaller part to the other is (ignore effect of gra a) $4:3$ c) $1:2$ from B . The rope is rotated plane. Particle is $\overline{v} = 3i + 2j$ (in ms^{-1}). The the highest point of the trajectory is a) $3 ms^{-1}$ b) $2 ms^{-1}$ c) $1 ms^{-1}$ The centripetal acceleration of a body moving in a circle of radius 100 m with a) 98.5 ms^{-2} c) $1 ms^{-1}$ The particle of mass m is moving in a horizontal circle of radius r , under a centre $\frac{k}{r^2}$ where k is a constant. a) The potential energy of the particle is $\frac{k}{r}$. c) The total energy of the particle is $\frac{k}{r}$. c) The total energy of the particle is $-\frac{k}{2r}$. d) The Kinetic energy of the particle is $-\frac{k}{2r}$. d) The Kinetic energy of the particle is $-\frac{k}{2r}$. A plumb line is suspended from a ceiling of a car moving with horizontal acceangle of inclination with vertical? a) $\tan^{-1}(\frac{9}{g})$ b) $\tan^{-1}(\frac{9}{g})$ c) $\cos^{-1}(\frac{a}{g})$ A monkey can jump a maximum horizontal distance of 20 m . Then the velocity a) 10 ms^{-1} b) 14 ms^{-1} c) 20 ms^{-1} A ball is proj

	-		ver. A body of mass $2m$ throuch the level ground at a dis	
	tower. The value of x is	O .	Ü	
	a) 250 m	b) 500 m	c) 125 m	d) $250\sqrt{2}$ m
37	For an object thrown at 45		•	
37.	as			itai range (N) are relateu
	a) $R = 16H$	_	c) $R = 4H$	d) R = 2H
38.	A stone is just released fro	m the window of a train m	noving along a horizontal st	traight track. The stone will
	hit the ground following			
	a) Straight path	b) Circular path	c) Parabolic path	d) Hyperbolic path
39.	For a particle in uniform c	ircular motion the acceler:	ation a at a point $P(R, heta)$ or	n the circle of the radius R is
	(here θ is measured from			
	a) $-\frac{v^2}{R}\cos\theta \hat{\mathbf{i}} + \frac{v^2}{R}\sin\theta \hat{\mathbf{j}}$ c) $-\frac{v^2}{R}\cos\theta \hat{\mathbf{i}} - \frac{v^2}{R}\sin\theta \hat{\mathbf{j}}$		b) $-\frac{v^2}{R}\sin\theta \hat{\mathbf{i}} + \frac{v^2}{R}\cos\theta \hat{\mathbf{j}}$	
	$v^2 \cos \Omega \hat{i} v^2 \sin \Omega \hat{i}$		d) $-\frac{v^2}{R} \hat{\mathbf{i}} + \frac{v^2}{R} \hat{\mathbf{j}}$	
	==		n n	
40.		elocity of $9.8 m/s$ making	an angle of 30° with the ho	rizontal. It will hit the
	ground after a time			
	a) 1.5 <i>s</i>	b) 1 <i>s</i>	c) 3 <i>s</i>	d) 2 <i>s</i>
41.	• •			ntal velocity that must be
	imparted to the particle if $\frac{1}{2}$			D (<u>f p</u>
	a) \sqrt{gR}		c) $\sqrt{3gR}$	d) $\sqrt{5gR}$
42.	A small object placed on a		• •	
		_	e turn table is doubled the	object slips when its
	distance from the axis of re			D. O.
	a) 1 cm	b) 2 cm	c) 4 cm	d) 8 cm
43.	A particle is projected with distance of $2h$ from each of		ust clears two walls of equa erval of passing between the	
	_ 2 <i>h</i>	$\frac{1}{2h}$	$-\sqrt{h}$	$\frac{1}{h}$
	a) $\frac{2h}{g}$	b) $\frac{1}{\sigma}$	c) $\sqrt{\frac{h}{g}}$	d) 2 $\left \frac{1}{\sigma} \right $
		√ ⁶	√6 	√6
44.			adius 4 m and the water d	oes not fall down. The time
	period for a revaluation is		3.0	D 40
4 =	a) 2 s	b) 4 s	c) 8 s	d) 10 s
45.	•	vneel is 70 raa/sec. If the	radius of the wheel is 0.5 n	n, then linear velocity of the
	wheel is	1) 25 /	/	1) 20 /
4.0	a) 70 m/s	b) 35 <i>m/s</i>	c) 30 m/s	d) 20 m/s
46.	A stone is projected from t	-		crosses a wall after 3 sec.
	How far beyond the wall the	-		1) 50.0
4.7	a) 90.2 m	b) 89.6 m	c) 86.6 m	d) 70.2 <i>m</i>
4/.		$\frac{1}{2}$ ing particle at time t are gi	iven by $x = ct^2$ and $y = bt$	² . The instantaneous speed
	of the particle is	12 2 4 21/2	2 2 4 2	12 0 (2 , 12)1/2
	a) $2t(b+c)$	b) $2t(b+c)^{1/2}$	c) $2t(c^2 - b^2)$, ,
48.		-		pendicular to the velocity of
	the particle. The motion of	the particle takes place in	-	
	a) Its velocity is constant		b) Its acceleration is cons	
	c) Its kinetic energy is con		d) It moves in a straight li	
49.	A circular road of radius 1		_	ed of a car having mass
	2000 kg will be, if the coef	iticient of friction between	tyre and road is 0.5	

- a) $172 \, m/s$
- b) $124 \, m/s$
- c) $99 \, m/s$
- d) $86 \, m/s$
- 50. A small sphere is hung by a string fixed to a wall. The sphere is pushed away from the wall by a stick. The force acting on the sphere are shown in figure. Which of the following statements is wrong?

- a) $P = W tan \theta$
- b) $\overrightarrow{T} + \overrightarrow{P} + \overrightarrow{W} = 0$ c) $T^2 = P^2 + W^2$ d) T = P + W
- 51. An aircraft executes a horizontal loop with a speed of 150 m/s with its wings banked at an angle of 12°. The radius of the loop is $(g = 10 \text{ m/s}^2, \tan 12^\circ = 0.2126)$
 - a) 10.6 km
- b) 9.6 km
- d) 5.8 km
- 52. Two forces, each equal to *F*, act as shown in figure. Their resultant is

b) *F*

c) $\sqrt{3} F$

- d) $\sqrt{5} F$
- 53. Radius of the curved road on national highway is *R*. Width of the road is *b*. The outer edge of the road is raised by h with respect to inner edge so that a car with velocity v can pass safe over it. The value of h is

- b) $\frac{v}{Rab}$ c) $\frac{v^2R}{a}$

- 54. A particle is moving along a circular path with a uniform speed. How does its angular velocity change when it completes half of the circular path?
 - a) No change
- b) Increases
- d) Cannot say
- 55. A body moving along a circular path of radius *R* with velocity *v*, has centripetal acceleration *a*. If its velocity is made equal to 2v, then its centripetal acceleration is

c) $\frac{1}{4}$

- d) $\frac{a}{2}$
- 56. A body of mass 1 kg is rotating in a vertical circle of radius 1m. What will be the difference in its kinetic energy at the top and bottom of the circle? (Take $g = 10 \text{ ms}^{-2}$)

b) 20 J

c) 30 I

- d) 50 J
- 57. In the case of an oblique projectile, the velocity is perpendicular to acceleration
 - a) Once only
- b) Twice
- c) Thrice
- d) Four times
- 58. A body of mass m kg is rotating in a vertical circle at the end of a string of length r metre. The difference in the kinetic energy at the top and bottom of the circle is
 - a) $\frac{mg}{r}$

- c) 2mgr
- d) mgr
- 59. A body of mass 1 kg thrown with a velocity of 10 ms⁻¹ at an angle of 60° with the horizontal. Its momentum at the highest point is
 - a) 2 kg ms^{-1}
- b) 3 kg ms^{-1}
- c) 4 kg ms^{-1}
- 60. A stone is projected from the ground with velocity 50 ms^{-1} and angle of 30°. It crosses a wall after 3 s. How far beyond the wall the stone will strike the ground?
- b) 85.6 m
- c) 86.6 m
- d) 75.2 m
- 61. A bob of mass M is suspended by a massless string of length L. The horizontal velocity V at position A is just sufficient to make it reach the point B. The angle θ at which the speed of the bob is half of that at A, satisfies

- b) $\frac{\pi}{4} < \theta < \frac{\pi}{4}$ c) $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$ d) $\frac{3\pi}{4} < \theta < \pi$
- 62. For a particle in uniform circular motion, thee acceleration \vec{a} at a point $P(R,\theta)$ on the circle of radius R is (Here θ is measured from the x-axis)
 - a) $\frac{v^2}{R}\hat{\imath} + \frac{v^2}{R}\hat{\jmath}$

b) $-\frac{v^2}{R}\cos\theta \,\hat{\imath} + \frac{v^2}{R}\sin\theta \,\hat{\jmath}$

c) $-\frac{v^2}{R}\sin\theta \,\hat{\imath} + \frac{v^2}{R}\cos\theta \,\hat{\jmath}$

- d) $-\frac{v^2}{R}\cos\theta \,\hat{\imath} \frac{v^2}{R}\sin\theta \,\hat{\jmath}$
- 63. A man can thrown a stone 100 m away. The maximum height to which he can throw vertically is
 - a) 200 m
- b) 100 m
- c) 50 m

d) 25 m

- 64. Roads are banked on curves so that
 - a) The speeding vehicles may not fall outwards
 - b) The frictional force between the road and vehicle may be decreased
 - c) The wear and tear of tyres may be avoided
 - d) The weight of the vehicle may be decreased
- 65. A piece of wire is bent in the shape of a parabola $y = kx^2$ (y-axis vertical) with a bead of mass m on it. The bead can side on the wire without friction. It stays at the lowest point of the parabola when the wire is at rest. The wire is now accelerated parallel to the x-axis with a constant acceleration a. The distance of the new equilibrium position of the bead, where the bead can stay at rest with respect to the wire, from the yaxis is

a) a/gk

- b) a/2gk
- d) a/4gk

Figure shows a body of mass m moving with a uniform speed v along a circle of radius r. The change in velocity in going from A to B is

a) $v\sqrt{2}$

- b) $v/\sqrt{2}$
- c) v

- 67. A particle starts from the origin of coordinates at time t = 0 and moves in the x y plane with a constant acceleration α in the y-direction. Its equation of motion is $y = \beta x^2$. Its velocity component in the xdirection is
 - a) Variable
- b) $\sqrt{\frac{2\alpha}{\beta}}$
- c) $\frac{\alpha}{2\beta}$

- 68. A body is revolving with a uniform speed v in a circle of radius r. The tangential acceleration is

Gpl					
1-n	III C	-~	1111	ITI	n
UU	IU.S	LUI	JLU	ılıv	
UDI	us	LUI	a \cup \cup		

	a) $\frac{v}{r}$	b) $\frac{v^2}{r}$	c) Zero	d) $\frac{v}{r^2}$
69.		n a velocity of $20 m/s$ maki Bx^2 where h is height, x is		
70	a) 1:5	,	c) 1:40	d) 40 : 1
70.		placement of a particle move t in seconds, then the angue b) $12 \ rad/sec$		
71.	Two masses M and m are	attached to a vertical axis h	by weightless threads of co	mbined length $\it l$. They are
		n a horizontal plane about t e the same during motion, t	~	-
	a) $\frac{Ml}{M+m}$	b) $\frac{ml}{M+m}$	c) $\frac{M+m}{M}l$	d) $\frac{M+m}{m}l$
72.	A bomber plane moves ho	orizontally with a speed of s which it strikes the ground	500 m/s and a bomb releas	***
	a) $\tan^{-1}\left(\frac{1}{5}\right)$	b) $\tan^{-1} \left(\frac{1}{2} \right)$	c) tan ⁻¹ (1)	d) tan ⁻¹ (5)
73.	1200 <i>r. p. m.</i> The accelerat	of length $30 cm$ as measuration of a point on the tip of	the blade is about	<u> </u>
74.	a) 1600 <i>m</i> / sec ² A particle moves in a plan path of the particle will be	e with constant acceleration	c) 2370 m/ sec ² on in a direction different fr	•
75.	a) A straight line A force is inclined at 60° t	b) An arc of a circle o the horizontal. If its recta	ngular component in the h	d) An ellipse orizontal direction is 50 N,
	a) 25 N	ce in the vertical direction i b) 75 N	c) 87 N	d) 100 N
76.	10ms ⁻² and the coefficier	nt of friction between rubbe	er tyres and the roadway is	•
	a) 36.0 km h ⁻¹		c) 21.6 km h ⁻¹	d) 14.4 km h ⁻¹
77.	The equation of trajectory projectile (in metre) is	y of a projectile is $y = 10x$	$-\left(\frac{5}{9}\right)x^2$. if we assume $g=$	10ms ⁻² , the range of
	a) 36	b) 24	c) 18	d) 9
78.	circle of radius <i>l</i>	the lowest point, so that the		_
70	a) \sqrt{gl}	b) $\sqrt{3gl}$	c) $\sqrt{5gl}$	d) $\sqrt{7gl}$
79.	half the horizontal range.	Then θ is equal to		ne horizontal is found to be
	a) $tan^{-2}(2)$	b) $\frac{\pi}{6}$	c) $\frac{\pi}{4}$	d) $\tan^{-1}\left(\frac{1}{2}\right)$
80.	The magnitude of the centradius r with speed v is	tripetal force acting on a bo		niform motion in a circle of
	a) mvr	b) mv^2/r	c) v/r^2m	d) <i>v/rm</i>
81.	The kinetic energy K of a $K = a s^2$. The force acting	particle moving along a circ g on the particle is	cle or radius <i>R</i> depends on	the distance covered <i>s</i> as
	a) 2 <i>a s R</i>	b) $2 a s[1 + s^2/R^2]^{1/2}$	c) 2 a s	d) $2 as^2/R$
82.		angle θ to the horizontal wi	=	otential energy at the
	highest point of the trajec a) E_k	b) $E_k \cos^2 \theta$	c) $E_k \sin^2 \theta$	d) $E_k \tan^2 \theta$

- 83. In a loop-the-loop, a body starts at a height h = 2R. The minimum speed with which the body must be pushed down initially in order that it may be able to complete the vertical circle is
- b) \sqrt{gR}

c) $\sqrt{3gR}$

- 84. A stone is swinging in a horizontal circle 0.8 m in diameter, at 30rev/min. A distant light causes a shadow of the stone to be formed on a nearby wall. What is the amplitude of the motion of the shadow? What is the frequency?
 - a) 0.4 m, 1.5 Hz
- b) 0.4 m, 0.5 Hz
- c) 0.8 m, 0.5 Hz
- d) 0.2 m, 0.5 Hz
- 85. A particle is projected at an angle of 60° above the horizontal with a speed of 10 ms⁻¹. After some time the direction of its velocity makes an angle of 30° above the horizontal. The speed of the particle at this instant
 - a) $\frac{5}{\sqrt{2}}$ ms⁻¹
- b) $5\sqrt{3} \text{ ms}^{-1}$ c) 5 ms^{-1}
- d) $\frac{10}{\sqrt{3}}$ ms⁻¹
- 86. A particle of mass m attracted with a string of length l is just revolving on the vertical circle without slacking of the string. If v_A , v_B and v_D are speed at position A, B and D then

a) $v_B > v_D > v_A$

b) Tension in string at D = 3 mg

c) $v_D = \sqrt{3gl}$

- d) All of the above
- 87. A car is travelling with linear velocity v on a circular road of radius r. If it is increasing its speed at the rate of $a'm/s^2$, then the resultant acceleration will be
- b) $\sqrt{\left\{\frac{v^4}{r^2} + a^2\right\}}$ c) $\sqrt{\left\{\frac{v^4}{r^2} a^2\right\}}$ d) $\sqrt{\left\{\frac{v^2}{r^2} + a^2\right\}}$
- 88. The acceleration of a vehicle travelling with speed of $400 \, \mathrm{ms}^{-1}$ as it goes round a curve of radius $160 \, \mathrm{m}$, is
 - a) $1 \, \text{kms}^{-2}$
- b) 100 ms^{-2}
- c) 10 ms^{-2}
- d) 1 ms^{-2}
- 89. A 500 kg car takes a round turn of radius 50 m with a velocity of 36 km h^{-1} . The centripetal force, is
 - a) 250 N
- b) 750 N
- c) 1000 N
- d) 1200 N
- 90. If a cyclist moving with a speed of $4.9 \, m/s$ on a level road can take a sharp circular turn of radius $4 \, m$, then coefficient of friction between the cycle tyres and road is
 - a) 0.41

b) 0.51

c) 0.61

d) 0.71

- 91. If $\vec{A} \cdot \vec{B} = AB$, then the angle between \vec{A} and \vec{B} is

b) 45°

c) 90°

- d) 180°
- 92. The angular amplitude of a simple pendulum is θ_0 . The maximum tension in its string will be
 - a) $mg(1 \theta_0)$
- b) $mg(1 + \theta_0)$
- c) $mg(1-\theta_0^2)$
- d) $mg(1 + \theta_0^2)$
- 93. A body is projected up a smooth inclined plane with a velocity v_0 from the point A as shown in figure. The angle of inclination is 45° and top B of the plane is connected to a well of diameter 40 m. If the body just manages to cross the well, what is the value of v_0 ? Length of the inclined plane is $20\sqrt{2}$ m, and g = 10ms⁻²

- a) 20 ms^{-1}
- b) $20\sqrt{2} \text{ms}^{-1}$
- c) 40 ms^{-1}
- d) $40\sqrt{2} \text{ ms}^{-1}$
- 94. A sphere of mass m is tied to end of a string of length l and rotated through the other end along a horizontal circular path with speed v. The work done in full horizontal circle is

b)
$$\left(\frac{mv^2}{l}\right)$$
. $2\pi l$

c) $mg.2\pi$

d)
$$\left(\frac{mv^2}{l}\right)$$
. (l)

- 95. A bucket filled with water is tied to a rope of length 0.5 m and is rotated in a circular path in vertical pane. The least velocity it should have at the lowest point of circle so that water dose not spill is, $(g = 10 \text{ ms}^{-2})$
 - a) $\sqrt{5} \text{ ms}^{-1}$
- b) $\sqrt{10} \text{ ms}^{-1}$
- c) 5 ms^{-1}
- d) $2\sqrt{5} \text{ ms}^{-1}$
- 96. An object is projected at an angle of 45° with the horizontal. The horizontal range and the maximum height reached will be in the ratio
 - a) 1:2

b) 2:1

c) 1:4

- d) 4:1
- 97. Three identical particles are joined together by a thread as shown in figure. All the three particles are moving in a horizontal plane. If the velocity of the outermost particle is v_0 , then the ratio of tensions in the three sections of the string is

- a) 3:5:7
- b) 3:4:5
- c) 7:11:6
- d)3:5:6
- 98. The horizontal range and the maximum height of a projectile are equal. The angle of projection of the projectile is
 - a) $\theta = \tan^{-1}\left(\frac{1}{4}\right)$
- b) $\theta = \tan^{-1}(4)$ c) $\theta = \tan^{-1}(2)$
- d) $\theta = 45^{\circ}$
- 99. A man can throw a stone to a maximum distance of 80 m. The maximum height to which it will rise in metre, is
 - a) 30 m

b) 20 m

c) 10 m

- 100. A bob of mass M is suspended by a massless string of length L. The horizontal velocity v at position A is just sufficient to make it reach the point B. The angle θ at which the speed of the bob is half of that at A, satisfies

JPLUS EDUCATION

a)
$$\theta = \frac{\pi}{4}$$

$$(b) \frac{\pi}{4} < \theta < \frac{\pi}{2}$$

b)
$$\frac{\pi}{4} < \theta < \frac{\pi}{2}$$
 c) $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$ d) $\frac{3\pi}{4} < \theta < \pi$

d)
$$\frac{3\pi}{4} < \theta < \pi$$

- 101. Given that centripetal force $F = -k/r^2$. The total energy is
 - a) $-k/r^2$

- 102. The wheel of toy car rotates about axis. It slows down from 400 rps to 200 rps in 2s. Then its angular retardation in rads⁻² is
 - a) 200π
- b) 100

- c) 400π
- d) None of these
- 103. The magnitude of resultant of three vectors of magnitude 1, 2 and 3 whose directions are those of the sides of an equilateral triangle taken in order is
 - a) zero

- b) $2\sqrt{2}$ unit
- c) $4\sqrt{3}$ unit
- d) $\sqrt{3}$ unit
- 104. The horizontal range of a projectile is $4\sqrt{3}$ times its maximum height. Its angle of projection will be

b) 60°

c) 90°

- d) 30°
- 105. When a body moves in a circular path, no work is done by the force since,
 - a) There is no displacement
 - b) There is no net force
 - c) Force and displacement are perpendicular to each other
 - d) The force is always away from the centre
- 106. A particle is moving on a circular path with constant speed, then its acceleration will be

			·
a) Zero		b) External radial accele	
c) Internal radial accele		d) Constant acceleration	
107. When the road is dry an		_	
	es wet and $\mu' = \mu/2$, what i		
a) 5 ms ⁻¹	b) 10 ms ⁻¹	c) $10\sqrt{2} \text{ ms}^{-1}$	d) $5\sqrt{2} \text{ ms}^{-1}$
108. A particle is moving w	ith a constant speed v in	a circle. What is the mag	gnitude of average after half
rotation?			
a) 2 <i>v</i>	b) $2\frac{v}{\pi}$	c) $\frac{v}{2}$	d) $\frac{v}{2\pi}$
•	κ	4	470
109. A projectile is fired with		_	eed of the projectile when its
	tes an angle β with the horiz		1) 0 0
a) $v \cos \theta$	b) $v \cos \theta \cos \beta$	c) $v \cos \theta \sec \beta$	d) $v\cos\theta\tan\beta$
110. The radio of angular spe			1) 1 (
a) 1 : 12 → →	b) 12 : 1 → →	•	d) 1 : 6 →
111. Three vectors \overrightarrow{A} , \overrightarrow{B} and		$= 0$ and A \cdot C $= 0$. If B an	d C are not lying in the same
plane then \vec{A} is parallel	0		
a) $\overrightarrow{\mathrm{B}}$	b) <mark>C</mark>	c) $\overrightarrow{B} \times \overrightarrow{C}$	d) <u>B</u> • <u>C</u>
112. A car of mass 2000 kg is	moving with a speed of 10	${\rm ms}^{-1}$ on a circular path of	radius 20 m on a level road.
What must be the friction	nal force between the car a	nd the road so that the car	does not slip?
a) 10 ⁴ N	b) 10 ³ N	c) 10 ⁵ N	d) 10 ² N
113. The vectors \vec{a} and \vec{b} are	such that $ \vec{a} + \vec{b} = \vec{a} - \vec{b} $.	What is the angle between	\vec{a} and \vec{b} ?
a) 0°		c) 60°	d) 180°
114. The maximum horizont			3
will be			3
a) 100 <i>m</i>	b) 200 m	c) 400 m	d) 800 m
			ude of difference of velocities
	sitions will be		
	b) 8.88 and 4.44 mm/s	to the second of	d) 6.28 and 8.88 <i>mm/s</i>
116. A cane filled with water	•	•	•
The time period of revo			•
a) 1 <i>sec</i>		c) 8 <i>sec</i>	d) 4 <i>sec</i>
117. A heavy small sized sph			rotated uniformly in a
-	e string making an angle θ		
pendulum is			•
		Ī,	I gog A
a) $2\pi \sqrt{\frac{l \tan \theta}{g}}$	b) $2\pi\sqrt{l\sin\theta/g}$	c) $2\pi \left \frac{t}{a} \right $	d) $2\pi \sqrt{\frac{l\cos\theta}{g}}$
V		▼	√ g
118. The angular speed of se	conds needle in a mechanic	al watch is	
a) $\frac{\pi}{30}$ rad/s	b) $2\pi rad/s$	c) π rad/s	d) $\frac{60}{\pi}$ rad/s
30			16
-	• •		lius r , to describe the circle is
	cle is reduced to one-fourth	-	= -
a) $v/4$	b) $v/2$	c) 2 <i>v</i>	d) $4v$
120. A particle of mass m is p		-	
	omentum of the projectile a	about the point of projection	on when the particle is at its
maximum height h is		3	/ 2
a) $\frac{\sqrt{3}}{2} \frac{mv^2}{g}$	b) Zero	c) $\frac{mv^3}{\sqrt{2q}}$	d) $\frac{\sqrt{3}mv^3}{}$
ŭ		V D	U
121. A cyclist moves in such	a way that he track 60° tur	n after 100 m. What is the	e displacement when to takes

GPLUS EDUCATION WEB: WWW.GPLUSEDUCATION.ORG **PHONE NO: 8583042324** P a g e | 10

d) $100\sqrt{3}$ m

	acceleration after and b	efore the change		
	a) 1:4	b) $\frac{1}{4}$: 2	c) 2:1	d) 4:1
123.	circular path of radius stone will be	4 m in a vertical plan	e. If $g = 10 \text{ ms}^{-2}$, then the	g is tied to it and revolved in a maximum angular velocity of the
	a) 2 rad s ⁻¹	b) 4 rad s^{-1}	c) 8 rad s^{-1}	d) 16 rad s^{-1}
124.	A ball is projected with	velocity V_o at an angle	of elevation 30°. Mark the	correct statement
	a) Kinetic energy will be	e zero at the highest p	oint of the trajectory	
	b) Vertical component of	of momentum will be o	conserved	
	c) Horizontal componer	nt of momentum will b	oe conserved	
	d) Gravitational potenti	al energy will be mini	mum at the highest point of	the trajectory
125	What is the unit vector a	along î + ĵ?		
	a) $\frac{\hat{1} + \hat{j}}{\sqrt{2}}$	b) $\sqrt{2}(\hat{i}+\hat{j})$	c) î + ĵ	d) k
	$\sqrt{2}$	0 , $\sqrt{2}(1+j)$	CJIIJ	u) k
126.	A child travelling in a tr	ain throws a ball outsi	ide with a speed V. Accordin	ng to a child who is standing on
	the ground, the speed o	f the ball is		
	a) Same as V	b) Greater than V	c) Less than V	d) None of these
127.	A weightless thread can	ı bear tension upto 3.7	$^{\prime}~kg$ wt. A stone of mass 500	gms is tied to it and revolved in
	a circular path of radius	34m in a vertical plan	e. If $g=10~ms^{-2}$, then the	maximum angular velocity of the
	stone will be		4.	
	a) 4 radians/sec	b) 16 radians/sec	c) $\sqrt{21}$ radians/se	c d) 2 radians/sec
128.	A car of mass 800 kg m	oves on a circular trac	ck of radius 40 m. If the coef	ficient of friction is 0.5, then
	maximum velocity with	which the car can mo	ve is	
	a) 7 <i>m/s</i>	b) 14 <i>m/s</i>	c) 8 <i>m/s</i>	d) 12 <i>m/s</i>
129	Which of the following s			e with a constant angular speed?
	a) The velocity vector is	s tangent to the circle		
	b) The acceleration vect	tor is tangent to the ci	rcle	
	c) The acceleration vect	tor point to the center	r of the circle	
	d) The velocity and acce	eleration vectors are p	erpendicular to each other	
130.	A particle moves in a cir	rcular orbit under the	action of a central attractive	e force inversely proportional to
	the distance r' . The spe	ed of the particle is		
	a) Proportional to r^2	b) Independent of	r c) Proportional to i	d) Proportional to $1/r$
131.	A particle A is projected	l from the ground with	n an initial velocity of 10 ms	s ^{–1} at an angle of 60° with
	horizontal. From what h	neight h should an ano	other particle B be projected	d horizontally with velocity 5ms ⁻¹
	so that both the particle	es collide in ground at	point C if both are projected	d simultaneously? $(g = 10 \text{ ms}^{-2})$
	<i>B</i>			
	5 ms ⁻¹ h 10 ms ⁻¹ C			
	A	1.3.20	.) 45	1) 25
100	a) 10 m	b) 30 m	c) 15 m	d) 25 m
132.	A body is moving with a		=	reverses its direction, then

c) $100\sqrt{3} \text{ m}$

122. A body is moving in a circular path with acceleration a. If its velocity gets doubled, find the ratio of

seventh turn? a) 100 m

b) 200 m

				opias zaacation
	b) the direction of centrip	netal force remains same		
		petal acceleration remains	same	
	d) the of centripetal force	•	Same	
133	-	_	216 kmh ^{–1} and at a height	of 1960 m. When it is
133.		-	_	strikes the ground at point
	B. The distance AB is (ign		eleased from it, the bonio	strikes the ground at point
	· -	b) 0.33 km	c) 3.33 km	J) 22 I
124	a) 1200 m	,	•	d) 33 km
134.	-		t line path tangential to the	
		· ·	ight and falls back on earth	i. A third body C is
	projected to an angle and	follows a parabolic path as	s shown in figure	
	B			
	C			
	earth			
	The bodies whose angula	r momentum relative to the	e center of the earth is cons	served are
	a) B only	b) B and C	c) A, B, C	d) None of the above
135.	, ,		th constant speed $30 m/s$.	
			n to the cart after the cart h	
	_	t) must the projectile be fir		
				d) None of these
	a) 10 <i>m/s</i>	b) $10\sqrt{8} m/s$	c) ${3}$ m/s	
136.	If \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} are the unit	vectors along the incident r	ay, reflected ray and outwa	ard normal to the reflecting
	surface then	LTL		
	a) $\vec{B} = \vec{A} - \vec{C}$	b) $\overrightarrow{B} = \overrightarrow{A} + (\overrightarrow{A} \cdot \overrightarrow{C}) \overrightarrow{C}$	c) $\overrightarrow{B} = 2\overrightarrow{A} - \overrightarrow{C}$	d) $\overrightarrow{B} = \overrightarrow{A} - 2(\overrightarrow{A} \cdot \overrightarrow{C})\overrightarrow{C}$
137			ough 90° from the vertical a	
1071	9 1		d the tension as the pendul	
	mean position is	string in order to withstair	d the tension as are penadi	am passes an ough the
	a) mg	b) 6 mg	c) 3 mg	d) 5 mg
138		, ,	red exactly one half of its h	, .
150.		ne displacement time graph	•	orizontar range. The
	a) Negative slope and zer		b) Zero slope and negativ	re curvature
	c) Zero slope and positive		d) positive slope and zero	
130	* *		*	
137			l to each other, the magnitu	
	a) $5\sqrt{5}$	b) 10	c) 15	d) $2\sqrt{5}$
140.			ime of flight is 5s. If $g = 10$	$0m/s^2$, then the horizontal
	component of velocity of			
	a) 12.5 <i>m/s</i>	b) 25 <i>m/s</i>	c) 31.25 <i>m/s</i>	d) 40 <i>m/s</i>
141.				the string is 900 N, then the
	_	y, the stone can have in un		
	a) 30 rad s^{-1}	b) 20 rad s^{-1}	c) 10 rad <i>s</i> ⁻¹	d) 25 rad s^{-1}
142.	Four bodies <i>P</i> , <i>Q</i> , <i>R</i> and <i>S</i>	are projected with equal ve	elocities having angles of p	rojection 15°, 30°,45° and

 $60^\circ\,$ with the horizontal respectively. The body having shortest range is d) S a) *P* b) Q c) R

143. A plane surface is inclined making an angle θ with the horizontal. Form the bottom of this inclined plane, a bullet is fired with velocity v. The maximum possible range of the bullet on the inclined plane is

b) $\frac{v^2}{g(1+\sin\theta)}$

c) $\frac{v^2}{g(1-\sin\theta)}$

 $d)\frac{v^2}{g(1+\sin\theta)^2}$

144. A body of mass $0.4 kg$ is whirled in a vertical circle n then tension in the string when the body is at the top	- ·	dius of the circle is $2 m$,
a) 41.56 <i>N</i> b) 89.86 <i>N</i>	c) 109.86 N	d) 115.86 <i>N</i>
145. For a particle in non-uniform accelerated circular mo	*	u) 113.00 N
a) Velocity is radial and acceleration is transverse or		
b) Velocity is transverse and acceleration is radial or	•	
c) Velocity is radial and acceleration has both radial	-	to
d) Velocity is transverse and acceleration has both radial	_	
146. An aeroplane is flying horizontally with a constant ve	-	
ground level. At $t = 0$, it starts dropping packets at c		o .
separation between two consecutive points of impact		-
is	t on the ground, then for the	ne mst unee packets, κ_1/κ_2
a) 1	b) >1	
c) <1	d) Sufficient data is not gi	van
147. The angle which the bicycle and its rider must make	-	
radius at 5 ms^{-1} is	with the vertical when got	ing round a curve of 7 m
a) 20° b) 15°	c) 10°	d) 5°
148. Average torque on a projectile of mass m , initial spec	•	•
final position P and Q as shown in figure about the p		on o , between midal and
$P \longrightarrow Q X$	>	
a) $mu^2 \sin \theta$ b) $mu^2 \cos \theta$	c) $\frac{1}{2} mu^2 \sin 2\theta$	d) $\frac{1}{2} mu^2 \cos 2\theta$
149. Two bullets are fired simultaneously, horizontally ar	nd with different speeds fro	om the same place. Which
bullet will hit the ground first?	ATTON	
a) The faster bullet	b) The slower bullet	
c) Both will hit simultaneously	d) Depends on the masse	
150. A stone of mass m is tied to a string and is moved in		making n revolutions per
minute. The total tension in the string when the stor	ie is at its lowest point is	
a) mg	b) $m(g + \pi nr^2)$	
c) $m(g + \pi nr)$	d) $m\{g + (\pi^2 n^2 r)/900\}$	
151. A projectile is thrown with velocity v making an ang	le $ heta$ with the horizontal. It j	just crosses the tops of two
poles, each of height h , after 1s and 3s respectively. I	The time of flight of the pro	jectile is
a) 1 s b) 3 s	c) 4 s	d) 7.8 s
152. A coin placed on a rotating turn table just slips if it is	-	m from the centre. If
angular velocity of the turn table is doubled, it will ju	st slip at a distance of	
a) 1 cm b) 2 cm	c) 4 cm	d) 8 cm
153. A bomb is dropped from an aeroplane moving horizon	ontally at constant speed. V	Vhen air resistance is taken
into consideration, the bomb		
a) Falls to earth exactly below the aeroplane	b) Fall to earth behind the	•
c) Falls to earth ahead of the aeroplane	d) Flies with the aeroplan	
154. One end of a string of length l is connected to a parti-		
horizontal table. If the particle moves in a circle with	speed v , the net force on t	he particle (directed
towards the centre) is	2	
a) T b) $T - \frac{mv^2}{l}$	c) $T + \frac{mv^2}{l}$	d) Zero
155. Two bodies are projected from the same point with 6	equal speeds in such direct	ions that they both strike

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 13

•	•	f $lpha$ be the angle of projection	n of the first body with the
horizontal the ratio of t	their times of flight is		
a) $\frac{\cos \alpha}{}$	$\sin(\alpha + \beta)$	c) $\frac{\cos \alpha}{\sin(\alpha - \beta)}$	d) $\frac{\sin(\alpha - \beta)}{\alpha}$
a) $\frac{1}{\sin(\alpha + \beta)}$			
9	•	any time its velocity is $oldsymbol{v}$ and	d rate of increases of velocity
is a . The resultant acce	leration of the car will be		
a) $\sqrt{\frac{v^2}{v^2+r^2}}$	b) $\sqrt{\frac{v^2}{v^2+a}}$	c) $\sqrt{\frac{v^4}{r^2} + a^2}$	$d\left(\frac{v^2}{-}+a\right)$
$\sqrt{a^2}$	\sqrt{r}	$\sqrt{r^2 + u}$	r
157. Two bodies are project	ed from the same point wit	h equal speeds in such direc	ctions that they both strike
= :		∝ be the angle of projection	•
horizontal the ratio of t	•	3 1 ,	J
	_	cos ∝	$\sin(\alpha - \beta)$
a) $\frac{1}{\sin(\alpha + \beta)}$	b) $\frac{\cos \alpha}{\cos \alpha}$	c) $\frac{\cos \alpha}{\sin(\alpha - \beta)}$	d) $\frac{\cos \alpha}{\cos \alpha}$
			ne distance covered by him in
2 min 20 sec is			
a) 70 m	b) 140 m	c) 110 m	d) 220 m
159. A long horizontal rod h	•		
		-	ngular acceleration α . If the
	· ·		ed, then the time after which
		α is μ , and gravity is neglect	ed, then the time after which
the bead starts slipping	_	1	d) I., G., ita ai al
a) $\sqrt{\frac{\mu}{\alpha}}$	b) $\frac{\mu}{\sqrt{\alpha}}$	c) [d) Infinitesimal
V 00		The second secon	o 6
	_	_	B s for every circular lap. The
	verage speed for each circul		22.40 -1.0
a) 0,0	b) 0, 10 ms ⁻¹	c) 10 ms ⁻¹ , 10 ms ⁻¹	
161. A 500 kg crane takes a			
a) 1200 <i>N</i>	b) 1000 <i>N</i>		d) 250 <i>N</i>
162. The relation between the		tile T_f and the time to reach	the maximum height t_m is
a) $T_f = 2t_m$	b) $T_f = t_m$	c) $T_f = \frac{t_m}{2}$	$\mathrm{d})T_f=\sqrt{2}(t_m)$
163. A particle P is moving i	n a circle of radius r with a	uniform speed v . C is the co	entre of the circle and AB is
•	llar velocity of P about A an	-	
a) 1:1	b) 1:2	c) 2:1	d) 4:1
164. Two cars of masses m_1	•	•	,
		t. The ratio of their centripe	
a) $m_1r_1:m_2r_2$	b) $m_1:m_2$	c) r_1 : r_2	d) 1 : 1
165. In a circus stuntman ric	,		*
speed at highest point of		ir crack of radias it in the ve	recar plane. The imminum
		a) $\sqrt{2 \alpha R}$	d) \[\sigma \text{p} \]
a) $\sqrt{2gR}$	b) 2 <i>gR</i>	c) $\sqrt{3gR}$	d) \sqrt{gR}
166. A particle describes a h			is smooth with speed of
,	eight of the plane of circle fi		
a) 0.25 <i>cm</i>	b) 2 <i>cm</i>	c) 4 <i>cm</i>	d) 2.5 <i>cm</i>
167. A road of 10 m width h		-	= =
		cles moving with velocity of	
a) 8.5 ms ⁻¹	b) 6.5 ms ⁻¹	c) 5.5 ms ⁻¹	d) None of these
168. Consider the given velo	ocity-time graph		

It represents the motion of

- a) A projectile projected vertically upward, from a point
- b) An electron in the hydrogen atom
- c) A car with constant acceleration along a straight road
- d) A bullet fired horizontally from the top of a tower
- 169. The maximum and minimum tensions in the string whirling in a circle of radius 2.5 m are in the ratio 5:3, then its velocity is
 - a) $\sqrt{98} \text{ ms}^{-1}$
- b) 7 ms^{-1}
- c) $\sqrt{490} \text{ ms}^{-1}$
- d) $\sqrt{4.9} \text{ ms}^{-1}$
- 170. A particle of mass m is circulating on a circle of radius r having angular momentum L, then the centripetal force will be
 - a) L^2/mr
- b) L^2m/r
- c) L^2/mr^3
- d) L^2/mr^2
- 171. Two forces, each of magnitude F, have a resultant of the same magnitude F. The angle between the two forces is
 - a) 45°

b) 120°

c) 150°

d) 180°

- 172. Given $\vec{c} = \vec{a} \times \vec{b}$. The angle which \vec{a} makes with \vec{c} is
 - a) 0°

b) 45°

c) 90°

- d) 180°
- 173. A helicopter is flying horizontally at an altitude of 2 km with a speed of 100 ms⁻¹. A packet is dropped from it. The horizontal distance between the point where the packet is dropped and the point where it hits the ground is $(g = 10 \text{ ms}^{-2})$
 - a) 2 km

- b) 0.2 km
- c) 20 km
- d) 4 km
- 174. A ball is projected with kinetic energy E at an angle of 45° to the horizontal. At the highest point during its flight, its kinetic energy will be
 - a) Zero

b) $^{E}/_{2}$

c) $^{E}/_{\sqrt{2}}$

- d) *E*
- 175. A body is acted upon by a constant force directed towards a fixed point. The magnitude of the force varies inversely as the square of the distance from the fixed point. What is the nature of the path?
 - a) Straight line
- b) Parabola
- c) Circle
- d) Hyperbola
- 176. A ball of mass 0.25 kg attached to the end of a string of length 1.96 m is moving in a horizontal circle. The string will break if the tension is more than 25N. What is the maximum speed with which the ball can be moved?
 - a) 14 ms^{-1}
- b) 3 ms⁻¹
- c) 3.92 ms^{-1}
- d) 5 ms $^{-1}$

- 177. In a projectile motion, velocity at maximum height is
 - a) $\frac{u\cos\theta}{2}$
- b) $u\cos\theta$
- c) $\frac{u \sin \theta}{2}$
- d) None of these
- 178. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of angular momentum of projectile about the point of projection when the particle is at its maximum height h is
 - a) Zero

b) $\frac{mvh}{\sqrt{2}}$

c) $\frac{mvh^2}{\sqrt{2}}$

- d) None of these
- 179. An object is moving in a circle of radius 100 m with a constant speed of 31.4 ms⁻¹. What is its average speed for one complete revolution?
 - a) Zero

- b) 31.4 ms^{-1}
- c) 3.14 ms^{-1}
- d) $\sqrt{2} \times 31.4 \text{ ms}^{-1}$
- 180. A missile is fired for maximum range with an initial velocity of $20 \, m/s$. If $g=10 \, m/s^2$, the range of the missile is

a) 20 <i>m</i>	b) 40 m	c) 50 m	d) 60 <i>m</i>
181. What is the angula	_		
a) $\frac{2\pi}{86400}$ rad s ⁻¹	b) $\frac{2\pi}{3600}$ rad s ⁻¹	c) $\frac{2\pi}{24}$ rad s ⁻¹ l	d) $\frac{2\pi}{6400}$ rad s ⁻¹
			in a vertical circle at constant
speed of 4 ms $^{-1}$. T	he tension in the string is 6 I		10ms^{-2})
a) Top of the circle			d) None of these
	e coefficient of friction betwe	een the tyres and the road,	when a car travelling at 60
	vel turn of radius 40 m?		
a) 0.5	b) 0.66	c) 0.71	d) 0.80
			idius 5 m. The minimum speed of
a) 15.65 ms ⁻¹	point so that the cord does $_{1}$ b) 6.75 ms ⁻¹	c) 20.87 ms ⁻¹	d) 45.83 ms ⁻¹
	,	•	62.8 <i>seconds</i> for every circular
	•		•
a) $10m/s$, $10m/s$	velocity and average speed f b) 10 m/s,0	c) 0,0	d) $0.10 m/s$
	, ,		is slightly displaced. It will leave
	cal distance h below the high		is slightly displaced. It will leave
the circle at a verti	car distance n below the mg	nest point such that	
R			
	R	c) $h = \frac{R}{2}$	2R
a) $h = R$	b) $h = \frac{R}{3}$	c) $h = \frac{\pi}{2}$	d) $h = \frac{2R}{3}$
187. The bob of a pendu	llum of mass m and length $\it L$	is displaced, 90° from the	vertical and gently released. In
order that the strir	ng may not break upon passi	ng through the lowest poir	nt, its minimum strength must be
a) <i>m</i> g	b) 2 mg	c) 3 mg	d) 4 mg
188. Projection of \vec{P} on \vec{Q}	$\vec{0}$ is		-
a) P ∙ Q	b) ĝ • Q	c) $\vec{P} \times \hat{0}$	d) $\vec{P} \times \vec{Q}$
- •	es with a constant speed alor	, ,	7-11-6
a) No work is done		•	s produced in the body
c) No force acts on		d) Its velocity remai	•
•	•	•	s the displacement when to takes
seventh turn?	·		•
a) 100 m	b) 200 m	c) $100\sqrt{3}$ m	d) $100\sqrt{3}$ m
191. A ball of mass 0.1 <i>k</i>		•	eans of a string at an initial speed
	_		iced to one quarter of its initial
value. The new spe	-	G	•
a) 5 <i>r.p.m</i> .	b) 10 r.p.m.	c) 20 r.p.m.	d) 14 r.p.m.
	•		200 revolutions per <i>minute</i> , then
increase in its angu	-		•
a) 10 π rad/sec	b) 20 π rad/sec	c) 40 π rad/sec	d) $60 \pi rad/sec$
•	a circular path with decrea	•	•
a) Angular momen	tum remains constant		
h) Acceleration (a)	is towards the center		

194. At what point of a projectile motion acceleration and velocity and velocity are perpendicular to each other

c) Particle moves in a spiral path with decreasing radiusd) The direction of angular momentum remains constant

	a) At the point of projection	on	b) At the point of drop	
	c) At the topmost point		d) Any where in between topmost point	the point of projection and
195.	The centripetal acceleration	on of a particle of mass m r	noving with a velocity v in	a circular orbit of radius r
	is			
	a) v^2/r along the radius,	towards the center		
	b) v^2/r along the radius,	away from the center		
	c) mv^2/r along the redius	s, away from the center		
	d) mv^2/r along the radius	s, towards the center		
196.	Two projectiles A and B th	rown with speed in the rat	tio 1: $\sqrt{2}$ acquired the same	heights. If A is thrown at
		orizontal, the angle of proje		
	a) 0°	b) 60°	c) 30°	d) 45°
197.	A boy playing on the roof	of a 10 m high building thre	ows a ball with a speed of 1	$.0 \text{ ms}^{-1}$ at an angle of 30°
			t will the ball be at the heig	
	$(g = 10 \text{ ms}^{-2}, \sin 30^{\circ} = 1$	$/2, \cos 30^{\circ} = \sqrt{3}/2$		
	a) 5.20 m	b) 4.33 m	c) 2.60 m	d) 8.66 m
198.		of a string and rotated in a	horizontal circle with a uni	
		•	ng is halved and its angular	•
	tension in the string will b	= =		, , , , , , , , , , , , , , , , , , ,
	a) T/4	b) T/2	c) 2T	d) 4 <i>T</i>
199.			,	vith the horizontal, then its
	initial velocity and angle o	f projection are, respective	ely	
	$\sqrt{2h\sin\theta}$	$2\sqrt{2h\sin\theta}$	c) $2\sqrt{\frac{2h}{g}}$	2h
	g g	g g	$\frac{c}{\sqrt{g}}$	$\frac{u}{\sqrt{g}}$
			v ninimum horizontal veloci	•
200.		tht of the suspension		ty has to be imparted the
	a) gl	b) 2 <i>gl</i>	c) \sqrt{gl}	d) $\sqrt{2gl}$
201		· -	• =	
201.	to reach maximum height		e is one-tenth of accelerati	on due to gravity, the time
	_		b) Increases by 11 percen	+
	a) Decreases by 11 percent		, ,	ι
202	c) Decreases by 9 percent		d) Increases by 9 percent	with havirantal The average
	velocity of the particle bet	ween its point of projectio	n and highest point of traje	rith horizontal. The average ctory is
	a) $\frac{v}{2}\sqrt{1+2\cos^2\theta}$	b) $\frac{v}{2}\sqrt{1+\cos^2\theta}$	c) $\frac{v}{2}\sqrt{1+3\cos^2\theta}$	d) $v \cos \theta$
	4	4	e inclined at an angle of 30°	and the other at an angle
		_	dy components of the resu	_
	a) 1.59î and 12.07ĵ	b) 10î and 10î	c) 1.59î	d) 15.9î and 12.07î
204	,	,		the normal and tangential
				taken to complete the first
	revolution is	and a comment to ope	o	
		R 25.	R $_{2}$	$2\pi R$
	a) $\frac{R}{v_0}$	b) $\frac{R}{v_0}(1-e^{-2\pi})$	c) $\frac{-}{v_0}e^{-2\pi}$	d) $\frac{2\pi R}{v_0}$
	•	•	v	which is the lowest position
	a) $\frac{mv^2}{r}$	b) $\frac{mv^2}{r} - mg$	c) $\frac{mv^2}{r} + mg$	d) <i>mg</i>
	1	1	1	a, mg
206.	The ratio of the angular sp	peed of minutes hand and h	our hand of a watch is	

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 17

d) 1:12

d) 10 ms^{-1} , 0

	horizontally with a speed of taken by a food pocket to rea	,	
$9.8 m/sec^2$	ourion by a room pooned to roo	8	onen reinge is (reine g
a) 3 sec and 2000 m	b) 5 sec and 500 m	c) 8 sec and 1500 m	d) 9 sec and 1800 m
•		-	ed, the tendency to overturn
is		ine tarms at acabre one spe	ea, and tendency to evertain
a) Doubled	b) Quadrupled	c) Halved	d) Unchanged
•	spended from a light thread of	•	_
-	own. From your point of view	-	
mass are	, , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0			
m			
a) I	b) <i>T</i>	σ) T	d) T
a) ⁷	b) ⁷	c) /	d) ⁷
F ←			5
		F	
\downarrow_{W}	7		
VV	\ w	V	`w
211. Two tall buildings are	e 40 m anart. With what snee	ed must a ball be thrown ho	rizontally from a window 145
_	n one building, so that it will		_
a) 5 ms ⁻¹	b) 8 ms ⁻¹	c) 10 ms ⁻¹	d) 16 ms ⁻¹
•	•	,	gh which the wheel rotates in
one second is	o ,		
a) π rad	b) 5 π rad	c) 10π rad	d) 20π rad
213. A tube of length L is f	illed completely with an inco	ompressible liquid of mass <i>I</i>	<i>d</i> and closed at both the
ends. The tube is ther	n rotated in a horizontal plan	e about one of its ends with	a uniform angular velocity
ω . The force exerted \mathbb{I}	by the liquid at the other end	lis	
M1 2			d) $\frac{ML^2\omega^2}{2}$
$\frac{a_1}{2}$	ој мью	4	<u>2</u>
		le θ with the horizontal. At	some instant, its velocity V is
	initial velocity v . Then V is		_
a) $v \sin \theta$	b) $v\cos\theta$	c) $v \tan \theta$	d) $v \cot \theta$
	cond's hand in a stop-clock	is 3 cm, the angular velocit	y and linear velocity of the tip
is	o1	1200717 1 -1 0001	1
a) 0.2047 rads ⁻¹ , 0.0		b) 0.2547 rads ⁻¹ , 0.031	
c) 0.1472 rads ⁻¹ , 0.0		d) 0.1047 rads ⁻¹ , 0.003	
<u>-</u>	artially filled with water is ro		
a) Rise equally	b) Rise from the sides	c) Rise from the middle	
-	hill top projects a stone horiz		
surface	given in the figure. The coor	idinates of the point where	the stone will filt the fill
GPLUS EDUCATION	WEB: WWW.GPLUSEDUCA	TION.ORG PHONE	NO: 8583042324 Page 18

c) 1:6

c) 10 ms⁻¹, 10ms⁻¹

207. A car runs at a constant speed on a circular track of radius 100 m, taking 62.8 s for every circular lap. The

b) 12:1

b) 0,10 ms⁻¹

average velocity and average speed for each circular lap is

a) 6:1

a) 0, 0

a)
$$\left(\frac{2v_0^2 \tan \theta}{g}, \frac{-2v_0^2 \tan^2 \theta}{g}\right)$$

c) $\left(\frac{2v_0^2 \tan \theta}{g}, \frac{2v_0^2}{g}\right)$

b)
$$\left(\frac{2v_0^2}{g}, \frac{2v_0^2 \tan^2 \theta}{g}\right)$$

d)
$$\left(\frac{2v_0^2 \tan^2 \theta}{g}, \frac{2v_0^2 \tan \theta}{g}\right)$$

218. A string of length L is fixed at one end and carries a mass M at the other end. The string makes $2/\pi$ revolutions per second around the vertical axis through the fixed end as shown in figure, then tension in the string is

a) *ML*

b) 2 ML

c) 4 ML

- d) 16 ML
- 219. A particle P is sliding down a frictionless hemispherical bowl. It passes the point A at t=0. At this instant of time, the horizontal component of its velocity v. A bead Q of the same mass as P is ejected from A to t=0 along the horizontal string AB (see figure) with the speed v. Friction between the bead and the string may be neglected. Let t_p and t_Q be the respective time taken by t_Q and t_Q to reach the point t_Q . Then

a) $t_n < t_0$

- b) $t_p = t_O$
- c) $t_p > t_Q$
- d) All of these
- 220. The string of a pendulum of length l is displaced through 90° from the vertical and released. Then the minimum strength of the string in order to withstand the tension as the pendulum passes through the mean position is
 - a) mg

b) 6 mg

c) 3 mg

- d) 5 mg
- 221. Velocity vector and acceleration vector in a uniform circular motion are related as
 - a) Both in the same direction

b) Perpendicular to each other

c) Both in opposite direction

- d) No related to each other
- 222. Two projectiles thrown from the same point at angles 60° and 30° with the horizontal attain the same height. The ratio of their initial velocities is
 - a) 1

b) 2

c) √3

- d) $\frac{1}{\sqrt{3}}$
- 223. An aeroplane flying at a velocity of 900 kmh⁻¹ loops the loop. If the maximum force pressing the pilot against the seat is five times its weight, the loop radius should be
 - a) 1594 m
- b) 1402 m
- c) 1315 m
- d) 1167 m
- 224. If KE of the particle of mass m performing UCM in a circle of radius r is $\it E$. Find the acceleration of the particle
 - a) $\frac{2E}{mr}$

- b) $\left(\frac{2E}{mr}\right)^2$
- c) 2 *Emr*
- d) $\frac{4E}{mr}$
- 225. A particle of mass 100 g tied to a string is rotated along circle of radius 0.5 m. The breaking tension of

	string is 10 N. The maxim	um speed with which parti	cle can rotated without bre	eaking the string is
	a) 10 ms^{-2}	b) 9.8 ms ⁻²	c) 7.7 ms^{-2}	d) 7.07 ms ⁻²
226	. A boy is hanging from a h	orizontal branch of a tree. '	The tension in the arms wil	l be maximum when the
	angle between the arms is	5		
	a) 0°	b) 60°	c) 90°	d) 120°
227	. A particle P is at the origin	n starts with velocity $ec{\mathbf{v}}=($	$(2\hat{\mathbf{i}} - 4\hat{\mathbf{j}})$ ms ⁻¹ with constan	t acceleration (3 î —
	$5\hat{j}$)ms ⁻² . After travelling f	for 2 s, its distance from the	e origin is	
	a) 10 m	b) 10.2 m	c) 9.8 m	d) 11.7 m
228	. An object of mass 5 kg is v	whirled round in a vertical	circle of radius 2 m with a	constant speed of 6 ms ⁻¹ .
	The maximum tension in	the string is		
	a) 152 N	b) 139 N	c) 121 N	d) 103 N
229	. For a projectile the ratio o	of maximum height reached	d to the square of time of fli	ght is $(g = 10 \text{ ms}^{-1})$
	a) 5:1	b) 5:2	c) 5:4	d) 1:1
230	. If the body is moving in a	circle of radius r with a co	nstant speed v , its angular v	velocity is
	a) v^2/r	b) vr	c) <i>v/r</i>	d) r/v
231	One end of a string of len	$gth\ l$ is connected to a par	rticle of mass m and other	to a small peg on a smooth
	_	-		te on the particle (directed
	a) T	b) $T - \frac{mv^2}{l}$	c) $T + \frac{mv^2}{l}$	d) zero
232	. A body of mass m is proje	ι cted at an angle of 45° with	າ the horizontal. If air resis	tance is negligible, then
		n when it strikes the groun		
	a) 2mv		c) mv	d) $mv/\sqrt{2}$
233	,	The state of the s	velocity are perpendicular	•
233	a) At the point of projection		velocity are perpendicular	to each other:
	b) At the point of drop	OII		
	c) At the top most point			
		the point of projection and	two most point	
224			relocity of magnitude 1.8 m	us ⁻¹ The stone are 0.20 m
234	•	air-way with a norizontary iich step will the ball hit fir		is . The steps are 0.20 m
	a) First	b) Second	c) Third	d) Fourth
225		•		_
233	· A particle moves along a c	circle of radius $\left(\frac{\pi}{\pi}\right)$ m with	constant tangential accele	ration. If the velocity of the
	particle is 80 ms^{-1} , at the	end of seconds revolution	after motion has begun, the	e tangential acceleration is
	a) 40 ms^{-2}	b) 640m s^{-2}	c) 1609m ms^{-2}	d) 40 m s^{-2}
236	. Tom and Dick are running	g forward with the same sp	eed. They are throwing a r	ubber ball to each other at a
	constant speed v as seen l	by the thrower. According	to Sam who is standing on	the ground the speed of the
	ball is			
	a) Same as v	b) Greater than v	c) Less than <i>v</i>	d) None of these
237	. Two paper screens A and	B are separated by a dista	nce of 200 m. A bullet piero	$\operatorname{tes} A$ and then B . The hole
	in B is 40 cm below the ho	ole in A. If the bullet is trav	elling horizontally at the tii	me of hitting A, then the
	velocity of the bullet at A	is		
	a) 200 ms ⁻¹	b) 400 ms ⁻¹	c) 600 ms ⁻¹	d) 700 ms^{-1}
238	. A 2 kg stone tied at the en	d of a string 1 m long is wh	nirled along a vertical circle	at a constant speed of
	4 ms^{-1} . The tension in the	e string has a value of 52 N	when the stone is	
	a) At the top of the circle		b) Half way down	
	c) At the bottom of the cir	rcle	d) None of the above	
239	•		•	istant speed v . If the string
	is released, the stone flies	-		- 3

· · · · · · · · · · · · · · · · · · ·	is 4 m completes one revol	ution in two seconds. The	n acceleration of a point on the
cycle wheel will be a) $\pi^2 m/s^2$	b) $2\pi^2 m / s^2$	a) $4\pi^{2}m/a^{2}$	d) $8\pi m/s^2$
		c) $4\pi^2 m/s^2$	H. The time taken to reach the
highest point of its path	= :	eaches a maximum height.	n. The time taken to reach the
· — ·	_	_	
a) $\sqrt{\frac{H}{g}}$	b) $\sqrt{\frac{2H}{g}}$	c) $\sqrt{\frac{H}{2g}}$	d) $\frac{2H}{g\cos\beta}$
\sqrt{g}	\sqrt{g}	$\sqrt{2g}$	$\sqrt{g\cos\beta}$
242. The radius vector and l	inear momentum are respo	ectively given by vector 2î	$+2\hat{j}+\hat{k}$ and $2\hat{i}-2\hat{j}+\hat{k}$. Their
angular momentum is			
a) 2î — 4ĵ	b) 4î — 8k̂	c) $2\hat{i} - 4\hat{j} + 2\hat{k}$	d) 4î – 8ĵ
243. A fighter plane is moving circle will be			ty at the highest point of the
a) $\sqrt{3 g r}$	b) $\sqrt{2 g r}$	c) $\sqrt{g r}$	d) $\sqrt{g r/2}$
244. A particle moves in a ci	rcle of radius 30cm. Its line	er speed is given by $v = 2t$, where t is in second and v in
ms ⁻¹ . Find out its, radi	al and tangential accelerati	on at $t = 3s$, respectively,	
	b) 100 ms^{-2} , 5 ms^{-2}		d) 110 ms^{-2} , 10 ms^{-2}
			r velocity, centripetal force is
a) Maximum at highest	point	b) Maximum at lowest	point
c) Same at all lower po	int	d) Zero	
246. A particle is projected v	with velocity V_0 along x -axi	s. The deceleration on the	particle is proportional to the
square of the distance f	From the origin i.e. $a = \alpha x^2$, the distance at which the	particle stops is
$3V_0$	$\frac{1}{3}$	$2V_0^2$	$(3V_0^2)^{\frac{1}{3}}$
a) $\sqrt{\frac{3V_0}{2\alpha}}$	b) $\left(\frac{3V_0}{2\alpha}\right)^{\frac{1}{3}}$	$\frac{c_{j}}{3\alpha}$	d) $\left(\frac{3V_0^2}{2\alpha}\right)^{\frac{1}{3}}$
247. A particle leaves the or	igin with an initial velocity	$\vec{\mathbf{v}} = (3.00\hat{\mathbf{i}})\text{ms}^{-1}$ and a co	$\frac{1}{2}$
	The same of the sa	The state of the s	e, what is its y-component a
velocity?	. When the parties reaches	Te maximum x coordinate	e, what is its y component a
a) -2.0 ms^{-1}	b) -1.0 ms^{-1}	c) -1.5 ms ⁻¹	d) 1.0 ms^{-1}
248. What is the angular vel		c) 1,5 ms	a) 1,0 ms
_		$_{-}$ 2π	$_{\cdot \cdot \cdot}$ 2π
a) $\frac{2\pi}{86400}$ rad/sec	b) ${3600}$ rad/sec	c) $\frac{2\pi}{24}$ rad/sec	d) $\frac{1}{6400}$ rad/sec
249. The area o the parallelo	ogram represented by the v	vectors. $\overrightarrow{A} = 4\hat{i} + 3\hat{i}$ and \overrightarrow{B}	= 2î + 4î is
a) 14 units	b) 7.5 units	c) 10 units	d) 5 units
250. A cricket ball is hit at 3		•	
highest point?		SJ K	37
a) $E_k/2$	b) $3E_k/4$	c) $E_k/4$	d) Zero
251. A projectile <i>A</i> is thrown		, ,,,,	
	_		below the highest point. For <i>B</i>
to collide with A, $\frac{v_2}{v_1}$ sho		1 0	5 1
- 1			
Highest Point			
W /			
$B varPlant V_2$			
$A = \begin{bmatrix} 30^{\circ} \\ \end{bmatrix}$			
<i>P</i>	h) 2	1	d) 4
a) 1	b) 2	c) $\frac{1}{2}$	d) 4
		-	

b) Radially inwards

d) With an acceleration mv^2/l

a) Radially outwards

c) Tangentially outwards

- 252. A particle of mass m is moving in a circular path of constant radius r such that its centripetal acceleration a_c is varying with time as $a_c = k^2 r t^4$, where k is a constant. The power delivered to the particle by the forces acting on its is
 - a) Zero

- b) $mk^2r^2t^2$
- c) $\frac{1}{3}mk^2r^2t^2$

b) $\theta = \tan^{-1}(0.25)$

- d) $2mk^2r^2t^3$
- 253. The angle of projection at which the horizontal range and maximum height of projectile are equal is
 - a) 45°

c) $\theta = \tan^{-1} 4 \text{ or } (\theta = 76^{\circ})$

- d) 60°
- 254. For motion in a plane with constant acceleration \vec{a} , initial velocity \vec{v}_0 and final velocity \vec{v} after time t, we have
 - a) $\vec{\mathbf{v}} \cdot (\vec{\mathbf{v}} \vec{\mathbf{a}}t) = \vec{\mathbf{v}}_0 \cdot (\vec{\mathbf{v}}_0 + \vec{\mathbf{a}}t)$

b) $\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}_0 = \mathbf{a}t^2$

c) $\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}_0 = \vec{\mathbf{v}} \cdot \vec{\mathbf{v}}_0 t$

- d) $\vec{\mathbf{v}}_0 \cdot \vec{\mathbf{v}}_0 = \vec{\mathbf{a}} \cdot \vec{\mathbf{v}}_0 t$
- 255. A small sphere is attached to a cord and rotates in a vertical circle about a point *O*. If the average speed of the sphere is increased, the cord is most likely to break at the orientation when the mass is at

- a) Bottom point B
- b) Top point A
- c) The point *D*
- d) The point *C*
- 256. A projectile is thrown in the upward direction making an angle of 60° with the horizontal direction with a velocity of 147ms⁻¹. Then the time after which its inclination with the horizontal is 45°, is
 - a) 15 s

- b) 10.98 s
- c) 5.49 s
- d) 2.745 s
- 257. If the length of the second's hand in a stop clock is 3 cm the angular velocity and linear velocity of the tip is
 - a) 0.2047 rad/sec., 0.0314 m/sec
- b) 0.2547 rad/sec., 0.314 m/sec
- c) 0.1472 rad/sec., 0.06314 m/sec
- d) 0.1047 rad/sec., 0.00314 m/sec
- 258. From an inclined plane two particles are projected with same speed at same angle θ , one up and other down the plane as shown in figure. Which of the following statements (s) is/are correct?

- a) The time of flight of each particle is the same.
- b) The particles will collide the plane with same speed
- c) Both the particles strike the plane perpendicularly
- d) The particles will collide in mid air if projected simultaneously and time of flight of each particle is less than the time of collision
- 259. The time taken by the projectile to reach from A to B is t, then the distance AB is equal to

a) 2 ut

- b) $\sqrt{3} ut$
- c) $\frac{\sqrt{3}}{2}ut$

- d) $\frac{ut}{\sqrt{3}}$
- 260. An arrow is projected into air. Its time of flight is 8 s and range 200 m. What is the maximum height reached by it? (Take $g=10~ms^{-2}$)
 - a) 31.25 m
- b) 24.5 m
- c) 18.25 m
- d) 46.75 m
- 261. A particle of mass = 5 is moving with a uniform speed $v = 3\sqrt{2}$ in the *XOY* plane along the line Y = X + 4.

	The magnitude of the ang	gular momentum of the par	ticle about the origin is	
	a) 60 units	b) $40\sqrt{2}$ units	c) 7.5 units	d) zero
262	. A shell is fired from a can	non with a velocity \emph{v} at ang	gle θ with horizontal. At the	e highest point, it explodes
	into two pieces of equal n	nass. One of the pieces retra	aces its path to the cannon.	The speed of the other
	piece just after explosion	is		
	•		. 3	$\sqrt{3}$
	a) $3 v \cos \theta$	b) $2 v \cos \theta$	c) $\frac{3}{2}v\cos\theta$	d) $\frac{\sqrt{3}}{2}v\cos\theta$
263	Given $\overrightarrow{A} = \hat{i} + 2\hat{i} - 3\hat{k}$ Wh	nen a vector \overrightarrow{B} is added to \overline{A}	We get a unit vector along	$X = x$ Then \overrightarrow{R} is
		b) $-\hat{i} - 2\hat{j}$		d) 2ĵ – 3k
264				st at bottom to complete the
204	circle will be	us 6.4 m. Minimum velocity	required by a motor cyclis	st at bottom to complete the
		h) 10.2 m /a	a) 12.4 m/a	d) 16 0 m /a
265	a) 17.7 <i>m/s</i>	b) 10.2 <i>m/s</i>	c) 12.4 <i>m/s</i> → →	d) 16.0 <i>m/s</i>
205	$A = 3\hat{i} - \hat{j} + 7k$ and $B = \frac{1}{2}$	$5\hat{i} - \hat{j} + 9\hat{k}$ the direction co b) $\frac{3}{\sqrt{31}}$	osine m of the vector $A + B$	İS
	a) Zero	b) ===	c) —	d) 5
		V 0 1	V 20,	
266		ns while taking a turn. Whe	n it overturns, it is	
	a) The inner wheel which	ŭ		
	b) The outer wheel which	•		
	•	the ground simultaneously		
	d) Either wheel leaves the	•		
267	=		adius 20 m. If the coefficien	t of friction is 0.64, then the
	maximum velocity with w		>	
	a) 22.4 ms ⁻¹	b) 5.6 ms ⁻¹	c) 11.2 ms ⁻¹	d) None of these
268	. A projectile is thrown wit	th a speed u at an angle θ to	the horizontal. The radius	of curvature of its
		city vector of the projectile		
	$u^2 \cos^2 \alpha$	b) $\frac{2u^2\cos^2\alpha}{\mathrm{gcos}^2\theta}$	$u^2\cos^2\theta$	$u^2 \cos^2 \theta$
	$\frac{1}{g\cos^2\theta}$	$\frac{1}{g\cos^2\theta}$	$\frac{c_{\rm J}}{{\rm gcos}^3 \alpha}$	$\frac{1}{g\cos^2\alpha}$
269	. A stone of mass 1 kg is tie	ed to a string 4 m long and i	s rotated at constant speed	l of 40 ms ⁻¹ in a vertical
	circle. The ratio of the ter	nsion at the top and the bot	tom is	
	a) 11:12	b) 39:41	c) 41:39	d) 12:11
270	The magnitudes of the tw	yo vectors \vec{a} and \vec{b} are a and	d b respectively. The vector	product of \vec{a} and \vec{b} cannot
	be		as respectively. The vector	product of a ana s came of
	a) equal to zero	b) less than <i>ab</i>	c) equal to <i>ab</i>	d) greater than <i>ab</i>
271		•		The time taken to reach the
2,1	highest point of its path is	- •	ines a maximam neight in	The time taken to reach the
		r		
	a) $\sqrt{\frac{H}{g}}$	b) $\sqrt{\frac{2H}{g}}$	c) $\sqrt{\frac{H}{2g}}$	d) $\sqrt{\frac{H}{g\cos\beta}}$
	$\int g$	\sqrt{g}	$\sqrt{2g}$	$\int g \cos \beta$
272	. A boy on a cycle pedals ai	round a circle of 20 <i>metres</i>	radius at a speed of 20 me	tres/sec. The combined
		ycle is 90 <i>k.g</i> .The angle tha		
	fall is $(g = 9.8 m/sec^2)$	0 0	,	,
	a) 60.25°	b) 63.90°	c) 26.12°	d) 30.00°
273.	•	ngle $ heta$ to the horizontal rea	•	,
2,0	stone will be	ingre o to the normannear		Then the time of mane of
		<u></u>	- / 	(
	a) $\sqrt{\frac{2H}{g}}$	b) $2\sqrt{\frac{2H}{g}}$	c) $\frac{2\sqrt{2H}\sin\theta}{g}$	d) $\frac{\sqrt{2H}\sin\theta}{q}$
	\sqrt{g}	$\int \int g$	g	g

274. A body crosses the topmost point of a vertical circle with critical speed. Its centripetal acceleration, when

WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 P a g e | 23

the string is horizontal will be

	a) 6 <i>g</i>	b) 3 <i>g</i>	c) 2 <i>g</i>	d) <i>g</i>
275.		l a circular path. The accele		w) g
	a) Along the circumference		b) Along the tangent	
	c) Along the radius		d) Zero	
276.	, ,	e circle of radius R with con	•	
	a) Change in momentum i		b) Change in $K.E.$ is $1/2 n$	nv^2
	c) Change in $K.E.$ is mv^2		d) Change in K.E. is zero	
277.	-	$B = \sqrt{3}$ and $C = 3$, then the	-	is
	a) 0°	b) 30°	c) 60°	d) 90°
278.		y undergoing circular moti		,
	angular acceleration of the		1	0 1 2
	a) θ_1	b) θ_2	c) $2\theta_1$	d) $2\theta_2$
279.	· -	$2\hat{i} + 3\hat{j}$. Which of the follow		, 2
	a) $\vec{A} \times \vec{B} = \vec{0}$		b) $\overrightarrow{A} \cdot \overrightarrow{B} = 24$	
	=		5) N	
	c) $\frac{ \vec{A} }{ \vec{B} } = \frac{1}{2}$		d) \overrightarrow{A} and \overrightarrow{B} are anti-paral	lel
280.	A bullet is fired with a velo	ocity u making an angle of ϵ	60° with the horizontal pla	ne. The horizontal
	component of the velocity	of the bullet when it reach	es the maximum height is	
	a) u	b) 0	c) $\frac{\sqrt{3u}}{2}$	d) u/2
	aj u	b) 0	2	u) u/ 2
281.		lly along a straight line wit		
		ich a way that it will return		n. At what speed (relative
	to the cart) must the proje	ectile be fired? (Take $g=1$		
	a) 10 ms ⁻¹		c) $\frac{40}{3}$ ms ⁻¹	d) None of the above
282.		velocity when it has a turn.		
	a) Centripetal force		c) Gravitational force	d) All the above
283.		formed from the vectors \vec{A}		- $2\hat{j} + \hat{k}$ as adjacent sides is
	a) $8\sqrt{3}$ units	b) 64 units	c) 32 units	d) $4\sqrt{6}$ units
284.	The maximum velocity (in	ms^{-1}) with which a car di	river must traverse a flat cu	irve of radius $150~m$ and
	coefficient of friction 0.6 to	o avoid skidding is		
	a) 60	b) 30	c) 15	d) 25
285.		um tension in the string wh	nirling in a circle of radius 2	2.5 <i>m</i> with constant
	velocity are in the ratio 5:			
	a) $\sqrt{98} m/s$	b) 7 <i>m/s</i>	c) $\sqrt{490} \ m/s$	d) $\sqrt{4.9}$
286.				nitial velocity. If its range is
	20 m, the maximum heigh	t reached by its is (in metro		
	a) $5\sqrt{3}$	b) $\frac{5}{\sqrt{3}}$	c) $\frac{10}{\sqrt{3}}$	d) $10\sqrt{3}$
	-	VO	V 0	w) 10 V 5
287.		ce, the time of flight of a pr		
	a) $U_{vertical}$		b) $U_{horizontal}$	1/2
	c) $U = U_{vertical}^2 + U_{horizon}^2$	ntal	d) $U = U(U_{vertical}^2 + U_{hor}^2)$	izontal) ^{1/2}
288.	If the magnitudes of scalar	and vector products of tw	o vectors and are 6 and 6 $$	3 respectively, then the
	angle between two vector			
	a) 15°	b) 30°	c) 60°	d) 75°
289.	Three balls are dropped fr	om the top of a building wi	ith equal speed at different	angles. When the balls
	strike ground their velocit	ties are $v_{ m 1}$, $v_{ m 2}$ and $v_{ m 3}$ respe	ctively, then	

a) $v_1 > v_2 > v_3$

b) $v_3 > v_2 > v_1$ c) $v_1 = v_2 = v_3$

d) $v_1 < v_2 < v_3$

290. An object is projected at an angle of 45° with the horizontal. The horizontal range and maximum height reached will be in the ratio

a) 1:2

b) 2:1

c) 1:4

d) 4:1

291. A coin, placed on a rotating turn-table slips, when it is placed at a distance of 9 cm from the centre. If the angular velocity of the turn-table is tripled, it will just slip, if its distance from the centre is

a) 27 cm

b) 9 cm

c) 3 cm

292. A particle is moving on a circular path of radius r with uniform velocity v. The change in velocity when the particle moves from P to Q is $(\angle POQ = 40^{\circ})$

a) $2v \cos 40^\circ$

b) $2v \sin 40^{\circ}$

293. A coin is placed on a gramophone record rotating at a speed of 45 rpm. It flies away when the rotational speed is 50 rpm. If two such coins are placed over the other on the same record, both of them will fly away when rotational speed is

a) 100 rpm

d) 50 rpm

294. A body is whirled in a horizontal circle of radius 20 cm. It has angular velocity of 10 rad/s. What is its linear velocity at any point on circular path

b) 2 m/s

c) $20 \, m/s$

d) $\sqrt{2} m/s$

295. For a given velocity, a projectile has the same range R for two angles of projection if t_1 and t_2 are the times of flight in the two cases then

a) $t_1 t_2 \propto R^2$

b) $t_1 t_2 \propto R$

c) $t_1 t_2 \propto \frac{1}{D}$

d) $t_1 t_2 \propto \frac{1}{D^2}$

296. A projectile is fired with a velocity v at right angle to the slope which is inclined at an angle θ with the horizontal. What is the time of flight?

a) $\frac{2v^2}{g} \tan \theta$

b) $\frac{v^2}{\sigma} \tan \theta$

c) $\frac{2v^2}{g}\sec\theta$

d) $\frac{2v^2}{g}$ tan θ sec θ

297. The horizontal range of a projectile is $4\sqrt{3}$ times its maximum height. Its angle of projection will be

a) 45°

298. A boy whirl is a stone in a horizontal circle of radius 1.5 m and at height 2.0 m above level ground. The string breaks and the stone flies off tangentially and strikes the ground after traveling a horizontal distance of 10 m. What is the magnitude of the centripetal acceleration of the stone while in circular motion?

a) 163 ms^{-2}

b) 64 ms^{-2}

c) 15.63 ms^{-2}

d) 125 ms^{-2}

299. Two vectors \vec{A} and \vec{B} are inclined to each other at an angle θ . Which of the following is the unit vector perpendicular to both \vec{A} and \vec{B} ?

Gplus Education	Gpl	us	Ed	иса	tior	1
------------------------	-----	----	----	-----	------	---

	$\overrightarrow{A} \times$	Ē
a)	$\frac{\overrightarrow{A} \times \overrightarrow{A}}{\overrightarrow{A}}$	B
It	was	C

b)
$$\frac{\widehat{A} \cdot \widehat{B}}{\sin \theta}$$

c)
$$\frac{\overrightarrow{A} \times \overrightarrow{B}}{AB\sin\theta}$$

d)
$$\frac{\widehat{A} \times \widehat{B}}{AB\cos\theta}$$

300. alculated that a shell when fired from a gun with a certain velocity and at an angle of elevation $\frac{5\pi}{26}$ rad should strike a given target. In actual practice, it was found that a hill just prevented the trajectory. At what angle of elevation should the gun be to hit the target?

a)
$$\frac{5\pi}{36}$$
 rad

b)
$$\frac{11\pi}{36}$$
 rad

c)
$$\frac{7\pi}{36}$$
 rad

d)
$$\frac{13\pi}{36}$$
 rad

301. A particle does uniform circular motion in a horizontal plane. The radius of the circle is 20 cm. The centripetal force acting on the particle is 10 N. It's kinetic energy is

302. The condition of apparent weightlessness can be created momentarily when a plane flies over the top of a vertical circle. At a speed of 900 kmh⁻¹, the radius of the vertical circle that the pilot must use is

303. A particle is projected from a point A with velocity $u\sqrt{2}$ at an angle of 45° with horizontal as shown in figure. It strikes the plane BC at right angles. The velocity of the particle at the time of collision is

b)
$$\frac{u}{2}$$

c)
$$\frac{2u}{\sqrt{3}}$$

304. A fighter plane enters inside the enemy territory, at time t=0 with velocity $v_0=250~{\rm ms}^{-1}$ and moves horizontally with constant acceleration $a = 20 \text{ms}^{-2}$ (see figure). An enemy tank at the border, spot the plane and fire shots at an angle $\theta = 60^{\circ}$ with the horizontal and with velocity $u = 600 \text{ ms}^{-1}$. At what altitude *H* of the plane it can be hit by the shot?

VPLUS EDUCATION

a)
$$1500\sqrt{3}$$
 m

d) 2473 m

305. At the height 80 m, an aeroplane is moving with 150 m/s. A bomb is dropped from it so as to hit a target. At what distance from the target should be bomb be dropped (Given $g = 10 m/s^2$)

306. An object moves at a constant speed along a circular path in a horizontal XY plane, with the centre at the origin. When the object is at x = -2m, its velocity is $-(4m/s)\hat{j}$. What is the object's acceleration when it is y = 2m

a)
$$-(8m/s^2)\hat{j}$$

b)
$$-(8m/s^2)\hat{i}$$

c)
$$-(4m/s^2)\hat{j}$$

d)
$$(4m/s^2)\hat{i}$$

307. The momentum of a particle is $\vec{P} = 2\cos t\hat{i} + 2\sin t\hat{j}$. What is the angle between the force \vec{F} acting on the particle and the momentum \overrightarrow{P}

308. If the angle of projection of a projectile is 30°, then how many times the horizontal range is larger than the maximum height?

c)
$$3\sqrt{4}$$

d)
$$4\sqrt{3}$$

309. A small roller coaster starts at point A with a speed u on a curved track as shown in figure

The friction between the roller coaster and the track is negligible and it always remains in contact with the track. The speed of the roller coaster at point D on the track will be

a)
$$(u^2 + gh)^{\frac{1}{2}}$$

b)
$$(u^2 + 2gh)^{\frac{1}{2}}$$

c)
$$(u^2 + 4gh)^{\frac{1}{2}}$$

310. The vectors $2\hat{i} + 3\hat{j} - 2\hat{k}$, $5\hat{i} + a\hat{j} + \hat{k}$ and $-\hat{i} + 2\hat{j} + 3\hat{k}$ are coplanar when a is

c)
$$-18$$

311. Centripetal acceleration is

a) A constant vector

b) A constant scalar

c) A magnitude changing vector

d) Not a constant vector

312. The trajectory of a projectile in vertical plane in $y = ax - bx^2$, where a and b are constant and x and y are respectively horizontal and vertical distances of the projectile from the point of projection. The maximum height attained by the particle and the angle of projection from the horizontal are

a)
$$\frac{b^2}{4h}$$
, $\tan^{-1}(b)$

b)
$$\frac{a^2}{b}$$
, $\tan^{-1}(2b)$

c)
$$\frac{a^2}{4b}$$
, $\tan^{-1}(a)$

b)
$$\frac{a^2}{b}$$
, $\tan^{-1}(2b)$ c) $\frac{a^2}{4b}$, $\tan^{-1}(a)$ d) $\frac{2a^2}{b}$, $\tan^{-1}(a)$

313. A body of mass 100 g is rotating in a circular path of radius r with constant velocity. The work done in one complete revolution is

b)
$$(r/100)J$$

c)
$$(100/r)J$$

314. A point *P* moves in counter-clockwise direction on a circular path as shown in the figure. The movement of P is such that it sweeps out length $s = t^3 + 5$, where s is in metre and t is in second. The radius of the path is 20 m. The acceleration of P when t=2s is nearly

a) 13 ms^{-2}

c) 7.2 ms^{-2}

d) 14 ms^{-2}

315. A projectile is thrown in the upward direction making an angle of 60° with the horizontal direction with a velocity of $147 ms^{-1}$. Then the time after which its inclination with the horizontal is 45° , is

316. The kinetic energy k of a particle moving along a circle of radius R depends on the distance covered s as $k = as^2$ where a is a constant

a)
$$2a\frac{s^2}{R}$$

b)
$$2as \left(1 + \frac{s^2}{R^2}\right)^{1/2}$$
 c) $2as$

d)
$$2a\frac{R^2}{s}$$

317. A heavy mass is attached to a thin wire and is whirled in a vertical circle. The wire is most likely to break

a) When the mass is at the highest point of the circle b) When the mass is the lowest point of the circle

c) When the wire is horizontal

At an angle of \cos^{-1} (1/3) from the upward vertical

318. Three particles A, B and C are projected from the same point with the same initial speeds making angles 30°, 45° and 60° respectively with the horizontally. Which of the following statements is correct?

- a) A,B and C have unequal ranges
- b) Range of A and C are less than that of B
- c) Range of A and C are equal and greater than that of B

	d) A , B and C have equal	_		
319.	If $\overrightarrow{A} = \overrightarrow{B}$, then which of the	e following is not correct		
	a) $\hat{A} = \hat{B}$	b) $\widehat{A} \cdot \widehat{B} = AB$	c) $ \overrightarrow{A} = \overrightarrow{B} $	d) AB
320.	A bomb is dropped on an	enemy post by an aeroplai	ne flying horizontally with a	a velocity of 60 kmh ⁻¹ and
	-		nb, how far the aeroplane s	should be from the enemy
	post so that the bomb may		1700	
	a) $\frac{400}{3}$ m	b) $\frac{500}{3}$ m	c) $\frac{1700}{3}$ m	d) 498 m
	5	U	itial velocity and same rang	ge. If H is the maximum
		one thrown at an angle of 3	0°, then the maximum heig	tht attained by the other
	stone is			
	a) $\frac{H}{2}$	b) <i>H</i>	c) 2 <i>H</i>	d) 3 <i>H</i>
322.	A ball of mass m is throw	n vertically upwards. Anot	her ball of mass $2m$ is thro	wn at an angle $ heta$ with the
	vertical. Both of them stay	y in air for same period of t	time. The heights attained l	by the two balls are in the
	ratio of			
	a) 2:1	b) 1: cos θ	c) 1:1	d) $\cos \theta$: 1
	• '	•	aking an angle of 45° with	the horizontal. The change
	_	rture to arrival along vertic		_ mv
	a) 2 <i>mv</i>	b) $\sqrt{2} mv$	c) mv	d) $\frac{mv}{2}$
		es at right angle is 5N. Whe	n the angle between them	is 120°, the resultant is $\sqrt{13}$
	Then the force are	_ < 4	≥	
		b) $\sqrt{20}$ N, $\sqrt{5}$ N	c) 3 N, 4 N	d) $\sqrt{40}$ N, $\sqrt{15}$ N
	-		i. The greatest speed with v	· · · · · · · · · · · · · · · · · · ·
		hlvr am all)	ighest point is $(g = 10 ms)$	2)
	(frictional force is negligible a) $40 ms^{-1}$	b) $20 ms^{-1}$	c) 30ms^{-1}	d) 15 ms ⁻¹
		igin of co-ordinates at time	t = 0, moves in the xy-pla	,
			otion is $y = bx^2$ (b is a con	
	component in the <i>x</i> -direc	-	, ,	
	$\frac{1}{2b}$	\[\bar{a} \]	. Г <u>а</u>	$\frac{1}{h}$
	a) $\sqrt{\frac{a}{a}}$	b) $\sqrt{\frac{a}{2b}}$	c) $\sqrt{\frac{a}{b}}$	d) $\sqrt{\frac{b}{a}}$
327.	V		a velocity of 36 km/hr. Th	V
	a) 250 <i>N</i>	b) 750 <i>N</i>	c) 1000 N	d) 1200 <i>N</i>
		,	ngle of 60° with the horizon	
	highest point is			
	a) 7 ms^{-1}	b) 9 ms ⁻¹	c) 18.7 ms ⁻¹	d) 5 ms^{-1}
	-	- 1	d v as shown in figure. Part	-
		_	orizontal distance s from p	
	plotted between v and s r	or the condition of collisio	n of the two then (v on y -a	xis and s on x-axis)
	h v			
	h v			
	a) It will be a parabola pa	ssing through the origin		
	b) It will be straight line p	oassing through the origin	and having a slope of $\sqrt{\frac{g}{8h}}$	
	c) It will be a straight line	e passing through the origin	n and having a slope of $\sqrt{\frac{g}{4h}}$	
			71411	

			Opius Zuusutisii
d) It will be a straight line i	not passing through the or	rigin	
330. A stone tied to one end of		_	suddenly breaks, then the
stone travels	•	Ö	
a) in perpendicular direction	on		
b) in direction of centrifuga	al force		
c) towards centripetal forc	e		
d) in tangential direction			
331. A particle moves in a circle			where t in second and v in
m/s. Find out its radial and			
a) $220 m/\sec^2$, $50 m/\sec^2$	2	b) $100 m/\sec^2$, $5 m/\sec^2$	
c) $120 m/\sec^2$, $2 m/\sec^2$		d) $110 m/\sec^2$, $10 m/\sec^2$	
332. A particle moves with cons		lar path of radius r and con	npletes the circle in time T .
The acceleration of the par		2	2
•	b) $2\pi r/T$	c) $2\pi r^2/T$	d) $2\pi v^2/T$
333. A particle is projected up a			_
The component of its veloc	ity perpendicular to plane	-	S
a) $10\sqrt{3} \text{ ms}^{-1}$		b) 10 ms ⁻¹	
c) $5\sqrt{3} \text{ ms}^{-1}$		d) Data is insufficient	
334. An aircraft is flying at a hei	_		led at a ground observation
point by the aircraft position			1
,	b) 1963 ms ⁻¹	c) 108 ms^{-1}	d) 196.3 ms ⁻¹
335. A body constrained to mov	The state of the s		$-2\hat{\imath} + 15\hat{\jmath} + 6\hat{k}$) N done by
this force in moving the bo	dy through a distance of 1	0m along Y axis?	
,	b) 160 J	c) 150 J	d) 20 J
336. A body moves with constar			
	b) Constant	c) Zero	d) None of the above
337. The sum of two vectors \vec{A} a	$\operatorname{nd} \overrightarrow{\mathrm{B}}$ is at right angles to t	their difference. Then	
a) $A = B$	SI LOS LD G G	17114011	
b) $A = 2B$			
c) $B = 2A$			
d) \vec{A} and \vec{B} have the same d	irection		
338. A projectile is projected wi	th kinetic energy K . If it has	as the maximum possible h	orizontal range, then its
kinetic energy at the highe	=		
•	b) 0.5 <i>K</i>	c) 0.75 <i>K</i>	d) 1.0 <i>K</i>
339. Two particles of equal mas	_	ar paths of radii $r_{\!\scriptscriptstyle 1}$ and $r_{\!\scriptscriptstyle 2}$ re	espectively with the same
speed. The ratio of their ce	ntripetal forces is		
r_2	r_2	$(r_1)^2$	$(r_2)^2$
a) $\frac{r_2}{r_1}$	b) $\sqrt{\frac{r_2}{r_1}}$	c) $\left(\frac{r_1}{r_2}\right)^2$	d) $\left(\frac{r_2}{r_1}\right)^2$
340. A scooter is going round a	V) m at a speed of 10 m /s T	he angular speed of the
scooter will be	circular road of radius roc	ont at a speed of 10 mi/s. If	ne angular speed of the
	b) 0.1 <i>rad/s</i>	c) 1 rad/s	d) 10 rad/s
341. A car rounds an unbanked	,	· ·	•
possible coefficient of stati			to ms . The smallest
-	b) 0.60	c) 0.45	d) 0.30
342. A body of mass 5 kg is whire			•
circle for just looping the v		somme i milone, calculate	resource at the top of the
· · · · · · · · · · · · · · · · · · ·	b) 7 ms ⁻¹	c) 9 ms ⁻¹	d) 7.3 ms^{-1}
343. A cricketer can throw a bal	•	•	*
and the state of the sta		or 100 nm 1110 p	

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 29

the ball is (to the neare	st integer)		
a) $30 ms^{-1}$	b) $42 ms^{-1}$	c) $32 ms^{-1}$	d) $35 ms^{-1}$
344. A cyclist riding the bicy	ycle at a speed of $14\sqrt{3} ms^{-1}$ or $g = 9.8 ms^{-2}$, what is his		cular road of radius $20\sqrt{3} m$
a) 30°	b) 90°	c) 45°	d) 60°
	,	,	$-\alpha$) with the horizontal. The
	ned by them are h_1 and h_2 i	_	
a) $\sin^2 \alpha$	b) $\cos^2 \alpha$	c) tan² α	d) 1
346. The average acceleration	on vector for a particle havi	ng a uniform circular motic	on is
a) A constant vector of	magnitude v^2/r		
b) A vector of magnitud	de v^2/r directed normal to t	the plane of the given unifo	rm circular motion
c) Equal to the instanta	neous acceleration vector a	nt the start of the motion	
d) A null vector			
347. Consider a disc rotating	•	•	
-			n on the other side as shown
_	disc is in the orientation as		
	owards R. The velocity of pr		
			efore the disc has completed
$\frac{1}{8}$ rotation. (ii) their rai	nge is less than half the disc	radius, and (iii) ω remains	constant throughout. Then
$\uparrow y$			
$x \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$	- th	-	
P	CL		
a) P lands in the shade	d region and $\it Q$ in the unsha	ded region	
-	ded region and Q in the sha		
c) Both P and Q land in		CATION	
d) Both <i>P</i> and <i>Q</i> land in		CHITOIA	
	-	4 of a smooth hemispherica	al bowl. If it is able to rise up
to a height of 20 cm on	either side of A, its speed a	t <i>A</i> must be ($Take g = 10 \eta$)	n/s^2 , massof the body 5 g)
a) 0.2 <i>m/s</i>	b) 2 <i>m/s</i>	c) 4 m/s	d) $4.5 \ ms^{-1}$
349. What is the angle betw	een (î + 2ĵ + $2\hat{k}$) and î		
a) 0°	b) $\pi/6$	c) π/3	d) None of these
350. A force of $(10\hat{i} - 3\hat{j} + 6$	\hat{k}) N acts on a body of mass	100 g and displaces it from	$(6\hat{i} + 5\hat{j} - 3\hat{k})$ m to $(10\hat{i} -$
$2\hat{j} + 7\hat{k}$) m. The work d	one is		
a) 21 J	b) 121 J	c) 361 J	d) 1000 J
351. A bridge is in the form	of a semi-circle of radius	40 m. The greatest speed	with which a motor cycle can
cross the bridge with	out leaving the ground at	the highest point is $(g =$	$= 10 \text{ms}^{-2}$) (frictional force is
negligibly small)			
a) 40 ms ⁻¹	b) 20 ms ⁻¹	c) 30 ms ⁻¹	d) 15 ms ⁻¹
352. A body is projected at s			
bb2iii body is projected de s	such angle that the horizont	al range is three times the	greatest height. The angel of
projection is	<u> </u>		greatest height. The angel of
projection is a) 42°8′	b) 53°7′	c) 33°7′	d) 25°8′
projection is a) 42°8′ 353. The maximum and min	b) 53°7′ imum tension in the string	c) 33°7′	d) 25°8′
projection is a) 42°8′ 353. The maximum and min velocity are in the ratio	b) 53°7′ imum tension in the string 5:3 then its velocity is	c) 33°7′ whirling in a circle of radiu	d) 25°8′ s 2.5 m with constant
projection is a) $42^{\circ}8'$ 353. The maximum and min velocity are in the ratio a) $\sqrt{98}$ ms ⁻¹	b) 53°7′ imum tension in the string 5 : 3 then its velocity is b) 7 ms ⁻¹	c) 33°7′ whirling in a circle of radiu c) $\sqrt{490}$ ms ⁻¹	d) 25°8′ s 2.5 m with constant d) $\sqrt{4.9}$ ms ⁻¹
projection is a) 42°8′ 353. The maximum and min velocity are in the ratio	b) 53°7′ imum tension in the string 5 : 3 then its velocity is b) 7 ms ⁻¹	c) 33°7′ whirling in a circle of radiu c) $\sqrt{490}$ ms ⁻¹	d) 25°8′ s 2.5 m with constant d) $\sqrt{4.9}$ ms ⁻¹

a) 19.6 N; 19.6 N	b) 9.8 N; 9.8 N	c) 9.8 N, 19.6 N	d) 19.6 N, 9.8 N			
355. A sphere of mass 0.2	2 kg is attached to an inexter	nsible string of length 0.5 m	whose upper end is f	ixed to the		
ceiling. The sphere i	s made to describe a horizo	ntal circle of radius 0.3 m. T	he speed of the spher	e will be		
a) 1.5 m s^{-1}	b) 2.5 m s^{-1}	c) 3.2 m s^{-1}	d) 4.7 m s^{-1}			
356. A bullet is fired from	n a cannon with velocity 500	0m/s . If the angle of project	tion is 15° and $g=10^{\circ}$	$0 m/s^2$.		
Then the range is						
a) $25 \times 10^3 \ m$	b) $12.5 \times 10^3 \ m$	c) $50 \times 10^2 m$	d) $25 \times 10^2 m$			
357. Find the maximum	speed at which a car can	turn round a curve of 30 r	n radius on a level 1	road if the		
coefficient of friction	n between the tyres and the	road is 0.4				
(Acceleration due to	gravity = 10 ms^{-2})					
a) 12 ms ⁻²	b) 10 ms ⁻²	c) 11 ms^{-2}	d) 15 ms $^{-2}$			
358. A simple pendulum	oscillates in a vertical plane	. When it passes through the	e mean position, the t	ension in		
the string is 3 times	the weight of the pendulum	bob. What is the maximum	displacement of the	pendulum		
with respect to the v			•			
a) 30°	b) 45°	c) 60°	d) 90°			
359. A particle is moving	in a circle of radius R with o	constant speedv. If radius is	doubled, then its cen	tripetal		
force to keep the sai		•		-		
a) twice as great as		b) half				
c) one-fourth		d) remains constant				
360. A ball is projected w	vith kinetic energy E at an ar		At the highest point	during its		
flight, its kinetic ene			0 1	J		
a) Zero	b) E/2	c) $E/\sqrt{2}$	d) <i>E</i>			
•	are greater than 1. The magn		-) _			
a) equal to AB		c) more than AB	d) equal to A/B			
, ,	lum of length l is displaced t	-	, ,	the		
	of the string in order to with					
mean position is			idululii passes tili oug	girtile		
a) <i>mg</i>	b) 3ma	c) 5 mg	d) 6 <i>mg</i>			
, ,	circular road of diameter 5	, 0	, ,	rated at		
	nass is 500 kg, find the net fo		it is suddenly acceler	aleu al		
a) 5 N	b) 1000 N	c) $500\sqrt{2}$ N	d) $500/\sqrt{2}$ N			
•	•	-	- ,	- 6000		
	from an aeroplane flying hor	rizontally with a velocity 46	9 ms - at an aititude	or 980 m.		
	ne ground after a time) = [=	D . a . 5			
a) 2 s	b) $\sqrt{2}$ s	c) $5\sqrt{2}$ s	d) $10\sqrt{2}$ s	_		
	rt acting on a particle at res	_	nate system simultan	eously.		
	$F_2 = 2\hat{i} + 8\hat{j} + 6\hat{k}, F_3 = -6\hat{i}$	(1 + 4) – 7 k,				
	Γhe particle will move					
a) in $x - y$ plane	b) in $y - z$ plane	c) in $x - z$ plane	d) along <i>x-</i> axis			
366. If $0.5\hat{i} + 0.8\hat{j} + c\hat{k}$ is	a unit vector, then the value	of c is				
a) √0.11	b) $\sqrt{0.22}$	c) $\sqrt{0.33}$	d) √ <u>0.89</u>			
367. A cyclist goes roun	d a circular path of circum	ference 34.3 m in $\sqrt{22}$ s, th	e angle made by hir	n with the		
vertical will be	r F		gy			
a) 45°	b) 40°	c) 42°	d) 48°			
*	,	•	,	the		
368. The simple sum of two co-initial vectors is 10 units. Their vector sum is 8 units. The resultant of the vectors is perpendicular to the smaller vector. The magnitudes of the two vectors are						
a) 2 units and 14 units						
b) 4 units and 12 un						
c) 6 units and 10 un						
•						

				Gplus Education
	d) 8 units and 8 units			
369.	A particle is projected wit	th a velocity v such that its	range on the horizontal pla	ne is twice the greatest
	height attained by it. The	range of the projectile is (w	where g is acceleration due	to gravity)
	a) $\frac{4v^2}{5a}$	b) $\frac{4g}{5v^2}$	c) $\frac{v^2}{a}$	d) $\frac{4v^2}{\sqrt{5}a}$
	5g	$5v^2$	g	$\sqrt{5}g$
370.	_	in a horizontal circle by meass constant, the tension in \hat{t}	_	
	a) 2.25 rpm	b) 7 rpm	c) 10 rpm	d) 14 rpm
371.	A point of application of a work done is	force $\vec{F} = 5\hat{\imath} - 4\hat{\jmath} + 2\hat{k}$ is m		
	a) 22 units	b) –22 units	c) 33 units	d) –33 units
372.	A particle performing uni a) Radial velocity and rad b) A radial velocity and tr c) Transverse velocity and d) Transverse velocity and	ial acceleration ansverse acceleration d radial acceleration		
373.	The velocity of projection	of an oblique projectile is ($(6\hat{\mathbf{i}} + 8\hat{\mathbf{j}})$ ms ⁻¹ . The horizon	tal range of the projectile is
	a) 4.9 m	b) 9.6 m	c) 19.6 m	d) 14 m
374.	One o the rectangular concomponent is	nponents of a velocity of 60		ther rectangular
	a) 30 kmh ⁻¹	b) $30\sqrt{3} \text{ kmh}^{-1}$	c) $30\sqrt{2} \text{kmh}^{-1}$	d) Zero
375.	•	es of two forces acting at a p ller force has a magnitude o		
	a) 2 N	b) 4 N	c) 6 N	d) 7 N
376.	speeds of projection. Then	tiles are shown in figure. L	ATION	iods and u_1 and u_2 their
	a) $T_2 > T_1$	b) $T_1 = T_2$	c) $u_1 > u_2$	d) $u_1 < u_2$
377.	A car is moving in a circul	ar horizontal track of radiu	is $10\ m$ with a constant spe	ed of $10 m/sec$. A plumb
	bob is suspended from the with track is	e roof of the car by a light r	igid rod of length 1.00 <i>m</i> . T	he angle made by the rod
	a) Zero	b) 30°	c) 45°	d) 60°
378.		al displacement x and y of z . The range of the projectile i		t are given by $x = 6t$ metre
	a) 9.6	b) 10.6	c) 19.2	d) 38.4
379.	A projectile is projected w		ngle $2 heta$ with the horizontal	. What is the speed when its
	a) $(u\cos 2\theta)/2$	-	c) $u(2\cos\theta - \sec\theta)$	d) $u(\cos\theta - \sec\theta)$

381. A glass marble projected horizontally from the top of a table falls at a distance x from the edge of the table. If h is the height of the table, then the velocity of projection is

horizontal. Their ranges are equal. If the angel of projection of one is $\pi/3$ and its maximum height is y_1 , the

c) $\frac{y_1}{2}$

380. Two stones are projected with the same velocity in magnitude but making different angles with the

a) $3y_1$

maximum height of the other will be

b) 2*y*₁

G	n	h	ıc	F	d	,,	r	a	ti	က	n
U	ν	ıu	13	L	u	u	L	u	u	U	,,

a) $h\sqrt{\frac{g}{2x}}$	b) $x\sqrt{\frac{g}{2h}}$	c) gxh	d) $gx + h$
			ould be the maximum time-period
	nat the water doesn't fall of t		
a) 1 <i>sec</i>	b) 2 <i>sec</i>	c) 3 <i>sec</i>	d) 4 <i>sec</i>
	wing sets of factors will affe	ct the horizontal distance co	overed by an athlete in a long-
jump event		12 ml 11 11	
	e jumps and his weight	speed	which he leaps and the initial
his speed	which he pushes the ground	•	
-			l from the foot of one frictionless
-	<u> </u>		nich the particle slides down the
other frictionless	inclined plane. The total tim	e it will take to reach the po	oint C is
9.8 m			
45° 45°			
a) 2 s	b) 3 s	c) $2\sqrt{2}$ s	d) 4 s
385. A ball rolls of the t	top of a stair way with a hor	izontal velocity $u \mathrm{ms}^{-1}$. If the	he steps are h metre and b metre
	the edge of n th step, the tin	ne taken by the ball is	•
hu	b) $\frac{2hu}{gb}$	$2hu^2$	d) $\frac{hu^2}{2gh}$
a) $\frac{hu}{\mathrm{g}b}$	\overline{gb}	$\frac{c}{gb}$	$\frac{\mathrm{d}}{2\mathrm{g}b}$
386. An airplane, divin	g at an angle of 53.0° with tl	ne vertical releases a project	tile at an altitude of 730 m. The
projectile hits the	ground 5.00 s after being re	eleased. What is the speed of	f the aircraft?
a) 282 ms ⁻¹	b) 202 ms ⁻¹	c) 182 ms ⁻¹	d) 102 ms ⁻¹
-		, of length $\it l$, the other end of	_
		st reach where it makes an	angle of 60° with the vertical. The
	ng at mean position is		_
a) 2 <i>mg</i>	b) <i>mg</i>	c) 3 <i>mg</i>	d) $\sqrt{3}mg$
388. A cyclist goes rour vertical, will be	nd a circular path of circum	ference 34.3 m in $\sqrt{22}$ $sec.$ t	he angle made by him, with the
a) 45°	b) 40°	c) 42°	d) 48°
-			constant speed of $4 m/sec$. The
	ng is $6 N$, when the stone is		
a) Top of the circle	•		d) None of the above
390. A curved road of c		o that no friction is required	l at a speed of 30 ms ⁻¹ . What is
a) 6°	b) 16°	c) 26°	d) 0.6°
			e with a constant speed. If the
			ction of acceleration of the stone
	direction along the radius		
	rection along the radius awa		
	rection along the radius tow		
	rection along the tangent to		
392. A fly wheel rotates	s about a fixed axis and slov	vs down from 300 rpm to 10	00 rpm in 2 min. Then its angular
retardation in rad	/min is		
a) <u>100</u>	b) 100	c) 100 π	d) 200 π
·- j		·, = ·-	

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 33

393. A small mass m is attached to a massless string whose other end is fixed at P as shown in the figure. The mass is undergoing circular motion in the x-y plane with centre at 0 and constant angular speed ω . If the angular momentum of the system, calculated about O and P are denoted by \vec{L}_O and \vec{L}_P respectively, then

0	m
a) \vec{L}_{α} and	$rac{1}{L_{D}}$ do not varv with

b) \vec{L}_O varies with time while \vec{L}_P remains constant

a) L_O and L_P do not vary with time c) \vec{L}_O remains constant while \vec{L}_P varies with time

d) \vec{L}_{O} and \vec{L}_{P} both vary with time

394. A particle of mass m is moving in a circular path of constant radius r such that its centripetal acceleration a_c is varying with time t as, $a_c = k^2 r t^2$, The power delivered to the particle by the forces acting on it is

a) $2\pi mk^2r^2t$

b) mk^2r^2t

c) $\frac{mk^4r^2t^5}{3}$

d) Zero

395. A man projects a coin upwards from the gate of a uniformly moving train. The path of coin for the man will be

a) Parabolic

b) Inclined straight line

c) Vertical straight line

d) Horizontal straight line

396. A piece of marble is projected from earth's surface with velocity of 50ms⁻¹. 2 s later, it just clears a wall 5 m high. What is the angle of projection?

a) 45°

b) 30°

c) 60°

d) None of these

397. A ball rolls off the top of a stairway with horizontal velocity $v_0 m s^{-1}$. If the steps are h metre high and w metre wide, the ball will hit the edge of nth step if

a) $n = \frac{2hv_0}{gw^2}$

398. A particle is projected from the ground at an angle of 60° with horizontal with speed $u=20 \text{ ms}^{-1}$. The radius of curvature of the path of the particle, when its velocity makes an angle of 30° with horizontal is $(g = 10 \text{ ms}^{-2})$

a) 10.6 m

b) 12.8 m

c) 15.4 m

d) 24.2 m

399. A particle moves along the parabolic path $y = ax^2$ in such a way that the x-component of the velocity remains constant, say c. The acceleration of the particle is

b) $2ac^2\hat{\mathbf{j}}$

d) $a^2c\hat{\mathbf{i}}$

400. An aeroplane is flying horizontally with a velocity of 600 km/h at a height of 1960 m. When it is vertically at a point A on the ground, a bomb is released from it. The bomb strikes the ground at point B. The distance AB is

a) 1200 m

b) 0.33 km

c) 3.33 km

d) 33 km

401. Given that $\vec{A} + \vec{B} + \vec{C} = 0$. Out of three vectors, two are equal in magnitude and the magnitude of third vector is $\sqrt{2}$ times that of either of the two having equal magnitude. Then the angles between vectors are given by

a) 45°, 45°, 90°

b) 90°, 135°, 135°

c) 30°, 60°, 90°

d) 45°, 60°, 90°

402. The magnitude of the X and Y components of \vec{A} are 7 and 6. Also the magnitudes of X and Y components of $\vec{A} + \vec{B}$ are 11 and 9 respectively. What is the magnitude of \vec{B} ?

a) 5

b) 6

d) 9

403. For what value of $a_1 \vec{A} = 2\hat{i} + a\hat{j} + \hat{k}$ will be perpendicular to $\vec{B} = 4\hat{i} - 2\hat{j} - \hat{k}$

a) 4 404 A particle is thro	b) zero	c) 3 ble A with the horizontal. Wh	d) 1 nen the particle makes an angle α			
with the horizont	al, its speed becomes v , wh	ose values is				
=	nately through an angle	c) $u \cos \theta \sec \alpha$ ius 80 m with a velocity $v =$	d) u sec θ cos α 36kmh ⁻¹ . He has to lean from the			
a) tan ⁻¹ (4)	b) $tan^{-1}\left(\frac{1}{3}\right)$	c) $\tan^{-1}\left(\frac{1}{4}\right)$	d) $\tan^{-1}\left(\frac{1}{8}\right)$			
406. A man 80 kg is su	pported by two cables as s	hown in the figure. Then the	e ratio of tensions T_1 and T_2 is			
A 60° 30 T ₁ T ₂ 80 kg	B					
a) 1:1	b) 1:√ 3	c) $\sqrt{3}$: 1	d) 1:3			
407. The resultant of t	wo vectors \overrightarrow{A} and \overrightarrow{B} is perp	endicular to the vector \overrightarrow{A} and	d its magnitude is equal to half of			
the magnitude of	vector \overrightarrow{B} . Then the angle be	etween \overrightarrow{A} and \overrightarrow{B} is				
a) 30°	b) 45°	c) 150°	d) 120°			
408. The horizontal ra a) 90°	nge is four times the maxin b) 60°	num height attained by a pro c) 45°	ojectile. The angle of projection is d) 30°			
	cted so that its horizontal ractions of R/H is	ange R is maximum. If the n	naximum height attained by the			
a) 4	b) $\frac{1}{4}$	c) 2	d) $\frac{1}{2}$			
410. An electric fan h	as blades of length 30 cm	as measured from the axis	of rotation. If the fan is rotating at			
	celeration of a point on the		5			
a) 1600 ms ⁻²	b) 4740 ms ⁻²		d) 5055 ms^{-2}			
411. The x and y comp	oonents of a force are 2 N a					
a) 2î – 3ĵ	b) 2î + 3ĵ	c) $-2\hat{i} - 3\hat{j}$	d) 3î + 2ĵ			
412. A projectile fired with initial velocity u at some angle θ has a range R . If the initial velocity be doubled at the same angle off projection, then the range will be						
a) 2 <i>R</i>	b) <i>R</i> /2	c) R	d) 4 <i>R</i>			
-	-	-	idius r . If p is the magnitude of its			
linear momentun	n. The radial force acting or	-	2			
a) <i>pmr</i>	b) $\frac{nn}{p}$	c) $\frac{mp^2}{r}$	d) $\frac{p^2}{rm}$			
414. Two forces, each	equal to $\frac{P}{2}$, act at right angl	es. Their effect may be neut	ralized by a third force acting			
along their bisect	or in the opposite direction	ı with a magnitude of				
a) <i>P</i>	b) $\frac{P}{2}$	c) $\frac{P}{\sqrt{2}}$	d) $\sqrt{2} P$			
aj i	$\frac{5}{2}$	$\sqrt{2}$	u) V2 F			
= :	and B thrown with speeds ith the horizontal, the angle	_	the same heights. If A is thrown at			
a) 0°	b) 60°	c) 30°	d) 45°			
=			rom the same point, both with ed by one, as seed by the other, is			

b) A parabola c) A hyperbola

- d) A straight line making a constant angle (\neq 90°) with the horizontal
- 417. A vector \vec{A} when added to the vector $\vec{B} = 3\hat{\imath} + 4\hat{\jmath}$ yields a resultant vector that is in the positive y direction and has a magnitude equal to that of \vec{B} . Find the magnitude of \vec{A}

b) 10

- d) $\sqrt{15}$
- 418. A boy throws a ball upwards with velocity $u = 15 \text{ms}^{-1}$. The wind imparts a horizontal acceleration of 3ms^{-1} to the left. The angel θ at which the ball must be thrown so that the ball returns to the boy's hand is (use $g = 10 \text{ ms}^{-2}$)
 - a) $tan^{-1}(0.4)$
- b) $tan^{-1}(0.2)$
- c) $tan^{-1}(0.3)$ d) $tan^{-1}(0.15)$
- 419. A proton of velocity $(3\hat{\imath}+2\hat{\jmath})\times 10^5 \text{ms}^{-1}$ enters a magnetic field $(2\hat{\imath}+3\hat{k})T$. If the specific charge is 9.6 \times 10^7 C kg⁻¹. The acceleration of the proton in ms⁻² is
 - a) $(6\hat{i} 9\hat{j} + 4\hat{k}) \times 9.6 \times 10^{12}$

b) $(6\hat{i} + 9\hat{j} + 4\hat{k}) \times 9.6 \times 10^{12}$

c) $(6\hat{i} - 9\hat{i} - 4\hat{k}) \times 9.6 \times 10^{12}$

- d) $(6\hat{i} + 9\hat{i} 4\hat{k}) \times 9.6 \times 10^{12}$
- 420. The path of a projectile in the absence of air drag is shown in the figure by dotted line. If the air resistance is not ignored then which one of the path is shown in the figure is appropriate for the projectile

a) B

b) A

c) D

- d) C
- 421. A cannon on a level plane is aimed at an angle θ above the horizontal and a shell is fired with a muzzle velocity v_0 towards a vertical cliff a distance D away. Then the height from the bottom at which the shell strikes the side walls of the cliff is

 - a) $D \sin \theta \frac{gD^2}{2v_0^2 \sin^2 \theta}$ b) $D \cos \theta \frac{gD^2}{2v_0^2 \cos^2 \theta}$ c) $D \tan \theta \frac{gD^2}{2v_0^2 \cos^2 \theta}$ d) $D \tan \theta \frac{gD^2}{2v_0^2 \sin^2 \theta}$
- 422. Which of the following statements is false for a particle moving in a circle with a constant angular speed
 - a) The velocity vector is tangent to the circle
 - b) The acceleration vector is tangent to the circle
 - c) The acceleration vector points to the centre of the circle
 - d) The velocity and acceleration vectors are perpendicular to each other
- 423. A mass of 100 gm is tied to one end of a string 2 m long. The body is revolving in a horizontal circle making a maximum of 200 revolutions per min. The other end of the string is fixed at the centre of the circle of revolution. The maximum tension that the string can bear is (approximately)
 - a) 8.76 N
- b) 8.94 N
- c) 89.42 N
- 424. A gramophone disc is set revolving in a horizontal plane and reaches a steady state of motion of two revolutions per second. It is found that a small coin placed on the disc will remain there if its centre is not more than 5 cm from the axis of rotation; the coefficient of friction between the coin and the disc is
 - a) 0.2

- d) 0.8
- 425. A body is projected with a speed u m/s at an angle β with the horizontal. The kinetic energy at the highest point is $\frac{3}{4}$ th of the initial energy. The values of β is a) 30° b) 45°

c) 60°

- d) 120°
- 426. Four persons K, L, M and N are initially at the corners of a square of side of length d. If every person starts moving, such that K is always headed towards L, L towards M, M is headed directly towards N and Ntowards *K*, then the four persons will meet after
 - a) $\frac{d}{d}$ sec
- b) $\frac{\sqrt{2d}}{2}$ sec
- c) $\frac{d}{\sqrt{2n}}$ sec
- d) $\frac{d}{2n}$ sec
- 427. A body of mass m is moving with a uniform speed v along a circle of radius r, what is the average acceleration in going from A to B?

a) $2v^2/\pi r$

b) $2\sqrt{2}v^2/\pi r$

c) $v^2/\pi r$

d) None of these

428. A small block is shot into each of the four tracks as shown below. Each of the tracks rises to the same height. The speed with which the block enters the track is the same in all cases. At the highest point of the track, the normal reaction is maximum in

a)

b)

c)

d)

429. An unbanked curve has a radius of 60*m*. The maximum speed at which car can make a turn if the coefficient of static friction is 0.75, is

a) $2.1 \, m/s$

b) 14 m/s

c) $21 \, m/s$

d) 7 m/s

430. A particle of mass *m* is rotating in a horizontal circle of radius *R* and is attached to a hanging mass *M* as shown in the figure. The speed of rotation required by the mass *m* keep *M* steady is

a) $\sqrt{\frac{mgR}{M}}$

b) $\sqrt{\frac{mgR}{m}}$ c) $\sqrt{\frac{mg}{MR}}$

d)
$$\sqrt{\frac{mR}{Mg}}$$

431. Two bodies are projected from ground with equal speed 20 ms⁻¹ from the same position in the same vertical plane to have equal range but at different angles above the horizontal. If one of the angle is 30° the sum of their maximum heights is (assume $g=10 \text{ ms}^{-2}$)

a) 400 m

b) 20 m

c) 30 m

d) 40 m

432. A particle is projected with velocity v_0 along x-axis. The deceleration on the particle is proportional to the square of the distance from the origin $ie \ a = \propto x^2$ the distance at which the particle stops is

a) $\sqrt{\frac{3v_0}{2}}$

b) $\left(\frac{3v_0}{2\alpha}\right)^{\frac{1}{3}}$

c) $\sqrt{\frac{2v_0^2}{3\alpha}}$

d) $\left(\frac{3v_0^2}{2\alpha}\right)^{\frac{1}{3}}$

 $433.\ A\ wheel\ completes\ 2000\ revolutions\ to\ cover\ the\ 9.5\ km\ distance, then\ the\ diameter\ of\ the\ wheel\ is$

a) 1.5 m

b) 1.5 cm

c) 7.5 cm

d) 7.5 m

434. A body can throw a stone up to a maximum height of 10*m*. The maximum horizontal distance that the boy can throw the same stone up to will be

a) $20\sqrt{2}m$

b) 10m

c) $10\sqrt{2}m$

d) 20m

435. If the resultant of \vec{A} and \vec{B} makes angle α with \vec{A} and β with \vec{B} then

a) $\alpha < \beta$ always

b) $\alpha < \beta$, if A < B

c) $\alpha < \beta$, if A > B

d) $\alpha < \beta$, if A = B

436. A body is projected at an angle θ with respect to horizontal direction with velocity u. The maximum range of the body is

a) $R = \frac{u^2 \sin 2\theta}{g}$

 $b) R = \frac{u^2 \sin^2 \theta}{2g}$

c) $R = \frac{u^2}{g}$

d) $R = u^2 \sin \theta$

keeping the same banking angle, the radius of curvature of the road should be changed to a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of $(if~\theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass $0.1 kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6 N$ b) $1.96 N$ c) $9.8 N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass 0.1 kg is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of $(if \theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass $0.1 kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6 N$ b) $1.96 N$ c) $9.8 N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	
a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ ms}^{-1}$. If the steps are b metre	ranges described by the projectile are in the ratio of (if $\theta < 45$)
440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ms}^{-1}$. If the steps are $b \text{metre}$	
wide and h metre high, the ball will hit the edge of the n th step,	,
	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ms}^{-1}$. If the steps are $b \text{metre}$
	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ms}^{-1}$. If the steps are $b \text{metre}$ wide and $b \text{metre}$ high, the ball will hit the edge of the $b \text{metre}$ the steps are $b \text{metre}$ with the edge of the $b \text{metre}$ to $b \text{metre}$ with the edge of the $b \text{metre}$ to $b \text{metre}$ with the edge of the $b \text{metre}$ to $b \text{metre}$ with the edge of the $b \text{metre}$ to $b \text{metre}$ to $b \text{metre}$ with the edge of the $b \text{metre}$ to $b \text{metre}$ the edge of the $b \text{metre}$ to $b \text{metre}$ the edge of the $b \text{metre}$ to $b \text{metre}$ the edge of the $b \text{metre}$ to $b \text{metre}$
	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ms}^{-1}$. If the steps are $b \text{metre}$ wide and $b \text{metre}$ high, the ball will hit the edge of the $b \text{metre}$ th step, if
a) $n = \frac{2hu}{1}$ b) $n = \frac{2hu^2}{1}$ c) $n = \frac{2hu^2}{1}$	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ms}^{-1}$. If the steps are $b \text{metre}$ wide and $b \text{metre}$ high, the ball will hit the edge of the $b \text{metre}$ th step, if
· · · · · · · · · · · · · · · · · · ·	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre wide and h metre high, the ball will hit the edge of the n th step, if a) $n = \frac{2hu}{gb^2}$ b) $n = \frac{2hu^2}{gb^2}$ c) $n = \frac{2hu^2}{gb}$ d) $n = \frac{hu^2}{gb^2}$
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre wide and h metre high, the ball will hit the edge of the n th step, if a) $n = \frac{2hu}{gb^2}$ b) $n = \frac{2hu^2}{gb^2}$ c) $n = \frac{2hu^2}{gb}$ d) $n = \frac{hu^2}{gb^2}$ 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre wide and h metre high, the ball will hit the edge of the n th step, if a) $n = \frac{2hu}{gb^2}$ b) $n = \frac{2hu^2}{gb^2}$ c) $n = \frac{2hu^2}{gb}$ d) $n = \frac{hu^2}{gb^2}$ 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$
 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1:3 b) 1:1 c) 1:√3 d)√3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the 	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre wide and h metre high, the ball will hit the edge of the n th step, if a) $n = \frac{2hu}{gb^2}$ b) $n = \frac{2hu^2}{gb^2}$ c) $n = \frac{2hu^2}{gb}$ d) $n = \frac{hu^2}{gb^2}$ 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads 1 along a circle of radius 1 m the
 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is 	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre wide and h metre high, the ball will hit the edge of the n th step, if a) $n = \frac{2hu}{gb^2}$ b) $n = \frac{2hu^2}{gb^2}$ c) $n = \frac{2hu^2}{gb}$ d) $n = \frac{hu^2}{gb^2}$ 441. If a body A of mass B is thrown with velocity B at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass B is moving with an angular velocity of B rads B along a circle of radius B m the centrifugal force is
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads $^{-1}$ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre wide and b metre high, the ball will hit the edge of the n th step, if a) $n = \frac{2hu}{gb^2}$ b) $n = \frac{2hu^2}{gb^2}$ c) $n = \frac{2hu^2}{gb}$ d) $n = \frac{hu^2}{gb^2}$ 441. If a body A of mass B is thrown with velocity B at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass B is moving with an angular velocity of B rads B along a circle of radius B in the centrifugal force is a) B 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads $^{-1}$ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre wide and h metre high, the ball will hit the edge of the n th step, if a) $n = \frac{2hu}{gb^2}$ b) $n = \frac{2hu^2}{gb^2}$ c) $n = \frac{2hu^2}{gb}$ d) $n = \frac{hu^2}{gb^2}$ 441. If a body A of mass B is thrown with velocity B at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass B is moving with an angular velocity of B rads B along a circle of radius B m the centrifugal force is
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction 	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre wide and h metre high, the ball will hit the edge of the n th step, if a) $n = \frac{2hu}{gb^2}$ b) $n = \frac{2hu^2}{gb^2}$ c) $n = \frac{2hu^2}{gb}$ d) $n = \frac{hu^2}{gb^2}$ 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads $^{-1}$ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads $^{-1}$ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30 m if the coefficient of friction between the tyres and the road is 0.4 ? a) 10.84 ms $^{-1}$ b) 9.84 ms $^{-1}$ c) 8.84 ms $^{-1}$ d) 6.84 ms $^{-1}$	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre wide and h metre high, the ball will hit the edge of the n th step, if a) $n = \frac{2hu}{gb^2}$ b) $n = \frac{2hu^2}{gb^2}$ c) $n = \frac{2hu^2}{gb}$ d) $n = \frac{hu^2}{gb^2}$ 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads 1 along a circle of radius 1 m the centrifugal force is a) 1 0.1 dyne b) 1 1 dyne c) 1 2 dyne d) 1 2 dyne d) 1 2 dyne d) 1 3 dyne d) 1 43. What will be the maximum speed of a car on a road-turn of radius 1 3 m if the coefficient of friction between the tyres and the road is 1 4. c) 1 5 8.84 ms ⁻¹ d) 1 6.84 ms ⁻¹
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads $^{-1}$ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30 m if the coefficient of friction between the tyres and the road is 0.4 ? a) 10.84 ms $^{-1}$ b) 9.84 ms $^{-1}$ c) 8.84 ms $^{-1}$ d) 6.84 ms $^{-1}$	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre wide and h metre high, the ball will hit the edge of the n th step, if a) $n = \frac{2hu}{gb^2}$ b) $n = \frac{2hu^2}{gb^2}$ c) $n = \frac{2hu^2}{gb}$ d) $n = \frac{hu^2}{gb^2}$ 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads $^{-1}$ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$ 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads $^{-1}$ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30 m if the coefficient of friction between the tyres and the road is 0.4 ? a) 10.84 ms $^{-1}$ b) 9.84 ms $^{-1}$ c) 8.84 ms $^{-1}$ d) 6.84 ms $^{-1}$	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1: 3 b) 1: 1 c) 1: √3 d) √3: 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms -1 b) 9.84 ms -1 c) 8.84 ms -1 d) 6.84 ms -1 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation)
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms -1 b) 9.84 ms -1 c) 8.84 ms -1 d) 6.84 ms -1 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If <i>T</i>_{max}/<i>T</i>_{min} = 2, then <i>v</i>²/<i>r</i>g is 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu / gb² b) n = 2hu² / gb² c) n = 2hu² / gb d) n = hu² / gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms -1 b) 9.84 ms -1 c) 8.84 ms -1 d) 6.84 ms -1 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu / gb² b) n = 2hu² / gb² c) n = 2hu² / gb² d) n = hu² / gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1: 3 b) 1: 1 c) 1:√3 d) √3: 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If Tmax/Tmin = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d)√3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms -1 b) 9.84 ms -1 c) 8.84 ms -1 d) 6.84 ms -1 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations, How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1:3 b) 1:1 c) 1:√3 d)√3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms ⁻¹ b) 9.84 ms ⁻¹ c) 8.84 ms ⁻¹ d) 6.84 ms ⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (<i>h</i>) of a projectile and time (<i>t</i>), when it is projected 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb² d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations, How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r, Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d)√3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms -1 b) 9.84 ms -1 c) 8.84 ms -1 d) 6.84 ms -1 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations, How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb² d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations, How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r, Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms ⁻¹ b) 9.84 ms ⁻¹ c) 8.84 ms ⁻¹ d) 6.84 ms ⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (<i>h</i>) of a projectile and time (<i>t</i>), when it is projected 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu / gb² b) n = 2hu² / gb² c) n = 2hu² / gb d) n = hu² / gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 d45. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 d46. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu / gb² b) n = 2hu² / gb² c) n = 2hu² / gb d) n = hu² / gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 d45. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 d46. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu / gb² b) n = 2hu² / gb² c) n = 2hu² / gb d) n = hu² / gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms -1 b) 9.84 ms -1 c) 8.84 ms -1 d) 6.84 ms -1 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 4 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between f + f + k and f a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (<i>h</i>) of a projectile and time (<i>t</i>), when it is projected from the ground a) h b) h c) h c) h c) h c) h d) h d d) h d c) h d) h d 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu / gb² b) n = 2hu² c) n = 2hu² d) n = hu² / gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms -1 b) 9.84 ms -1 c) 8.84 ms -1 d) 6.84 ms -1 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 40 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground a) h b) h c) h c) h c) h d) h d) h d
 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms -1 b) 9.84 ms -1 c) 8.84 ms -1 d) 6.84 ms -1 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between 1 + j + k and 1 a) 0° d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground a) h or double distribution of the projected from the ground a) h or double distribution of the projected from the ground a) h or double distribution of the projected from the ground a) h or double distribution of the projected from the ground a) h or double distribution of the projected from the ground a) h or double distribution of the projected from the ground b) h or double di	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu / gb² b) n = 2hu² c) n = 2hu² d) n = hu² / gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms -1 b) 9.84 ms -1 c) 8.84 ms -1 d) 6.84 ms -1 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If Tmax/Tmin = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + j + k and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground a) h of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/r_g is a) 1 b) 2 c) 3 d) None of these 448. Which of the following is the graph between the height (<i>h</i>) of a projectile and time (<i>t</i>), when it is projected from the ground a) n b) n/6 c) n/3 d) None of these 449. In a vertical circle of radius <i>r</i>, at what point in its path a particle has tension equal to zero if it is just able to 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu / (b) n = 2hu² /li>
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between î + ĵ + k̂ and î a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (<i>h</i>) of a projectile and time (<i>t</i>), when it is projected from the ground a) h b) h c) h c	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu / gb² b) n = 2hu² c) n = 2hu² d) n = hu² / gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1 : 3 b) 1 : 1 c) 1 : √3 d) √3 : 1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations, How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between i + j + k and i a) 0° d) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground a) h 0 is particle. A maximum particle has tension equal to zero if it is just able to complete the vertical circle
 441. If a body <i>A</i> of mass <i>M</i> is thrown with velocity <i>V</i> at an angle of 30° to the horizontal and another body <i>B</i> of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of <i>A</i> to <i>B</i> will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads ⁻¹ along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles <i>A</i> and <i>B</i> are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of <i>A</i> is doubled without altering other parameters, the ratio of horizontal ranges attained by <i>A</i> and <i>B</i> is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius <i>r</i>. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/r_g is a) 1 b) 2 c) 3 d) None of these 448. Which of the following is the graph between the height (<i>h</i>) of a projectile and time (<i>t</i>), when it is projected from the ground a) n b) n/6 c) n/3 d) None of these 449. In a vertical circle of radius <i>r</i>, at what point in its path a particle has tension equal to zero if it is just able to 	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step. if a) n = 2hu b) n = 2hu² c) n = 2hu² d) n = hu² gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) 1:3 b) 1:1 c) 1:√3 d) √3:1 442. A pallet of mass 1 g is moving with an angular velocity of 1 rads -1 along a circle of radius 1 m the centrifugal force is a) 0.1 dyne b) 12 dyne c) 10 dyne d) 100 dyne 443. What will be the maximum speed of a car on a road-turn of radius 30m if the coefficient of friction between the tyres and the road is 0.4? a) 10.84 ms⁻¹ b) 9.84 ms⁻¹ c) 8.84 ms⁻¹ d) 6.84 ms⁻¹ 444. Two particles A and B are projected with same speed so that ratio of their maximum heights reached is 3:1. If the speed of A is doubled without altering other parameters, the ratio of horizontal ranges attained by A and B is a) 1:1 b) 2:1 c) 4:1 d) 3:2 445. When a ceiling fan is switched off its angular velocity reduces to 50% while it makes 36 rotations. How many more rotation will it make before coming to rest (Assume uniform angular retardation) a) 18 b) 12 c) 36 d) 48 446. An object is tied to a string and rotated in a vertical circle of radius r. Constant speed is maintained along the trajectory. If T_{max}/T_{min} = 2, then v²/rg is a) 1 b) 2 c) 3 d) 4 447. What is the angle between f + f + k and f a) 0° b) π/6 c) π/3 d) None of these 448. Which of the following is the graph between the height (h) of a projectile and time (t), when it is projected from the ground a) h c) /li>
$2hu$ $2hu^2$ $2hu^2$ hu^2	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ms}^{-1}$. If the steps are $b \text{metre}$ wide and $h \text{metre}$ high, the ball will hit the edge of the $n \text{th}$ step, if
G , , , , , , , , , , , , , , , , , , ,	,
wide and h metre high, the ball will hit the edge of the n th step,	,
440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ms}^{-1}$. If the steps are $b \text{metre}$	
a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ ms}^{-1}$. If the steps are b metre	ranges described by the projectile are in the ratio of (if $\theta < 45$)
ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	
439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass 0.1 kg is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of $(if \theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass $0.1 kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6 N$ b) $1.96 N$ c) $9.8 N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ ms}^{-1}$. If the steps are b metre	
ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	
439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of $(if~\theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of $(if~\theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass 0.1 kg is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of $(if \theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass $0.1 kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6 N$ b) $1.96 N$ c) $9.8 N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass 0.1 kg is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of $(if \theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass $0.1 kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6 N$ b) $1.96 N$ c) $9.8 N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
keeping the same banking angle, the radius of curvature of the road should be changed to a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of $(if~\theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	keeping the same banking angle, the radius of curvature of the road should be changed to a) $25 \mathrm{m}$ b) $100 \mathrm{m}$ c) $150 \mathrm{m}$ d) $200 \mathrm{m}$ 438. A ball of mass $0.1 kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6 N$ b) $1.96 N$ c) $9.8 N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass 0.1 kg is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of $(if \theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 25 m b) 100 m c) 150 m d) 200 m 438. A ball of mass $0.1 kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6 N$ b) $1.96 N$ c) $9.8 N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of $(if~\theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass 0.1 kg is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of $(if \theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass 0.1 kg is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of $(if \theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of $(if~\theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of $(if~\theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of $(if~\theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1\ kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of $(if~\theta \le 45)$ a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	438. A ball of mass $0.1~kg$ is suspended by a string. It is displaced through an angle of 60° and left. When the ball passes through the mean position, the tension in the string is a) $19.6~N$ b) $1.96~N$ c) $9.8~N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
ball passes through the mean position, the tension in the string is a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	ball passes through the mean position, the tension in the string is a) $19.6\ N$ b) $1.96\ N$ c) $9.8\ N$ d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	a) 19.6 N b) 1.96 N c) 9.8 N d) Zero 439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$) a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre	439. Galileo writes that for angles of projection of a projectile at angles $(45 + \theta)$ and $(45 - \theta)$, the horizontal
a) $2:1$ b) $1:2$ c) $1:1$ d) $2:3$ 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ ms}^{-1}$. If the steps are b metre	
where and n metre ingin, the dair will intuite eage of the n th step,	,
$2hu^2$ $2hu^2$ hu^2 hu^2	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity $u \text{ms}^{-1}$. If the steps are $b \text{metre}$ wide and $b \text{metre}$ high, the ball will hit the edge of the $b \text{metre}$ th step, if
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$	440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms ⁻¹ . If the steps are b metre wide and h metre high, the ball will hit the edge of the n th step, if a) $n = \frac{2hu}{gb^2}$ b) $n = \frac{2hu^2}{gb^2}$ c) $n = \frac{2hu^2}{gb}$ d) $n = \frac{hu^2}{gb^2}$ 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be a) $1:3$ b) $1:1$ c) $1:\sqrt{3}$ d) $\sqrt{3}:1$
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal range of A to B will be
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal
441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal	 440. A tennis ball rolls off the top of a stair case way with a horizontal velocity u ms⁻¹. If the steps are b metre wide and h metre high, the ball will hit the edge of the nth step, if a) n = 2hu/gb² b) n = 2hu²/gb² c) n = 2hu²/gb d) n = hu²/gb² 441. If a body A of mass M is thrown with velocity V at an angle of 30° to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal. The ratio of horizontal

 $450. \, In \, the \, above \, question, if \, the \, angular \, velocity \, is \, kept \, same \, but \, the \, radius \, of \, the \, path \, is \, halved, \, the \, new \, path \, is \, halved, \, the \, new \, path \, pa$

force will be			
a) 2 <i>F</i>	b) <i>F</i> ²	c) F/2	d) F/4
451. An unbanked curve h 0.75)	as a radius of 60 m. The ma	aximum speed at which the	e car make a turn is (Take $\mu =$
a) 7 ms ⁻¹	b) 14 ms ⁻¹	c) 21 ms^{-1}	d) 2.1 ms^{-1}
•	kg is attached to the end of	•	L) 0.5 m. The ball is rotated on a
	-		he string can bear is 324 N. The
	alue of angular velocity of b		G
		, , ,	
L /			
a) 9	b) 18	c) 27	d) 36
	of the following sets of forc	•	u) 30
a) 10,20 and 40	b) 10,10 and 20	c) 10,20 and 20	d) 10,10 and 10
	-		d through the other end along a
	th with speed v . The work	-	
a) Zero		$/mv^2$	(mv^2)
,	b) $\left(\frac{mv^2}{l}\right) 2\pi l$	c) $\left(\frac{1}{l}\right)\pi l$	$d\left(\frac{mv^2}{l}\right)l$
certain centripetal for a) 2 <i>F</i> 456. A projectile is fired at	_	y is doubled keeping radiu c) 4 <i>F</i> zontal such that the vertica	
a) 200 ms^{-1}	b) 300 ms ⁻¹	c) 140 ms^{-1}	d) 100 ms ⁻¹
,	•	,	entripetal force $(-K/r^2)$ the
total energy is	is moving in a norizontar	en ele or radius / with a ce	intripetarioree (N/1) the
25	K	2 <i>K</i>	, 4 <i>K</i>
a) $-\frac{K}{2r}$	b) $-\frac{K}{r}$	c) $-\frac{2K}{r}$	d) $-\frac{4K}{r}$
-	is doubled without alterin	=	neir maximum heights reached is atio of the horizontal ranges
a) 1:1	b) 2 : 1	c) 4:1	d) 3 : 2
		,	llowed to fall under gravity at
_	gun is fired. The bullet will		g,
a) Pass above the tar		b) Pass below the tar	get
c) Hit the target	,	d) Certainly miss the	
	that he can jump a maximu	•	m. With what speed can be
	if he speeds a negligible tin		•
a) 9.8 ms ⁻¹	b) 4.42 ms ⁻¹	c) 2.21 ms ⁻¹	d) 3.13 ms^{-1}
	•	-	The force on the body is $\frac{mv^2}{r}$ and

circumference of the circle

is directed towards the centre. What is the work done by this force in moving the body over half the

a) $\frac{mv^2}{r} \times \pi r$	b) Zero	c) $\frac{mv^2}{r^2}$	d) $\frac{\pi r^2}{mv^2}$	
462. Given $\vec{P} \cdot \vec{Q} = 0$, then $ \vec{P} \times \vec{Q} $ is				
a) $ \vec{P} \vec{Q} $	b) Zero	c) 1	d) \sqrt{PQ}	
			ally its angular velocity is zero. It	
			gh an additional angle θ_2 , the	
	igic of in the instas, in th	ie next 2 3, it rotates till ou	gir air additionar angle 02, the	
ratio of $\frac{\theta_2}{\theta_1}$ is				
a) 1	b) 2	c) 3	d) 5	
464. A mass of 2 kg is whirled in a horizontal circle by means of a string at an initial speed of 5 $revolutions\ per\ minute$. Keeping the radius constant the tension in the string is doubled. The new speed				
	ute. Keeping the radius co	nstant the tension in the si	tring is doubled. The new speed	
is nearly	h) 10 mm	a) 2.25 mmm	d) 7 mm	
a) 14 rpm	b) $10 rpm$	c) $2.25 rpm$	d) 7 <i>rpm</i> orizontally from the top of the	
tower	ig is the altitude-time grap	n for a projectne thrown n	orizontally from the top of the	
a) <i>h</i> ↑	h) ↑	c) 1	d) //	
			u) "	
$o \xrightarrow{t}$	$o \xrightarrow{t}$	0 t	$o \longrightarrow t$	
466 A car takes a turn aro	ound a circular curve. If it to	urns at double the speed t	the tendency to overturn is	
a) Halved	b) Doubled	c) Quadrupled	d) Unchanged	
•			e highest point is half of the	
initial kinetic energy.		,	8 F	
a) 30°	b) 45°	c) 60°	d) 90°	
		ing of length 1.96 m movi	ng in a horizontal circle. The	
string will break if th	e tension is more than 25 <i>l</i>	V. What is the maximum s	peed with which the ball can be	
moved	OPLUS EDI	DCATION		
a) 14 <i>m/s</i>	b) 3 <i>m/s</i>	c) 3.92 <i>m/s</i>	d) 5 <i>m/s</i>	
			of 8×10^3 m is to drop a bomb on	
			released? (Take $g = 10 \text{ ms}^{-2}$)	
•	b) 8714 m	•	-	
		-	agh which a projectile has to fall	
=	quire a velocity equal to th	e velocity of projection in	magnitude. The angle of	
projection is	1) 600) 450	1) 200	
a) 75°	b) 60°	c) 45°	d) 30°	
-		vertical circle of radius r_* .	The difference in tensions at the	
lowest point and the a) 2 mg	b) 6 mg	c) 4 mg	d) 8 <i>m</i> g	
, .	, ,	, ,	ging the angel of projection. The	
percentage increase i	- ·	ica by 1070, without chang	ing the anger of projection. The	
a) 10%	b) 20%	c) 15%	d) 5%	
-	-	-	th \overrightarrow{A} and \overrightarrow{B} has magnitude k	
	$3\hat{k}$). That k is equal to	Tito perpendicular to bo	and Diagnitude h	
a) 1	b) 4	c) 7	d) 9	
474. For a body moving in		-		
a) $\frac{1}{r} \leq \mu mg$	b) $\frac{mv^2}{r} \ge \mu mg$	c) $\frac{1}{r} = \mu g$	$d)\frac{mv^2}{r} = \mu mg$	

	a) 0°	b) $\frac{\pi}{4}$	c) $\frac{\pi}{2}$	d) π
476.	=	stance when projected with with double the initial spee	an initial speed. On the sai	me surface it will cover a
	a) 100 m	b) 150 m	c) 200 m	d) 250 m
477.	•	*	in the string when passing	•
			re T_1 and T_2 respectively. the	
	a) $T_1 = T_2$	or order (row out processes) and	b) $T_2 > T_1$	
	c) $T_1 > T_2$		d) Tension in the string al	ways remains the same
478	, . .	ds from the ton of tower wi	th a velocity 50 ms ⁻¹ maki	=
1701			any seconds from the instar	
	reach the ground?	ower is 7 om theer now me	any seconds from the mistar	it of throwing win the ban
	a) 2 s	b) 5 s	c) 7 s	d) 9 s
4.70		•	e time of flight of the projec	
T/ /.	a) 5%	b) 10%	c) 15%	d) 20%
190	-			plane, is gently pushed and
400.				
	= =	cie. it will leave the chicle a	at a vertical distance h belo	w the nighest point such
	that			
	hi			
	f			
	R			
		S. Ja .	P	
	Section of the second section of the second section of the second section sect	R	c) $h = R$	d) $h = \frac{R}{2}$
	a) $h = 2R$	b) $h = \frac{R}{2}$	c) $h = R$	d) $h = \frac{1}{3}$
481.	A projectile is fired at an a	angle of 45° with the horizo	ontal. Elevation angle of the	projectile at its highest
	point as seen from the po	int of projection, is:	ATTONI	
	$\sqrt{3}$	b) 45°	c) 60°	, 1
	a) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$	b) 45°	c) 60°	d) $\tan^{-1}\frac{1}{2}$
482.	A roller coaster is designed	ed such that riders experie	ence 'weightlessness' as the	ey go round the top of a hill
102.		-	car at the top the hill is bet	
			c) $16 \text{ ms}^{-1} \text{ and } 17 \text{ ms}^{-1}$	
483			on a horizontal ground. Th	
100.		of the wheel initially in cor	_	e magmedae to the
	-	b) $\sqrt{2\pi}$		d) #
40.4	a) 2π		c) $\sqrt{\pi^2 + 4}$	d) π
484.	_	-	<i>r</i> on a flat road takes a tur	_
			ne acceleration due to gravi	· ·
			the vertical plane by an ang	
	a) $\theta = \tan^{-1} 6$	b) $\theta = \tan^{-1} 2$	c) $\theta = \tan^{-1} 25.92$	d) $\theta = \tan^{-1} 4$
485.			naking 2rev/s. If the radius	of the circle is 2m, then
	tension in the string when	n the body is at the top of th	ne circle is	
	a) 41.56 N	b) 89.86 N	c) 109.86 N	d) 115.86 N
486.	A particle is kept at rest a	t the top of a sphere of dian	neter 42 <i>m</i> . When disturbe	d slightly, it slides down. At
	what height $'h'$ from the b	ottom, the particle will lea	ve the sphere	
	a) 14 m	b) 28 m	c) 35 m	d) 7 m
487.	In case of uniform circula	r motion which of the follow	wing physical quantity do r	ot remain constant
	a) Speed	b) Momentum	c) Kinetic energy	d) Mass
488.	The magnitude of the vect	tors product o two vectors	is $\sqrt{3}$ times their scalar pro	duct. The angle between
	~	*	*	~

the two vectors is

	a) 90°	b) 60°	c) 45°	d) 30°	
489	A projectile is thrown in the	he upward direction makin	g an angle of 60° with the l	norizontal direction with	
	velocity of $147 \mathrm{ms^{-1}}$. Then the time after which its inclination with the horizontal is 45° , is				
	a) 25 s	b) 10.98 s	c) 5.49 s	d) 2.745 s	
490	•	•	a is the centripetal acce	•	
	following is true?	,	r	, , , , , , , , , , , , , , , , , , , ,	
		v	va	a	
	a) $\alpha = \frac{1}{v}$	b) $\alpha = \frac{1}{\omega a}$	c) $\alpha = \frac{va}{\omega}$	a) $\alpha = \frac{1}{\omega v}$	
491	. A car of mass 1000 kg neg	otiates a banked curve of r	adius 90 m on a frictionless	s road. If the banking angle	
	is 45°, the speed of the car	is			
	a) $20ms^{-1}$	b) $30ms^{-1}$	c) $5ms^{-1}$	d) $10ms^{-1}$	
492	In uniform circular motion	n of a particle			
	a) Velocity is constant but	acceleration is variable			
	b) Velocity is variable but	acceleration in constant			
	c) Both speed and acceler	ation are constant			
	d) Speed is constant but a	cceleration is variable			
493	The resultant of a system	of forces shown in figure is	a force of 10 N parallel to g	given forces through R,	
	where PR equals				
	P R Q				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	6 N 4 N				
	a) $(2/5)R$ Q	b) (3/5) <i>R Q</i>	c) (2/3)R Q	d) $(1/2)R$ Q	
494	The angle of banking is in			-) (-1-) (
	a) speed of vehicle	- V	b) radius of curvature of r	oad	
		1			
495	c) height of inclination	n to revolve around the nuc	d) None of the above	etal force is obtained from	
495	c) height of inclination In an atom for the electron		d) None of the above cleus, the necessary centrip	oetal force is obtained from	
495	c) height of inclination In an atom for the electron	d by the nucleus on the ele	d) None of the above cleus, the necessary centrip	netal force is obtained from d) Electrostatics force	
	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force	d by the nucleus on the ele b) Gravitational force	d) None of the above cleus, the necessary centrip ctron c) Magnetic force		
	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force	d by the nucleus on the ele- b) Gravitational force s, each P, acting at an angle	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is	d) Electrostatics force	
496	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$	d by the nucleus on the ele- b) Gravitational force s, each P , acting at an angle b) $2P \cos \frac{\theta}{2}$	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) 2P cosθ	d) Electrostatics force d) $P\sqrt{2}$	
496	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector	d by the nucleus on the ele- b) Gravitational force s, each P , acting at an angle b) $2P \cos \frac{\theta}{2}$	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is	d) Electrostatics force d) $P\sqrt{2}$	
496	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vectors	d by the nucleus on the elemb) Gravitational force s, each P , acting at an angle b) $2P \cos \frac{\theta}{2}$ ors of magnitudes $2A$ and $\sqrt{\frac{\theta}{2}}$	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) $2P \cos\theta$ $2A$ acting at an angle θ is $$	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6	
496 497	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30°	d by the nucleus on the elemb) Gravitational force s, each P , acting at an angle b) $2P \cos \frac{\theta}{2}$ ors of magnitudes $2A$ and $$ b) 45°	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) 2P cosθ ZA acting at an angle θ is √ c) 60°	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90°	
496 497	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward	d by the nucleus on the ele- b) Gravitational force s, each P , acting at an angle b) $2P \cos \frac{\theta}{2}$ ors of magnitudes $2A$ and $$ b) 45° Is from the top of a tower v	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) $2P \cos\theta$ $2A$ acting at an angle θ is $\sqrt{2}$	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of θ d) 90° making an angle of 60° with	
496 497	c) height of inclination In an atom for the electron the following force exerted a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height of	d by the nucleus on the elemb) Gravitational force is, each P , acting at an angle P , b) P	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) $2P \cos\theta$ $2A$ acting at an angle θ is $\sqrt{2}$ c) 60° with a velocity of 50 ms^{-1} me ball will reach the ground	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90° haking an angle of 60° with d in (Take g = 10 ms ⁻²)	
496. 497. 498.	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height of a) 2 s	d by the nucleus on the ele- b) Gravitational force s, each P , acting at an angle b) $2P \cos \frac{\theta}{2}$ ors of magnitudes $2A$ and $$ b) 45° ds from the top of a tower work the tower is 70 m, then the	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) 2P cosθ ZA acting at an angle θ is √ c) 60° with a velocity of 50 ms ⁻¹ me ball will reach the ground c) 5 s	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90° haking an angle of 60° with d in (Take g = 10 ms ⁻²) d) 7 s	
496. 497. 498.	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height of a) 2 s A projectile is given an initial content of the second of the content of the conten	d by the nucleus on the elemb) Gravitational force s, each P , acting at an angle b) $2P \cos \frac{\theta}{2}$ ors of magnitudes $2A$ and $$ b) 45° ls from the top of a tower vot the tower is 70 m, then the b) 3 s tial velocity of $\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$. The c	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) 2P cosθ 2A acting at an angle θ is √ c) 60° with a velocity of 50 ms ⁻¹ me ball will reach the ground c) 5 s artesian equation of its pat	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90° haking an angle of 60° with d in (Take $g = 10 \text{ ms}^{-2}$) d) 7 s h is $(g = 10 \text{ ms}^{-2})$	
496. 497. 498. 499.	c) height of inclination In an atom for the electron the following force exerted a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height of a) 2 s A projectile is given an initial $y = x - 5x^2$	d by the nucleus on the election b) Gravitational force s, each P , acting at an angle b) $2P \cos \frac{\theta}{2}$ ors of magnitudes $2A$ and $$ b) 45° ds from the top of a tower vot the tower is 70 m, then the b) 3 s tial velocity of $\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$. The c b) $y = 2x - 5x^2$	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) $2P \cos\theta$ $2A \cot \theta$ acting at an angle θ is $\sqrt{2}$ c) 60° with a velocity of 50 ms^{-1} may ball will reach the ground θ is θ artesian equation of its patic) $y = 2x - 15x^2$	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90° making an angle of 60° with d in (Take $g = 10 \text{ ms}^{-2}$) d) 7 s h is $(g = 10 \text{ ms}^{-2})$ d) $y = 2x - 25 x^2$	
496. 497. 498. 499.	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height of a) 2 s A projectile is given an initial $y = x - 5x^2$ A ball thrown by a boy is of	b) Gravitational force s, each P , acting at an angle b) $2P \cos \frac{\theta}{2}$ ors of magnitudes $2A$ and $$ b) 45° Is from the top of a tower $$ of the tower is 70 m, then the b) 3 s tial velocity of $\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$. The company $2x - 5x^2$ caught by another after 2 seconds.	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) 2P cosθ 2A acting at an angle θ is √ c) 60° with a velocity of 50 ms ⁻¹ me ball will reach the ground c) 5 s artesian equation of its pat	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90° making an angle of 60° with d in (Take $g = 10 \text{ ms}^{-2}$) d) 7 s h is $(g = 10 \text{ ms}^{-2})$ d) $y = 2x - 25 x^2$	
496. 497. 498. 499.	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height of a) 2 s A projectile is given an ini a) $y = x - 5x^2$ A ball thrown by a boy is of	b) Gravitational force s, each P , acting at an angle P b) P cos $\frac{\theta}{2}$ ors of magnitudes P and P b) P cos P ds from the top of a tower P b) P cower is P m, then the P b) P cover P the tower is P m, then the P b) P could be P caught by another after P so the cover P caught by another after P so the cover P caught by another after P so the P cover P cove	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) $2P \cos\theta$ $2A \cot \theta$ acting at an angle θ is $\sqrt{2}$ c) 60° with a velocity of 50 ms^{-1} me ball will reach the grounce) 5 s artesian equation of its pat c) $y = 2x - 15x^2$ ec some distance away in the	d) Electrostatics force d) $P\sqrt{2}$ 10A. The correct value of 6 d) 90° haking an angle of 60° with d in (Take g = 10 ms ⁻²) d) 7 s h is (g = 10 ms ⁻²) d) $y = 2x - 25x^2$ he same level. If the angle	
496. 497. 498. 499.	c) height of inclination In an atom for the electron the following force exerted a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height of a) 2 s A projectile is given an initial $y = x - 5x^2$ A ball thrown by a boy is of projection is 30° , the vertical 19.6 m/s	by the nucleus on the election of the half of the hal	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) $2P \cos\theta$ $\overline{2}A$ acting at an angle θ is $$ c) 60° with a velocity of 50 ms^{-1} in the ball will reach the ground c) 5 s artesian equation of its patic) $y = 2x - 15x^2$ ec some distance away in the c) 14.7 m/s	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90° making an angle of 60° with d in (Take $g = 10 \text{ ms}^{-2}$) d) 7 s h is ($g = 10 \text{ ms}^{-2}$) d) $y = 2x - 25 x^2$ he same level. If the angle d) None of these	
496. 497. 498. 499.	c) height of inclination In an atom for the electron the following force exerted a) Nuclear force The resultant of two forced a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height call 2 s A projectile is given an initial $y = x - 5x^2$ A ball thrown by a boy is confirmed for the vertical of projection is 30° , the vertical 30° , and 30° , and 30° , the vertical 30° , and 30° , and 30° , the vertical 30° , the vertical 30° , and 30° , the vertical 30° , the verti	by the nucleus on the electric by Gravitational force a , each a , acting at an angle a , a and a are a by a and a are a and a are a are a and a are a are a and a are a are a are a and a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a are a and a are a are a and	d) None of the above cleus, the necessary centriportron c) Magnetic force θ is c) $2P \cos\theta$ $2A \cot \theta$ at an angle θ is $\sqrt{2}$ C θ is c) θ with a velocity of θ is θ with a velocity of θ is θ artesian equation of its pat θ θ is θ	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90° haking an angle of 60° with d in (Take $g = 10 \text{ ms}^{-2}$) d) 7 s h is ($g = 10 \text{ ms}^{-2}$) d) $y = 2x - 25 x^2$ he same level. If the angle d) None of these inwards by an angle	
496. 497. 498. 499.	c) height of inclination In an atom for the electron the following force exerted a) Nuclear force The resultant of two forced a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height call 2 s A projectile is given an initial $y = x - 5x^2$ A ball thrown by a boy is confirmed for the vertical of projection is 30° , the vertical 30° , and 30° , and 30° , the vertical 30° , and 30° , and 30° , the vertical 30° , the vertical 30° , and 30° , the vertical 30° , the verti	by the nucleus on the electric by Gravitational force a , each a , acting at an angle a , a and a are a by a and a are a and a are a are a and a are a are a and a are a are a are a and a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a are a and a are a are a and	d) None of the above cleus, the necessary centriportron c) Magnetic force θ is c) $2P \cos\theta$ $2A \cot \theta$ at an angle θ is $\sqrt{2}$ C θ is c) θ with a velocity of θ is θ with a velocity of θ is θ artesian equation of its pat θ θ is θ	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90° haking an angle of 60° with d in (Take $g = 10 \text{ ms}^{-2}$) d) 7 s h is ($g = 10 \text{ ms}^{-2}$) d) $y = 2x - 25 x^2$ he same level. If the angle d) None of these inwards by an angle	
496. 497. 498. 499.	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height of a) 2 s A projectile is given an initial $y = x - 5x^2$ A ball thrown by a boy is of projection is 30° , the veral 19.6 m/s On an unbanked road, a cy	by the nucleus on the electric by Gravitational force a , each a , acting at an angle a , a and a are a by a and a are a and a are a are a and a are a are a and a are a are a are a and a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a and a are a are a and a are a are a and a are a are a and a are a are a and	d) None of the above cleus, the necessary centrip ctron c) Magnetic force e θ is c) $2P \cos\theta$ $\overline{2}A$ acting at an angle θ is $$ c) 60° with a velocity of 50 ms^{-1} in the ball will reach the ground c) 5 s artesian equation of its patic) $y = 2x - 15x^2$ ec some distance away in the c) 14.7 m/s	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90° haking an angle of 60° with d in (Take $g = 10 \text{ ms}^{-2}$) d) 7 s h is ($g = 10 \text{ ms}^{-2}$) d) $y = 2x - 25 x^2$ he same level. If the angle d) None of these inwards by an angle	
496. 497. 498. 500.	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height of a) 2 s A projectile is given an initial $y = x - 5x^2$ A ball thrown by a boy is of projection is 30° , the veral 30° , the veral 30° of an unbanked road, a cyal 30° of 30°	b) the nucleus on the election of the hard by the nucleus on the election of the property of the tower is 70 m, then the hard by $y = 2x - 5x^2$ caught by another after 2 so elective of projection is b) $9.8 \ m/s$ where $y = 10.00$ m, $y = 10.0$	d) None of the above cleus, the necessary centriportron c) Magnetic force θ is c) $2P \cos\theta$ $2A \cot \theta$ at an angle θ is $\sqrt{2}$ C θ is c) θ with a velocity of θ is θ with a velocity of θ is θ artesian equation of its pat θ θ is θ	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90° naking an angle of 60° with d in (Take $g=10 \text{ ms}^{-2}$) d) 7 s h is ($g=10 \text{ ms}^{-2}$) d) $y=2x-25x^2$ he same level. If the angle d) None of these inwards by an angle d) $\tan^{-1}\left(\frac{v}{gr}\right)$	
496. 497. 498. 500.	c) height of inclination In an atom for the electron the following force exerte a) Nuclear force The resultant of two force a) $2P \sin \frac{\theta}{2}$ The resultant of two vector is a) 30° A ball is projected upward the vertical. If the height of a) 2 s A projectile is given an initial $y = x - 5x^2$ A ball thrown by a boy is of projection is 30° , the veral 30° , the veral 30° of an unbanked road, a cyal 30° of 30°	b) the nucleus on the election of the top of a tower vertical velocity of $\hat{\bf i} + 2\hat{\bf j}$. The control of the election of	d) None of the above cleus, the necessary centriportron c) Magnetic force e θ is c) $2P \cos\theta$ $\overline{2}A$ acting at an angle θ is $\sqrt{}$ c) 60° with a velocity of 50 ms^{-1} in the ball will reach the ground c) 5 s artesian equation of its path c) $y = 2x - 15x^2$ ec some distance away in the c) 14.7 m/s radius r at velocity v leans c) $\tan^{-1}\left(\frac{rg}{v^2}\right)$	d) Electrostatics force d) $P\sqrt{2}$ $10A$. The correct value of 6 d) 90° naking an angle of 60° with d in (Take $g=10 \text{ ms}^{-2}$) d) 7 s h is ($g=10 \text{ ms}^{-2}$) d) $y=2x-25x^2$ he same level. If the angle d) None of these inwards by an angle d) $\tan^{-1}\left(\frac{v}{gr}\right)$	

503. The coordinates of a mo	ving particle at any time $^{\prime}t^{\prime}$	are given by $x = \alpha t^3$ and y	$y = \beta t^3$. The speed of the
particle at time $^{\prime}t^{\prime}$ is give			
a) $\sqrt{\alpha^2 + \beta^2}$	b) $3t\sqrt{\alpha^2 + \beta^2}$	c) $3t^2\sqrt{\alpha^2+\beta^2}$	d) $t^2\sqrt{\alpha^2+\beta^2}$
504. A string of length l is fixe	ed at one end and caries a m	hass m at the other end. The	e string makes $2/\pi$ rps
around a vertical axis thr	ough the fixed end. What is	s the tension in string?	
a) <i>m l</i>	b) 16 <i>m l</i>	c) 4 m l	d) 2 <i>m l</i>
505. A particle of mass m mov	es with constant speed alo	ng a circular path of radius	r under the action of a
force F . Its speed is			
rE	\int_{F}		F
a) $\sqrt{\frac{rF}{m}}$	b) $\sqrt{\frac{F}{r}}$	c) \sqrt{Fmr}	d) $\sqrt{\frac{F}{mr}}$
V	V		V
506. A stone is thrown at an a	ngle θ to the horizontal rea	iches a maximum heights <i>H</i>	then the time of flight of
stone will be	_		
a) $\sqrt{\frac{2H}{g}}$	b) $2\sqrt{\frac{2H}{g}}$	c) $\frac{2\sqrt{2H}\sin\theta}{a}$	$\sqrt{2H\sin\theta}$
$\frac{a_j}{\sqrt{g}}$	$\frac{1}{3} \frac{g}{g}$	$\frac{c_j}{g}$	$\frac{u}{g}$
507. What should be the angu	lar velocity of earth so that	a hody on its equator is we	pightless?
			1
a) $\frac{1}{8000}$ rad s ⁻¹	b) $\frac{1}{8}$ rad s ⁻¹	c) $\frac{1}{800}$ rad s ⁻¹	d) $\frac{1}{80}$ rad s ⁻¹
508. $(\vec{P} + \vec{Q})$ is a unit vector a	long X-axis. If $\overrightarrow{P} = \hat{i} - \hat{i} + \hat{I}$	$\hat{\mathbf{x}}$, then what value is $\vec{0}$?	
a) $\hat{i} + \hat{j} - \hat{k}$	b) ĵ – k̂	c) $\hat{i} + \hat{i} + \hat{k}$	d) $\hat{i} + \hat{k}$
509. A ball is projected from t		, ,	, ,
		t on the vertical line along t	
	ght of the second ball is (g		
a) 6.25 m	b) 2.5 m	c) 3.75 m	d) 5 m
510. A particle is moving in a		•	
opposite point	en ele with annorm specar	, in moving nom a point to	another diametrically
a) the momentum chang	es by mv	b) the momentum change	es by 2 mv
c) the kinetic energy cha	nges by $(1/2) mv^2$	d) the kinetic energy char	
511. If the range of a gun which			
			_
a) $\cos^{-1}\left(\frac{V^2}{Ra}\right)$	b) $\cos^{-1}\left(\frac{gR}{V^2}\right)$	c) $\frac{1}{2} \left(\frac{V^2}{R q} \right)$	d) $\frac{1}{2}\sin^{-1}\left(\frac{gR}{V^2}\right)$
512. On the centre of a friction		ade through which a weigl	htless string of length 21 is
			ed. Arrangement is made in
	_	and half is hanging below. I	_
		\mathbf{e} ed v . What is the centripet	
moving ball	ar patir with a constairt spe	cea vi what is the centripet	ar acceleration of the
a) <i>mvl</i>	b) <i>g</i>	c) Zero	d) 2 <i>mvl</i>
513. A body of mass 1 kg is me			•
energies at its highest an		Satir of radius 1 mil the ame	or effect between the fametic
a) 20 J	b) 10 J	c) 4√5	d) 10√5 J
514. The angle of projection o	•	•	•
a) $tan^{-1}(2)$	b) $tan^{-1}(4)$	c) $\cot^{-1}(2)$	d) 60°
	, , ,	* * * * * * * * * * * * * * * * * * * *	
515. A stone of mass 1 kg tied	_	_	izontai circie with a
unnorm angular velocity	2 rads^{-1} . The tension of the	ie string is (in newton)	1
a) 2	b) $\frac{1}{3}$	c) 4	d) $\frac{1}{4}$
516. A tachometer is a device	U		4
a) Gravitational pull	b) Speed of rotation	c) Surface tension	d) Tension in a spring
a, a.aanonai pan	-, opeca of roundin	-,	,

517.	-	tower. The initial velocity	er of height 5 m . It touches of the body is $(g = 10 ms^{-1})$	_
	a) $2.5 ms^{-1}$	b) $5 ms^{-1}$	c) $10 \ ms^{-1}$	d) $20 \ ms^{-1}$
518.				the figure. The movement of
			here s is in metres and t is	in seconds. The radius of
	_	eleration of "P" when $t = 2$	2s is nearly	
	B $O = A \times A$ a) 14 m/s^2	b) 13 <i>m/s</i> ²	•	d) 7.2 m/s^2
519.			f a smooth sphere of radius	
	and it leaves the sphere a	t \emph{B} , at a depth \emph{h} vertically l	below A such that h is equa	l to
	$ \begin{array}{c} A \\ C \\ C \\ C \\ F \end{array} $	4	1	4
	a) $\frac{r}{6}$	b) $\frac{1}{4}r$	c) $\frac{1}{3}r$	d) $\frac{1}{2}r$
520	U	4	3 with same speed v . What is	۷
520.	ground on which these bu	illote will enroad	vitii saine speed vi vviidt is	the maximum area on the
	_	n ⁴	12 ⁴	122
	a) $\pi \frac{v^2}{g}$	b) $\pi \frac{v^4}{g^2}$	c) $\pi^2 \frac{v^4}{g^2}$	d) $\pi^2 \frac{v^2}{a^2}$
	O		O	The vertical range is $\frac{v^2}{8g}$. The
			9	The vertical range is $\frac{-}{8g}$. The
	a) 15°	e makes with the horizonta b) 30°	c) 45°	d) 60°
522.			stone of mass 250 gm tied	
			n angular velocity of rotation	
	a) 20 <i>rad/s</i>	b) 40 rad/s	c) 100 rad/s	d) 200 <i>rad/s</i>
523.		O .	in uniform circular motion	
	a) The speed of the partic			s points towards the centre
504	c) The angular speed rem		d) The velocity remains c	
524.		-	hirled in a horizontal circle	-
			magnitude of acceleration o	
רסר	a) $493 \ cm/s^2$	b) $720 \ cm/s^2$	c) 860 <i>cm/s</i> ²	d) $990 \ cm/s^2$
525.			kmn = releases a bomb at	a height of 490 m from the
	ground. When will the bo	_	a) 7 a	d) 10 a
E26	a) 8 s	b) 6 s	c) 7 s	d) 10 s
320.	projection is		aximum height achieved by	_
	a) 30°	b) 45°	c) 60°	d) 90°
527.		ed a particle be projected fr	om the origin so that it is a	ble to pass through a given
	point (30 m, 40 m)?			1
	a) 30 ms^{-1}	b) 40 ms ⁻¹	c) 50 ms ⁻¹	d) 60 ms ⁻¹
528.		r velocity, if $\vec{\omega} = 3\hat{\imath} - 4\hat{\jmath} +$		•
	a) $6\hat{i} + 2\hat{j} - 3\hat{k}$	b) $-18\hat{i} - 13\hat{j} + 2\hat{k}$	c) $4\hat{i} - 13\hat{j} + 6\hat{k}$	d) $6\hat{i} - 2\hat{j} + 2\hat{k}$

PHONE NO: 8583042324 Page | 45

529. A particle is moving	with velocity $\mathbf{v} = k(y\hat{\mathbf{i}} + z)$	$(x \ \hat{m{j}})$, where k is a constant. The	e general equation for its path
is			
a) $y = x^2 + \text{constar}$	nt	b) $y^2 = x + constant$	
c) $xy = constant$		d) $y^2 = x^2$ constant	
530. The angular speed of	of a car increases from 600	rpm to 1200 rpm in 10 s. Wh	at is the angular acceleration of
the car?			
a) 600rad s^{-1}	b) 60 rad s^{-1}	c) $60 \text{ m rad m s}^{-1}$	d) $2 \pi \text{rad s}^{-1}$
531. What is the numeric	cal value of the vector 3î +		
a) $3\sqrt{2}$	b) $5\sqrt{2}$	c) 7√2	d) $9\sqrt{2}$
		n a velocity of 36 kmh $^{-1}$. The α	, ·
a) 250 N	b) 750 N	c) 1000 N	d) 1200 N
,	•	op what should be the radius	
- A	to complete the chedian to	op what should be the radius	ii iiidai iidgiidis 5 m
h = 5 m			
a) 4 m	b) 3 m	c) 2.5 m	d) 2 <i>m</i>
•	,	its horizontal displacement is	,
	_	-	Find out total time of flight (T)
	attained (Y_{max}) its		(-)
		K 1 K	$_{0}$ $_{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$
a) $T = \alpha$, $Y_{\text{max}} = \frac{1}{2\alpha}$	b) $T = \frac{1}{\alpha}$, $Y_{\text{max}} = \frac{1}{\alpha}$	$\frac{K}{\alpha}$ c) $T = \frac{1}{\alpha}$, $Y_{\text{max}} = \frac{K}{6\alpha}$	d) $T = \frac{1}{\alpha}$, $Y_{\text{max}} = \frac{1}{4\alpha}$
535. Two bodies of mass	10 kg and 5 kg moving in	concentric orbits of radii R an	d r such that their periods are
	ratio between their centrip	11	
a) <i>R/r</i>	b) <i>r/R</i>		d) r^2/R^2
	* *	- '	ude of angular momentum of
	t the point of projection wl	nen the particle is at its maxim	_
a) Zero	b) $\frac{mvh^2}{\sqrt{2}}$	mvh	d) $\frac{mvh^3}{\sqrt{2}}$
	b) $\frac{1}{\sqrt{2}}$	c) $\frac{1}{\sqrt{2}}$	$a_{1} {\sqrt{2}}$
537. If $\vec{P} = 2\hat{i} - 3\hat{i} + \hat{k}$	and $\vec{Q} = 3\hat{i} - 2\hat{j}$, then \vec{P}	· $\overrightarrow{0}$ is	, -
a) Zero	b) 6	c) 12	d) 15
•	,	h uniform angular velocity. Th	
constant	ioves in a circular path wit	in annorm angular velocity.	ie motion of the body has
a) Acceleration	b) Velocity	c) Momentum	d) Kinetic energy
		relocity of 30 ms ^{-1} at an angle	
			e range on the inclined plane is
	b) 60 m		
a) 12 m	,	c) 120 m	d) 600 m
			orizontal. If both bodies attain
_	t, then the ratio of velociti	es with which these are throv	Vn IS
2	b) $\frac{2}{\sqrt{3}}$	3	d) $\frac{\sqrt{3}}{2}$
a) $\sqrt{\frac{2}{3}}$	$\sqrt{3}$	c) $\sqrt{\frac{3}{2}}$	u) <u></u>
V	ron changes its valocity fro	v om 30kms ^{–1} north to 40kms [–]	1 eact in 20 c, what is the
average acceleration		oni Sokins Hortii to Fokins	east III 20 S. What is the
		b) 2 5 l = -2 -+ 270 N	.e.c
a) 2.5 kms ⁻² at 37° l		b) 2.5 kms ⁻² at 37° N o	
c) 2.5 kms ⁻² at 37° l		d) 2.5 kms ⁻² at 37° E o	
	ity (in ms ⁻¹) with which a n 0.6 to avoid skidding is	i car driver must traverse a fla	t curve of radius of 150 m and
a) 60	b) 30	c) 15	d) 25

WEB: WWW.GPLUSEDUCATION.ORG

GPLUS EDUCATION

543.		=	t a target 200m away on a l	evel ground. If $g = 10 \text{ ms}^{-2}$,
	the gun should be aimed	1	->	
	a) directly at the target	_	b) 5 cm below the target	
Г 1 1	c) 5 cm above the target		d) 2 cm above the target	
344.				the ground into the space (v_e
	= -	•		e then the maximum height
		to which it can go will be (R
	a) $\frac{R}{k^2+1}$	b) $\frac{R}{k^2-1}$	c) $\frac{R}{1-k^2}$	d) $\frac{\Lambda}{k+1}$
			s. The maximum height atta	=
	point of projection will b		0	J
	a) 2.5 m	b) 5 m	c) 7.5 m	d) 10 m
546.		,	ertical circle, with the other	,
	_	•		a speed u . The magnitude of
			e the string is horizontal is	
	a) $\sqrt{u^2-2gL}$	b) $\sqrt{2 \text{ g } L}$	c) $\sqrt{u^2 - gL}$	d) $\sqrt{2(u^2 - gL)}$
547.			ution in one <i>second</i> then the	
	the cycle wheel will be	1		1
		b) $0.4 m/s^2$	c) $1.6 \pi^2 m/s^2$	d) $0.4 \pi^2 m/s^2$
548.				have the same range. If B is
			have been thrown at an ang	
	a) $\sin^{-1}\left(\frac{1}{16}\right)$	b) $\sin^{-1}\left(\frac{1}{4}\right)$	c) $2 \sin^{-1} \left(\frac{1}{4} \right)$	d) $\frac{1}{2}\sin^{-1}\left(\frac{1}{8}\right)$
549.	A ball is projected from	a certain point on the surfa	ace of a planet at a certain a	ngel with the horizontal
	= :		x and y vary with time t in s	_
	$x = 10\sqrt{3}t$ and $y = 10t$	$-t^2$		
			CATION	
	a) 100 m	tained by the ball is b) 75 m	c) 50 m	d) 25 m
550.		ly wheel making 120 <i>revo</i>		•
	a) $2\pi rad/s$	b) $4\pi^2 rad/s$		d) $4\pi rad/s$
551.	An object moves along a	straight line path from P t	to $\it Q$ under the action of a fo	rce $(4\hat{i} - 3\hat{j} + 3\hat{k})$ N. If the
				n the work done by the force
	is			
	a) +23 J	b) -23 J	c) 1015 J	d) $\sqrt{35}(4\hat{i} - 3\hat{j} + 2\hat{k})$ J
552.	A particle has velocity $\sqrt{\ }$	$\sqrt{3rg}$ at the highest pint in v	vertical circle. Find the ratio	of tensions at the highest
	and lowest point	0 0 1		O .
	a) 1:6	b) 1:4	c) 1:3	d) 1:2
553.	-		of a hemisphere of radius r .	•
	-	•	ne body lose contact with th	
		O	·	*
		}		
		h □ I		
	¥	•		2
	a) $\frac{3}{2}r$	b) $\frac{2}{3}r$	c) $\frac{1}{2}gt^2$	d) $\frac{v^2}{2a}$
	2	3	2	-0
554.			with velocity 5 m/s and from	-
				due to gravity on the planet
	a) $2 m/s^2$	b) $3.5 m/s^2$	c) $4 m/s^2$	d) $5 m/s^2$

555. The maximum range of a gun on horizontal terrain is 16 km. If $g=10\ m/s^2$. What must be the muzzle WEB: WWW.GPLUSEDUCATION.ORG **PHONE NO: 8583042324** Page | 46 **GPLUS EDUCATION**

velocity of the sl	nell		
a) 200 m/s	b) 400 <i>m/s</i>	c) 100 m/s	d) 50 <i>m/s</i>
	naximum range and square of ti	, ,	, ,
a) 10:49	b) 49 : 10	c) 98:10	d) 10 : 98
557. A body of mass η	$\it n$ is suspended from a string of	length $\it l$. What is minimum	horizontal velocity that should
_		_	revolution in the vertical plane
-	f suspension as the centre of the		
	b) $v = \sqrt{3lg}$		
The tube is then		-	is M and closed at both the ends uniform angular velocity $\omega.$ The
a) $\frac{ML\omega^2}{2}$	b) $ML\omega^2$	c) $\frac{ML\omega^2}{4}$	d) $\frac{ML^2\omega^2}{2}$
4		1	2
			radius 100 m at a speed 7 ms^{-1} .
	weight of 60 kg-wt. The readin		
a) 60.075 kg-wt	, ,		d) 60.225 kg-wt
be $\frac{500. \text{ A vector } F_1}{\text{be}}$	ong the positive Y-axis. If its vec	ctor product with another v	vector F_1 is zero, then F_2 could
a) 4ĵ	b) ĵ + k̂	c) ĵ – k̂	d) -4î
	· ,	, ,	. If H and H_1 are greatest heights
	, what is the relation between F		in in and in are greatest neight
	b) $R = \sqrt{HH_1}$		d) None of these
*			locity which has to be imparted
= =	it to reach the height of suspen		, and a second
a) $2\sqrt{gR}$		c) 2 g <i>l</i>	d) g <i>l</i>
563. After one second	l the velocity of a projectile mal	kes an angle of 45° with the	e horizontal. After another one
10 ms^{-2})	elling horizontally. The magnitu	OCHILOIT	
	$an^{-1}(2)$ b) 22.36 ms ⁻¹ , tan ⁻¹		
	dropped from a height and ano		in horizontal direction with
	c from the same height. The conswill reach at ground simultand		
	s will reach at ground with sam		
	vill reach at ground first with re	-	
, , ,	vill reach at ground first with re		
565. A car is travellin	g at a velocity of $10~{ m kmh^{-1}}$ on a	a straight road. The driver o	of the car throws a parcel with a
velocity of $10\sqrt{2}$	kmh^{-1} when the car is passing	g by a man standing on the s	side of the road. If the parcel is
to reach the mar	, the direction of throw makes	the following angle with di	rection of the car
a) 135°	b) 45°	c) $tan^{-1}(\sqrt{2})60^{\circ}$	d) $\tan\left(\frac{1}{\sqrt{2}}\right)$
566. Angle between A	\overrightarrow{A} and \overrightarrow{B} is θ . What is the value of	of \vec{A} . $(\vec{B} \times \vec{A})$?	
a) $A^2B\cos\theta$	b) $A^2B \sin\theta\cos\theta$	c) $A^2B \sin\theta$	d) zero
			s speed is increasing at the rate
·	nat is the acceleration of the car		
a) $2m/\sec^2$	b) 2.7 <i>m</i> /sec ²	c) $1.8m/\sec^2$	d) $9.8m/\sec^2$
	is the boundary between two t		
	II has a refractive index $\mu_2 = \sqrt{1}$		I, given by vector, $\vec{A} = \sqrt{3}\hat{i} - \hat{k}$ is refracted ray in medium II is

1 .	1	1 .	1 .
a) $\frac{1}{\sqrt{2}}(\hat{\mathbf{i}} + \hat{\mathbf{k}})$	b) $\frac{1}{\sqrt{2}}(\hat{1}+\hat{j})$	c) $\frac{1}{\sqrt{2}}(\hat{\mathbf{k}} - \hat{\mathbf{i}})$	d) $\frac{1}{\sqrt{2}}$ (î – k̂)
_	cion of a projectile are given by	v <i>-</i>	' -
angle of projection i	_	.4.	.2.
a) $\sin^{-1}\left(\frac{4}{5}\right)$	b) $\sin^{-1}\left(\frac{3}{5}\right)$	c) $\sin^{-1}\left(\frac{4}{3}\right)$	d) $\sin^{-1}\left(\frac{3}{4}\right)$
570. What happens to the	e centripetal acceleration of a p	oarticle, when its speed i	s doubled and angular velocity
is halved?			
a) Doubled		b) Halved	
c) Remains unchang		d) Becomes 4 times	
	e roof of a 10 m high building th		_
	How far from the throwing po		height of 10 m from the
	$^{-2}$, $\sin 30^\circ = 1/2$, $\cos 60^\circ = \sqrt{3}$		D 0.66
a) 5.20 m	b) 4.33 m	c) 2.60 m	d) 8.66 m
maximum height ra	cally upward. At half the maxin	num neight, the velocity	of the body is 10 m/s. The
a) 0 m	b) 10 <i>m</i>	c) 15 m	d) 20 <i>m</i>
•	•	•	with which the string has to be
rotated	ing, is rotated in a vertical ene	ie. The minimum speed	with which the 3thing has to be
a) Is independent of	f the mass of the stone	b) Is independent of t	the length of the string
c) Decreases with in	ncreasing mass of the stone	d) Decreases with inc	creasing length of the string
	lpha g is projected under gravity w	_	an angle of 30° with the
	nge in momentum (in magnitud		and the same
a) 24.5 <i>N</i> – <i>s</i>	b) 49.0 <i>N</i> − <i>s</i>	•	-
			ped from it, so as to hit a target.
	om the target should bomb be d		
a) 605.3 m	b) 600m orizontally with a velocity of 5	c) 80 m	d) 230m
will the ball take to	The same of the sa	mi/s from the top of a bi	maing 19.0 m ingli. How long
a) $\sqrt{2} s$	b) 2 <i>s</i>	c) $\sqrt{3}$ s	d) 3 s
* '	d of a car on a road-turn of rad	* '	•
and the road is 0.4,		ius 50 m, ii tile cocilicici	it of friction between the tyres
a) 10.84 <i>m/sec</i>	b) 9.84 <i>m/sec</i>	c) 8.84 <i>m/sec</i>	d) 6.84 <i>m/sec</i>
,		,	es maximum height H_1 . When it
	locity u at an angle $\left(\frac{\pi}{2} - \theta\right)$ wit		
	,- ,		ies maximum neighe 112. The
	e horizontal range R of the pro		μ^2
a) $R = 4\sqrt{H_1 H_2}$	b) $R = 4(H_1 - H_2)$	c) $R = 4(H_1 + H_2)$	d) $R = \frac{H_1}{H_2^2}$
579. A body of mass m is	thrown upwards at an angle θ	with the horizontal with	\overline{v} velocity v . While rising up the
velocity of the mass	after t seconds will be		
a) $\sqrt{(v\cos\theta)^2+(v^2)^2}$	$\frac{1}{\sin \theta)^2}$	b) $\sqrt{(v\cos\theta - v\sin\theta)}$	$\frac{(1)^2 - gt}{(1)^2 - gt}$
c) $\sqrt{v^2 + g^2t^2 - (2^2 + g^2)^2}$	$v \sin \theta gt$	d) $\sqrt{v^2 + g^2 t^2 - (2v^2)^2}$	${\cos\theta}$
, ,	nked curve of radius 92 m wit	, ,	70
	of static friction between the ty	•	
a) 0.75	b) 0.60	c) 0.45	d) 0.30
581. The coefficient of fri	ction between the tyres and th	e road is 0.25. The maxi	mum speed with which a car
	a curve a radius 40 m without		-
a) $40 \ ms^{-1}$	b) $20 \ ms^{-1}$	c) $15 ms^{-1}$	d) $10 \ ms^{-1}$
GPLUS EDUCATION	WEB: WWW.GPLUSEDUCAT	TON.ORG PHO	NE NO: 8583042324 Page 48

- 582. A body executing uniform circular motion has at any instant its velocity vector and acceleration vector
 - a) along the same direction

b) in opposite direction

c) normal to each other

- d) not related to each other
- 583. A man throws a ball vertically upwards and it rises through 20 m and returns to his hands. What was the initial velocity (u) of the ball and for how much time (T) it remained in the air? (g = 10 ms⁻²)

- a) $u = 10 \text{ ms}^{-1}$; T = 2 s b) $u = 10 \text{ ms}^{-1}$; T = 4 s c) $u = 20 \text{ ms}^{-1}$; T = 2 s d) $u = 20 \text{ ms}^{-1}$; T = 4 s
- 584. An object is moving in a circle of radius 100 m with a constant speed of 31.4 m/s. What is its average speed for one complete revolution
 - a) Zero

- b) $31.4 \, m/s$
- c) $3.14 \, m/s$
- d) $\sqrt{2} \times 31.4 \ m/s$
- 585. A force of $(7\hat{i} + 6\hat{k})$ N makes a body move on a rough plane with a velocity of $(3\hat{i} + 4\hat{k})$ ms⁻¹. Calculate the power in watt
 - a) 24

b) 34

c) 21

- d) 45
- 586. A 2 kg stone at the end of a string 1 m long is whirled in a vertical circle at a constant speed. The speed of the stone is $4 \, m/sec$. The tension in the string will be 52 N, when the stone is
 - a) At the top of the circle

b) At the bottom of the circle

c) Halfway down

- d) None of the above
- 587. If $\vec{A} \cdot \vec{B} = 0$ and $\vec{A} \times \vec{B} = 1$, then \vec{A} and \vec{B} are
 - a) Perpendicular unit vectors

b) Parallel unit vectors

c) Parallel

- d) Perpendicular.
- 588. A boy throws a cricket ball from the boundary to the wicket-keeper. If the frictional force due to air cannot be ignored, the forces acting on the ball at the position *X* are respected by

589. In a two dimensional motion of a particle, the particle moves from point A, position vector $\vec{\mathbf{r}}_1$. If the magnitudes of these vectors are respectively, r_1 =3 and r_2 = 4 and the angles they make with the x-axis are $\theta_1 = 75^{\circ}$ and 15°, respectively, then find the magnitude of the displacement vector

a) 15

b) $\sqrt{13}$

c) 17

- d) $\sqrt{15}$
- 590. A body moves along a circular path of radius 10 m and the coefficient of friction is 0.5. What should be its angular speed in rad s⁻¹, if it is not to slip from the surface? ($g = 9.8 \text{ ms}^{-2}$)

b) 10

c) 0.1

- d) 0.7
- 591. The trajectory of a particle moving in vast maidan is as shown in the figure. The coordinates of a position *A* are (0,2). The coordinates of another point at which the instantaneous velocity is same as the average velocity between the points are

	a) (1,4)	b) (5,3)	c) (3,4)	d) (4, 1)	
592.	A particle is moving with	velocity $\vec{v} = K(y\hat{\imath} + x\hat{\jmath})$, wh	nere K is a constant. The ${\sf ge}$	eneral equation for its path	
	is				
		b) $y = x^2 + constant$			
593.				nstant speed. What should	
		that the water from the bu	cket does not spill, when th	ne bucket is at the highest	
	position (Take $g = 10m/$				
5 04	a) 4 <i>m/sec</i>	b) 6.25 <i>m/sec</i>		d) None of the above	
594.	A particle moves in a circle the particle is	e of radius 5 <i>cm</i> with const	cant speed and time period	$0.2~\pi s$. The acceleration of	
	a) $5 m/s^2$	b) $15 m/s^2$	c) $25 m/s^2$	d) $36 m/s^2$	
595.	A stone tied to a string of	length L is whirled in a ver	tical circle with the other e	nd of the string at the	
	centre. At a certain instan	t of time, the stone is at its	lowest position and has sp	eed u . The magnitude of the	
	change in its velocity as it	reaches a position where t	_		
	a) $\sqrt{u^2 - 2gL}$	b) $\sqrt{2gL}$,	d) $\sqrt{2(u^2-gL)}$	
596.	If time of flight of a projec	tile is 10 seconds. Range is	500 meters. The maximur	n height attained by it will	
	be				
	a) 125 <i>m</i>	b) 50 m	c) 100 m	d) 150 m	
597.		laces a particle through \vec{S} =			
	a) $0.25 \mathrm{J}\mathrm{s}^{-1}$	b) 25J s^{-1}	c) $225 \mathrm{J}\mathrm{s}^{-1}$	d) $450 \mathrm{J s^{-1}}$	
598.	A vector \overrightarrow{A} points vertical	ly upwards and \overrightarrow{B} points u	pwards North. The vector j	product $\overrightarrow{A} \times \overrightarrow{B}$ is	
	a) Zero		b) along East		
	c) along West	M.	d) vertically downwards		
599.	A body is projected horizon	ontally with speed 20 ms ⁻¹	. The approximate displace	ement of the body after 5 s	
	is	12.400	2.440	N 000	
.	a) 80 m	b) 120 m	c) 160 m	d) 320 m	
600.				onentes of velocity remains	
	constant and has a value $\frac{1}{3}$	ms^{-1} . The acceleration of t	the projectile is		
	a) $\frac{1}{2}\hat{j} \text{ ms}^{-2}$	b) $3\hat{j} \text{ ms}^{-2}$	c) $\frac{2}{-\hat{i}}$ ms ⁻²	d) 2 ĵ ms ⁻²	
	<u> </u>	n launched at an angle 15°	5		
001.		at an angle of 45° to the ho		dii. Wilat is the range of	
	a) 3.0 km	b) 1.5 km	c) 6.0 km	d) 0.75 km	
602.		*		2k so that the resultant is a	
	unit vector along Z -axis.	ca to the sam of two vectors	321 j i Skulla 31 2j	2K 30 that the resultant is a	
	a) $5\hat{i} + \hat{k}$	b) $-5\hat{i} + 3\hat{j}$	c) 3ĵ + 5k̂	d) $-3\hat{i} + 2\hat{k}$	
		one end of string 2 m long.	- ·	• •	
	maximum of 200 revolutions/min. The other end of the string is fixed at the centre of the circle of				
		tension that the string can	_		
	a) 8.76 N	b) 8.94 N	c) 89.42 N	d) 87.64 N	
604.	A bucket tied at the end o	f 11.6 m long string is whir	led in a vertical circle with	a constant speed. The	
	minimum speed at which	water from the bucket doe	s not spill when it is a the h	ighest position is	
	a) 4 ms^{-1}	b) 6.25 ms ⁻¹	c) 2 ms^{-1}	d) 16 ms ⁻¹	
605.	A block of mass m at the e	end of a string is whirled ro	und in a vertical circle of ra	adius R. The critical speed	
	of the block at the top of i	ts swing below which the s	tring would slacken before	the block reaches the top is	
	a) <i>Rg</i>	b) $(Rg)^2$	c) <i>R/g</i>	d) \sqrt{Rg}	
606.	A body of mass m is proje	cted with a speed $oldsymbol{u}$ making	g an angle $lpha$ with the horizon	ontal. The change in	
	momentum suffered by th	ne body along he y-axis bety	ween the starting point and	l the highest point of its	

a) <i>mu</i> cos α	b) $mu \sin \alpha$	c) 3 <i>mu</i> sin α	d) <i>mu</i>		
607. A bob of mass $10 kg$ is a	ittached to wire $0.3 m$ long	. Its breaking stress is 4.8 $ imes$	$10^7 N/m^2$. The area of cross		
section of the wire is 10^{-1}	section of the wire is $10^{-6}m^2$. The maximum angular velocity with which it can be rotated in a horizontal				
circle					
a) 8 <i>rad/sec</i>	b) 4 rad/sec	c) 2 rad/sec	d) 1 rad/sec		
608. A ball is projected upwar	rds from the top of tower v	vith a velocity $50 ms^{-1}$ mak	ing an angle 30° with the		
horizontal. The height of	tower is $70 m$. After how i	nany seconds from the insta	ant of throwing will the ball		
reach the ground		•	_		
a) 2 <i>s</i>	b) 5 <i>s</i>	c) 7 s	d) 9 s		
609. A railway carriage has it	s centre of gravity at a heig	ht of 1 m above the rails, w	nich are 1.5 m apart. The		
maximum safe speed at	which it could travel round	an unbanked curve of radio	us 100 m is		
a) 12 ms ⁻¹	b) 18 ms ⁻¹	c) 22 ms ⁻¹	d) 27 ms^{-1}		
610. Four concurrent coplana	r forces in newton are acti	ng at a point and keep it in o	equilibrium figure. Then		
values of F and θ are					
$\sqrt{3}$ N					
					
F					
θ 1.11					
1 N					
V					
2 N					
a) 1 N, 60°	b) 2 N, 60°	c) √2 N,90°	d) 2 N, 90°		
611 Two hading are projects	1.6	1 00 / 6 .1			
of I. I wo boules are projecte	d from ground with equal s	speeds 20 m/sec from the s	ame position in same		
	The state of the s	speeds $20 m/sec$ from the single above the horizontal. I			
vertical plane to have eq	ual range but at different a	ngle above the horizontal. I			
vertical plane to have eq sum of their maximum h	ual range but at different a eights is (assume $g = 10m$	ngle above the horizontal. I u/s^2)	f one of the angle is 30° the		
vertical plane to have eq sum of their maximum h	ual range but at different a eights is (assume $g = 10m$	ngle above the horizontal. I u/s^2)	f one of the angle is 30° the		
vertical plane to have eq sum of their maximum h a) $400 m$ 612. The length of second's have	ual range but at different a eights is (assume $g=10m$ b) $20 m$ and in a watch is $1 cm$. The	ngle above the horizontal. In a/s^2) c) 30 m change in velocity of its tip	f one of the angle is 30° the d) 40 m in 15 seconds is		
vertical plane to have eq sum of their maximum h	ual range but at different a eights is (assume $g = 10m$	ngle above the horizontal. In a/s^2) c) 30 m change in velocity of its tip	f one of the angle is 30° the		
vertical plane to have eq sum of their maximum h a) 400 m 612. The length of second's has a) Zero	ual range but at different a eights is (assume $g=10m$ b) $20~m$ and in a watch is $1~cm$. The b) $\frac{\pi}{30\sqrt{2}}~cm/sec$	ngle above the horizontal. In a/s^2) c) 30 m change in velocity of its tip c) $\frac{\pi}{30}$ cm/sec	f one of the angle is 30° the d) 40 m in 15 seconds is d) $\frac{\pi\sqrt{2}}{30}$ cm/sec		
vertical plane to have eq sum of their maximum h a) 400 m 612. The length of second's ha a) Zero 613. A particle A is projected	ual range but at different a eights is (assume $g=10m$ b) $20 m$ and in a watch is $1 cm$. The b) $\frac{\pi}{30\sqrt{2}} \ cm/sec$ from the ground with an in	ngle above the horizontal. In a/s^2 , c) $30 m$, change in velocity of its tip c) $\frac{\pi}{30} \ cm/sec$ whitial velocity of $10 \ ms^{-1}$ at	f one of the angle is 30° the d) $40 m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30} \ cm/sec$ an angle 60° with		
vertical plane to have eq sum of their maximum h a) 400 m 612. The length of second's has a) Zero 613. A particle A is projected horizontal. From what he	ual range but at different a eights is (assume $g=10m$ b) $20m$ and in a watch is $1cm$. The b) $\frac{\pi}{30\sqrt{2}}$ cm/sec from the ground with an ineight should an another pa	ngle above the horizontal. In a/s^2) c) $30 m$ change in velocity of its tip c) $\frac{\pi}{30} cm/sec$ sitial velocity of $10 ms^{-1}$ at reticle B be projected horizon	f one of the angle is 30° the d) 40 m in 15 seconds is d) $\frac{\pi\sqrt{2}}{30}$ cm/sec an angle 60° with intally with velocity 5 ms ⁻¹		
vertical plane to have eq sum of their maximum h a) 400 m 612. The length of second's ha a) Zero 613. A particle A is projected horizontal. From what has that both the particles	ual range but at different a eights is (assume $g=10m$ b) $20m$ and in a watch is $1cm$. The b) $\frac{\pi}{30\sqrt{2}}$ cm/sec from the ground with an ineight should an another pass collide in ground at point	ngle above the horizontal. In a/s^2) c) $30 m$ change in velocity of its tip c) $\frac{\pi}{30} cm/sec$ shitial velocity of $10 ms^{-1}$ at the rticle B be projected horizo C if both are projected simulations.	f one of the angle is 30° the d) $40 m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30} cm/sec$ an angle 60° with intally with velocity 5 ms ⁻¹ altaneously $g = 10 ms^{-2}$		
vertical plane to have eq sum of their maximum ha) 400 m 612. The length of second's haa) Zero 613. A particle A is projected horizontal. From what has that both the particles a) 10 m	ual range but at different a eights is (assume $g=10m$ b) $20 m$ and in a watch is $1 cm$. The b) $\frac{\pi}{30\sqrt{2}} cm/sec$ from the ground with an ir eight should an another pass collide in ground at point b) $15 m$	ngle above the horizontal. In a/s^2 c) $30 m$ change in velocity of its tip c) $\frac{\pi}{30} \ cm/sec$ sitial velocity of $10 \ ms^{-1}$ at reticle B be projected horizo C if both are projected simular c) $20 \ m$	f one of the angle is 30° the d) $40 m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30} cm/sec$ an angle 60° with intally with velocity 5 ms ⁻¹ altaneously $g = 10 ms^{-2}$ d) 30 m		
vertical plane to have eq sum of their maximum h a) 400 m 612. The length of second's has a) Zero 613. A particle A is projected horizontal. From what has that both the particles a) 10 m 614. The X and Y components	ual range but at different a eights is (assume $g=10m$ b) $20m$ and in a watch is $1cm$. The b) $\frac{\pi}{30\sqrt{2}}$ cm/sec from the ground with an ineight should an another past collide in ground at point b) $15m$ s of vector \vec{A} have numerical	ngle above the horizontal. In a/s^2) c) $30 m$ change in velocity of its tip c) $\frac{\pi}{30} cm/sec$ hitial velocity of $10 ms^{-1}$ at reticle B be projected horizo C if both are projected simular c) $20 m$ had values 6 and 6 respective.	f one of the angle is 30° the d) $40 m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30} cm/sec$ an angle 60° with intally with velocity 5 ms ⁻¹ altaneously $g = 10 ms^{-2}$ d) 30 m		
vertical plane to have eq sum of their maximum h a) 400 m 612. The length of second's has a) Zero 613. A particle A is projected horizontal. From what has that both the particles a) 10 m 614. The X and Y components numerical values 10 and	ual range but at different a eights is (assume $g=10m$ b) $20m$ and in a watch is $1cm$. The b) $\frac{\pi}{30\sqrt{2}}cm/sec$ from the ground with an ir eight should an another pass collide in ground at point b) $15m$ s of vector \vec{A} have numerical v. 9. What is the numerical v.	ngle above the horizontal. In a/s^2) c) $30 m$ change in velocity of its tip c) $\frac{\pi}{30} cm/sec$ hitial velocity of 10 ms^{-1} at reticle B be projected horizo C if both are projected simular c) 20 m all values 6 and 6 respective alue of \overrightarrow{B} ?	f one of the angle is 30° the d) $40 m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30} cm/sec$ an angle 60° with ntally with velocity 5 ms^{-1} altaneously $g = 10 \text{ms}^{-2}$ d) 30 m by and that of $(\vec{A} + \vec{B})$ have		
vertical plane to have eq sum of their maximum h a) 400 m 612. The length of second's has a) Zero 613. A particle A is projected horizontal. From what has that both the particles a) 10 m 614. The X and Y components numerical values 10 and a) 2	ual range but at different a eights is (assume $g=10m$ b) $20m$ and in a watch is $1cm$. The b) $\frac{\pi}{30\sqrt{2}}$ cm/sec from the ground with an ineight should an another past collide in ground at point b) $15m$ s of vector \overrightarrow{A} have numerical vector \overrightarrow{A} have numerical vector \overrightarrow{A}	ngle above the horizontal. In a/s^2) c) $30 m$ change in velocity of its tip c) $\frac{\pi}{30} cm/sec$ hitial velocity of $10 ms^{-1}$ at reticle B be projected horizo C if both are projected simular c) $20 m$ had values 6 and 6 respective alue of \vec{B} ? c) 4	f one of the angle is 30° the d) $40 m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30} cm/sec$ an angle 60° with ntally with velocity 5 ms ⁻¹ altaneously $g = 10 ms^{-2}$ d) 30 m ly and that of $(\vec{A} + \vec{B})$ have d) 5		
vertical plane to have eq sum of their maximum h a) 400 m 612. The length of second's ha a) Zero 613. A particle A is projected horizontal. From what he so that both the particles a) 10 m 614. The X and Y components numerical values 10 and a) 2 615. A particle is projected up	ual range but at different a eights is (assume $g=10m$ b) $20m$ and in a watch is $1cm$. The b) $\frac{\pi}{30\sqrt{2}}$ cm/sec from the ground with an ir eight should an another pass collide in ground at point b) $15m$ s of vector \overrightarrow{A} have numerical vector \overrightarrow{A} have numerical vector \overrightarrow{A} from a point at an angle θ of from a point at an angle θ	ngle above the horizontal. In a/s^2 c) a/s^2 c) a/s^2 c) a/s^2 change in velocity of its tip c) a/s cm/sec sitial velocity of a/s of a/s at rticle a/s be projected horizo a/s if both are projected simular c) a/s c mal values 6 and 6 respective alue of a/s ? c) a/s with the horizontal direction	f one of the angle is 30° the d) $40 m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30} cm/sec$ an angle 60° with intally with velocity 5 ms^{-1} altaneously $g=10\text{ms}^{-2}$ d) 30 m by and that of $(\vec{A}+\vec{B})$ have d) 5 m . At any time t' . If p is the		
vertical plane to have eq sum of their maximum h a) 400 m 612. The length of second's has a) Zero 613. A particle A is projected horizontal. From what has that both the particles a) 10 m 614. The X and Y components numerical values 10 and a) 2 615. A particle is projected up linear momentum, y is the	ual range but at different a eights is (assume $g=10m$ b) $20m$ and in a watch is $1cm$. The b) $\frac{\pi}{30\sqrt{2}}$ cm/sec from the ground with an ir eight should an another pass collide in ground at point b) $15m$ s of vector \vec{A} have numerical v b) 3 of from a point at an angle θ are vertical displacement, x	ngle above the horizontal. In a/s^2) c) $30 m$ change in velocity of its tip c) $\frac{\pi}{30} cm/sec$ hitial velocity of 10 ms^{-1} at rticle B be projected horizo C if both are projected simular c) 20 m had values 6 and 6 respective alue of \overrightarrow{B} ? c) 4 with the horizontal directions horizontal displacement,	fone of the angle is 30° the d) $40~m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30}~cm/sec$ an angle 60° with ntally with velocity $5~ms^{-1}$ altaneously $g=10ms^{-2}$ d) $30~m$ ly and that of $(\vec{A}+\vec{B})$ have d) $5~m$. At any time t' . If p is the the graph among the		
vertical plane to have eq sum of their maximum h a) 400 m 612. The length of second's has a) Zero 613. A particle A is projected horizontal. From what has that both the particles a) 10 m 614. The X and Y components numerical values 10 and a) 2 615. A particle is projected up linear momentum, y is the following which does no	ual range but at different a eights is (assume $g=10m$ b) $20m$ and in a watch is $1cm$. The b) $\frac{\pi}{30\sqrt{2}}$ cm/sec from the ground with an ineight should an another pass collide in ground at point b) $15m$ s of vector \overrightarrow{A} have numerical v b) 3 o from a point at an angle 6 ne vertical displacement, x t represent the variation of	ngle above the horizontal. In a/s^2) c) $30 m$ change in velocity of its tip c) $\frac{\pi}{30} cm/sec$ hitial velocity of 10 ms^{-1} at reticle B be projected horizo C if both are projected simple C 0 multiple C 1 and C 2 and C 3 with the horizontal direction is horizontal displacement, if kinetic energy C 3 is C 4.	fone of the angle is 30° the d) $40 m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30} cm/sec$ an angle 60° with ntally with velocity 5 ms^{-1} altaneously $g=10\text{ms}^{-2}$ d) 30 m ly and that of $(\vec{A}+\vec{B})$ have d) 5 on. At any time t' . If p is the the graph among the article		
vertical plane to have eq sum of their maximum h a) 400 <i>m</i> 612. The length of second's has a) Zero 613. A particle <i>A</i> is projected horizontal. From what has that both the particles a) 10 m 614. The <i>X</i> and <i>Y</i> components numerical values 10 and a) 2 615. A particle is projected up linear momentum, <i>y</i> is the following which does no	ual range but at different a eights is (assume $g = 10m$ b) $20m$ and in a watch is $1cm$. The b) $\frac{\pi}{30\sqrt{2}}cm/sec$ from the ground with an ir eight should an another pass collide in ground at point b) $15m$ s of vector \overrightarrow{A} have numerical y b) y of from a point at an angle y of the vertical displacement, y the represent the variation of y and y is the variation of y .	ngle above the horizontal. In a/s^2) c) $30 m$ change in velocity of its tip c) $\frac{\pi}{30} cm/sec$ hitial velocity of 10 ms^{-1} at riccle B be projected horizo C if both are projected simular c) 20 m had values 6 and 6 respective alue of \overrightarrow{B} ? c) 4 with the horizontal direction is horizontal displacement, if kinetic energy KE of the parameter AE	fone of the angle is 30° the d) $40 m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30} cm/sec$ an angle 60° with intally with velocity 5 ms^{-1} altaneously $g = 10 \text{ms}^{-2}$ d) 30 m by and that of $(\vec{A} + \vec{B})$ have d) 5 cm . At any time t' . If p is the the graph among the article $KE \uparrow$		
vertical plane to have eq sum of their maximum h a) 400 m 612. The length of second's has a) Zero 613. A particle A is projected horizontal. From what has that both the particles a) 10 m 614. The X and Y components numerical values 10 and a) 2 615. A particle is projected up linear momentum, y is the following which does no	ual range but at different a eights is (assume $g = 10m$ b) $20m$ and in a watch is $1cm$. The b) $\frac{\pi}{30\sqrt{2}}$ cm/sec from the ground with an ineight should an another passocollide in ground at point b) $15m$ s of vector \overrightarrow{A} have numerical v b) 3 of from a point at an angle 6 ne vertical displacement, x t represent the variation of	ngle above the horizontal. In a/s^2) c) $30 m$ change in velocity of its tip c) $\frac{\pi}{30} cm/sec$ hitial velocity of 10 ms^{-1} at reticle B be projected horizo C if both are projected simple C 0 multiple C 1 and C 2 and C 3 with the horizontal direction is horizontal displacement, if kinetic energy C 3 is C 4.	fone of the angle is 30° the d) $40 m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30} cm/sec$ an angle 60° with ntally with velocity 5 ms^{-1} altaneously $g=10\text{ms}^{-2}$ d) 30 m ly and that of $(\vec{A}+\vec{B})$ have d) 5 on. At any time t' . If p is the the graph among the article		
vertical plane to have eq sum of their maximum h a) 400 <i>m</i> 612. The length of second's has a) Zero 613. A particle <i>A</i> is projected horizontal. From what has that both the particles a) 10 m 614. The <i>X</i> and <i>Y</i> components numerical values 10 and a) 2 615. A particle is projected up linear momentum, <i>y</i> is the following which does no	ual range but at different a eights is (assume $g = 10m$ b) $20m$ and in a watch is $1cm$. The b) $\frac{\pi}{30\sqrt{2}}cm/sec$ from the ground with an ir eight should an another pass collide in ground at point b) $15m$ s of vector \overrightarrow{A} have numerical y b) y of from a point at an angle y of the vertical displacement, y the represent the variation of y and y is the variation of y .	ngle above the horizontal. In a/s^2) c) $30 m$ change in velocity of its tip c) $\frac{\pi}{30} cm/sec$ hitial velocity of 10 ms^{-1} at riccle B be projected horizo C if both are projected simular c) 20 m had values 6 and 6 respective alue of \overrightarrow{B} ? c) 4 with the horizontal direction is horizontal displacement, if kinetic energy KE of the parameter AE	fone of the angle is 30° the d) $40 m$ in 15 seconds is d) $\frac{\pi\sqrt{2}}{30} cm/sec$ an angle 60° with intally with velocity 5 ms^{-1} altaneously $g = 10 \text{ms}^{-2}$ d) 30 m by and that of $(\vec{A} + \vec{B})$ have d) 5 cm . At any time t' . If p is the the graph among the article $KE \uparrow$		

at A is

path will be

a) \sqrt{g}

b) $2\sqrt{g}$

c) $3\sqrt{g}$

d) $4\sqrt{g}$

617. What is the smallest radius of a circle at which a cyclist can travel if its speed is 36 kmh⁻¹, angle of inclination 45° and $g = 10 \text{ms}^{-2}$?

a) 20 m

c) 30 m

d) 40 m

618. Three forces of magnitudes 6N, 6N and $\sqrt{72}$ N at a corner of a cube along three sides as shown in figure. Resultant of these forces is

a) 12 N along *OB*

b) 18 N along *OA*

c) 18 N along *OC*

d) 12 N along *OE*

619. A mass m is attached to the end of a rod of length l. The mass goes along a vertical circular path with the other end hinged at its centre. What should be the minimum velocity of the mass at the bottom of the circle so that the mass completes the circle?

a) $\sqrt{5gl}$ b) $\sqrt{2gl}$ c) $\sqrt{3gl}$ d) $\sqrt{4gl}$ 620. The equation of motion of a projectile is $y = 12x - \frac{3}{4}x^2$. The horizontal component of velocity is 3ms^{-1} . What is the range of the projectile?

b) 16 m

c) 12 m

621. A cannon of a level plane is aimed at an angle θ above the horizontal and a shell is fired muzzle velocity v_0 towards a cliff *D* distance away. The height at which the canon strikes the cliff is given by

a) $D\sin\theta - \frac{1}{2}\frac{gD^2}{v_0^2\sin^2\theta}$

b) $D \cos \theta - \frac{1}{2} \frac{gD^2}{v_0^2 \sin^2 \theta}$ d) $D \tan \theta - \frac{1}{2} \frac{gD^2}{v_0^2 \sin^2 \theta}$

c) $D \tan \theta - \frac{1}{2} \frac{gD^2}{v_0^2 \cos^2 \theta}$

622. At the top of the trajectory of a projectile, the direction of its velocity and acceleration are

a) perpendicular to each other

b) parallel to each other

c) inclined to each other at angle of 45°

- d) antiparallel to each other
- 623. An aeroplane is flying horizontally with a velocity of 600 km/h and at a height of 1960 m. When it is vertically above a point A on the ground a bomb is released from it. The bomb strikes the ground at point B The distance AB is

a) 1200 m

- b) 0.33 km
- c) 333.3 km
- d) 3.33 km
- 624. If the resultant of two forces (A + B) and (A B) is $\sqrt{A^2 + B^2}$, then the angle between these forces is

a) $\cos^{-1} \left[-\frac{(A^2 - B^2)}{A^2 + B^2} \right]$

b) $\cos^{-1} \left[-\frac{(A^2 + B^2)}{(A^2 - B^2)} \right]$

c) $\cos^{-1} \left[-\frac{A^2 + B^2}{2(A^2 - B^2)} \right]$

- d) $\cos^{-1} \left[-\frac{2(A^2 + B^2)}{A^2 B^2} \right]$
- 625. A body of mass 1 kg tied to one end of string is revolved in a horizontal circle of radius 0.1 m with a speed of 3 revolution/sec, assuming the effect of gravity is negligible, then linear velocity, acceleration and tension in the string will be

	a) $1.88 m/s$, $35.5 m/s^2$, $35.5 m/s^2$	5,5 <i>N</i>	b) $2.88 m/s$, $45.5 m/s^2$, $45.5 m/s^2$	5 . 5 <i>N</i>
	c) $3.88 m/s$, $55.5 m/s^2$, $55.5 m/s^2$		d) None of these	
626.		ally upwards at time $t = 0$,	at instants t_1 and t_2
		The maximum height attain	_	
	a) 8 	b) $\frac{g(t_1+t_2)^2}{4}$	c) $\frac{8}{8}$	$\frac{3}{4}$
627.	A particle describes a hori	izontal circle in a conical fu	nnel whose inner surface i	s smooth with speed of
	0.5 ms^{-1} . What is the height	ht of the plane of circle fro	m vertex of the funnel?	
	a) 0.25 cm	b) 2 cm	c) 4 cm	d) 2.5 cm
628	A $100~kg$ car is moving wi	th a maximum velocity of 9	θ m/s across a circular trac	ck of radius 30 <i>m</i> . The
	maximum force of friction	between the road and the	car is	
	a) 1000 <i>N</i>	b) 706 <i>N</i>	c) 270 N	d) 200 <i>N</i>
629.				ratio 1:2, then in order to
	have constant centripetal	force, their velocity, should		
	a) 1:4	b) 4:1	c) $\sqrt{2}$: 1	d) $1:\sqrt{2}$
630.		orizontally with a speed of 5		sed from it, strikes the
	ground in 10 s. Angel at w	hich it strikes the ground v	vill be $(g = 10 \text{ms}^{-2})$	
	a) $\tan^{-1}\left(\frac{1}{5}\right)$	b) $\tan \left(\frac{1}{-}\right)$	c) tan ⁻¹ (1)	d) $tan^{-1}(5)$
621	(8)	(5)		
631.	A particle moves along a c	circle of radius $\left[\frac{20}{\pi}\right]$ m with 0	constant tangential acceler	ation. If the velocity of the
	particle is 80 m/s at the en	nd of the second revolution	after motion has begun, th	ne tangential acceleration is
	a) 40 ms^{-2}	b) 640 πms ⁻²	c) 160mms^{-2}	d) 40 mms^{-2}
632.	A bullet is to be fired with	a speed of $2000 ms^{-1}$ to h	it a target $200 m$ away on a	a level ground. If $g =$
	$10 ms^{-2}$, the gun should by	oe aimed		
	a) Directly at the target		b) 5 <i>cm</i> below the target	
	c) 5 <i>cm</i> above the target		d) 2 <i>cm</i> above the target	
633.				n angular velocity. Let T be
	-	f the length of the string is	halved and its angular velo	city is doubled, tension in
	the string will be		2	2
	a) π rad s ⁻²	,	c) $4 \pi \text{ rad s}^{-2}$	d) $8 \pi \text{ rad s}^{-2}$
634.		ith a velocity u making an a	angle $ heta$ with the horizontal	plane, the maximum
	distance covered by it in h		2	2 00
	a) $\frac{u^2 \sin \theta}{a}$	b) $\frac{u^2 \sin 2\theta}{2a}$	c) $\frac{u^2 \sin 2\theta}{a}$	d) $\frac{u^2 \cos 2\theta}{a}$
	$\boldsymbol{\vartheta}$	- 9	g	g
635.		ant speed in a circular path		1) 1 1
606	a) angular momentum	b) constant acceleration		d) no work done
636.		of the string and whirled in	i a vertical circle, the phys:	ical quantity which remains
	constant is	l-) C J	-) IV:+:	J) T-4-1
627	a) Momentum	b) Speed	c) Kinetic energy	d) Total energy
037.	the are is	ver a roadways bridge in th	e formi of a vertical arc is 9	o iiis . The diameter of
	a) 19.6 m	b) 9.8 m	c) 39.2 m	d) 4.9 m
639	•	•	•	ves in a horizontal circle of
030.	_	od T . Now the toy cart is sp	_	
	radius $3a$ with a period T'		seeded up until it moves m	a norizoniai circie ui
	_			
	a) $T' = \sqrt{\frac{3}{2}} T$	b) $T' = \left(\frac{\sqrt{3}}{2}\right)T$	c) $T' = \left(\frac{3}{2}\right)T$	d) $T' = T$
	«,, — ,— ,		\sim) \sim \sim \sim \sim \sim \sim \sim	

639. A coastguard ship locates a pirate ship at a distance 560 *m*. It fires a cannon ball with an initial speed

02	82 m/s . At what angle from horizontal the ball must be fired so that it hits the pirate ship				
) 54°	b) 125°	c) 27°	d) 18°	
	640. A body of mass 5 kg is moving in a circle of radius 1 m with an angular velocity of 2 rad s ^{-1} . The centripetal force, is				
) 10 N	b) 20 N	c) 30 N	d) 40 N	
-		ctron is moving round the I	•	-	
	adius 0.528 Å. The accele		ideleds with velocity 2.10	~ 10 IIIS III all of bit of	
			a) 0 × 10=22 ··· a=2	d) $9 \times 10^{12} \text{ ms}^{-2}$	
		b) $9 \times 10^{22} \text{ ms}^{-2}$		a) 9 × 10 ms -	
	•	a body in uniform circula		d) Name of the other	
-	-	b) Centrifugal force	c) Resistance	d) None of the above	
		en \vec{A} and \vec{B} . Then $ \hat{A} \times \hat{B} $ is	=		
-) Sin θ	b) Cos θ	c) Tan θ	d) Cot θ	
		ojected with a velocity \emph{v} ma			
	nagnitude of the angular naximum height, is	momentum of the particle	about the point of projection	on when the particle is at its	
	\	mv^3	mv^3	d) Zero	
a)	$m\sqrt{2gh^3}$	b) $\frac{mv^3}{\sqrt{2}a}$	c) $\frac{1}{4\sqrt{2}a}$		
645. If	$\overrightarrow{\Lambda}$ and $\overrightarrow{\Lambda}$ are two non-	-collingar unit vectors and	if $ \overrightarrow{\Delta} \perp \overrightarrow{\Delta} \perp = \sqrt{3}$ than the	value of $(\vec{A}_1 - \vec{A}_2)$ · $(2\vec{A}_1 +$	
→	A_1 and A_2 are two non-	-commear unit vectors and	$ A_1 + A_2 = \sqrt{3}$, then the	value of $(A_1 - A_2)$ $(2A_1 +$	
	(2) is	12.4.0		13.0	
-) 1	b) 1/2	c) 3/2	d) 2	
		locity u at an angle α with i	horizontal plane. Its speed	when it makes an angle β	
W	rith the horizontal is	a. Sala 3	P	11 COS (8	
a)) u cos α	b) $\frac{a}{\cos \theta}$	c) u cos α cos β	d) $\frac{u \cos \alpha}{\cos \beta}$	
647 E	in d the american are velocit			•	
647. Find the maximum velocity for skidding for a car moved on a circular track of radius 100 <i>m</i> . The coefficient of friction between the road and tyre is 0.2					
	a afficial and a fifth and and language		2		
				J) 14 /a	
				d) 14 m/s	
		ween the road and tyre is 0. b) $140 m/s$ so a light inextensible string		d) $14 m/s$	
a) 648. _A) $0.14m/s$ stone of mass $1~{ m kg}$ tied t		c) 1.4 km/s g of length $L = \frac{10}{3}$ is whirling		
a) 648. _A ra) $0.14 m/s$ stone of mass 1 kg tied tadius L in vertical plane.	b) 140 <i>m/s</i> to a light inextensible string	c) $1.4 km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum t	tension in the string is 4.	
a) 648. _A ra W) $0.14 m/s$ stone of mass 1 kg tied tadius L in vertical plane.	b) 140 m/s to a light inextensible string If the ratio of the maximune at the highest point of the	c) $1.4 km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum t	tension in the string is 4.	
a) 648. A ra W a)) $0.14 m/s$ stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone $10 \mathrm{ms}^{-1}$	b) 140 <i>m/s</i> to a light inextensible string If the ratio of the maximun	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ c) $10\sqrt{3} \text{ ms}^{-1}$	tension in the string is 4. -2) d) 20 ms ⁻¹	
a) 648. A ra W a) 649. A) $0.14 m/s$ stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone 10 ms ⁻¹ man is supported on a fi	b) $140 \ m/s$ so a light inextensible string If the ratio of the maximum at the highest point of the b) $5\sqrt{2} \ ms^{-1}$ rictionless horizontal surfa	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ c) $10\sqrt{3} \text{ ms}^{-1}$ ce. It is attached to a string	tension in the string is 4. -2) d) 20 ms ⁻¹	
a) 648. A ra W a) 649. A) $0.14 m/s$ stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone 10 ms ⁻¹ man is supported on a frentre at an angular veloce	b) $140 m/s$ to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2} \mathrm{ms}^{-1}$ rictionless horizontal surfacity ω . The tension in the string is a light string of the string of	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ c) $10\sqrt{3} \text{ ms}^{-1}$ ce. It is attached to a string	tension in the string is 4.	
a) 648. A ra W a) 649. A ce	of $0.14 m/s$ stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone of $10 \mathrm{ms}^{-1}$ man is supported on a frentre at an angular veloc oubled, the tension is str	b) 140 m/s to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2}$ ms ⁻¹ rictionless horizontal surfaction in the string is now	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ c) $10\sqrt{3} \text{ ms}^{-1}$ ce. It is attached to a string ring if F . If the length of string	tension in the string is 4. case of the string is 4. d) 20 ms ⁻¹ g and rotates about a fixed ring and angular velocity are	
a) 648. A ra W a) 649. A ce do a)	of $0.14 m/s$ stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone of $10 \mathrm{ms}^{-1}$ man is supported on a fronte at an angular velocation oubled, the tension is street of T	b) $140 \ m/s$ to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2} \ ms^{-1}$ rictionless horizontal surfaity ω . The tension in the string is now b) $F/2$	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ ce. It is attached to a string ring if F . If the length of string $(3.4 \ F)$	tension in the string is 4. (a^{-2}) $(a$	
a) 648. A ra W a) 649. A ce do a) 650. A	of $0.14 m/s$ stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone of $10 \mathrm{ms}^{-1}$ man is supported on a frentre at an angular velocity oubled, the tension is structure of F very broad elevator is general $2.00 \mathrm{m/s}^{-1}$	b) $140 m/s$ to a light inextensible string of the maximum e at the highest point of the b) $5\sqrt{2} \text{ms}^{-1}$ rictionless horizontal surfaity ω . The tension in the string is now b) $F/2$ oring up vertically with a co	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum toircle? (Taking $g = 10 \text{ms}^{-1}$ co. It is attached to a stringring if F . If the length of structure $(3.4 \ F)$ is an acceleration of $(2.4 \ F)$ instant acceleration of $(2.4 \ F)$	tension in the string is 4. (a^{-2}) (b^{-2}) $(b$	
a) 648. A ra W a) 649. A ce do a) 650. A	of $0.14 m/s$ stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone of $10 \mathrm{ms}^{-1}$ man is supported on a frentre at an angular veloc oubled, the tension is stream of F very broad elevator is gelocity is $4 \mathrm{ms}^{-1}$ a ball is	b) $140 \ m/s$ to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2} \ ms^{-1}$ rictionless horizontal surfaction in the string is now b) $F/2$ oing up vertically with a coprojected from the floor of	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum toircle? (Taking $g = 10 \text{ms}^{-1}$ ce. It is attached to a stringering if F . If the length of strength of F is a strain acceleration of F in the list with a speed of	tension in the string is 4. (a^{-2}) (b^{-2}) (c^{-2}) $(c$	
a) 648. A ra W a) 649. A ce do a) 650. A	stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone 10 ms ⁻¹ man is supported on a frentre at an angular velocity oubled, the tension is street or F very broad elevator is greelocity is 4 ms ⁻¹ a ball is a elevation of 30°. The time	b) $140 m/s$ to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2} \text{ms}^{-1}$ rictionless horizontal surfaity ω . The tension in the string is now b) $F/2$ oing up vertically with a coprojected from the floor of the taken by the ball to return the string taken by the ball to return the string is now	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$) $10\sqrt{3} \text{ ms}^{-1}$ ce. It is attached to a stringering if F . If the length of strength of F is attached to a stringering if F is a stringering if F is attached to a stringering if F is a	tension in the string is 4. (a^{-2}) (b^{-2}) $(b$	
a) 648. A ra W a) 649. A ce do a) 650. A ve ar a)	stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone 10 ms ⁻¹ man is supported on a frentre at an angular veloc oubled, the tension is street of F very broad elevator is grelocity is 4 ms ⁻¹ a ball is a elevation of 30°. The time 1/2 s	b) $140 m/s$ to a light inextensible string of the maximum e at the highest point of the b) $5\sqrt{2} \text{ms}^{-1}$ rictionless horizontal surfaction in the string is now b) $F/2$ oing up vertically with a coprojected from the floor of the taken by the ball to return b) $1/3 \text{s}$	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ ce. It is attached to a stringering if F . If the length of structure F is a structure of F in the list with a speed of F in the floor is F	tension in the string is 4. (a^{-2}) (b^{-2}) (c^{-2})	
a) 648. A ra W a) 649. A ce do a) 650. A ve ar a) 651. A	of $0.14 m/s$ stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone of $0.10 \mathrm{ms}^{-1}$ man is supported on a frentre at an angular veloc oubled, the tension is structure of $0.10 \mathrm{ms}^{-1}$ a ball is not elevation of $0.10 \mathrm{ms}^{-1}$ a ball is not elevation of $0.10 \mathrm{ms}^{-1}$ a ball is not particle is moving in a contraction of $0.10 \mathrm{ms}^{-1}$ and $0.10 \mathrm{ms}^$	b) $140 m/s$ to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2} \text{ms}^{-1}$ rictionless horizontal surfaity ω . The tension in the string is now b) $F/2$ oing up vertically with a coprojected from the floor of the taken by the ball to return b) $1/3 \text{s}$ ircular path with a constant	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ ce. It is attached to a stringering if F . If the length of structure of $4F$ is the list with a speed of $4r$ are the floor is ($g = 10 \text{ ms}^{-1}$ c) $1/4 \text{ s}$ to speed v . If θ is the angular	tension in the string is 4. (a) 20 ms ⁻¹ (b) and rotates about a fixed ring and angular velocity are (b) 8 F (c) s ⁻² . At the instant when its ms ⁻¹ relative to the floor at mathematical relative to the floor relati	
a) 648. A ra W a) 649. A ce de a) 650. A ve ar a) 651. A st	stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone 10 ms ⁻¹ man is supported on a frentre at an angular veloc oubled, the tension is street of F very broad elevator is goelocity is 4 ms ⁻¹ a ball is an elevation of 30°. The ties 1/2 s particle is moving in a cotarting from $\theta = 0$ °, the resulting from $\theta = 0$ °.	b) $140 m/s$ to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2} \text{ms}^{-1}$ rictionless horizontal surfaity ω . The tension in the string is now b) $F/2$ oing up vertically with a coprojected from the floor of the taken by the ball to return b) $1/3 \text{s}$ ircular path with a constant	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ ce. It is attached to a stringering if F . If the length of structure of $4F$ is the list with a speed of $4r$ are the floor is ($g = 10 \text{ ms}^{-1}$ c) $1/4 \text{ s}$ to speed v . If θ is the angular	tension in the string is 4. (a^{-2}) (b^{-2}) (c^{-2})	
a) 648. A ra W a) 649. A ce do a) 650. A ve ar a) 651. A st	stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone 10 ms ⁻¹ man is supported on a frentre at an angular veloc oubled, the tension is street of the very broad elevator is greated by the street of 30°. The time 1/2 s particle is moving in a context of the respectively	b) $140 m/s$ to a light inextensible string of the maximum e at the highest point of the b) $5\sqrt{2} \text{ms}^{-1}$ rictionless horizontal surfactionary ω . The tension in the string is now b) $F/2$ oing up vertically with a coprojected from the floor of the taken by the ball to return b) $1/3 \text{s}$ incular path with a constant maximum and maximum characteristics.	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling the tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ ce. It is attached to a stringering if F . If the length of structure of $4F$ instant acceleration of 2 ms^{-1} for the list with a speed of 4 m^{-1} in the floor is $(g = 10 \text{ ms}^{-1})$ columns to $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular anges in the momentum where $1/4 \text{ s}^{-1}$ is the angular	tension in the string is 4. (T^2)	
a) 648. A ra W a) 649. A ce do a) 650. A ve ar a) 651. A st re a)	stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone 10 ms ⁻¹ man is supported on a front at an angular veloc oubled, the tension is structure of 30°. The ties of 1/2 s particle is moving in a contact and θ	b) $140 m/s$ to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2} \text{ms}^{-1}$ rictionless horizontal surfactionary ω . The tension in the string is now b) $F/2$ oing up vertically with a coprojected from the floor of the taken by the ball to return b) $1/3 \text{s}$ irrcular path with a constant maximum and maximum chapter $1/3 \text{max}$ and $1/3 \text{max}$ in $1/3 \text{max}$ and $1/3 $	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum toircle? (Taking $g = 10 \text{ms}^{-1}$ ce. It is attached to a stringering if F . If the length of structure of $4F$ is the list with a speed of $4r$ in the floor is ($g = 10 \text{ ms}^{-1}$ c) $1/4 \text{ s}$ to speed v . If θ is the angular anges in the momentum when $(2) 180^{\circ}$ and 360°	tension in the string is 4. (a) 20 ms ⁻¹ (b) and rotates about a fixed ring and angular velocity are (b) 8 F (c) s ⁻² . At the instant when its ms ⁻¹ relative to the floor at mathematical relative to the floor relati	
a) 648. A ra W a) 649. A ce do a) 650. A ve ar a) 651. A st re a) 652. Ti	stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone 10 ms ⁻¹ man is supported on a frentre at an angular veloc oubled, the tension is street of F very broad elevator is greated by F very broad elevator is greated in F and F is a ball is an elevation of F and F is a particle is moving in a contact of F and F is a particle is F and F is a particle is F and F is and F and	b) $140 m/s$ to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2} \text{ms}^{-1}$ rictionless horizontal surfactionary ω . The tension in the string is now b) $F/2$ oing up vertically with a coprojected from the floor of the taken by the ball to return b) $1/3 \text{s}$ ircular path with a constant maximum and maximum chairs θ , the value of the triples.	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling the tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ cools a string of $I = 1$	tension in the string is 4. $(T^2)^{-2}$	
a) 648. A ra W a) 649. A ce de a) 650. A ve ar a) 651. A st re a) 652. TI a)	stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone $100 \mathrm{ms}^{-1}$ man is supported on a frentre at an angular velocity oubled, the tension is structure $100 \mathrm{ms}^{-1}$ a ball is nelevation of $100 \mathrm{ms}^{-1}$ a ball is nelevation of $100 \mathrm{ms}^{-1}$ a ball is nelevation of $100 \mathrm{ms}^{-1}$ and $100 \mathrm{ms}^{-1}$	b) $140 m/s$ to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2} \text{ms}^{-1}$ rictionless horizontal surfaity ω . The tension in the string is now b) $F/2$ oing up vertically with a coprojected from the floor of the taken by the ball to return b) $1/3 \text{s}$ ircular path with a constant maximum and maximum chair b) 90° and 180° \vec{B} is θ , the value of the triple) Zero	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ ce. It is attached to a stringering if F . If the length of structure of $4F$ is the list with a speed of $4r$ in the floor is ($g = 10 \text{ ms}^{-1}$ c) $1/4 \text{ s}$ is the angular anges in the momentum where C is C and C and C is C and C anall C and C a	tension in the string is 4. (T^2)	
a) 648. A ra W a) 649. A ce do a) 650. A ve ar a) 651. A st re a) 652. Th a) 653. A	stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone 10 ms ⁻¹ man is supported on a frentre at an angular veloc oubled, the tension is street of F very broad elevator is greelocity is 4 ms ⁻¹ a ball is an elevation of 30°. The time 1/2 s particle is moving in a contact of the spectively 1/45° and 90° he angle between \vec{A} and 1/4 \vec{B} particle is projected with	b) $140 m/s$ to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2} \text{ms}^{-1}$ rictionless horizontal surfactional surfaction surfactional surfactional surfactional surfaction s	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ ce. It is attached to a stringering if F . If the length of structure of $4F$ is the list with a speed of $4r$ in the floor is ($g = 10 \text{ ms}^{-1}$ c) $1/4 \text{ s}$ is the angular anges in the momentum where C is C and C and C is C and C anall C and C a	tension in the string is 4. $(T^2)^{-2}$	
a) 648. A ra W a) 649. A ce do a) 650. A ve ar a) 651. A st re a) 652. TI a) 653. A h	stone of mass 1 kg tied to adius L in vertical plane. What is the speed of stone $100 \mathrm{ms}^{-1}$ man is supported on a frentre at an angular velocity oubled, the tension is structure $100 \mathrm{ms}^{-1}$ a ball is nelevation of $100 \mathrm{ms}^{-1}$ a ball is nelevation of $100 \mathrm{ms}^{-1}$ a ball is nelevation of $100 \mathrm{ms}^{-1}$ and $100 \mathrm{ms}^{-1}$	b) $140 m/s$ to a light inextensible string of the maximum at the highest point of the b) $5\sqrt{2} \text{ms}^{-1}$ rictionless horizontal surfactional surfaction surfactional surfactional surfactional surfaction s	c) $1.4 \ km/s$ g of length $L = \frac{10}{3}$ is whirling tension to the minimum to circle? (Taking $g = 10 \text{ms}^{-1}$ ce. It is attached to a stringering if F . If the length of structure of $4F$ is the list with a speed of $4r$ in the floor is ($g = 10 \text{ ms}^{-1}$ c) $1/4 \text{ s}$ is the angular anges in the momentum where C is C and C and C is C and C anall C and C a	tension in the string is 4. (T^2)	

			Gplus Education
•		· · · · · · · · · · · · · · · · · · ·	g is tied to it and is revolved in a aximum angular velocity of the
a) 5 <i>rad/s</i>	b) $\sqrt{30} rad/s$	c) $\sqrt{60}$ rad/s	d) 10 <i>rad/s</i>
655. A body is tided wi	th a string and is given a circ	ular motion with velocity \imath	$^{\prime}$ in radius r . The magnitude of
the acceleration			
a) $\frac{v}{r}$	b) $\frac{v^2}{r}$	c) $\frac{v}{r^2}$	d) $\frac{v^2}{r^2}$
656. A body starts from	n rest from the origin with an	acceleration of $6 m/s^2$ alo	ong the x-axis and $8 m/s^2$ along
the <i>y</i> -axis. Its dista	ance from the origin after 4 s	econds will be	
a) 56 m	b) 64 m	c) $80 m$	d) 128 m

b) 45° 658. A proton of mass $1.6 \times 10^{-27} kg$ goes round in a circular orbit of radius $0.10 \ m$ under a centripetal force of 4×10^{-13} N. then the frequency of revolution of the proton is about

a)
$$0.08 \times 10^8$$
 cycles per sec

b)
$$4 \times 10^8$$
 cycles per sec

c)
$$8 \times 10^8$$
 cycles per sec

d)
$$12 \times 10^8$$
 cycles per sec

659. For an object thrown at 45° to horizontal, the maximum height (H) and horizontal range (R) are related as

a)
$$R = 16H$$

b)
$$R = 8H$$

657. The angle between the *z*-axis and the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \sqrt{2}\hat{\mathbf{k}}$ is

c)
$$R = 4H$$

d)
$$R = 2H$$

660. The torque of a force $\vec{F} = -3\hat{\imath} + \hat{\jmath} + 5\hat{k}$ acting at a point is $\vec{\tau}$. If the position vector of the point is $7\hat{\imath} + \hat{\jmath} + \hat{k}$, then $\vec{\tau}$ is

a)
$$7\hat{i} - 8\hat{j} + 9\hat{k}$$

b)
$$14\hat{i} - \hat{j} + 3\hat{k}$$

c)
$$2\hat{i} - 3\hat{j} + 8\hat{k}$$

d)
$$14\hat{i} - 38\hat{i} + 16\hat{k}$$

661. The figure shows a circular path of a moving particle. If the velocity of the particle at same instant is $\mathbf{v} =$ $-3\hat{i}-4\hat{j}$, through which quadrant is the particle moving when clockwise and anti-clockwise respectively

- a) 1st and 4th
- b) 2nd and 4th
- c) 2 nd and 3rd
- d) 3 rd and 4 th

662. A particle is thrown above, the correct v - t graph will be

663. An aeroplane is flying at a constant horizontal velocity of 600 km/hr at an elevation of 6 km towards a point directly above the target on the earth's surface. At an appropriate time, the pilot releases a ball so that it strikes the target at the earth. The ball will appear to be falling

- a) On a parabolic path as seen by pilot in the plane
- b) Vertically along a straight path as seen by an observer on the ground near the target
- c) On a parabolic path as seen by an observer on the ground near the target
- d) On a zig-zag path as seen by pilot in the plane

664. A wheel completes 2000 revolutions to cover the 9.5 km. distance. Then the diameter of the wheel is

- a) 1.5 m
- b) 1.5 *cm*
- c) 7.5 *cm*

665. Figure shows four paths for a kicked football. Ignoring the effects of air on the flight, rank the paths

according to initial horizontal velocity component, highest first

- a) 1, 2, 3, 4
- b) 2, 3, 4, 1
- c) 3, 4, 1, 2
- d) 4, 3, 2, 1
- 666. If a stone s to hit at a point which is at a distance d away and at a height h above the point from where the stone starts, then what is the value of initial sped u, if the stone is launched at an angle Q?

- a) $\frac{g}{\cos \theta} \sqrt{\frac{d}{2(d \tan \theta h)}}$ b) $\frac{d}{\cos \theta} \sqrt{\frac{g}{2(d \tan \theta h)}}$ c) $\sqrt{\frac{gd^2}{h \cos^2 \theta}}$
- 667. A small particle of mass m is projected at an angle θ with the x-axis with an initial velocity v_0 in the x-y plane as shown in the figure. At a time $t < \frac{v_0 \sin \theta}{a}$, the angular momentum of the particle is

Where $\hat{\imath},\hat{\jmath}$ and \hat{k} are unit vectors along x, y and z-axis respectively.

- a) $\frac{1}{2}mgv_0t^2\cos\theta\,\hat{\imath}$ b) $-mgv_0t^2\cos\theta\,\hat{\jmath}$ c) $mgv_0t\cos\,\hat{k}$ d) $-\frac{1}{2}mgv_0t^2\cos\theta\,\hat{k}$ 668. If the magnitude of the sum of the two vectors is equal to the difference of their magnitudes, then the angle between vectors is
 - a) 0°

b) 45°

c) 90°

- d) 180°
- 669. A particle of a mass m is projected with velocity v making an angle of 45° with the horizontal. The magnitude of the angular momentum of the particle about the point of projection when the particle is at its maximum height is (where g = acceleration due to gravity)

- b) $mv^3/(4\sqrt{2}g)$
- c) $mv^3/(\sqrt{2}g)$
- d) $mv^2/2a$
- 670. A toy cyclist completes one round of a square track of side 2 m in 40 s. What will be the displacement at the end of 3 min?
 - a) 52 m

b) Zero

c) 16 m

- d) $2\sqrt{2}$ m
- 671. The angular velocity of a particle rotating in a circular orbit 100 times per minute is
 - a) 1.66 rad s^{-1}
- b) 10.47 rad s^{-1}
- c) 10.47 deg s^{-1}
- d) 60 rad s^{-1}
- 672. Two forces $\overrightarrow{F_1}$ and $\overrightarrow{F_2}$ are acting at right angles to each other. Then their resultant is
 - a) $F_1 + F_2$
- b) $\sqrt{F_1^2 + F_2^2}$
- c) $\sqrt{F_1^2 F_2^2}$
- 673. Two bodies are projected with the same velocity. If one is projected at an angle of 30° and the other at an angle of 60° to the horizontal, the ratio of the maximum heights reached is
 - a) 3:1

b) 1:3

c) 1:2

- d) 2 : 1
- 674. If a_r and a_t represent radial and tangential accelerations, the motion of a particle will be uniformly circular if
 - a) $a_r = 0, a_t = 0$ b) $a_r \neq 0, a_t \neq 0$
- c) $a_r \neq 0, a_t = 0$
- d) $a_r = 0, a_t \neq 0$

675.	The kinetic energy of a proof projection with the hor	ojectile at the highest point	is half of the initial kinetic	energy. What is the angle
	a) 30°	b) 45°	c) 60°	d) 90°
676.	The distance r from the or	rigin of a particle moving in with positive x -axis is $\theta =$	x - y plane varies with ting	me as $r = 2t$ and the angle
	a) 10 ms ⁻¹	b) 16 ms ⁻¹	c) 10 ms ⁻¹	d) 12 ms ⁻¹
677.	In uniform circular motion	n		
678.	b) The angular velocity vac) Both the angular velocid) The angular momentur	ty and the angular momentaries but the angular mome ty and the angular momentaries but the angular velation v	ntum remains constant tum stay constant locity remains constant	ϵ angle $ heta$ through which the
	cyclist leans inwards is given	ven by		
	a) $\tan \theta = \frac{Rg}{v^2}$	b) $\tan \theta = v^2 Rg$	c) $\tan \theta = \frac{v^2 g}{R}$	d) $\tan \theta = \frac{v^2}{Rg}$
679.		ater is revolved in a vertica naximum period of revolut		ne water does not fall
	a) 4 s	b) 2 s	c) 1 s	d) 6 s
680.	In uniform circular motion	n, the velocity vector and a	cceleration vector are	
	a) Perpendicular to each of	other	b) Same direction	
	c) Opposite direction		d) Not related to each oth	
681.	In a bicycle the radius of r	ear wheel is twice the radi	us of front wheel. If \emph{r}_{f} and \emph{r}	r_r are the radius, v_f and v_r
	are the speed of top most	points of wheel, then		
	a) $v_r = 2v_f$	b) $v_f = 2v_r$	c) $v_f = v_r$	d) $v_f > v_r$
682.	An object of mass 10 kg is	whirled round a horizonta	l circle of radius 4 m by a r	evolving string inclined
	30° to the vertical. If the tag) 720 N	uniform speed of the object b) 960 N		ne string (approximately) is d) 125 N
683.	A bullet is fired horizonta	lly with a velocity of 80 ms	$^{-1}$. During the first second,	
	a) It falls 9.8 m	b) It falls $\frac{80}{9.8}$ m	c) It does not fall at all	d) It falls 4.9 m
684.		frictionless horizontal surfaction ω_0 . If the length of the s		_
685		horizontal direction with a		
005.			-	strikes the ground at point
	<i>B</i> . Calculate the distance <i>A</i>	-	aropped from it. The body	strikes the ground at point
	$ \begin{array}{c} O \\ \downarrow \\ A \end{array} $			
	a) 3.33 km	b) 333 km	c) 33.3 km	d) 3330 km
686.	A cylinder full. Of water, is	s rotating about its own axi	s with uniform angular vel	ocity ω . The shape of free
	surface of water will be			
	a) Parabola	b) Elliptical	c) Circular	d) Spherical
687.	A cricketer hits a ball with	a velocity 25 <i>m/s</i> at 60° al	bove the horizontal. How fa	ar above the ground it
	passes over a fielder 50 m	from the bat (assume the	ball is struck very close th t	the ground)
	a) 8.2 <i>m</i>	b) 9.0 <i>m</i>	c) 11.6 m	d) 12.7 <i>m</i>

688. Two identical discs of same radius R are rotating about their axes in opposite directions with the same constant angular speed ω . The discs are in the same horizontal plane. At time t=0, the points P and Q are facing each other as shown in figure. The relative speed between the two points P and Q is V_T as function of times best represented by

- 689. A car is moving rectilinearly on a horizontal path with acceleration a_0 . A person sitting inside the car observes that an insect S is crawling up the screen with an acceleration a. If θ is the inclination of the screen with the horizontal the acceleration of the insect
 - a) Parallel to screen is $a + a_0 \cos \theta$

- b) Along the horizontal is $a_0 a \cos \theta$
- c) Perpendicular to screen is $a_0 \sin \theta$
- d) Perpendicular to screen is $a_0 \tan \theta$
- 690. A particle of mass *M* is moving in a horizontal circle of radius *R* with uniform speed *V*. When it moves from one point to a diametrically opposite point, its
 - a) Kinetic energy changes by $MV^2/4$
- b) Momentum does not change

c) Momentum changes by 2MV

- d) Kinetic energy changes by MV^2
- 691. A ball is projected from the ground at a speed of $10ms^{-1}$ making an angle of 30° with the horizontal. Another ball is simultaneously released from a point on the vertical line along the maximum height of the projectile. Both the balls collide at the maximum height of first ball. The initial height of the second ball is $(g = 10ms^{-2})$
 - a) 6.25m
- b) 2.5m
- c) 3.75*m*
- d) 5*m*
- 692. A ball is thrown up at an angle with the horizontal. Then the total change of momentum by the instant it returns to ground is
 - a) Acceleration due to gravity × total time of flight
 - b) Weight of the ball × half the time of flight
 - c) Weight of the ball × total time of flight
 - d) Weight of the ball × horizontal range
- 693. A man, using a 70 kg garden roller on a level surface exerts a force of 200 N at 45° to the ground. What is the vertical force of the roller on the ground, if he pushed the roller? (g = 10ms^{-2})
 - a) 70 N

- b) 200 N
- c) 560 N
- d) 840 N
- 694. An aeroplane moving horizontally at a speed of 200 m/s and at a height of $8.0 \times 10^3~m$ is to drop a bomb

	· ·	ontai distance nom the tar	•	easeu
	a) 7.234 <i>km</i>	b) 8.081 <i>km</i>	c) 8.714 km	d) 9.124 <i>km</i>
695.	. A particle is projected wit	th certain velocity at two di	fferent angels of projection	ns with respect to horizontal
	plane so as to have same	range <i>R</i> on a horizontal pla	ne. If t_1 and t_2 are the time	taken for the two paths,
	the which one of the follo	wing relations is correct?		
	$\frac{2R}{R}$	b) $t_1 t_2 = \frac{R}{g}$	c) t t $=\frac{R}{R}$	d) t , $t = \frac{4R}{R}$
	a) $\iota_1\iota_2 = \frac{g}{g}$	b) $\iota_1\iota_2 - \frac{1}{g}$	$c_1 \iota_1 \iota_2 - \frac{1}{2g}$	$u_1 \iota_1 \iota_2 = \frac{g}{g}$
696.	. A particle moves in a circl	le of radius 25 <i>cm</i> at two re	evolutions per second. The	acceleration of the particle
	in m/s^2 is			
	a) π^2	b) $8\pi^2$	c) $4\pi^2$	d) $2\pi^2$
697.	The vector which can give	e unit vector along <i>x-</i> axis w	with $\overrightarrow{A} = 2\hat{\imath} - 4\hat{\jmath} + 7\hat{k}$, $\overrightarrow{B} = 7$	$(\hat{c} + 2\hat{c} - 5\hat{k})$ and $\vec{C} = -4\hat{c} + \hat{c}$
	$7\hat{j} + 3\hat{k}$ is	, and the second		
		b) $-5\hat{i} - 5\hat{j} + 5\hat{k}$	c) -4î - 5î - 5k	d) $4\hat{i} - 5\hat{i} + 5\hat{k}$
698.		n travelling with speed of 4		
	a) $1 km/s^2$	b) $100 m/s^2$		
699.	, ,	of of a house of height <i>h</i> thr	- '	, ,
	•	the same velocity u . The ra	•	
	surface will be	, , , , , , , , , , , , ,		,,
		b) 1:2	c) 1:1	d) $\sqrt{2gh+u^2}$: $\sqrt{2gh}$
700	, ,	•		eed has a maximum range R .
700.	, .	•	•	o de la companya de
	-	from the gun and on the sai		
	a) 15°	b) 45°		d) 60°
701.		nitial velocity of $(8\hat{i} + 6\hat{j})$ n		
	a) 9.6 m	-	c) 50 m	d) None of these
702.			irled in a vertical circle. Th	e minimum speed required
	to just cross the topmost	position is	ATTON	_
703.	=	es with constant speed alor	ng a circular path of radius	r under the action of force
	F. Its speed is			
	a) $\sqrt{Fr/m}$	b) $\sqrt{F/r}$	c) $\sqrt{F m r}$	d) $\sqrt{F/mr}$
704.	. For a projection, (range) ²	2 is 48 times of (maximum 1	height) ² obtained. Find ang	gle projection.
	a) 60°	b) 30°	c) 45°	d) 75°
705.		from a point at an angle wi	=	
	momentum, $y = \text{vertical } d$	lisplacement, $x=$ horizonta	ıl displacement, then the ki	netic energy (K) of the
	particle plotted against th			
	K	K	K	K
	a) \(b)	c) \(\sum_{}	d)
	→ <i>y</i>	b) ***	→ x	- P
706.	The equation of a projecti	ile is $y = \sqrt{3}x - \frac{gx^2}{2}$. The an	gle of projection is given b	y
	a) $\tan \theta = \frac{1}{-}$	b) $\tan \theta = \sqrt{3}$	π c) -	d) Zero
	, -			
707.		\mathbf{n} an angle $\mathbf{\theta}$ to the horizont		
	a) its velocity is always po	erpendicular to its accelera	ition	

PHONE NO: 8583042324 Page | 59

d) the body just before hitting the ground, the direction of velocity coincides with the acceleration 708. The speed of revolution of a particle going around a circle is doubled and its angular speed is halved. What

c) its velocity makes zero angle with the horizontal at its maximum height

b) its velocity becomes zero as its maximum height

happens to the centripetal acceleration? a) Becomes four times b) Double c) Halved d) Remains unchanged 709. Given $\vec{R} = \vec{A} + \vec{B}$ and $\vec{R} = \vec{A} = \vec{B}$. The angle between \vec{A} and \vec{B} is a) 60° b) 90° d) 180° 710. A stone is projected with a velocity $20\sqrt{2}$ ms⁻¹ at an angle of 45° to the horizontal. The average velocity of stone during its motion from starting point to its maximum height is $(g = 10 \text{ms}^{-2})$ a) $5\sqrt{5} \text{ ms}^{-1}$ b) $10\sqrt{5} \text{ ms}^{-1}$ c) 20 ms^{-1} d) $20\sqrt{5} \text{ ms}^{-1}$ 711. A body moving along a circular path of radius R with velocity v, has centripetal acceleration a. If its velocity is made equal to 2v, then its centripetal acceleration is b) 2a a) 4a 712. The speed of a projectile at its maximum height is half of its initial speed. The angle of projection is b) 15° c) 30° 713. If a_r and a_t represent radial and tangential accelerations, the motion of a particle will be uniformly circular if a) $a_r = 0$ and $a_t = 0$ b) $a_r = 0$ but $a_t \neq 0$ c) $a_r \neq 0$ but $a_t = 0$ d) $a_r \neq 0$ and $a_t \neq 0$ 714. In above question, if the centripetal force F is kept constant but the angular velocity is doubled, the new radius of the path (original radius R) will be a) 2R b) R/2c) R/4d) 4R715. Two wires AC and BC are tied at C of small sphere of mass 5 kg, which revolves at a constant speed v in the horizontal circle of radius 1.6 m. The minimum value of v is PLUS EDUCATI b) 4.01 ms^{-1} a) 3.01 ms^{-1} c) 8.2 ms^{-1} d) 3.96 ms^{-1} 716. If the resultant of the vectors $(\hat{i} + 2\hat{j} - \hat{k})$, $(\hat{i} - \hat{j} + 2\hat{k})$ and \vec{C} is a unit vector along the y-direction, then \vec{C} is a) $-2\hat{i} - \hat{k}$ b) $-2\hat{i} + \hat{k}$ c) $2\hat{i} - \hat{k}$ 717. A small disc is on the top of a hemisphere of radius R. What is the smallest horizontal velocity v that should be given to the disc for it to leave the hemisphere and not slide down it? [There is no friction] c) $v = \frac{g}{R}$ b) $v = \sqrt{gR}$ d) $v = \sqrt{g^2 R}$ a) $v = \sqrt{2gR}$ 718. What is the angle between \vec{P} and \vec{Q} . The resultant of $(\vec{P} + \vec{Q})$ and $(\vec{P} - \vec{Q})$? a) Zero b) $tan^{-1}(P/Q)$ d) $\tan^{-1}(P-Q)/(P+Q)$ c) $tan^{-1}(Q/P)$ 719. A long horizontal rod has a bead, which can slide along its length and initially placed at a distance L from one end A of the rod. The rod is set in angular acceleration α . If the coefficient of friction, between the rod and the bead is μ and gravity is neglected, then the time after which the bead starts slipping is d) Infinitesimal a) $\sqrt{\mu/\alpha}$ b) $\mu/\sqrt{\alpha}$ c) $1/\sqrt{\mu\alpha}$ 720. The earth moves round the sun in a near circular orbit of radius 1.5×10^{11} m. Its centripetal acceleration c) $6 \times 10^{-3} \ m/s^2$ d) $12 \times 10^{-3} \ m/s^2$ a) $1.5 \times 10^{-3} \ m/s^2$ b) $3 \times 10^{-3} \ m/s^2$ 721. A particle is projected with speed v at an angle $\theta\left(0<\theta<\frac{\pi}{2}\right)$ above the horizontal from a height H above the ground. If v = speed with which particle hits the ground and t =time taken by particle to reach

- a) As θ increases, v decreases and t increases
- b) As θ increases, v increases and t increases
- c) As θ increases, v remains same and t increases
- d) As θ increases, v remains same and t decreases
- 722. A simple pendulum is oscillating without damping. When the displacement of the bob is less than maximum, its acceleration vector \vec{a} is correctly shown in

- 723. For a projectile, the ratio of maximum height reached to the square of flight time is $(g = 10 \text{ ms}^{-2})$

b) 5:2

c) 5:1

- 724. From an inclined plane two particles are projected with same speed at same angle θ , one up and other down the plane as shown in figure, which of the following statements is/are correct?

- a) The time of flight of each particle is the same
- b) The particles will collide the plane with same speed
- c) Both the particles strike the plane perpendicularly
- d) The particles will collide in mid air if projected simultaneously and time of flight of each particle is less than of collision
- 725. Two racing cars of masses m_1 and m_2 are moving in circles of radii r_1 and r_2 respectively. Their speeds are such that each makes a complete circle in the same duration of time t. The ratio of the angular speed of the first to the second car is
 - a) $m_1: m_2$
- b) $r_1: r_2$

c) 1:1

- d) $m_1: r_1: m_2r_2$
- 726. A car moving with the speed of 10 m/s takes a circular turn of radius 20 m. The magnitude of the acceleration of the car is
 - a) 5.0 ms^{-2}
- b) 50.0 ms^{-2}
- c) 0.25 ms^{-2}
- d) 0.5 ms^{-2}
- 727. Two vectors \vec{a} and \vec{b} are at an angle of 60° with each other. Their resultant makes an angle of 45° with \vec{a} . If $|\vec{b}| = 2$ units, then $|\vec{a}|$ is
 - a) $\sqrt{3}$

- b) $\sqrt{3} 1$
- c) $\sqrt{3} + 1$
- d) $\sqrt{3}/2$
- 728. A body crosses the topmost point of a vertical circle with critical speed. What will be its acceleration when the string is horizontal?
 - a) g

b) 2 g

c) 3 g

- d) 6 g
- 729. A particle is moving in a horizontal circle with constant speed. It has constant
 - a) Velocity
- b) Acceleration
- c) Kinetic energy
- d) Displacement
- 730. A bend in a level road has a radius of 80 m. Find the maximum speed which a car turning the bend may have without skidding, if $\mu = 0.25$
 - a) 24 ms^{-1}
- b) 4 ms⁻¹
- c) 14 ms^{-1}
- d) 9.8 ms^{-1}
- 731. An object of mass 2 m is projected with a speed of 100 ms⁻¹ at angle $\theta = \sin^{-1}\left(\frac{3}{5}\right)$ to the horizontal. At the highest point, the object breaks into pieces of same mass m and the first one comes to rest. The distance

a) 3840 b) 1280 c) 1440 d) 960 732. Given $\vec{P} = 3\hat{j} + 4\hat{k}$ and $\vec{Q} = 2\hat{i} + 5\hat{k}$. The magnitude of the scalar product of these vectors is a) 20 b) 23 c) 26 d) $5\sqrt{33}$ 733. A cricketer can throw a ball to a maximum horizontal distance of 100 m . With the same effort, he throws the ball vertically upwards. The maximum height attained by the ball is a) $100 m$ b) $80 m$ c) $60 m$ d) $50 m$ 734. Neglecting the air resistance, the time of flight of a projectile is determined by a) U_{vertical} b) $U_{\text{horizontal}}$ c) $U = U_{\text{vertical}}^2 + U_{\text{horizontal}}^2$ d) $U = (U_{\text{vertical}}^2 + U_{\text{horizontal}}^2)^{1/2}$ 735. The height y and the distance x along the horizontal plane of a projectile on a certain planet (with not expressed in the scalar product of these vectors is a) U_{vertical} b) $U_{\text{horizontal}}$
a) 20 b) 23 c) 26 d) $5\sqrt{33}$ 733. A cricketer can throw a ball to a maximum horizontal distance of $100 m$. With the same effort, he throws the ball vertically upwards. The maximum height attained by the ball is a) $100 m$ b) $80 m$ c) $60 m$ d) $50 m$ 734. Neglecting the air resistance, the time of flight of a projectile is determined by a) U_{vertical} b) $U_{\text{horizontal}}$ c) $U = U_{\text{vertical}}^2 + U_{\text{horizontal}}^2$ d) $U = \left(U_{\text{vertical}}^2 + U_{\text{horizontal}}^2\right)^{1/2}$
733. A cricketer can throw a ball to a maximum horizontal distance of $100 \ m$. With the same effort, he throws the ball vertically upwards. The maximum height attained by the ball is a) $100 \ m$ b) $80 \ m$ c) $60 \ m$ d) $50 \ m$ 734. Neglecting the air resistance, the time of flight of a projectile is determined by a) U_{vertical} b) $U_{\text{horizontal}}$ c) $U = U_{\text{vertical}}^2 + U_{\text{horizontal}}^2$ d) $U = \left(U_{\text{vertical}}^2 + U_{\text{horizontal}}^2\right)^{1/2}$
the ball vertically upwards. The maximum height attained by the ball is a) $100 m$ b) $80 m$ c) $60 m$ d) $50 m$ 734. Neglecting the air resistance, the time of flight of a projectile is determined by a) $U_{\rm vertical}$ b) $U_{\rm horizontal}$ c) $U = U_{\rm vertical}^2 + U_{\rm horizontal}^2$ d) $U = \left(U_{\rm vertical}^2 + U_{\rm horizontal}^2\right)^{1/2}$
a) $100 m$ b) $80 m$ c) $60 m$ d) $50 m$ 734. Neglecting the air resistance, the time of flight of a projectile is determined by a) $U_{\rm vertical}$ b) $U_{\rm horizontal}$ c) $U = U_{\rm vertical}^2 + U_{\rm horizontal}^2$ d) $U = \left(U_{\rm vertical}^2 + U_{\rm horizontal}^2\right)^{1/2}$
734. Neglecting the air resistance, the time of flight of a projectile is determined by a) U_{vertical} b) $U_{\text{horizontal}}$ c) $U = U_{\text{vertical}}^2 + U_{\text{horizontal}}^2$ d) $U = \left(U_{\text{vertical}}^2 + U_{\text{horizontal}}^2\right)^{1/2}$
a) U_{vertical} b) $U_{\text{horizontal}}$ c) $U = U_{\text{vertical}}^2 + U_{\text{horizontal}}^2$ d) $U = \left(U_{\text{vertical}}^2 + U_{\text{horizontal}}^2\right)^{1/2}$
c) $U = U_{\text{vertical}}^2 + U_{\text{horizontal}}^2$ d) $U = \left(U_{\text{vertical}}^2 + U_{\text{horizontal}}^2\right)^{1/2}$
surrounding atmosphere) are given by $y = 8t - 5t^2$ metre and $x = 6t$ metre, where t is in second. The
velocity with which the projectile is projected, is
a) 14 ms^{-1} b) 10 ms^{-1} c) 8 ms^{-1} d) 6 ms^{-1}
736. A car when passes through a convex bridge exerts a force on it which is equal to
a) $Mg + \frac{Mv^2}{r}$ b) $\frac{Mv^2}{r}$ c) Mg
1
737. A batsman hits a sixer and the ball touches the ground outside the cricket ground. Which of the following
graph describes the variation of the cricket ball's vertical velocity v with time between the time t_1 as it hits
the bat and time t_2 when it touches the ground
a) $\stackrel{\stackrel{i_1}{\downarrow_2}}{\downarrow_2} t$ b) $\stackrel{i_2}{\downarrow_2} t$ c) $\stackrel{i_2}{\downarrow_2} t$ d) $\stackrel{i_1}{\downarrow_2} t$ d $\stackrel{i_2}{\downarrow_2} t$
a) $\stackrel{\stackrel{\stackrel{\leftarrow}{\downarrow}}{\downarrow}}{\downarrow}$ $\stackrel{\stackrel{\leftarrow}{\downarrow}}{\downarrow}$ $\stackrel{\leftarrow}{\downarrow}$ b) $\stackrel{\stackrel{\stackrel{\leftarrow}{\downarrow}}{\downarrow}}{\downarrow}$ $\stackrel{\leftarrow}{\downarrow}$
738. The time period of the second's hand of a watch is
a) 1 h b) 1 s c) 12 h d) 1 min
739. A particle is tied to 20 <i>cm</i> long string. It performs circular motion in vertical plane. What is the angular
velocity of the string when the tension in the string at the top is zero
a) 5 rad/sec b) 2 rad/sec c) 7.5 rad/sec d) 7 rad/sec
740. A particle moves in the $x-y$ plane with velocity $v_x=8t-2$ and $v_y=2$. If it passes through the pointy
x = 14 and $y = 4$ at $t = 2s$, find the equation $(x - y)$ relation of the path
a) $x = y^2 - y + 2$ b) $x = 2y^2 + 2y - 3$
c) $x = 3y^2 + 5$ d) Can not be found from above data
741. A body just being revolved in a vertical circle of radius R with a uniform speed. The string breaks when the
body is at the highest point. The horizontal distance covered by the body after the string breaks is
a) 2 R b) R c) $R\sqrt{2}$ d) 4 R
742 · If \vec{A} and \vec{B} denote the sides of a parallelogram and its area is $\frac{1}{2}AB(A \text{ and } B \text{ are the magnitude of } \vec{A} \text{ and } \vec{B}$
respectively), the angle between \overrightarrow{A} and \overrightarrow{B} is
a) 30° b) 60° c) 45° d) 120°
743. Given $\vec{r} = 4\hat{j}$ and $\vec{p} = 2\hat{i} + 3\hat{j} + \hat{k}$. The angular momentum is
a) $4\hat{i} - 8\hat{k}$ b) $8\hat{i} - 4\hat{k}$ c) $8\hat{j}$ d) $9\hat{k}$
744. A car is moving along a straight horizontal road with a speed v_0 . If the coefficient of friction between tyre
and the road is μ , the shortest distance in which the car can be stopped is
a) $\frac{v_0^2}{2\mu g}$ b) $\frac{v_0}{\mu g}$ c) $\left(\frac{v_0}{\mu g}\right)^2$ d) $\frac{v_0}{\mu}$
745. Work done when a force, $\vec{F} = (\hat{i} + 2\hat{j} + 3\hat{k})N$ acting on a particle takes it from the point $\vec{r}_1 = (\hat{i} + \hat{j} + \hat{k})M$

between the point of projection and the point of landing of the bigger piece (in metre) is (given, g =

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 62

	to the point $\vec{r}_2 = (\hat{i} + \hat{j} + \hat{j})$	2k̂)			
	a) −3 J	b) -1 J	c) zero	d) 2 J	
746.	An aeroplane is flying with a uniform speed of $100\ m/s$ along a circular path of radius $100\ m$, the angular speed of the aeroplane will be				
	a) 1 <i>rad/sec</i>	b) 2 rad/sec	c) 3 rad/sec	d) 4 rad/sec	
747.	A particle comes round a motion is	circle of radius $1\ m$ once. T	he time taken by it is 10 <i>se</i>	c. The average velocity of	
	a) $0.2 \pi m/s$	b) $2 \pi m/s$	· · · · · · · · · · · · · · · · · · ·	d) Zero	
748.		5 m long and has mass of 2 tripetal force on each links	kg with the ends fastened is	together. It is set for	
	a) 3.14 N	b) 0.314 N	c) 314 N	d) None of these	
749.	system is rotated about th		ing of force constant k and with an angular velocity ω , will be	_	
	a) $\frac{m \omega^2 l}{k}$	b) $\frac{m \omega^2 l}{k - m \omega^2}$	c) $\frac{m \omega^2 l}{k + m \omega^2}$	d) None of these	
750.			any time t is given by $x = 0$	$(3t^2-6t)$ metres, $y=$	
			t the moving particle from		
		particle is zero at $t = 0$ se		O	
	-	ticle is zero at $t = 0$ second			
		ticle is zero at $t = 1$ second			
		eration of the particle are n			
751.		lar path and takes a turn. I	$f R_1$ and R_2 be the reactions	s on the inner and outer	
	a) $R_1 = R_2$	b) $R_1 < R_2$	c) $R_1 > R_2$	d) $R_1 \geq R_2$	
752.	Which one is Angular reso a) Length	olution fundamental quant b) Time	ity c) Radian	d) Angle	
753.	A particle is projected fro	m horizontal making an an	gle 60° with initial velocity	$40 \mathrm{ms}^{-1}$. The time taken by	
	the particle to make ange	· ·		ř	
	a) 15 s	b) 2.0 s	c) 20 s	d) 1.5 s	
	angle of banking so that t	speed v along the frictionle he car does skid is	ess, banked circular track o	f radius r , the required	
	a) $\theta = \tan^{-1} \left(\frac{v^2}{rg} \right)$	b) $\theta = \tan^{-1} \left(\frac{v}{rg} \right)$	c) $\theta = \tan^{-1} \left(\frac{r^2}{vg} \right)$	d) $\theta < \tan^{-1} \left(\frac{v^2}{rg} \right)$	
755.	A frictionless track ABCD	E ends in a circular loop of	radius <i>R</i> , figure. A body sli	des down the track from	
			ue of R for the body to succ		
	is				
	$ \begin{array}{c} A \\ D \\ C \\ E \end{array} $				

756. A stone of mass $16 \, kg$ is attached to a string $144 \, m$ long and is whirled in a horizontal circle. The maximum tension the string can withstand is $16 \, Newton$. The maximum velocity of revolution that can be given to the stone without breaking it, will be

a) $20 ms^{-1}$

a) 5 cm

b) $16 \, ms^{-1}$

b) 15/4 cm

c) $14 \, ms^{-1}$

c) 10/3 cm

d) $12 ms^{-1}$

d) 2 cm

757. When a projectile is projected at a certain angle with the horizontal, its horizontal range is R and time of

flight is T_1 . When the same projectile is throwing with the same speed at some other angle with the horizontal, its horizontal range is R and time of flight is T_2 . The product of T_1 and T_2 is

a)
$$\frac{R}{g}$$

b)
$$\frac{2R}{g}$$

c)
$$\frac{3R}{g}$$

d)
$$\frac{4R}{g}$$

758. If $\vec{P} = 4\hat{\imath} - 2\hat{\jmath} + 6\hat{k}$ and $\vec{Q} = \hat{\imath} - 2\hat{\jmath} - 3\hat{k}$, then the angle which $\vec{P} + \vec{Q}$ makes with x-axis is

a)
$$\cos^{-1} \left(\frac{3}{\sqrt{50}} \right)$$

b)
$$\cos^{-1} \left(\frac{4}{\sqrt{50}} \right)$$

a)
$$\cos^{-1}\left(\frac{3}{\sqrt{50}}\right)$$
 b) $\cos^{-1}\left(\frac{4}{\sqrt{50}}\right)$ c) $\cos^{-1}\left(\frac{5}{\sqrt{50}}\right)$ d) $\cos^{-1}\left(\frac{12}{\sqrt{50}}\right)$

d)
$$\cos^{-1} \left(\frac{12}{\sqrt{50}} \right)$$

759. A small block is shot into each of the four tracks as shown below. Each of the frictionless track rises to the same height. The speed, which the block enters the tracks, is same in all cases. At the highest point of the track, normal reaction is maximum in

- 760. A particle moves in a circle with a uniform speed. When it goes from a point A to a diametrically opposite point *B*, the momentum of the particle changes by $\vec{\mathbf{p}}_A - \vec{\mathbf{p}}_B = 2 \text{ kg ms}^{-1}(\hat{\mathbf{j}})$ and the centripetal fore acting on it changes by $\vec{\mathbf{F}}_A - \vec{\mathbf{F}}_B = 8 \,\mathrm{N}(\hat{\mathbf{i}})$ where $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ are unit vectors along X and Y axes respectively. The angular velocity of the particle is
 - a) Dependent of its mass b) 4 rad s^{-1}
- c) $\frac{2}{5}$ rad s⁻¹
- 761. A roller coaster is designed such that riders experience "weightlessness" as they go round the top of a hill whose radius of curvature is 20 m. The speed of the car at the top of the hill is between
 - a) $16 \, m/s$ and $17 \, m/s$
- b) 13 m/s and 14 m/s c) 14 m/s and 15 m/s
- d) $15 \, m/s$ and $16 \, m/s$
- 762. If a particle of mass m is moving in a horizontal circle of radius r with a centripetal force $(-k/r^2)$, the total energy is

a)
$$-\frac{k}{2r}$$

b)
$$-\frac{k}{r}$$

c)
$$-\frac{2k}{r}$$

d)
$$-\frac{4k}{r}$$

a) $-\frac{k}{2r}$ b) $-\frac{k}{r}$ c) $-\frac{2k}{r}$ d) $-\frac{4k}{r}$ 763. Two vectors \vec{A} and \vec{B} are inclined at an angle θ . Now if the vectors are interchanged then the resultant turns through an angle β . Which of the following relation is true

a)
$$\tan \frac{\alpha}{2} = \left(\frac{A-B}{A+B}\right)^2 \tan \frac{\theta}{2}$$

b)
$$\tan \frac{\alpha}{2} = \left(\frac{A-B}{A+B}\right) \tan \frac{\theta}{2}$$

c)
$$\tan \frac{\alpha}{2} = \left(\frac{A-B}{A+B}\right)^2 \cot \frac{\theta}{2}$$

d)
$$\tan \frac{\alpha}{2} = \left(\frac{A-B}{A+B}\right) \cot \frac{\theta}{2}$$

764. A string of length L is fixed at one end and the string makes $\frac{2}{\pi}$ rev/s around the vertical axis through, the fixed and as shown in the figure, then tension in the string is

a) *ML*

b) 2 ML

c) 4 ML

- d) 16 ML
- 765. An electric fan has blades of length 30 cm measured from the axis of rotation. If the fan is rotating at 120 rpm, the acceleration of a point on the tip of the blade is
 - a) 1600 ms^{-2}
- b) 47.4 ms^{-2}
- c) 23.7 ms^{-2}
- d) 50.55 ms^{-2}