GPLUS EDUCATION

	re : ne : rks :	SOME BASIC CONC	EPTS OF CHEMISTRY	CHEMISTRY
		Single Corre	ct Answer Type	
1.	Weight of oxygen in one	mole each of Fe ₂ O ₃ and F	eO is in the simple ratio of:	
	a) 3:2	b) 1:2	c) 2:1	d) 3:1
2.	Equivalent weight of a b	ivalent metal is 37.2. The	molecular weight of its chlo	ride is
	a) 412.2	b) 216	c) 145.4	d) 108.2
3.	0.0833 mole of carbohyo the carbohydrate is	drate of empirical formula	1 CH ₂ O contain 1 g of hydrog	gen. The molecular formula of
	a) $C_5H_{10}O_5$	b) C ₃ H ₄ O ₃	c) $C_{12}H_{22}O_{11}$	d) $C_6H_{12}O_6$
4.		f $Zn(OH)_2$ in the following	g reaction is equal to its,	
	$Zn(OH)_2 + HNO_3 \rightarrow Zn$			
	a) Formula wt. 1	b) $\frac{\text{Formula wt.}}{2}$	c) $2 \times formula wt$.	d) $3 \times$ formula wt.
_	_	4		
5.	=	ved in 90 g of water. The r		D 0 0406
_	a) 0.1	b) 0.01	c) 0.2	d) 0.0196
6.			d yield a residue weighing	D 2 22
7	a) 2.16 g	b) 2.48 g	c) 2.64 g	d) 2.32 g
7.			the solution required 2.5 m	
				dded when a further 2.5 mL
			CO ₃ in 1 litre of the solution c) 4.2 g and 5.3 g	
Ω	a) 5.3 g and 4.2 g	b) 3.3 g and 6.2 g one molecule of water (d	2 0	d) 6.2 g and 3.3 g
8.	a) 18 cm ³	b) 22400 cm ³	c) $6.023 \times 10^{-23} \text{cm}^3$	d) 2.0×10^{-23} cm ³
9.	•	*	r's apparatus displaces 67.2	•
7.	molecular weight of the		is apparatus displaces 07.2	ciii oi aii at (317). Tile
	a) 130	b) 17	c) 170	d) 1700
10	•	•	HCL to get 1 L of 3 M HCL?	u) 1700
10.	a) 0.25 L	b) 1.00 L	c) 0.75 L	d) 2.50 L
11	•	olar sodium carbonate sol	,	u) 2.50 L
11.	a) 2	b) 1	c) 0.5	d) 1.5
12	-		$\frac{2}{4}$, then total number of ions	-
12,	will be	74 21120 21130 100	4, then total namber of folio	produced by oil in 112504
	a) 9.03×10^{21}	b) 3.01×10^{22}	c) 6.02×10^{22}	d) 1.8×10^{23}
13.	,	•	•	lent weight of the element is:
				_
	a) $[W_1 / W_2] \times 8$	b) $\left[\frac{1}{W_2 - W_1}\right] \times 8$	c) $\left[\frac{W_2 - W_1}{W_1}\right] \times 8$	d) $\left[\frac{1}{W_1 - W_2}\right] \times 8$
14.	A sample of ammonium	2 1	ntains 6.36 moles of hydrog	1 2
	moles of oxygen atom in		, ,	
		04, H = 1, P = 31, O = 16)	
	a) 0.265	b) 0.795	c) 2.12	d) 4.14
15.	To neutralise 20 mL of A	$M/\sqrt{10}$ NaOH, the volume o	f M/20 HCl needed is:	
	a) 10 mL	b) 30 mL	c) 40 mL	d) 20 mL

16.	. A, E, M and n are the atomic weight, equivalent weight, molecular weight and valence of an element. The				
	correct relation is:				
	a) $A = E \times n$	b) $A = M/E$	c) $A = M/n$	d) $M = A \times n$	
17.			_	unt of energy respectively?	
	a) J and erg	b) erg and cal	c) Cal and eV	d) eV and L-atm	
18.	=	esent in a 0.635 g of Cu piec			
	a) 6.023×10^{-23}	b) 6.023×10^{23}	c) 6.023×10^{22}	d) 6.023×10^{21}	
19.		_	ressure will be consumed in		
	•	•	uction of boron trichloride		
	a) 89.6 L	b) 67.2 L	c) 44.8 L	d) 22.4 L	
20.			molecules is n moles of gas		
0.4	a) 8.314	b) 6.02×10^{23}	c) 1.602×10^{-24}	d) 1.66×10^{-19}	
21.	=	ular formula = empirical fo	ormula \times n . The n may have	re:	
	a) Any value				
	b) Zero value	,			
	c) Only positive integer v	alue			
0.0	d) None of the above	F (0 0 1 00			
22.		ves 5.6 g CaO and g CO_2 .) (=	1) 4.0	
20	a) 4.4	b) 5.6	c) 6.5	d) 4.2	
23.	_	anges with increase in tem	iperature?		
	a) Molality				
	b) Weight fraction of solute				
	c) Fraction of solute pres	ent in water	>		
24	d) Mole fraction On combustion of 4 g of t	ha mathana 10 16 ki af hac	at is liberated. Heat of some	nustion of mothers is	
24.	a) 83.68 kJ	b) 10.46 kJ	at is liberated. Heat of comb		
25		e formula $(CO)_x$. Its VD is 70	c) 41.84 kJ	d) 20.93 kJ	
۷۵.	a) 7	b) 4	c) 5	d) 6	
26.	Choose the wrong statem	b) 4 sent.	CJS	u) o	
	a) 1 mole means 6.023×	10 ²³ particles			
	b) Molar mass is mass of	one molecule			
	c) Molar mass is mass of	one mole of a substance			
	d) Molar mass is molecula	ar mass expressed in gram	S		
27.	The term standard solution	on is used for the solutions	whose:		
	a) Normality is known	b) Molarity is known	c) Strength is known	d) All of these	
28.	The ratio of mole fraction	of a solute and a solvent in	n a binary solution is:		
	a) Ratio of their wt.	b) One	c) Ratio of their mole	d) Zero	
29.	If in a reaction HNO ₃ is re		INO_3 absorbing one mole o	f electrons would be	
	a) 21.0 g	b) 36.5 g	c) 18.0 g	d) 31.5 g	
30.	At STP 5.6 litre of a gas w	eighs 60 g. The vapour den	-		
	a) 60	b) 120	c) 30	d) 240	
31.		esent in 16 g of oxygen gas i		0.0	
	a) $6.02 \times 10^{11.5}$	b) 3.01×10^{23}	c) $3.01 \times 10^{11.5}$	d) 6.02×10^{23}	
32.		=	· -	ratio of 254 g of iodine (at.	
			e formula of the compound		
	a) IO	b) I ₂ 0	c) I ₂ O ₃	d) I_2O_5	
33.			s 95 and the specific heat o	t the metal is 0.13 cal/g.	
	The equivalent weight of		3.40.6	12.04.5	
	a) 6.0	b) 12.3	c) 18.6	d) 24.5	

34.	The equivalent weight of	a certain trivalent element	t is 20. Molecular weight of	its oxide is
	a) 152	b) 56	c) 168	d) 68
35.	Gram molecular volume	of oxygen at STP is		
	a) 3200 cm ³	b) 5600 cm ³	c) 22400 cm ³	d) 11200 cm ³
36.	Two elements X (at. Wt.	75) and Y (at. wt. 16) comb	oine to give a compound ha	ving 75.8% of <i>X</i> . The
	formula of compound wi	ll be		
	a) <i>XY</i>	b) <i>X</i> ₂ <i>Y</i>	c) <i>XY</i> ₃	d) X_2Y_3
37.	The amount of oxalic acid	· -	repare 500 mL of its 0.1 N s	
	a) 0.315 g	b) 6.3 g	c) 3.15 g	d) 63.0 g
38.	, ,	KMnO ₄ for acid solution is		, 0
	a) 79	b) 52.16	c) 158	d) 31.6
39.	•		on with acidified Mohr's sal	•
	-		f Mohr's salt required per n	_
	a) 3	b) 4	c) 5	d) 6
40.	•	,	of one litre capacity at 0°C.	
				n. the number of molecules
	of oxygen present in the	-	,	
			20	d) 1000
	a) $\frac{6.02 \times 10^{23}}{22.4}$	b) 6.02×10^{23}	c) 22.4×10^{22}	a) 1000
41.		n HNO2 and the solution w	as treated with excess of Na	aCl when 2.87 g of <i>AgCl</i> was
	precipitated. The value o			3 0
	a) 1.08 g	b) 2.16 g	c) 2.70 g	d) 1.62 g
42.	One mole electron means		., 8	., ₈
	a) N electrons	- di		
	b) 6.023×10^{23} electron	S		
	c) 0.55 mg electrons	7		
	d) All of these			
43.	1	arbon pencil weights 1 mg.	What is the number of carb	on atoms present in the
	signature?		LATION	•
	a) 5.02×10^{23}	b) 5.02×10^{20}	c) 6.02×10^{20}	d) 0.502×10^{20}
44.			e 63.5 g of Cu ²⁺ will be near	-
	a) 63.5 g	b) 31.75 g	c) 34 g	d) 20 g
45.	-	, .	the equivalent weight of the	
	content is 20% by weigh		1	
	a) 16	b) 32	c) 8	d) 64
46.	•	,	oms of carbon per molecul	
		is the percentage of carbon	-	
	a) 59.9%	b) 75%	c) 69.98%	d) None of these
47.	•	ng concentration is indepen	•	,
	a) Molality	b) Per cent by weight	c) Mole fraction	d) All of these
48.	-	_	\times 10 ²⁰ electrons. The number	=
10.	a) 0.1	b) 0.01	c) 0.001	d) 0.0001
49		SO ₄ required to neutralise 3	•	a) 0,0001
17.	a) 100 mL	b) 300 mL	c) 400 mL	d) 200 mL
50		ortions is not applicable to		d) 200 IIIL
JU.	a) Nitrogen atomic weigh		b) Nitrogen molecular w	aight is variahla
	c) Nitrogen equivalent w		d) Oxygen atomic weight	_
51		-	95 g of oxide. The equivaler	
JI.	a) 1.52	b) 0.995	c) 190	d) 9
	u, 1104	0101770	U) 170	u, ,

52.	A hydrocarbon contains 10.5 g carbon and 1 g hydrogen. Its 2.81 g has 1L volume at 1 atm and 127°C,				
	hydrocarbon is	13.4.4			
	a) C ₆ H ₇	b) C ₇ H ₈	c) C ₅ H ₆	d) None of the above	
53.		on reaction with nitrous ac			
	a) 1.0 L of nitrogen	,	c) 11.2 L of nitrogen		
54.		acid needed for dissolving	= =		
	a) 3.5 g	b) 7.0 g	c) 1.7 g	d) 17.0 g	
55.	When a metal is burnt, it	ts weight is increased by 24			
	a) 25	b) 24	c) 33.3	d) 76	
56.		l by heating it in a stream of	• •	after complete reduction,	
	3.15 g of oxide yielded 1	.05 g of metal. From the abo	ove data we can say that		
	a) The atomic weight of	metal is 8	b) The atomic weight of i	metal is 4	
	c) The equivalent weigh		d) The equivalent weight		
57.	The ratio of amounts of	H ₂ S needed to precipitate a	all the metal ions from 100	mL of 1 M AgNO $_3$ and	
	100mL of CuSO ₄ , will be	9			
	a) 1:1	b) 1:2	c) 2:1	d) None of these	
58.	The mole fraction of NaC	Cl in a solution containing 1	mole of NaCl in 1000 g of v	vater is :	
	a) 0.0177	b) 0.001	c) 0.5	d) 0.244	
59.	Which is correct for Na ₂	HPO ₃ ?		•	
	a) It is not an acid salt		c) Ox. no. of P is $+3$	d) All of these	
60.		ll be needed to prepare 250		,	
	a) 1 g		c) 4 g	d) 6 g	
61.	, 0	netallic element is 0.214 cal		, ,	
	a) 66	b) 12	c) 30	d) 65	
62.	•		,	m of this ore would have to	
		obtain 1.00 g of pure solid			
	a) 74.6 g	b) 85.7 g		d) 134.0 g	
63.	, .	g numbers all zeros are sign		., 8	
	a) 0.500	b) 30.000		d) 0.0050	
64.	=		,	of g atom of that element in	
	40 kg?	8		5. 8 mee e. man e e e e	
	~	b) 10 ⁶	c) 1.5×10^3	d) None of these	
65	In a compound $A_x B_y$:	5) 10	c) 1.5 × 10	a) None of these	
05.	a) Mole of $A = \text{mole of } B$	P - mole of A P			
	•	•			
	b) Eq. of $A = \text{Eq. of } B =$				
		$\times X \text{ mole of } B = (X + Y) X$	mole of $A_x B_y$		
	d) $Y \times X$ mole of $A = Y$				
66.		found to combine with 80		calcium (Valency =2)	
	combines with 4 g of bro	omine. The equivalent weig	ht of calcium is		
	a) 10	b) 20	c) 40	d) 80	
67.	A bivalent metal has an	equivalent mass of 32. The	molecular mass of the meta	ıl nitrate is	
	a) 182	b) 168	c) 192	d) 188	
68.	12 g of Mg (at. wt. = 24)) will react completely with	an acid to give:		
		13 10 1 0	a) On a mala of O	d) None of these	
	a) One mole of H ₂	b) Half mole of H ₂	c) One mole of O ₂	d) None of these	
69.	_	b) Half mole of H ₂ netal (M) is 27 and its equi			
69.	_				
	The atomic weight of a raa) <i>MCl</i>	M is 27 and its equivalent	valent weight is 9, the form c) M_3 Cl ₄	ula of its chloride will be: d) MCl ₃	

	a) 16	b) 32	c) 48	d) 12
71.	5.85 g of NaCl dissolved in	H ₂ O and solution is made	upto 500 mL. The molarity	vis:
	a) 0.1	b) 0.2	c) 1.0	d) 0.117
72.	Which property of an elem		,	,
	a) Valence	b) At. wt.	c) Eq. wt.	d) None of these
73.	The oxide of an element po	•	* *	•
	atomic weight of the meta		1	
	a) 9	b) 18	c) 27	d) 54
74.	$0.7 \text{ g of Na}_2\text{CO}_3 \cdot x\text{H}_2\text{O we}$,	*	
			neutralisation. The value of	
	a) 7	b) 3	c) 2	d) 5
75.	The specific heat of an elem			,
	a) 0.25 cal/g	b) 0.24 cal/g	c) 0.20 cal/g	d) 0.15 cal/g
76.	Number of atoms in 560 g	· -	, , ,	, , , ,
	a) Twice that of 70 g N	b) Half that of 20 g H	c) Both are correct	d) None of these
77.	A 400 mg iron capsule con	,		•
	in it is approximately	Ü	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	a) 33%	b) 25%	c) 14%	d) 8%
78.	Equal weights of Zn metal	and iodine are mixed toge		•
	fraction by weight of origin			-
	a) 0.34	b) 0.74	c) 0.84	d) Unable to predict
79.	An aqueous solution conta	nining 6.5 g of NaCl of 90%	purity was subjected to ele	ectrolysis. After the
	complete electrolysis, the	solution was evaporated to	get solid NaOH. The volur	ne of 1 M acetic acid
	required to neutralise NaC	OH obtained above is		
	a) 1000 cm ³	b) 2000 cm ³	c) 100 cm ³	d) 200 cm ³
80.	Which of the following is o	correct?		
	a) Mole fraction of I + mol	le fraction of II = 1	ΔΤΙΩΝ	
	(ii only two component	s are present)	111111111	
	_	nole of I		
		nole of II		
	(if only two component			
	Mole fraction of solute : c) mole of sol			
	mole of solute+mol			
	d) All of the above			
81.	The number of significant	figures in Avogadro's num	ber is	
	a) Four	b) Two	c) Three	d) Can be any of these
82.	A gas has a vapour density			
	a) 1 L	b) 11.2 L	c) 22.4 L	d) 4 L
83.	A metal nitride, M_3N_2 cont	tains 28% of nitrogen. The	atomic mass of metal, M is	
	a) 24	b) 54	c) 9	d) 87.62
84.	An oxide of iodine $(I = 12)$			
	a) I_2O_3	b) I ₂ 0	c) I_2O_5	d) I ₂ O ₇
85.		.5 moles of H_3O^+ ions in its	s aqueous solution. The val	ue of 1 g eq. of the acid will
	be:			
	a) 40 g	b) 20 g	c) 10 g	d) 100 g
86.	10 mL of gaseous hydroca	rbon on combustion gives	$40 \text{ mL of } CO_2(g) \text{ and } 50 \text{ m}$	L of H ₂ O (vap). The
	hydrocarbon is:	120 11)	D C H
87	a) C ₄ H ₅	b) C ₈ H ₁₀	c) C ₄ H ₈	d) C_4H_{10}
	THE ME OF CONCONTRATOR H.	SIL LIN WILL AUDITAGE TO AN	a mra i na annrovimato mo	THE CHAIR OF THE CHILL'S ACID IC

101. 1.5 g of a divalent metal displaced 4 g of copper (at. wt. = 63.8) from a solution of copper sulphate. The atomic weight of the metal is:
a) 12
b) 24
c) 48
d) 6

102. 4 g of copper was dissolved in concentrated nitric acid. The copper nitrate solution on strong heating gave 5 g of its oxide. The equivalent weight of copper is

c) CH₂

a) CH

b) CH₃

d) CH₄

Gplus	Education
d) 20	

are E_1 and E_2 respective	vely, the correct expression	n for the equivalent weight	
$a) E_1 = \frac{w_1}{w_2} \times E_2$	b) $E_1 = \frac{w_2 \times E_2}{w_1}$	$c) E_1 = \frac{w_1 \times w_2}{E_2}$	$d) E_1 = \sqrt{\frac{w_1}{w_2} \times E_2}$
104. The weight of an atom	of atomic mass 260 amu is	S:	•
_		c) 4.32×10^{-24} g	d) 4.32×10^{-21} g
			s 45. The molecular formula of
the compound is			
a) CH ₂ O	b) C ₂ H ₅ O	c) C_2H_2O	d) $C_3H_6O_3$
106. 10 g of hydrogen and 6 this reaction will be:	64 of oxygen were filled in		d. Amount of water produced in
a) 1 mole	b) 2moles	c) 3 moles	d) 4 moles
107. If one mole of H_2SO_4 re	•	•	
a) 2	b) 1	c) 3	d) 4
· ·		C) 3	u) 4
108. The mass of 112cm ³ or		a) 0.00 a	J) 1 (~
a) 0.16 g	b) 0.8 g	c) 0.08 g	d) 1.6 g
109. Which term is to be co			
a) Molarity	b) Normality	c) Formality	d) None of these
_			approximately 0.33% of iron
		as 67,200. The number of	iron atoms in each molecule of
= -	c weight of iron = 56):		
a) 2	b) 3	c) 4	d) 5
111. If two compounds have			
-	e composition		9
c) Same viscosity	Capitic EDI	d) Same vapour densi	ty
112. 0.1 mole of a carbohyd formula?	lrate with empirical formu	la CH ₂ O contains 1 g of hyc	drogen. What is its molecular
a) $C_5H_{10}O_5$	b) C ₆ H ₁₂ O ₆	c) $C_4H_8O_4$	d) $C_3H_6O_3$
113. Mole fraction of the so	lute in a 1.00 molal aqueοι	ıs solution is:	
a) 1.7700	b) 0.1770	c) 0.0177	d) 0.0344
114. How many moles of m	agnesium phosphate, Mg ₃ ($(PO_4)_2$ will contain 0.25 m	ole of oxygen atoms?
a) 0.02	b) 3.125×10^{-2}	c) 1.25×10^{-2}	
115. 2 g of mixture of CO an	100° on reaction with exc	cess I ₂ O ₅ produced 2.54 g o	of I ₂ . What would be the mass
% of CO ₂ in the origina	al mixture?		
a) 60	b) 30	c) 70	d) 35
116. On analysis a certain c	ompound was found to cor	ntain iodine and oxygen in	the ration 254 g of iodine and
-	_	and that of oxygen is 16. W	_
a) IO	b) I ₂ 0	c) I_5O_2	d) I ₂ O ₅
_	gas A is three times that of	f gas B. If the molecular we	ight of A is M , the molecular
weight of B is:	O		
a) 3 <i>M</i>	b) $\sqrt{3} M$	c) M/3	d) $M/\sqrt{3}$
118. A sample of pure Cu (3	* '	,	• /
	=:	nal weight is 3.92 g. What p	_
a) ≈ 6.5	b) ≈ 6.9	c) ≈ 7.6	d) ≈ 7.9
	•	*	nt mass of the oxidizing agent?

c) 12

a) 23

b) 32

_					
Gpi	liic	Fai	ICO	ITI0	n
UD	ıus	Lui	auu	$\iota\iota\iota\iota\upsilon$	

	$SO_2 + H_2O \rightarrow 3S + 2H_2O$			•
	a) 64	b) 32	c) 16	d) 48
120			ght and the vapour density	of it is 50. The atomic
	weight of the metal will be			
	a) 29	b) 58	c) 35.5	d) 71
121		ed with 0.2 mole of Na ₃ PO	₄ , the maximum number of	Fmoles f $Ba_3(PO_4)_2$ that can
	be formed is	120=		D 0 40
100	a) 0.7	b) 0.5	c) 0.03	d) 0.10
122	. How many significant figu	` •	rely)	
	(1)73.000 g (2) 0.0503 g s) 2 5 4	D # 2 4
122	a) 3,3,4	b) 3,4,5	c) 2,5,4	d) 5,3,4
123			containing 342 g of $Al_2(SO_4)$) ₃ In :
	a) One litre of solution is			
	b) One litre of solution is 3c) 1000 g of water is 3 no			
	d) 2 litre of solution is 3 n			
124	•		O ₂ Equivalent weight of Na	-CO- is
127		b) <i>M</i>	c) 2M	
	a) $\frac{M}{2}$	<i>b) 1.1</i>	c) 21·1	d) $\frac{M}{4}$
125	. Two oxides of a metal con	tain 50% and 40% metal ((M) respectively. If the form	nula of fist oxide is MO_2 , the
	formula of second oxide v			
	a) <i>MO</i> ₂	b) <i>MO</i> ₃	c) M ₂ O	d) M_2O_3
126	. An organic compound on	analysis was found to cont	ain 10.06% carbon, 0.84%	hydrogen and 89.10%
	chlorine. What will be the	empirical formula of the s	ubstance?	
	a) CH ₂ Cl ₂	b) CHCl ₃	c) CCl ₄	d) CH ₃ Cl
127			to water, occupies an appro	
	a) 18 litre	b) 1 litre	c) 1 mL	d) 18 mL
128	. Which statement is correc		SECTION	
	a) Atomic weight of an ele			
	b) Molecular weight chan	~		
	c) Equivalent weight char	iges with valence		
120	d) None of the above		СОГМ1-: b d	-1 A Ch
129		-	60.5 M calcium hydroxide s	
	-	-	ate was evaporated to dryndrochloric acid. The volum	
	required is (Atomic mass	-	arocinoric acia. The volum	e of flydfocilloric acid
	a) 300 cm ³	b) 200 cm ³	c) 500 cm ³	d) 400 cm ³
130	. 9.8 g of H_2SO_4 is present i	•	-	uj 400 cili
150	a) $0.1 M$	b) 0.05 <i>M</i>	c) 0.01 <i>M</i>	d) 0.2 <i>M</i>
131	. The number of mole pres	,		a) 012 1·1
	a) 2	b) 1	c) 0.1	d) 0.5
132	-		tance. If 100 mL of A are m	,
			al molarity of the solution is	
	a) 0.15 <i>M</i>	b) 0.18 <i>M</i>	c) 0.12 <i>M</i>	d) 0.30 <i>M</i>
133	. The gravimetric composit	•		
	a) 1:1	b) 1:2	c) 1:8	d) 1:16
134	•		ed with sodium carbonate s	
			bonate so obtained is heate	
		aCl in the mixture (atomic		

135. In the reaction,			
2Al(s) + 6HCl(aq)	$\rightarrow 2Al^{3+}(aq) + 6Cl^{-}(aq) + 3l^{-}$	$H_2(g)$	
	onsumed for every 3 L H ₂ (g) p		
b) 33.6 L H ₂ (g) is p	roduced regardless of temper	ature and pressure for eve	ry mole Al that reacts
	STP is produced for every mole		
	STP is produced for every mole		
	f oxygen present in 10.6 g of N		20
a) 6.02×10^{23}	b) 12.04×10^{22}	c) 1.806×10^{23}	d) 31.80×10^{28}
			er water at 293 K and 755 mm
=	our pressure of $H_2O = 17.4 \text{ m}$	_	
a) 222.2	b) 332.3 er molecules present in a drop	c) 121.1	d) 127.5
a) 6.023×10^{19}	b) 1.084×10^{18}	c) 4.84× 10 ¹⁷	d) 6.023×10^{23}
*	f a metal whose equivalent ma	•	•
mass of the elemen			-2 44 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a) 1.75 g	b) 0.875 g	c) 3.50 g	d) 7.00 g
140. Law of multiple pro	oportions is illustrated by one	of the following pairs	
a) H ₂ S and SO ₂	b) NH ₃ and NO ₂	c) Na ₂ S and Na ₂ O	d) N ₂ O and NO
141. Amount of oxygen	required for combustion of 1 k		nd isobutane is:
a) 1.8 kg	b) 2.7 kg	c) 4.5 kg	d) 3.58 kg
142. About a gaseous re			
$xX + yY \rightarrow lL + m$			
Which statement is	swrong?	and wmales of V combi	nos with a moles of V to give I
a) $\frac{x}{M}$	omes with y hare of T to give L	b) and M	nes with y moles of Y to give L
x number of mo	lecules of X combine with y		
	cules of Y to form L and M	d) x g of X combines v	with $y \in A$ give M and L
143. The simplest formu	ıla of a compound containing S	50% of element X (at. wt. 1	0) and 50% of element Y (at.
wt. 20) is:			
a) <i>XY</i>	b) <i>X</i> ₂ <i>Y</i>	c) <i>XY</i> ₂	d) X_2Y_3
	e of KCl in 1000 mL of 3 molar		
a) 1.5	b) 3.0	c) 1.0	d) 4.0
-			$_3 \cdot 5H_2O$ (mol. wt. = 248.0). A
note counting maci	nine counts 60 million notes p	er day. How much day wou	id be taken to count these
a) 10 ¹⁷			
•	$h) 10^{10}$	c) 10 ¹⁵	$d) 10^{12}$
146 An ovide of sulphu	b) 10^{10}	c) 10^{15}	d) 10 ¹²
=	r contains 50 % S. what will be	e its empirical formula?	,
a) SO	c contains 50 % S. what will be b) SO_2	,	d) 10 ¹² d) S ₂ O ₃
a) SO	r contains 50 % S. what will be	e its empirical formula?	,
a) SO 147. 8 g of O ₂ has the sa a) 7 g of CO	r contains 50 % S. what will be b) SO_2 me number of molecules as: b) 11 g of CO_2	e its empirical formula? c) SO ₃ c) 7 g of N ₂	d) S ₂ O ₃
a) SO 147. 8 g of O ₂ has the sa a) 7 g of CO	r contains 50 % S. what will be b) SO_2 me number of molecules as: b) 11 g of CO_2	e its empirical formula? c) SO ₃ c) 7 g of N ₂	d) S_2O_3 d) All of these
 a) SO 147. 8 g of O₂ has the sa a) 7 g of CO 148. When 10 g of 90% a) 22.4 149. Mass of 0.1 mole of 	r contains 50 % S. what will be b) SO ₂ me number of molecules as: b) 11 g of CO ₂ pure lime stone is heated com b) 2.24 f methane is	e its empirical formula? c) SO_3 c) 7 g of N_2 pletely, the volume (in litre c) 20.16	d) S_2O_3 d) All of these es) of CO_2 is liberated at STP is d) 2.016
a) SO 147. 8 g of O ₂ has the sa a) 7 g of CO 148. When 10 g of 90% a) 22.4 149. Mass of 0.1 mole o a) 1 g	r contains 50% S. what will be b) SO_2 me number of molecules as: b) $11 \text{ g of } CO_2$ pure lime stone is heated com b) 2.24 f methane is b) 16 g	e its empirical formula? c) SO_3 c) $7 g$ of N_2 pletely, the volume (in litre c) 20.16	d) $\rm S_2O_3$ d) All of these es) of $\rm CO_2$ is liberated at STP is
a) SO 147. 8 g of O ₂ has the sa a) 7 g of CO 148. When 10 g of 90% a) 22.4 149. Mass of 0.1 mole o a) 1 g	r contains 50 % S. what will be b) SO ₂ me number of molecules as: b) 11 g of CO ₂ pure lime stone is heated com b) 2.24 f methane is	e its empirical formula? c) SO_3 c) $7 g$ of N_2 pletely, the volume (in litre c) 20.16	d) S_2O_3 d) All of these es) of CO_2 is liberated at STP is d) 2.016

c) 25

a) 75

b) 30.6

151. Eq	ıual weight of Fe ₂ O ₃ an	d FeO has weight of oxyger	n in the ratio:	
	1.35	b) 0.74	c) 0.37	d) 2.7
		lute per kg of solvent is call	led:	
a)	Mole fraction of solute			
b)	Normality			
c)	Molarity			
d)	Molality			
153. Th	ne empirical formula of a	a compound is CH ₂ O. If its V	VD is 30, its molecular form	ıula is:
a)	CH_2O	b) $C_2H_4O_2$	c) $C_3H_6O_3$	d) CH ₃ OH
154. Th	ne decomposition of a ce	ertain mass of CaCO ₃ gave 1	$11.2 \mathrm{dm}^3$ of CO_2 gas at STP.	The mass of KOH required
	completely neutralise t			•
	56 g	b) 28 g	c) 42 g	d) 20 g
-	-	ered from a smuggler. How	, ,	
	100	b) 6.02× 10 ²³	c) 6.02×10^{24}	d) 6.02×10^{25}
-		on being strongly heated y	•	a) 01027. 10
	2.16 g	b) 2.48 g	c) 2.32 g	d) 2.64 g
	_	ivalent weight of K ₂ Cr ₂ O ₇		u) 2.01 g
137.111	acidic inediam, the equ			М
a)	M	b) $\frac{M}{2}$	c) M/3	d) $\frac{6}{6}$
aj	IVI	b) 2	0 3	u) o
150 W	hich has the highest ma	cc?		
	1 g-atom of C	33:	~	
-	-			
-	1/2 mole of CH ₄			
-	10 mL of water			
-	3.011×10^{23} atoms of		MARKET AND DE	
		sent in a mole of CH_3COOC_2	₂ H ₅ ?	
	$14 \times 6.02 \times 10^{23}$ atom			
_	$10 \times 6.02 \times 10^{23}$ atom	•		
	$7 \times 6.02 \times 10^{23} \text{ atom/r}$	mol		
-	None of the above			
160. Vo	olume of 2 M HCl needed	d to neutralize the solution	containing one litre of 1 M	solution of NaOH is :
a)	1 litre	b) 2 litre	c) 3 litre	d) $\frac{1}{2}$ litre
	_			2 1110
	g of oxygen contains as	-		
_	80 g of hydrogen	b) 1 g of hydrogen	c) 10 g of hydrogen	d) 5 g of hydrogen
	,	5) and B (at. wt. = 25) com	•	Γhe compound contains
75	5% A by weight. The form	mula of the compound will		
a)	A_2B	b) A_3B	c) AB_3	d) <i>AB</i>
163. If 1	molecular weight of KM	nO_4 is M , then its equivalent	nt weight in acidic medium	would be
		<u>M</u>	<u>M</u>	<u>M</u>
a)	M	b) 2	c) 5	d) $\frac{1}{3}$
164 Ma	alaaulan uraiaht aftuiba	sia agid ia MV. Ita aguivalant	vivoi aht viill ho.	
	-	sic acid is W . Its equivalent	=	1) 2147
-	W/2	b) W/3	c) W	d) 3W
		$I/2$ H ₂ SO ₄ and 30 mL of N_I	$/3~\mathrm{HNO_3}$ are mixed togethe	r and volume made one
	re. The normality of the	-)	13. 27. (
-	N/5	b) N/10	c) N/20	d) N/40
		with 100 mL of 20% HCl s		
a)	22.4 L	b) 8.80 g	c) 4.40 g	d) 2.24 L
GPLU	JS EDUCATION W	EB: WWW.GPLUSEDUCATIO	ON.ORG PHONE N	O: 8583042324 Page 10

167.	The empirical formula of formula is	a compound is CH ₂ . One mo	ole of this compound has a	mass of 42 g. Its molecular
	a) C ₃ H ₆	b) C ₃ H ₈	c) CH ₂	d) C ₂ H ₂
168.	The volume of air needed	for complete combustion o	f 1 kg carbon at STP is:	
	a) 9333.33 litre	b) 933.33 litre	c) 93.33 litre	d) 1866.67 litre
169.	Mixture $X = 0.02$ mole of solution.	$[Co(NH_3)_5SO_4]Br$ and 0.02	mole of [Co(NH ₃) ₅ Br]SO ₄	was prepared in 2 L of
	1 L of mixture X + excess	$AgNO_3 \rightarrow Y$		
	1 L of mixture X + excess			
	Number of moles of <i>Y</i> and	_		
	a) 0.01, 0.01	b) 0.02, 0.01	c) 0.01, 0.02	d) 0.02, 0.02
170.	-	N/5 HCl and $N/10$ H ₂ SC	-	
	a) Acidic	b) Neutral	c) Alkaline	d) None of these
171.	•	ormality N and 2.5 litres of	•	
	had a normality 5. The va			
	a) 6	b) 10	c) 8	d) 4
172.	The number of water mol	•	<i>c</i> , <i>c</i>	w) 1
1, 2.	a) 18	b) 18 × 1000	c) <i>N</i> _A	d) 55.55 <i>N_A</i>
173	The maximum number of	•	C) IVA	a) 55.55 14
175.	a) 15 L of H ₂ gas at STP	molecules are present in	b) 5 L of N ₂ gas at STP	
	c) 0.5 g of H ₂ gas		d) $10 \text{ g of } O_2 \text{ gas}$	
174. Polyethylene can be produced from calcium carbide according to the following sequence of reactions				
17 4.	$CaC_2 + H_2O \rightarrow CaO + HC$:≡ CH	according to the following	sequence of reactions,
	$nHC \equiv CH + nH_2 \longrightarrow +CH_2 -$	-CH ₂ + /n		
	The mass of polyethylene	which can be produced fro	m 20.0 kg of CaC ₂ is:	
	a) 6.75 kg	b) 7.75 kg	c) 8.75 kg	d) 9.75 kg
175.	Calculate g-atom of eleme	ent in 40 kg, if weight of one		44×10^{-23} g:
	a) 10^2 g-atom	b) 10 g-atom	c) 10 ³ g-atom	d) None of these
176.	, ,	/vol.) solution of H ₂ SO ₄ of d	, ,	•
	a) 1.2	b) 1.4	c) 1.8	d) 1.6
177.	-	-	-	OH. Calculate the normality
	of the solution:	74. 74. 75. 76. 76. 76. 76. 76. 76. 76. 76. 76. 76	5 170 27	
	a) 4.8 <i>N</i>	b) 10 <i>N</i>	c) 0.5 N	d) 5.8 <i>N</i>
178	•	wt. = 342) are dissolved in	•	
1,01	1.1 g/mL, then:	via 512) are alsosived in	1000 g of water at 50 drift	the defibity of soldtion is
	a) Molarity < molality	b) Molarity = molality	c) Molality < molarity	d) None of these
170	, ,	ed for complete combustion	•	d) None of these
1/).	a) 24 g			d) 6 g
100	, 0	b) 12 g	c) 20 g	d) 6 g
180.	The least number of mole		a) 1 a nitua aan	d) 16 ~ CO
101	a) 2 g hydrogen	b) 8 g oxygen	c) 4 g nitrogen	d) 16 g CO ₂
181.	Which of the following is			
	$C(graphite) + O_2(gas) \rightarrow$	CO_2 , neat = -348 KJ?	1224	
	a) Heat absorbed	6	b) Mass of product >Mass	
	c) Mass of product < Mas		d) Mass of product = Mas	s ot reactant
182.	The molarity of 2 N H ₂ SO		2014	15 4 44
4 ~ -	a) 1 <i>M</i>	b) 2 <i>M</i>	c) 3 <i>M</i>	d) 4 <i>M</i>
183	Amount of ovalic acid pre	sent in a solution can be de-	termined by its titration w	ith KMn(), solution in the

presence of $\mathrm{H}_2\mathrm{SO}_4$. The titration given unsatisfactory result when carried out in the presence of HCl

WEB: WWW.GPLUSEDUCATION.ORG

PHONE NO: 8583042324 Page | 11

	because HCI		
	a) Gets oxidised by oxalic acid to chlo		
	b) Furnishes H ⁺ ions in addition to th	ose from oxalic acid	
	c) reduces permanganate to Mn ²⁺		
	d) Oxidises oxalic acid to carbon diox	de and water	
18	4. The mass of 112 cm^3 of CH_4 gas a STI	Pis	
	a) 0.16 g b) 0.8 g	c) 0.08 g	d) 1.6 g
18	5. The volume of oxygen necessary for t	, .	, ,
	a) 40 L b) 60 L	c) 80 L	d) 100 L
18	66. The value of gram molar volume of g	-	,
	a) 1 litre b) 22.4 litr		d) 22.4 litre at STP
18	7. Carbon dioxide contains 27.27% of ca		
	dioxide contains 50% of sulphur. Thi	-	•
	a) Law of conservation of mass	b) Law of definite p	proportions
	c) Law of multiple proportions	d) Law of reciproca	_
18	8. In a compound C, H, N atoms are pre	,	
	molecular formula is:	· · · · · · · · · · · · · · · · · · ·	
	a) $C_2H_6N_2$ b) C_3H_4N	c) $C_6H_8N_2$	d) C ₉ H ₁₂ N ₃
18	9. The total molarity of all the ions conta		
	a) 0.2 <i>M</i> b) 0.7 <i>M</i>	c) 0.8 <i>M</i>	d) 1.2 <i>M</i>
19	0. How much water is to be added to dil	_	
	a) 990 mL b) 1010 m		d) 1000 mL
10	1. Density of air at NTP is 0.001293 g/m		uj 1000 m2
	a) 0.001293 b) 1.293	c) 14.48	d) Cannot be calculated
10	2. The number of moles of water presen		aj damet be carcalacea
1,	a) 2 b) 3	c) 4	d) 5
10	3. If 30 mL of H_2 and 20 mL of O_2 reacts		
1.	a) 10 mL H_2 b) 5 mL H_2	and the second of the second s	d) 5 mL O ₂
10	4. The term atom molecule were introdu	To the their than the Print of	uj 5 mil 0 ₂
1.	a) Ostwald, Avogadro respectively	iccu by.	
	b) Dalton, Avogadro respectively		
	c) Avogadro, Dalton respectively		
	d) None of the above		
10	5. Arrange the following in the order of	ncreasing mass (atomic mass: 0 =	16 Cu = 63 N = 14)
	I. One atom of oxygen	mer easing mass (atomic mass, o	10, 64 05, 11
	II. One atom of nitrogen		
	III. 1×10^{-10} mole of oxygen		
	IV. 1×10^{-10} mole of copper		
		III < IV c) $III < II < IV < I$	d) IV < II < III < I
10	6. One part of an element A combines w	-	-
1,	with 4 parts of B . If A and C combine t		_
	a) Law of definite proportions	b) Law of multiple	
	c) Law of reciprocal proportions	d) Law of conserva	
10	7. A metal oxide has the formula Z_2O_3 . In	_	
1.	of the metal oxide required 6 mg of hy		
	a) 27.90 b) 159.60	c) 79.80	d) 55.80
10	18. x grams of calcium carbonate was con	•	
13	What is the value of x (in grams)?	inprocesy burne in air. The weight of	and some residue formed is 20 g.
	a) 44 b) 200	c) 150	d) 50
10	19. In a gaseous reaction of the type $aA + a$		u, 50
	2 a bases as reaction of the type un	winding.	

	-	ith b litre of B to give C an		•
		with b mole of B to give C and B	and <i>D</i>	
	c) a g of A combines with		to give C and D	
	a) a molecules of A combi	nes with <i>b</i> molecules of <i>B</i>	to give C and D	
200	. Which of the following are	e correct?		
		wt. in $g = wt.$ of N molecu	les	
	b) 1 mole = N molecules =			
	c) Mole = g molecules			
	d) All of the above			
201	. Cyclohexanol is dehydrate	ed to cyclohexene on heati	ng with conc H_2SO_4 . The cy	clohexene obtained from
	100 g cyclohexanol will be	9		
	(If yield of reaction is 75%	6)		
	a) 61.5 g	b) 75.0 g	c) 20.0 g	d) 41.0 g
202	•		gen in the ratio, nitrogen 28	g and 80 g of oxygen. The
	formula of the compound			
	a) NO	b) N_2O_3	c) N_2O_5	d) N_2O_4
203			$C_2H_4N_2(C_2H_2O_2Na)_4$. If each	
		+, then the rating of pure v	ersene expressed as mg of	CaCO ₃ bound per g of
	chelating agent is:	13.460	2.000	1) 0.60
204	a) 100 mg	b) 163 mg	c) 200 mg	d) 263 mg
204	. Which of the following is o			
	a) Meq. = $N \times V_{\text{in mL}} = \frac{N}{160}$	$\frac{M_{\rm q.wt.}}{M_{\rm p.wt.}} \times 1000$	>	
	b) Eq. = $N \times V_{\text{in mL}} = \frac{\text{wt}}{\text{Eq. v}}$			
	•		react to give same eq. or Me	a of products
	d) All of the above	in equivalent of reactaints i	cact to give same eq. of Me	q. or products
205		onate was found to require	e 50 mL of dilute HCl for co	mplete reactions. The
_00	strength of the HCl solution		ATIVI	p.ooo rouomono, riio
	a) 4 <i>N</i>	b) 2 <i>N</i>	c) 0.4 N	d) 0.2 <i>N</i>
206	. The number of atoms in 4			,
	a) 6×10^{23}	b) 2×10^{23}	c) 1.5×10^{23}	d) 1×10^{23}
207		acidic condition to Mn ²⁺	ions whereas they are redu	ced in neutral condition to
	MnO ₂ . The oxidation of 25	mL of a solution <i>X</i> contain	ning Fe ²⁺ ions required in a	acidic condition 20 mL of a
	solution Y containing MnO	0_4^- ions. What volume of so	olution Y would be required	to oxidise 25 mL of a
	solution X containing Fe ²	⁺ ions in neutral condition	?	
	a) 11.4 mL	b) 12.0mL	c) 33.3 mL	d) 35.0 mL
208	. Number of atoms of He in	100 u of He (atomic weigh	nt of He is 4) are	
	a) 25	b) 100	c) 50	d) $100 \times 6 \times 10^{-23}$
209			ucose (density 0.8 g/cm^3)	
	a) 2.68×10^{21}	b) 6.42×10^{22}	c) 2.68×10^{22}	d) 2.68×10^{23}
210	. For preparing $M/\ 10$ solution			
	a) 9.8 g	b) 49.0 g	c) 4.8 g	d) 0.09 g
211		es of isotopes 54Fe, 56Fe and	l_{57} Fe are 5%, 90% and 5%,	respectively, the atomic
	mass of Fe is	1) == 0=		D = 4.0=
240	a) 55.85	b) 55.95	c) 55.75	d) 56.05
<i>Z</i> 12			₃ PO ₄ dissolved in 500 g wa	
212	a) 1 m Which of the following is	b) 1 M	c) 1 <i>N</i>	d) 0.5 <i>M</i>
413	. Which of the following is o	LOTT CCL!		

				opius zaucation
	a) Mole = molarity $\times V_{\text{in I}}$	$_{\rm L} = \frac{\rm wt.}{\rm mol. \ wt.}$		
	b) Milli mole = molarity×	$V_{\text{in mL}} = \frac{\text{wt.}}{\text{mol, wt.}} \times 1000$		
	c) Mole and milli mole of d) All of the above	reactants react according t	to stoichiometric ratio of ba	alanced chemical equation
214	k. 100 g of CaCO ₃ is treated completion of the reaction		would be the weight of ${\rm CO_2}$	liberated after the
	a) 55 g	b) 11 g	c) 22 g	d) 33 g
215			2 g of the salt every day, th	e iodide ions going into his
	a) 7.2×10^{21}	b) 7.2× 10 ¹⁹	c) 3.6×10^{21}	d) 9.5× 10 ¹⁹
216	. The mass of 11.2 L of amr	nonia gas at STP is		
	a) 8.5 g	b) 85 g	c) 17 g	d) 1.7 g
217	'. 0.52 g of dibasic acid requacid is:	uired 100 mL of 0.1 <i>N</i> NaOI	H for complete neutralization	on. The equivalent weight of
	a) 26	b) 52	c) 104	d) 156
218	3. 100 tons of Fe_2O_3 contain		ve iron by reduction with <i>I</i>	H_2 equal to
	a) 112 tons	b) 80 tons	c) 160 tons	d) 56 tons
219	 25 mL of a solution of bar The molarity of Ba(OH)₂ 		n with 0.1 <i>M</i> solution of HC	l gave a titre value of 35 mL
	a) 0.28	b) 0.35	c) 0.07	d) 0.14
220	. Volume occupied by one			
		The second secon	c) $5.5 \times 10^{-23} \text{cm}^3$	
221			pound hydrazine is exactly	one and half times the
	mass of nitrogen in the co	ompound ammonia. The fac	ct illustrates the	
	a) Law of conservation of		b) Multiple valency of nit	•
	c) Law of multiple propor		d) Law of definite propor	tions
222	Strength of the solution is a) $S = N \times E$		MIIOIN	
	b) $S = \frac{\text{wt. of solute}}{\text{volume of solution}}$	e		
		in litre		
	c) $S = M \times \text{mol. wt.}$			
222	d) All of the above	. dtd. 0.2 l f.C - (OII)	TTI	616-CCO1:-
ZZ3		ed with 0.2 mole of Ca(OH); b) 0.5	2. The maximum number of	
224	a) 0.2	,	c) 0.4	d) 1.5
224	N strength is:		litre water, the acid which	-
225	a) HCl	b) HClO ₄	c) HNO ₃	d) H ₃ PO ₄
225	compound will be:		ecular weight is 78. The mo	
	a) C_2H_2	b) C ₃ H ₃	c) C_2H_4	d) C_2H_6
226	ratio of weights of iron in	the two oxides that combi	ne second contained 30% on the with the same weight of	oxygen, is
	a) 3:2	b) 2 : 1	c) 1:2	d) 1:1
227		_	onate is $(N_0 = 6.023 \times 10^{23})$	
	a) 3.01×10^{24}	b) 4.06×10^{24}	c) 2.01×10^{24}	d) 3.02×10^{24}
228	B. In the following reaction,			
	$MnO_2 + 4HCL \rightarrow MnCl_2 + 4HCL$		a. a	
	2 mol MnO ₂ reacts with 4	mol of HCl to form 11.2 L	Cl ₂ at STP. Thus, per cent yi	eld of Cl ₂ is

			Gplus Education
a) 25%	b) 50%	c) 100%	d) 75%
229. The normality of 1% (v	vt./vol.) H_2SO_4 is nearly:		
a) 0.02	b) 0.2	c) 0.1	d) 1
230. The mass of 1 mole of 6	electrons is		
a) 9.1×10^{-28} g	b) 1.008 mg	c) 0.55 mg	d) 9.1×10^{-27} g
231. 74.4 g of a metallic chlo	oride contains 35.5 g of chlori	ne. The equivalent weight	of the metal is:
a) 19.5	b) 35.5	c) 39.0	d) 78.0
232. Equivalent weight of an	n acid		
a) Depends on the reac			
	umber of oxygen atoms prese	ent	
c) Is always constant			
d) None of the above			
233. Which of the following			
a) Gasoline	b) Distilled alcohol	c) LPG	d) lodized table salt
	of a divalent metal is 31.82. T		
	3 b) $63.64 \times 6.02 \times 10^{23}$	c) 63.64	d) $63.64/6.02 \times 10^{23}$
235. Number of mole of 1 m	•		
a) 44.6	b) 40.6	c) 42.6	d) 48.6
	ight after heating a pure sam		
a) 12.25	b) 24.50	c) 39.18	d) 49.0
=	uivalent contained in 0.5 litre		22.4.0
a) 0.1	b) 100	c) 0.01	d) 1.0
	0 g (atomic) oxygen and 1.0	g ozone, the maximum nur	nber of molecules are
contained in	191	1) 10 6	
a) 1.0 g of atomic oxygo	en	b) 1.0 g of ozone	C
c) 1.0 g of oxygen gas	: 201024 F: FI	d) All contain same numb	
	ins 3.0×10^{24} F ions. The number 3.0×10^{24}		
a) 9.0×10^{24}	b) 3.0× 10 ²⁴	c) 0.75×10^{24}	d) 1.0×10^{24}
240. One mole of CO_2 contains	ins	1.) 10.1 1023	.6.00
a) 3 g atoms of CO_2	()	b) 18.1×10^{23} molecules d) 6.02×10^{23} atoms of 0	
c) 6.02×10^{23} atoms o		•	
	$B \rightarrow C$, 5 moles of A and 8 m b) 4 moles of C	c) 8 moles of C	d) 12 malag of C
a) 5 moles of <i>C</i>	the largest number of atoms		d) 13 moles of <i>C</i>
a) 1 mg of C_4H_{10}	b) 1 mg of N_2	c) 1 mg of Na	d) 1 mL of water
	oon with empirical formula C _s	· -	•
	$104\mathrm{g}$ of the acid required 10	mL of $\frac{1}{20}$ NaOH for comple	te neutralisation. The
molecular formula of h	ydrocarbon is		
a) C ₅ H ₄	b) C ₁₀ H ₈	c) C ₁₅ H ₁₂	d) C ₂₀ H ₁₆
	of C-12 and C-14 is 98% and		
g of carbon is		2 /0 respectively then the h	uniber of C-14 atoms in 12
a) 1.032×10^{22}	b) 3.01×10^{22}	c) 5.88×10^{23}	d) 6.023× 10 ²³
•	22.65% of zinc and 43.9% of	,	•
-	n the weight of zinc required		
a) 45.3 g	b) 4.53 g	c) 0.453 g	d) 453 g
	olecules of chlorine in 6.02 ×		
= 101 The number of grain in	orceares or emornic in 0.02 A	15 hydrogen emoride in	Olecales is

a) +2 d) +5 b) +3c) +4

c) 50

b) 100

a) 10

247. The net charge on ferrous ion is:

d) 5

248. H ₂ O ₂ solution used for hair bleaching is sold as a	= = =	
solution. The molecular weight of H_2O_2 is 34. The		
a) 3.0 b) 1.5	c) 0.15	d) 4.0
249. 4.6×10^{22} atoms of an element weigh 13.8 g. Th	-	
a) 290 b) 180	c) 34.4	d) 10.4
250. The weight of 50% (wt./wt.) solution of HCl req	=	_
a) 73 g b) 100 g	c) 146 g	d) 200 g
251. An element, X has the following isotopic compose ^{200}X : 90% ^{199}X : 8.0% ^{202}X : 2.0% The weighted average atomic mass of the natural		is closed to
a) 200 u b) 210 u	c) 202 u	d) 199 u
252. Law of constant composition is same as the law	•	,
a) Conservation of mass	b) Conservation of	energy
c) Multiple proportion	d) Definite proport	
253. One atom of an element <i>X</i> weight 6.643×10^{-23} §	,	
a) 140 b) 150	c) 250	d) 500
254. The reaction, $2C + 2O_2 \rightarrow 2CO_2$ is carried out by	•	
reagent?		3 2
a) C b) O ₂	c) CO ₂	d) None of these
255. 1000 g aqueous solution of CaCO ₃ contains 10 g	· -	
a) 10 ppm b) 100 ppm	c) 1000 ppm	d) 10000 ppm
256. The maximum amount of BaSO ₄ precipitated on		
778		d) 0.01 mole
a) 0.25 mole b) 0.5 mole	c) 1 mole	uj vior mole
257. The percentage of an element M is 53 in its oxide		
257. The percentage of an element <i>M</i> is 53 in its oxide a) 45 b) 9	e of molecular formula M	1 ₂ 0 ₃ . Its atomic mass is about
257. The percentage of an element <i>M</i> is 53 in its oxide a) 45 b) 9	e of molecular formula M	1 ₂ 0 ₃ . Its atomic mass is about
257. The percentage of an element <i>M</i> is 53 in its oxide a) 45 b) 9 258. H ₃ BO ₃ is:	e of molecular formula M	1 ₂ 0 ₃ . Its atomic mass is about
 257. The percentage of an element M is 53 in its oxidal a) 45 b) 9 258. H₃BO₃ is: a) Monobasic and weak Lewis acid 	e of molecular formula M	1 ₂ 0 ₃ . Its atomic mass is about
 257. The percentage of an element M is 53 in its oxidal a) 45 b) 9 258. H₃BO₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 	e of molecular formula M c) 18	d ₂ O ₃ . Its atomic mass is about d) 27
 257. The percentage of an element <i>M</i> is 53 in its oxidal a) 45 b) 9 258. H₃BO₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is added complete 8.46 mL of 0.2732 <i>M</i> H₂SO₄ is needed 	e of molecular formula M c) 18 ed to 25 mL of 0.4210 <i>M</i>	(203. Its atomic mass is about d) 27 KOH after saponification is
 257. The percentage of an element <i>M</i> is 53 in its oxidal a) 45 b) 9 258. H₃BO₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is added complete 8.46 mL of 0.2732 <i>M</i> H₂SO₄ is needed peanut oil is: 	e of molecular formula M c) 18 ed to 25 mL of 0.4210 <i>M</i> to neutralise excess KOH	(203. Its atomic mass is about d) 27 KOH after saponification is 1. The saponification number of
 257. The percentage of an element <i>M</i> is 53 in its oxidal a) 45 b) 9 258. H₃BO₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is added complete 8.46 mL of 0.2732 <i>M</i> H₂SO₄ is needed peanut oil is: a) 209.6 b) 108.9 	e of molecular formula M c) 18 ed to 25 mL of 0.4210 <i>M</i> to neutralise excess KOH c) 98.9	(203. Its atomic mass is about d) 27 KOH after saponification is d. The saponification number of d) 218.9
257. The percentage of an element <i>M</i> is 53 in its oxidal a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is added complete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessar	e of molecular formula M c) 18 ed to 25 mL of 0.4210 <i>M</i> to neutralise excess KOH c) 98.9 ary for the production of	$(20)_3$. Its atomic mass is about d) 27 KOH after saponification is 1. The saponification number of d) 218.9 NH_3 gas sufficient to neutralize a
257. The percentage of an element <i>M</i> is 53 in its oxide a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is addedouble complete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessary solution containing 292 g of <i>HCl</i> ? [<i>HCl</i> = 36.5, (e of molecular formula M c) 18 ed to 25 mL of 0.4210 <i>M</i> to neutralise excess KOH c) 98.9 ary for the production of	$(2_{2}O_{3})$. Its atomic mass is about d) 27 KOH after saponification is 1. The saponification number of d) 218.9 $(3_{2}O_{3})$. Its atomic mass is about d) 218.9 $(3_{2}O_{3})$. Its atomic mass is about d) 218.9 $(3_{2}O_{3})$. Its atomic mass is about d) 27
257. The percentage of an element <i>M</i> is 53 in its oxidal a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is added to complete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessary solution containing 292 g of <i>HCl</i> ? [<i>HCl</i> = 36.5, (a) 272 g b) 403 g	e of molecular formula M c) 18 ed to 25 mL of 0.4210 M to neutralise excess KOH c) 98.9 ary for the production of NH_4 ₂ SO_4 = 132, NH_3 = c) 528 g	(20_3) . Its atomic mass is about d) 27 KOH after saponification is d. The saponification number of d) 218.9 (30_3) (30_5)
257. The percentage of an element <i>M</i> is 53 in its oxidal a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is addedone complete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessary solution containing 292 g of <i>HCl</i> ? [<i>HCl</i> = 36.5, (a) 272 g b) 403 g 261. A partially dried clay mineral contains 8% water	e of molecular formula M c) 18 ed to 25 mL of 0.4210 M to neutralise excess KOH c) 98.9 ary for the production of NH_4 ₂ SO_4 = 132, NH_3 = c) 528 g r. The original sample con	(20_3) . Its atomic mass is about d) 27 KOH after saponification is d. The saponification number of d) 218.9 (30_3) (30_5)
257. The percentage of an element <i>M</i> is 53 in its oxidal a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is added to complete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessary solution containing 292 g of <i>HCl</i> ? [<i>HCl</i> = 36.5, (a) 272 g b) 403 g	e of molecular formula M c) 18 ed to 25 mL of 0.4210 M to neutralise excess KOH c) 98.9 ary for the production of NH_4 ₂ SO_4 = 132, NH_3 = c) 528 g r. The original sample con	(20_3) . Its atomic mass is about d) 27 KOH after saponification is d. The saponification number of d) 218.9 (30_3) (30_5)
257. The percentage of an element <i>M</i> is 53 in its oxide a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is added complete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessary solution containing 292 g of <i>HCl</i> ? [<i>HCl</i> = 36.5, (a) 272 g b) 403 g 261. A partially dried clay mineral contains 8% water silica. The % of silica in the partially dried sample.	e of molecular formula M c) 18 ed to 25 mL of 0.4210 M to neutralise excess KOH c) 98.9 ary for the production of NH_4) ₂ SO_4 = 132, NH_3 = c) 528 g r. The original sample coule is nearly: c) 55%	$(20)_3$. Its atomic mass is about d) 27 KOH after saponification is d. The saponification number of d) 218.9 $(30)_3$ gas sufficient to neutralize a second 12% water and 45%
257. The percentage of an element <i>M</i> is 53 in its oxide a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is added complete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessary solution containing 292 g of <i>HCl</i> ? [<i>HCl</i> = 36.5, (a) 272 g b) 403 g 261. A partially dried clay mineral contains 8% water silica. The % of silica in the partially dried sample a) 50% b) 49%	e of molecular formula M c) 18 ed to 25 mL of 0.4210 M to neutralise excess KOH c) 98.9 ary for the production of NH_4) ₂ SO_4 = 132, NH_3 = c) 528 g r. The original sample coule is nearly: c) 55%	$(20)_3$. Its atomic mass is about d) 27 KOH after saponification is d. The saponification number of d) 218.9 $(30)_3$ gas sufficient to neutralize a second 12% water and 45%
257. The percentage of an element <i>M</i> is 53 in its oxidal a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is addedone complete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessary solution containing 292 g of <i>HCl?</i> [<i>HCl</i> = 36.5, (a) 272 g b) 403 g 261. A partially dried clay mineral contains 8% water silica. The % of silica in the partially dried sample a) 50% b) 49% 262. Number of g-atoms of an element in one atom and silical silical silical silical silical silical silical sample a) 50% b) 49%	e of molecular formula M c) 18 ed to 25 mL of 0.4210 M to neutralise excess KOH c) 98.9 ary for the production of NH_4) ₂ SO_4 = 132, NH_3 = c) 528 g r. The original sample contle is nearly: c) 55% re: c) 2 × 10 ²³	KOH after saponification is The saponification number of d) 218.9 NH ₃ gas sufficient to neutralize a 17] d) 1056 g ntained 12% water and 45% d) 47% d) None of these
257. The percentage of an element <i>M</i> is 53 in its oxide a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is added complete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessary solution containing 292 g of <i>HCl</i> ? [<i>HCl</i> = 36.5, (a) 272 g b) 403 g 261. A partially dried clay mineral contains 8% water silica. The % of silica in the partially dried sample a) 50% b) 49% 262. Number of g-atoms of an element in one atom and a) 6.023 × 10 ²³ b) 1.66 × 10 ⁻²⁴	e of molecular formula M c) 18 ed to 25 mL of 0.4210 M to neutralise excess KOH c) 98.9 ary for the production of NH_4) ₂ SO_4 = 132, NH_3 = c) 528 g r. The original sample contle is nearly: c) 55% re: c) 2 × 10 ²³	KOH after saponification is The saponification number of d) 218.9 NH ₃ gas sufficient to neutralize a 17] d) 1056 g ntained 12% water and 45% d) 47% d) None of these
257. The percentage of an element <i>M</i> is 53 in its oxide a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is added complete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessare solution containing 292 g of <i>HCl</i> ? [<i>HCl</i> = 36.5, (a) 272 g b) 403 g 261. A partially dried clay mineral contains 8% water silica. The % of silica in the partially dried sample a) 50% b) 49% 262. Number of g-atoms of an element in one atom and a) 6.023 × 10 ²³ b) 1.66 × 10 ⁻²⁴ 263. Concentration of HCl is 10 <i>N</i> . 100 mL of 1 <i>N</i> HCl	e of molecular formula M c) 18 ed to 25 mL of 0.4210 M to neutralise excess KOH c) 98.9 ary for the production of NH_4) ₂ SO_4 = 132, NH_3 = c) 528 g r. The original sample contle is nearly: c) 55% re: c) 2 × 10 ²³	KOH after saponification is The saponification number of d) 218.9 NH ₃ gas sufficient to neutralize a 17] d) 1056 g ntained 12% water and 45% d) 47% d) None of these
257. The percentage of an element <i>M</i> is 53 in its oxidal a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is addedomplete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessed solution containing 292 g of <i>HCl?</i> [<i>HCl</i> = 36.5, (a) 272 g b) 403 g 261. A partially dried clay mineral contains 8% water silica. The % of silica in the partially dried sample a) 50% b) 49% 262. Number of g-atoms of an element in one atom and a) 6.023 × 10 ²³ b) 1.66 × 10 ⁻²⁴ 263. Concentration of HCl is 10 <i>N</i> . 100 mL of 1 <i>N</i> HCl a) 10 mL of conc. HCl to 100 mL	e of molecular formula M c) 18 ed to 25 mL of 0.4210 M to neutralise excess KOH c) 98.9 ary for the production of NH_4) ₂ SO_4 = 132, NH_3 = c) 528 g r. The original sample contle is nearly: c) 55% re: c) 2 × 10 ²³	KOH after saponification is The saponification number of d) 218.9 NH ₃ gas sufficient to neutralize a 17] d) 1056 g ntained 12% water and 45% d) 47% d) None of these
257. The percentage of an element <i>M</i> is 53 in its oxide a) 45 b) 9 258. H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid 259. A sample of peanut oil weighing 1.5763 g is added complete 8.46 mL of 0.2732 <i>M</i> H ₂ SO ₄ is needed peanut oil is: a) 209.6 b) 108.9 260. What quantity of ammonium sulphate is necessare solution containing 292 g of <i>HCl</i> ? [<i>HCl</i> = 36.5, (a) 272 g b) 403 g 261. A partially dried clay mineral contains 8% water silica. The % of silica in the partially dried sample a) 50% b) 49% 262. Number of g-atoms of an element in one atom and a) 6.023 × 10 ²³ b) 1.66 × 10 ⁻²⁴ 263. Concentration of HCl is 10 <i>N</i> . 100 mL of 1 <i>N</i> HCl a) 10 mL of conc. HCl to 100 mL	e of molecular formula M c) 18 ed to 25 mL of 0.4210 M to neutralise excess KOH c) 98.9 ary for the production of NH_4) ₂ SO_4 = 132, NH_3 = c) 528 g r. The original sample contle is nearly: c) 55% re: c) 2 × 10 ²³	KOH after saponification is The saponification number of d) 218.9 NH ₃ gas sufficient to neutralize a 17] d) 1056 g ntained 12% water and 45% d) 47% d) None of these

				Gpius Eaucation
	CaF_2 is 78.08 g/mol) is	24 -	24 -	24 -
		b) $1.146 \times 10^{24} \text{ CaF}_2$	-	-
265.	=	gen that is required for the	=	= -
	a) 9.6 kg	b) 96.0 kg	c) 6.4 kg	d) 2.8 kg
266.		oms in 2 moles of sodium fe	-	00
	a) 12×10^{23}	b) 26×10^{23}	c) 34×10^{23}	d) 48×10^{23}
267.	. Stoichiometric ratio of so	dium dihydrogen orthopho	sphate and sodium hydrog	en orthophosphate
	required for synthesis of l	$Na_5P_3O_{11}$ is		
	a) 1.5:3	b) 3:1.5	c) 1:1	d) 2:3
268.		of H_2 at STP are mixed in a	container. The total numb	er of molecules present in
	the container will be:			
	-	b) 1.2044×10^{23}	=	d) 6.023×10^{24}
269.	. Calculate the number of n	noles left after removing 10	1 ²¹ molecules from 200 mg	ofCO ₂ .
	a) 0.00454	b) 0.00166	c) 2.88×10^{-3}	d) None of these
270.	. Which has maximum num	nber of atoms?		
	a) 24 g of C (12)	b) 56 g of Fe (56)	c) 27 g of Al (27)	d) 108 g of Ag (108)
271.	. A sample of copper sulpha	ate pentahydrate contains 8	3.64 g of oxygen. How many	y gram of Cu is present in
	this sample?			, ,
	(Atomic mass of $Cu = 63.0$	6, S = 32.06, 0 = 16		
	a) 0.952 g		c) 3.782 g	d) 8.64 g
272.				(H_3PO_3) , the volume of 0.1
	M aqueous KOH solution		1 1	3 3//
	a) 60 mL	b) 20 mL	c) 40 mL	d) 10 mL
273		nm of Hg pressure has volu		u) 10 III2
_, _,	a) 1.4 L	b) 2.8 L	c) 11.2 L	d) 22.4 L
274			-	xygen. Its molar mass is 60
∠ / 1,	g mol ⁻¹ the molecular for		133 /g iv and the rest was o	Aygen, its molar mass is oo
	a) CH_4N_2O	b) C ₂ H ₄ NO ₂	c) CH ₃ N ₂ O	d) CH ₄ N ₂ O ₂
275	· -	is dissolved in 1 litre water	, , ,	·
4/3,	, ,		•	
276	a) $> 1 M$	b) < 1 M	c) = 1 M	d) = 2 M
4/0.		olourised iodine by the add	ntion of x gram of crystaini	te copper suiphate to
	excess of KI. The value of			
	(molecular wt. of CuSO ₄ , 5		-) 2 F -	10.4
277	a) 5.0 g	b) 1.25 g	c) 2.5 g	d) 4 g
Z//.	-	ntains greatest number of c		
	a) 1 g of 0		b) 1 g of O ₂	
0.70	c) $1 g \text{ of } O_3$	/ 1) N OH:	d) All have the same num	per of atoms
278.	. The normality of 4% (wt.,) 0 0 =	12.0.04
	a) 0.1	b) 1.0	c) 0.05	d) 0.01
279.		chromate crystals required		M Mohr's salt solution is
	· ·	ssium dichromate = 294, M	·	
	a) 0.49 g	b) 0.45 g	c) 22.05 g	d) 2.2 g
280.	. If 0.5 mole of BaCl_2 is mix	ed with 0.2 mole of Na ₃ PO ₄	the maximum number of	mole of $Ba_3(PO_4)_2$ that can
	be formed is:			
	a) 0.7	b) 0.5	c) 0.30	d) 0.1
281.	. Which has the maximum	number of atoms?		
	a) 6 g C	b) 1 g H ₂	c) 12 g Mg	d) 30 g Ca
282.	. Mixing up of equal volum	es of 0.1 <i>M</i> NaOH and 0.1 <i>M</i>	CH ₃ COOH yields a solutio	n which is:
	a) Basic	b) Acidic	c) Neutral	d) None of these

202	If (2 ~ of N-HCO	1-1-1-0 - CH COOK 1	and an all a second decree (C	apius Luucution
283.			ution, the residue is found t	o weight 18.0 g. what is the
	mass of CO_2 released in the			D 2.0
204	a) 4.5 g	b) 3.3 g	c) 2.6 g	d) 2.8 g
284.	-	-	02×10^{22} molecules. The co	
	a) 0.1 <i>M</i>	b) 1.0 <i>M</i>	c) 0.2 <i>M</i>	d) 2.0 <i>M</i>
285	Molar concentration of a	solution in water is:		
	a) Always equal to norma			
	b) More than molality of t	=		
	c) Equal to molality of the			
	d) Less than the molality			
286	-		proximate concentration of	the solution is:
	a) 1 molar	b) 0.1 molar	c) Decinormal	d) About 0.1 <i>N</i>
287		-	l from a reaction between 6	
	HCl?			o o
	a) 0.333	b) 0.011	c) 0.029	d) 0.044
288	The nature of mixture ob	tained mixing 50 mL of 0.1	MH ₂ SO ₄ and 50 mL of 0.1	M NaOH is:
	a) Acidic	b) Basic	c) Neutral	d) amphoteric
289	Number of electrons in 1.	8 mL of H ₂ O is:		
	a) 6.02×10^{23}	b) 3.011×10^{23}	c) 0.6022×10^{23}	d) 60.22×10^{23}
290	If a compound contains to	wo oxygen atoms, four carb	on atoms and number of h	ydrogen atom is double of
	carbon atoms, the vapour			_
	a) 88	b) 44	c) 132	d) 72
291	Molecular weight of oxali	c acid is 126. The weight of	foxalic acid required to neu	itralise 1000 mL of normal
	solution of NaOH is:			
	a) 126 g	b) 63 g	c) 6.3 g	d) 12.6 g
292	The number of hydrogen is	atoms present in 25.6 g of	sucrose($C_{12}H_{22}O_{11}$) which	has a molar mass of 342.3 g
	a) 22×10^{23}	b) 9.91×10^{23}	c) 11×10^{23}	d) 44×10^{23} H atoms
293		h density equal to 1.17 g/m	•	.,
	= =	b) 18.25		d) 4.65
294				cid, the molarity of the acid
	solution is:			,,
	a) 0.1 <i>M</i>	b) 0.2 <i>M</i>	c) 0.3 M	d) 0.4 <i>M</i>
295	-		•	ity 1.15 g/mL. The molarity
	of the solution is:		O	, ci
	a) 1.78 <i>M</i>	b) 2.00 <i>M</i>	c) 2.05 <i>M</i>	d) 2.22 <i>M</i>
296	Equivalent weight of NH	₃ as a base is:		
	a) 17	b) 17/3	c) 1.7	d) 17/2
297		acid according to the equa		
	$2MnO_4^- + 5C_2O_4^{2-} + 16H^{-1}$	$^{+} \rightarrow 2 \text{Mn}^{2} + 10 \text{CO}_{2} + 8 \text{H}_{2}$	₂ 0 Here, 20 mL of 0.1 M KM	nO ₄ is equivalent to
	a) 20 mL of 0.5 M H ₂ C ₂ O ₄	1	b) 50 mL of 0.1 M H ₂ C ₂ O ₄	
	c) 50 mL of 0.1 M H ₂ C ₂ O ₄	1	d) 20 mL of 0.1 M H ₂ C ₂ O ₄	
298	To prepare a standard so	lution of a substance, we us	se:	
	a) A pipette	b) A burette	c) Measuring flask	d) Measuring cylinder
299	There are two isotopes of	an element with atomic m	assz. Heavier one has atom	ic mass $z + 2$ and lighter
	one has z-1, the abundar	nce of lighter one is		
	a) 66.6%	b) 69.7%	c) 6.67%	d) 33.3%
200	2 g of an oxide of a metal i	s converted to chloride some	plotoly and it violded 5 g of c	blorido. The equivalent

c) 12	d) 20
n of density 11.14 g cm ⁻³ is	
c) 1.26 mol dm^{-3}	d) 2.32 mol dm^{-3}
when excess of iron is treated v	with 50 mL of 4.0 M HCl unde
c) 0.2	d) 0.8
vith 200 mL of 0.6 N H ₂ SO ₄ solu	tion. The final acidic normality
c) 0.5 <i>N</i>	d) 0.4 <i>N</i>
00 mL of 5 N caustic potash. The 1	basicity of the acid is:
c) 3	d) 4
on,	
) + KI is	
c) Mol. wt./6	d) Mol. wt./2
c) 1 g of B(s)	d) 1 g of $N_2(g)$
700	
	22
	d) 12.04×10^{23}
	D.M. Gal
	y d) None of these
c) 0.481 mol	d) 0.140 mol
_	
-	d) 29.864
•	d) 9.00
es 55% loss in weight on heating	and becomes anhydrous. The
c) 7	d) 10
yethylene according to the equat	ion,
e:	
c) $\frac{100}{n}$ g	d) 100 <i>n</i> g
$CH_4 = 1$). Its molecular weight v	vould be:
c) 64	d) 128
c) Gaseous elements	d) Solid elements
c) 100	
	to of density 11.14 g cm ⁻³ is 3 c) 1.26 mol dm^{-3} when excess of iron is treated way. c) 0.2 with 200 mL of 0.6 N H ₂ SO ₄ solution of 0.5 N caustic potash. The loc of 3 on, 0 + KI is c) Mol. wt./6 c) 1 g of B(s) to produce (7/2) mole of Al ₂ O ₃ oduce 1 mole of Al ₂ O ₃ oduce 1 mole of Al ₂ O ₃ are: c) 12.04 × 10 ²² be given by: c) $\frac{\text{Av. no.}}{n}$ × atomicity $\frac{n}{n}$ 50 g of the substance? c) 0.481 mol $O_2 - 21\%$, $Ar - 09\%$ and $CO_2 - C$ CO_3 28.964 on gave 0.995 g of oxide. The equal of t

318. A molal solution is one		solute in:	
a) 1000 g of the solvent			
b) 1000 mL of the solut			
c) One litre of the solve			
d) 22.4 litre of the solut			
319. The weight of a substan	-		12 411 6.1
a) Mol. wt.	b) At. wt.	c) Eq. wt.	d) All of these
320. The density (in g mL $^{-1}$)			
a) 1.45	b) 1.64	c) 1.88	d) 1.22
321. One atom of an element	_		22.4.5.4
a) 29.9	b) 18	c) 108.36	d) 154
322. How many moles of ele			1
a) 6.023×10^{23}	b) $\frac{1}{9.108} \times 10^{31}$	c) $\frac{6.023}{9.108} \times 10^{54}$	d) $\frac{1}{9.108 \times 6.023} \times 10^8$
323. The number of moles of	water in 488 g BaCl ₂ • 2H ₂ 0	O are:	
a) 2	b) 3	c) 4	d) 5
324. The number of molecul	es in 16 g of methane is:		
a) 3.0×10^{23}	b) 6.02×10^{23}	c) $\frac{16}{6.02} \times 10^{23}$	d) $\frac{16}{3.0} \times 10^{23}$
325. The percentage of P_2O_5	in diammonium hydrogen p	phosphate, $(NH_4)_2HPO_4$ is	
a) 23.48	b) 46.96	c) 53.78	d) 71.00
326. Acidified KMnO ₄ oxidis	es oxalic acid to CO_2 . What i	s the volume (in litres) of 1	10^{-4} M KMnO ₄ required to
completely oxidise 0.5 I	$_{ m L}$ of 10^{-2} M oxalic acid in aci	id medium?	
a) 125	b) 1250	c) 200	d) 20
327. 0.003924 have s	ignificant figures.		
a) 6	b) 4	c) 3	d) 7
328. The formula mass of Mo	ohr's salt is 392. The iron pr	esent in it is oxidised by KN	MnO_4 in acid medium. The
equivalent mass of Moh a) 392	r's salt is b) 31.6	c) 278	d) 156
329. Matter is anything which	h occupies A and has	$\dots B \dots$	
Here A and B are			
a) Density and mass	b) Volume and mass	c) Space and mass	d) None of these
330. Which is not a molecula	r formula?		
a) $C_6H_{12}O_6$	b) $Ca(NO_3)_2$	c) $C_2H_4O_2$	d) N_2O
331. Insulin contains 3.4% s	=	_	
a) 94.117	b) 1884	c) 941.176	d) 976
332. Which of the following			
	b) 150 cc of N ₂ at STP	c) 50 cc of SO ₂ at STP	d) 200 cc of NH ₃ at STP
333. Weight of a single mole		22	
a) 3.0×10^{-23} g	b) 6.02×10^{23} g		d) None of these
334. Air contains $20\%0_2$ by			
a) 500 cc	b) 1064 cc	c) 212.8 cc	d) 1250 cc
335. 1.35 g of pure Ca metal			
a) 40.75	b) 50	c) 60	d) 70
336. If 250 mL of a solution of			
a) 4.0	b) 0.33	c) 0.4	d) 0.1
337. The weights of two elements of two elemen			
a) At. wt.	b) Mol. wt	c) Eq. wt.	d) None of these
338. One litre N_2 , $\frac{7}{8}$ litre O_2 a		mixture under indentical c	onditions of <i>P</i> and <i>T</i> . The
amount of gases presen	t in mixture is given by:		

_			
Gn	liic	Ŀα	ucation
uu	ıus	Lu	acation

a) $w_{N_2} = w_{O_2} > w_{CO}$	b) $w_{N_2} = w_{CO} > w_{O_2}$	c) $w_{N_2} = w_{O_2} = w_{CO}$	d) $w_{\rm CO} > w_{\rm N_2} > w_{\rm O_2}$
339. Volume of 0.1 <i>M</i> NaOH	needed for the neutralisation	on of 20 mL of 0.05 <i>M</i> oxalid	cacid is:
a) 10 mL	b) 15mL	c) 20 mL	d) 30 mL
340. The mole fraction of sol	ute in one molal aqueous so	olution is:	
a) 0.009	b) 0.018	c) 0.027	d) 0.036
341. If we consider that $\frac{1}{6}$, in mass of one mole of a su	14	n atom is taken to be the re	elative atomic mass unit, the
a) Be a function of the n	nolecular mass or the subst	ance	
b) Remain unchanged	notecular made of the bubbl	unce	
c) Increase two fold			
d) Decrease twice			
342. A compound contains 5	4.55% carbon, 9.09 % hydr	ogen, 36,36% oxygen. The	empirical formula of this
compound is		-8,,, 8	P
a) C ₃ H ₅ O	b) C ₄ H ₈ O ₂	c) $C_2H_4O_2$	d) C ₂ H ₄ O
343. The total number of pro	, , , <u>-</u>		7 -24 -
a) 1.084×10^{25}	b) 6.022×10^{23}	c) 6.022×10^{22}	d) 18
344. The volume of 0.25 <i>M</i> H	-	,	,
a) 1.32 mL	b) 13.2 mL	c) 26.4 mL	d) 2.0 mL
$345.100 \text{ mL of } PH_3 \text{ when de}$	•		,
a) 50 mL increase		c) 900 mL decrease	
346. Density of a 2.05 <i>M</i> solu			
a) 1.14 mol kg^{-1}		c) 2.28 mol kg ⁻¹	
347. What weight of sodium			
a) 4.0 g	b) 0.04 g		d) 2.0 g
348. The amount of anhydro) 8
a) 6.625 g	b) 6.0 g		d) 6.225 g
349. Mole fraction of A in wa		_	, 0
a) 13.8	b) 13.6	c) 14.0	d) 16.0
350. How many g of KCl wou			
	b) 1.5 g		
351. What volume of oxygen	gas (O ₂) measured at 0°C a	nd 1 atm, is needed to burr	completely 1L of propane
gas (C ₃ H ₈) measured u	nder the same conditions?		
a) 6 L	b) 5 L	c) 10 L	d) 7 L
352. The weight of 11.2 litre	of any gas at STP represent	s its:	
a) Gram molecular weig	ght		
b) Gram equivalent wei	ght		
c) Gram atomic weight			
d) Vapour density			
353. The normality of 10% (weight/volume) acetic acid	is:	
a) 1 <i>N</i>	b) 10 <i>N</i>	c) 1.7 <i>N</i>	d) 0.83 <i>N</i>
354. The stoichiometry of th	e following reaction is		
$K_2S_2O_8(aq) + 2KI(aq)$	$\rightarrow 2K_2SO_4(aq) + I_2(aq)$		
a) 2 : 2	b) 1:1	c) 1:2	d) 2 : 1
355. 2 mole of ethyl alcohol a	are present with 6 mole of v		
a) 0.5	b) 0.75	c) 0.15	d) 0.25
356. What is the $[OH^-]$ in the $Ba(OH)_2$?	e final solution prepared by	mixing 20.0 mL of 0.050 M	HCl with 30.0 mL of 0.10 <i>M</i>

Gpl	uc F	du	cat	ior
Gpi	us E	:uu	ιuι	IUI

a) 0.12 <i>M</i>	b) 0.10 <i>M</i>	c) 0.40 M	d) 0.0050 <i>M</i>
	ls which cannot exist in sol		
a) NaHCO ₃ and NaOH	, - ,	O ₃ c) Na ₂ CO ₃ and NaOH	d) NaHCO ₃ and NaCl
	20% oxygen, the eq. wt. of		
a) 32	b) 40	c) 48	d) 52
_			g 4.77 g of <i>NaCl</i> is added to a
		Ag = 108, N = 14 and O = 1	
a) 4.37 g	b) 4.87 g	c) 5.97 g	d) 3.87 g
	of molecules in 100 mL of e	ach of O_2 , NH_3 and CO_2 at ST_1	P are in the order
a) $CO_2 < O_2 < NH_3$		b) $NH_3 < O_2 < CO_2$	
c) $NH_3 = CO_2 < O_2$	t of a cubetanese is the weigh	d) All have same numbe ght which either combines of	
a) 8 part oxygen	b) 1 part hydrogen	c) 35.5 part chlorine	d) All of these
362. Which of the followin		c) 33.3 part emorme	uj Ali oi tilese
	at wt		
a) Eq. wt. of element	= 		
Eq. wt. of compoun	d =		
b)	mol.wt. e on cation or anion		
m	ol.wt.		
c) For wt of acid = —	nsicity		
d) Eq. wt. of base = $\frac{m}{a}$	cidity		
363. Which represents per			
a) $\frac{\text{wt. of solute}}{\text{wt. of solution}} \times 1$	00		
wt. of solution	C FDI	LCATION	
b) will solute	× 100 PLUS EDL	JCAHON	
c) volume of solution	- × 100		
d) All of the above			
364. In the aqueous solution	on of sulphuric acid the mol	e fraction of water is 0.85. th	ne molality of the solution is :
a) 8.9 <i>m</i>	b) 0.19 <i>m</i>	c) 9.8 <i>m</i>	d) 15 m
	in 0.1 mol of a triatomic ga	s is:	
$(N_A = 6.02 \times 10^{23} \text{ m})$			
a) 6.026×10^{23}	b) 1.806×10^{23}	c) 3.600×10^{23}	d) 1.80×10^{23}
	est number of oxygen atom	S?	
a) 1 g of 0			
b) 1 g of O ₂ c) 1 g of O ₃			
d) All have the same i	number of atoms		
		coulomb ⁻¹ . The equivalent	weight of metal is
a) <i>x</i>	b) $x \times 96500$	c) $\frac{x}{96500}$	d) $1.6 \times 10^{-19} \times x$
_	thod, one determine the va		
a) Non-volatile solid	b) All substances	c) Volatile liquid	d) Electrolyte
369. The percentage of oxy	•		1) 4
a) 40	b) 16	c) 8	d) 1
370. Sulphur forms the chl mass of sulphur S_2Cl		equivalent mass of sulphur i	a SCI ₂ is 16. The equivalent

_					
Gp	liic	$-\alpha$	111	atı	nη
UU	ıus	Lu	\boldsymbol{u}	ull	u

			Opius Luucution	
a) 8	b) 16	c) 64	d) 32	
371. 1.520 g of the hydro	oxide of a metal on ignition ga	-		
a) 1.520	b) 0.995	c) 19.00	d) 9.00	
372. The product of atom	nic weight and specific heat of	f a metal is approximately	6.4. This was given by:	
a) Dalton's law	b) Avogadro's law	c) Newton's law	d) Dulong Petit's law	
373. If a mixture contain	ing 3 moles of hydrogen and	1 mole of nitrogen is conv	rerted completely into ammonia,	
the ratio of initial ar	nd final volumes under the sa	me temperature and pres	sure would be:	
a) 3:1	b) 1 : 3	c) 2:1	d) 1:2	
374. The least count of a	n instrument is 0.01 cm. Takir	ng all precautions, the mo	st possible error in the	
measurement can b	e			
a) 0.005 cm	b) 0.01 cm	c) 0.0001 cm	d) 0.1 cm	
375. A metal <i>M</i> forms a c	compound M_2 HPO ₄ . The form	ula of the metal sulphate	is:	
a) M_2SO_4	b) <i>M</i> SO ₄	c) $M(SO_4)_2$	d) $M_2(SO_4)_3$	
, <u>-</u> .	ght of $Na_2S_2O_3$ and I_2 are M_1	, , 1, 2	3 2 4 14 3	
	and I_2 in the following reaction		•	
$2S_2O_3^{2-} + I_2 \rightarrow S_4O_3^{2-}$	_			
a) M_1, M_2		c) $2M_1, M_2$	d) M_1 , $2M_2$	
	of the expression $\frac{(29.2-20.2)(1.7)}{1.37}$			
	110 /			
a) 1	b) 2	c) 3	d) 4	
_			aemoglobin is approximately	
67200. The number	of iron atoms (at. Wt. of $Fe =$	= 56) present in one mole	cule of haemoglobin is	
a) 6	b) 1	c) 4	d) 2	
379. In the equation,	7			
$H_2S + 2HNO_3 \rightarrow 2H$	$_{2}O + 2NO_{2} + S$			
The equivalent weig	ght of hydrogen sulphide is	CATION		
a) 18	b) 68	c) 34	d) 17	
380. In a compound C, H	and N are present is 9:1:3.	5 by weight. If molecular	weight of the compound is 108,	
then the molecular f	formula of the compound is			
a) $C_2H_6N_2$	b) C ₃ H ₄ N	c) $C_6H_8N_2$	d) $C_9H_{12}N_3$	
381. When 10 g of metha	ne is completely burnt in oxy	gen, the heat evolved is 5	60 kJ. What is the heat of	
combustion (in kJ m	iol ^{–1}) of methane?			
a) – 1120	b) –968	c) -896	d) -560	
382. How much of 0.1 <i>M</i>	H ₂ SO ₄ solution is required to	neutralize 50 mL of 0.2 <i>l</i>	M NaOH solution?	
a) 0.50 mL	b) 50 mL	c) 100 mL	d) 5.0 mL	
383. One litre of CO_2 is pa	assed over hot coke. The volu	ıme becomes 1.4 litre. The	e per cent composition of	
products is:				
a) 0.6 litre CO				
b) 0.8 litre CO ₂				
c) 0.6 litre CO_2 and	0.8 litre CO			
d) None of the above				
384. Equivalent weight o				
a) 32	b) 8	c) 16	d) 24	
•	•	•		
385. Arsenic forms two oxides, one of which contains 65.2% and the other 75.5% of the element. Hence, equivalent masses of arsenic are in the ratio				
a) 1:2	b) 3:5	c) 13:15	d) 2:1	
	•	•	ge of bromine in the bromide of	
	ency of the metal is the same i	=	_	
a) ≈ 87	b) ≈ 70	c) ≈ 77	d) ≈ 93	
GPLUS EDUCATION	WEB: <u>WWW.GPLUSEDUCA</u>	ATION.OKG PHO	NE NO: 8583042324 Page 23	

			Opius Luucution
	on of 6.3 g oxalic acid dihydrat tely neutralised 10 mL of this so		. The volume of 0.1 <i>N</i> NaOH
a) 40 mL	b) 20 mL	c) 10 mL	d) 4 mL
•	abustion of methane at 25 ⁰ C is 8		-
burnt in air is	ibustion of methane at 25°C is 6	190KJ. The heat hoerated v	when 5.2 g of mediane is
	b) 270 bi	a) 000 l4	J) 170 ki
a) 445 kJ	b) 278 kJ	c) -890 kJ	d) 178 kJ
389. A signature written signature?	with carbon pencil weighs 1 mg	g. what is the number of ca	arbon atoms present in the
a) 6.02×10^{20}	b) 0.502×10^{20}	c) 5.02×10^{23}	d) 5.02×10^{20}
-	splace 1.12 litre hydrogen at no	•	,
metal would be:	- p-1 1 1 1 1 1 1	p p	
a) 12	b) 24	c) 1.2 × 11.2	d) 1.2 ÷ 11.2
•	eroxide is present in 1120 mL of	-	-
a) 10 vol solution	b) 20 vol solution	c) 30 vol solution	d) 32 vol solution
•	re of $CaCl_2$ and $NaCl$ weighing	•	
-	heated and quantitatively conve	_	_
$CaCl_2$ in the mixtur		8	1
-	= 40, 0 = 16, C = 12 and $Cl =$	35,5)	
a) 31.5%	b) 21.5%	c) 45.04%	d) 68.48%
393. 11.2 litre of NH_3 at		-,	,
a) 3.01×10^{21}	b) 3.01×10^{22}	c) 3.01×10^{25}	d) 3.01×10^{24}
-	ing pairs contains equal number	,	a, 5,61 · · 15
	nitrogen and 0.015 g of nitric ox		
	itrous oxide and 22.4 L of nitric		
	CL and 0.5 millimole of H ₂ S		
d) 1 mole of H ₂ O ₂ a	_		
	ns present in a molecule is called	EATION	
a) Atomicity	b) Molecularity	c) Poison's ratio	d) None of these
396. Which has the highe		,	,
	b) A normal adult man	c) 10 L of Hg	d) All have same weight
•	chloride contains 35.5 g of chlor	, ,	,
a) 19.5	b) 35.5	c) 39	d) 78.0
•	ns 69.5% oxygen and 30.5% nit	•	•
the compound is	70	O	o .
a) N ₂ O	b) NO ₂	c) N_2O_4	d) N_2O_5
, <u>-</u>	icting state of gases with free ele		7 2 3
a) Sol state	b) Gel state	c) Plasma state	d) All of these
•	aces V mL of H_2 at NTP. Equivale	•	,
a) $E = \frac{A}{\text{wt.of H}_2 \text{ display}}$	$\frac{1}{1000} \times E_{\rm H}$		
b) $E = \frac{A \times 1.00}{\text{volume of H}}$	08×22400		
c) F =	$\frac{A \times 1.008}{\text{H}_2 \text{ displaced} \times 0.0000897}$		
volume of F	H_2 displaced \times 0.0000897		
d) All of the above			
	represents the simple ratio of a		lled:
a) Molecular formu	•	c) Empirical formula	d) Rational formula
-	atoms are in a mole of CH ₃ COOF		
	ns, 4 moles of H atoms, 2 moles		
b) 1 mole of C atom	, 2 moles of H atoms, 1 mole of () atom	

				-
-		oles of H atoms, 2 moles of	0 atoms	
-	lone of the above	2		
		$g cm^{-3}$ then the volume o		
-	.8 cm ³	b) 22400 cm ³	c) $6.02 \times 10^{-23} \text{cm}^3$	
		y of a solution obtained by	mixing 0.45 <i>N</i> and 0.60 <i>N</i>	NaOH in the ratio 2 :1 by
	ıme?			
-	0.4 N	b) 0.5 <i>N</i>	c) 1.05 <i>N</i>	d) 0.15 <i>N</i>
405. For	the reaction,			
X +	$2Y \longrightarrow Z$			
5 M	oles of X and 9 moles of	of Y will produce		
a) 5	\overline{S} moles of Z	b) 8 moles of Z	c) 14 moles of Z	d) 4 moles of Z
406. A st	udent performs a titra	tion with different burette	s and finds titre values of 2	25.2 mL, 25.25 mL, and
25.0	OmL. The number of sig	gnificant figures in the ave	rage titre value is	
a) 1	-	b) 2	c) 3	d) 4
407.100	mL of 20.8% $BaCl_2$ so	olution and 50 mL of 9.8%	H_2SO_4	
Solı	ution will form <i>BaSO</i> ₄			
(Ba	= 137, Cl = 35.5, S =	32, H = 1, 0 = 16		
BaC	$\text{Cl}_2 + \text{H}_2\text{SO}_4 \longrightarrow \text{Ba}_2\text{SO}_4$	₄ + 2HCl		
	23.3 g	b) 11.65 g	c) 30.6 g	d) None of these
408. <i>n</i> gr	ram of a substance X re	eacts with <i>m</i> gram of subst	ance Y to form p gram of s	$\frac{1}{2}$ ubstance R and q gram of
_		can be represented as follo		, 0
	Y = R + S			
		established in the amount	s of the reactants and the r	products will be
		b) $n + m = p + q$		d) $p = q$
-		NaOH solution to 10 mL of	-	
	Turn blue litmus red			
-	Turn phenolphthalein s	solution pink		
-	Turn methyl orange red		ATION	
		ed or blue litmus paper	MITOIA	
-		58.5 g of Fe (at.wt. 55.85) i	is:	
	Swice that in 60 g carb			
	5.022×10^{22}			
-	Half in 8 g He			
-	$558.5 \times 6.023 \times 10^{23}$			
,		t in a compound, it's minim	um molecular weight will l	hei
a) 1		b) 28	c) 100	d) 70
,		cyclohexanol to cyclohexen		•
	lohexanol is dehydrate	•	e is 7570; what would be to	ne yield, ii 100 g oi
=	61.7 g	b) 16.5 g	c) 6.15 g	d) 615 g
-	_	g H_2 and $100 \text{ g } O_2$ is ignite	, ,	, 0
		much water will be formed		ecorumg to the reaction,
	$_1 + o_2 \rightarrow 2m_2o$, now in $13 \mathrm{g}$	b) 50 g	: с) 25 g	d) 200 g
-		, ,		, ,
The	numerical value of $\frac{1}{n}$	where, Nis the number of i	nolecules in a given sample	e of gas and n is the number
of n	noles of the gas) is			
-	3.314	b) 6.02×10^{23}	c) 0.0821	d) 1.66×10^{-19}
415. The	ionic strength of Na ⁺ c	on mixing 100 mL 0.1 <i>M</i> Na	aCl and 100 mL $0.1M$ Na $_2$ Se	0 ₄ is:
a) 0		b) 0.1	c) 0.3	d) 0.075
416. Nur	nber of g-atom of S pre	esent in 49 g H ₂ SO ₄ are:		
a) 0).5	b) 1	c) 0.2	d) 0.3
417. 276	g of silver carbonate o	on being strongly heated yi	elds a residue weighing	

_		_ ,		
Gn	liic	Fdi	ıcatio	n
U			acu ci o	

			Opius Luacution
a) 3.54 g	b) 3.0 g	c) 1.36 g	d) 2.16 g
418. The mole fraction of	oxygen in a mixture of 7 g of	nitrogen and 8 g of oxyg	gen is:
a) 8/5	b) 0.5	c) 0.25	d) 1.0
419. $0.5 \mathrm{g}$ of fuming $\mathrm{H}_2\mathrm{SC}$	0_4 (oleum) is diluted with wa	ter. This solution is com	pletely neutralized by 26.7 mL of
0.4 N NaOH. The per	centage of free SO_3 in the sar	nple is:	
a) 30.6%	b) 40.6%	c) 20.6%	d) 50%
-	-		-
420. The mass of BaCO $_3$ p	produced when excess CO_2 is	bubbled through a solu	tion of 0.205 mole $Ba(OH)_2$ is,
a) 81 g	b) 40.5 g	c) 20.25 g	d) 162 g
421. An example of homo		, 0	, ,
a) Mixture of soil an		b) Mixture of salt ar	nd sand grains
c) Sugar solution		d) None of the abov	_
	ution containing 5.3 g of anh	-	
a) 0.01 <i>M</i>	b) 0.05 <i>M</i>	c) 0.02 M	d) 1 <i>M</i>
•	a given solution containing	•	
containing 16 mg Ag	= =	0 0 31	J
a) Each mL must be			
•	ution 2.5 mL of water should	be added	
	tion 2.5 mL of water should b		
	tion 1.5 mL of water should b		
424. In the reaction,			
$I_2 + 2S_2O_3^{2-} \rightarrow 2I^-$	$+ S_4 O_c^{2-}$		
	fiodine will be equal to		
a) Molecular weight	The state of the s	b) 1/2 of molecular	weight
c) 1/4 of molecular		d) Twice of molecul	_
425. Mol. wt. = vapour d		dy I wice of molecus	ar weight
a) metals	b) non-metals	c) Solids	d) Gases
· · · · · · · · · · · · · · · · · · ·	en required for complete oxid		
a) 12.25 litre	b) 4 litre	c) 1 litre	d) 3 litre
-	,		ution for complete conversion of
			into Na_2CO_3 , if the mixture (one
mole) is completely		it require for conversion	i into ivazdo3, ii the inixtare (one
a) 60 g	b) 80 g	c) 40 g	d) 20 g
, 0	ht of H_3PO_4 in the following	, ,	u) 20 g
$H_3PO_4 + Ca(OH)_2 -$		reaction is,	
a) 98	b) 49	c) 32.66	d) 40
		=	s 4. If follows that the number of
atoms in 1 g of He is:		tonne weight of hendin i	3 1. II Tollows that the number of
	b) $4 \times 6 \times 10^{23}$	c) 6×10^{23}	d) 12×10^{23}
	er is usually expressed in:	c) 0 × 10	u) 12 × 10
	b) g/litre	c) Mol/litre	d) None of these
a) ppm	,		
		s 20% of the oxide by w	eight, the equivalent weight of
the given element w		-) (0	J) 120
a) 32	b) 40	c) 60	d) 128
	s of H ₂ s needed to precipitate	e all the metals ions fron	n 100 mL of 1 M AgNO ₃ and 100
mL of 1 M CuSO ₄ is:	L) 2 - 1	a) 7c	d) Infinite
a) 1:2	b) 2:1	c) Zero	d) Infinite
433. 5.6 litre of oxygen at		a) 1 /41	J) 1 /01-
a) 1 mole	b) 1/2 mole	c) 1/4 mole	d) 1/8 mole
434. A solution of HCl co	ntaining 0.03659 g/mL and	another solution of ace	tic acid containing 0.04509 g/mL,

GPLUS EDUCATION

_			opius zaucation
then:	h) No see is more	a) Poth have same N	d) None of these
a) N_{HCl} is more	reight of an acid is obtained by di	c) Both have same <i>N</i>	d) None of these
a) Acidity	b) Basicity	c) pH	d) None of these
, ,	$Fe_2O_3 + 3CO \rightarrow 2 Fe + 3CO_2 the$	* *	,
mole of ferric oxi			
a) 22.4 dm ³	b) 44.8 dm ³	c) 67.2 dm ³	d) 11.2 dm ³
437. 224 mL of a triate	omic gas weights 1 g at 273 K and	d 1 atm. The mass of one at	om of this gas is:
a) 8.30×10^{-23} g	b) 2.08×10^{-23} g	c) 5.53×10^{-23} g	d) 6.24×10^{-23} g
438. The empirical for	mula of a compound isCH ₂ . One	mole of this compound has	a mass of 56 g. its molecular
formula is			
a) C_3H_6	b) C ₄ H ₈	c) CH ₂	d) C ₂ H ₂
	num number of atoms?		
a) 2.0 mol of S_8	b) 6.0 mol of S	c) 5.5 mol of SO ₂	d) 4.48 L of CO ₂ at 5TP
440. Which represents			
a) $\frac{\text{wt. of solute}}{\text{wt. of solution}}$	- × 100		
wt. of solution wt. of solut	e		
b) $\frac{\text{wt. of solut}}{\text{volume of solu}}$	$\frac{1}{1} \times 100$		
c) $\frac{\text{volume of sol}}{\text{volume of solution}}$	lute		
d) None of the ab			
	present in one mole of MgSO ₄ ?	2.40.04	D 0.60
a) 120.4	b) 130.2	c) 12.04	d) 360
alcohol?	ns one mole of alcohol and four n	noles of water, what are th	e mole fractions of water and
a) 1/4, 4/1	b) 4/1, 1/4	c) 4/5, 1/5	d) 1/5, 4/5
	mic weight of an element is 26.89		, ,
of element would		in its equivalent weight is	30.7 the exact atomic weight
a) 26.89	b) 8.9	c) 17.8	d) 26.7
	olid A_4 and 2 moles of $O_2(g)$ are 1	•	
	oduces only one compound. It is f		
temperature, the	contents of the vessel exhibit a p	ressure equal to $\frac{1}{2}$ of the or	riginal pressure. The formula
of the product wi		2	
a) A_2O_3	b) A_3O_8	c) $A_3 O_4$	d) AO_2
	urbonate, Na ₂ CO ₃ was dissolved i		, 2
	iates completely, molar concentr		
	$_{2}CO_{3} = 106 \text{ g mol}^{-1})$		
a) 0.9555 <i>M</i> and	1.910 <i>M</i>		
b) 1.910 <i>M</i> and 0	.955 <i>M</i>		
c) 1.90 <i>M</i> and 1.1	.910 <i>M</i>		
d) 0.477 <i>M</i> and 0			
	to form No_2 . When 10 g of NO_2	is formed during the reacti	on, the mass of O_2 consumed
is	12 7 0	2 0 40	D 40 0
a) 1.90 g	b) 5.0 g	c) 3.48 g	d) 13.9 g
	a substance (non-electrolyte) a		
) mL of 1.2 M of II solution. The n	•	
a) 1.20 <i>M</i>	b) 1.50 <i>M</i> ber is the number of molecules p	c) 1.344 <i>M</i>	d) 2.70 <i>M</i>
a) 22.4 litre of a g			
•			

	b) 1 mole of a substance			
	c) G mol. wt. of a substar	nce		
	d) All of the above			
449	. Camphor is often used ir	n molecular mass determina	tion because	
	a) It is readily available		b) It has a very high cryo	scopic constant
	c) It is volatile		d) It is solvent for organi	c substances
450	The molality of 1 <i>M</i> solu	tion of NaCl (specific gravity	7 1.0585) g/mL) is:	
	a) 1.0585	b) 1.0	c) 0.10	d) 0.0585
451	. An organic compound co	ontains 49.3% carbon, 6.84%	% hydrogen and its vapour	density is 73. Molecular
	formula of the compoun	d is		
	a) $C_3H_5O_2$	b) $C_4H_{10}O_2$	c) $C_6H_{10}O_4$	d) $C_3H_{10}O_2$
452	. How many g of glucose b	e dissolved to make one litr	e solution of 10% (wt./vol	l.) glucose?
	a) 10 g	b) 180 g	c) 100 g	d) 1.8 g
453	. How many atoms are co	ntained in a mole of Ca(OH)	2?	
	a) $30 \times 6.02 \times 10^{23}$ ator	n/mol		
	b) $5 \times 6.02 \times 10^{23}$ atom	/mol		
	c) $3 \times 6.02 \times 10^{23}$ atom			
	d) None of the above	•		
454		hosphorous acid (H ₃ PO ₃) is	S:	
	a) 0.1	b) 0.9	c) 0.3	d) 0.6
455	•	ate reacts with 40 mL of /2		
	a) 84 g	b) 64 g	c) 42 g	d) 38 g
456	, ,			c mass unit, the mass of one
	mole of a substance will:	The second secon		,
	a) Decrease twice			
	b) Increases two folds	7		
	c) Remains unchanged			
	•	olecular mass of element	'ATION	
457		rmula[CO] _x . Its vapour dens	sity is 70, the x is	
	a) 3.0	b) 3.5	c) 5.0	d) 6.5
458		neutralised completely by 1	•	,
	carbonate is	1 5 5		1 0
	a) 50	b) 100	c) 150	d) 200
459	•	ticle that can take part in ch		,
	a) Atom	b) Molecule	c) Both (a) and (b)	d) None of these
460	-	f a solid element is found to	, , , , ,	-
	1.05 $Jg^{-1}K^{-1}$, then its at		1	
	a) 17	b) 21	c) 25	d) 27
461	. The largest number of m		-,	,
	a) 36 g H ₂ O	b) 28 g CO	c) 46 g C ₂ H ₅ OH	d) $54 \text{ g N}_2 \text{O}_5$
462		al chloride is 66. Its oxide co		, , , ,
	a) 21	b) 54	c) 27.06	d) 2.706
463	-	Ca^{2+} ions in 222 g CaCl_2 are	-	a) = = =
100	a) 4 N, 2 N	b) 2 N, 4 N	c) 1 N, 2 N	d) 2 <i>N</i> , 1 <i>N</i>
464	•	would have to be dissolved	•	•
	a) 40 g	b) 20 g	c) 15 g	d) 10 g
465	5. The units J Pa^{-1} is equiv	· ·	-, _B	, -~ o
.00	a) m^3	b) <i>cm</i> ³	c) dm ³	d) None of these
466		ontains 24.5 g $\rm H_2SO_4$, the m		•
100	a) 1 <i>M</i> , 2 <i>N</i>	b) 1 M , 0.5 N	c) $0.5 M, 1N$	d) 2 <i>M</i> , 1 <i>N</i>
		. — ,	,,	, — , —

		opius zuucucion
467. Equivalent weight of bivalent metal is 32.7. Molecu	=	
a) 68.2 b) 103.7	c) 136.4	d) 166.3
468. Insulin contains 3.4% Sulphur. The minimum mol.		
a) 941.176 b) 944	c) 945.27	d) None of these
469. How many moles of magnesium phosphate, Mg ₃ (Po		
a) 0.02 b) 3.125×10^{-2}	c) 1.25×10^{-2}	d) 2.5×10^{-2}
470. The gram molecular weight of hydrogen peroxide i	_	=
a) g b) mole	c) g mol ⁻¹	d) mol g
471. Which one of the following has maximum number of		
a) 2 g of carbon monoxide	b) 2 g of carbon dioxide	
c) 2 g of sulphur dioxide	d) 2 g of water	
472. Equal volumes of 0.1 <i>M</i> AgNO ₃ and 0.2 <i>M</i> NaCl are	mixed. The concentration o	f NO_3^- ions in the mixture
will be:		
a) 0.1 <i>M</i> b) 0.05 <i>M</i>	c) 0.2 <i>M</i>	d) 0,15 <i>M</i>
473. The equivalent mass of chlorine is 35.5 and the ato		the equivalent mass of
copper chloride is 99.0. hence, formula of copper ch	ıloride is	
a) CuCl b) Cu ₂ Cl	c) CuCl ₂	d) None of these
474. The reaction between yttrium metal, <i>Y</i> and dilute h		$H_2(g)$ and Y^{3+} icons. The
molar ratio of yttrium used to hydrogen produces i		
a) 1:2 b) 1:3	c) 2:1	d) 2:3
475. Two elements X (atomic weight = 75) and Y (atomic	mic weight =16) combine	to give a compound having
75.8% of X. The formula of the compound is:		
a) <i>XY</i> b) <i>X</i> ₂ <i>Y</i>	c) X_2Y_2	d) X_2Y_3
476. Which of the following has the smallest number of		
a) 0.1 mole of CO ₂ gas	b) 11.2 L of CO ₂ gas at ST	
c) 22 g of CO ₂ gas	d) $22.4 \times 10^3 \text{ mL of CO}_2$	_
477. Sodium nitrate on reduction with Zn in presence of	NaOH solution produces N	H ₃ . Mass of sodium nitrate
absorbing 1 mole of electron will be	CATION	
a) 7.750 b) 10.625	c) 8.000	d) 9.875
478. The percentage of nitrogen in urea is about:		
a) 38.4 b) 46.6	c) 59.1	d) 61.3
479. What volume of $0.8 M$ solution contains 0.1 milli m		
a) 100 mL b) 125 mL	c) 500 mL	d) 0.125 mL
480. The equivalent weight of an element can be calcula	ted from:	
a) 6.4 divided by specific heat and valence		
b) Atomic weight divided by atomicity		
c) Molecular weight divided by atomicity, all divide	d by the valence	
d) None of the above		
481. 4 g-atom of Ag contains:		
a) 108 g b) 4 g	c) 432 g	d) None of these
482. The correctly reported answer of the addition of 4.		= =
a) Two b) Three	c) Four	d) Five
483. Weight of H_2O in 1000 kg $CuSO_4 \cdot 5H_2O$ is:		
a) 360.5 kg b) 36.05 kg	c) 3605 kg	d) 3.605 g
484. 3.0 molal NaOH solution has a density of 1.110 g/m		
a) 2.9732 b) 3.05	c) 3.64	d) 3.0504
485. An oxide of a metal (M) contains 40% by mass of o	xygen. Metal (M) has atomi	c mass of 24. The empirical
formula of the oxide is:		-
a) M ₂ O b) MO	c) M_2O_3	d) M_3O_4
486. The vanour density of a gas is given by:		

			Gplus Education
a) $VD = mol. wt./2$			
b) $VD = \frac{\text{wt. of } N \text{ mol}}{\text{wt. of } N \text{ mol}}$	ecules of gas		
wt. of N mol	ecules of H ₂		
c) $VD = \frac{\text{wt. of 1 mole}}{\text{wt. of 1 mol}}$	e of H ₂		
d) All of the above			
487. In the disproportion	nation reaction 3HClO ₃	$_3 \rightarrow HClO_4 + Cl_2 + 2O_2 + H_2O_3$), the equivalent mass of the
	$molar mass of HClO_3 =$		
a) 16.89	b) 32.22	c) 84.45	d) 28.15
488. How many atoms a	re contained in a mole	of acetic acid?	
a) $8 \times 6.02 \times 10^{23}$	atom/mol		
b) $4 \times 6.02 \times 10^{23}$			
c) $6 \times 6.02 \times 10^{23}$	atom/mol		
d) None of the abo			
489. Specific gravity of s	solution is given by:		
a) Weight of 1 mL :	solution		
b) Mole present in	1 mL solution		
c) Volume of 1 g so	lution		
d) None of the abo	ve		
490. Which property of	an element is always a	whole number?	
a) Atomic volume	b) Atomic weig	ht c) Atomic numbe	r d) Equivalent weight
491. An aqueous solution	n of urea containing 18	3 g urea in 1500 cm³ of solutio	on has a density of 1.052 g/cm^3 . If
the molecular weig	tht of urea is 60, then th	ne molality of solution is:	
a) 0.2	b) 0.192	c) 0.064	d) 1.2
492. The relative abund	ance of two isotopes of	atomic weight 85 and 87 is 7	5% and 25% respectively. The
average atomic we	ight of element is	\hookrightarrow	
a) 75.5	b) 85.5	c) 40.0	d) 86.0
493. A molar solution re	epresents a solution of i	molarity equal to:	
a) 1	b) 2	c) 3 ignificant figures will be	d) None of these
494. The answer of the	calculation $\frac{2.568\times5.8}{4.168}$ in s	ignificant figures will be	
a) 3.579	b) 3.570	c) 3.57	d) 3.6
•	•	•	ormation, which of the followings is
a correct statemen			
a) The element X c	ould have an atomic we	eight of 7 and its oxide is XO	
		eight of 14 and its oxide form	ula is X ₂ O
c) The element X c	ould have an atomic we	eight of 7 and its oxide is X_2 0	
		eight of 14 and its oxide is XO	2
496. Consider the follow	ving data:		
Element Atomi	C		
weigh	it		
A 12			
B 35.5			
A and B combine to	 o form a new substance	eX. If four moles of B combine	e with one mole of A to give one

mole of X, then the weight of ne mole of X is:

a) 47.5 g

c) 154 g

d) 166 g

497. One mole of P_4 molecules contain:

- a) 1 molecule
- b) 4 molecules
- c) $\frac{1}{4} \times 6.022 \times 10^{23}$ atoms
- d) 24.088×10^{23} atoms

498. Molecular weight of	NaCl is 58.5. A solution of Na	Cl containing 5.85 g NaCl p	er litre is :
a) 1 molar	b) 0.1 molar	c) 2 molar	d) 0.585 molar
499. The solution having	lowest molar concentration i	S:	
a) 1.0 N HCl	b) 0.4 N H ₂ SO ₄	c) 0.1 N Na ₂ CO ₃	d) None of these
500. The value of amu is	which of the following?		
a) 1.57×10^{-24} kg	b) 1.66×10^{-24} kg	c) 1.99×10^{-23} kg	d) 1.66×10^{-27} kg
501. How many g are pre	sent in one mole of Ag?		
a) 107.9	b) 108.6	c) 10.29	d) None of these
502. One mole of chloring	e combines with certain weig	ht of metal giving 111 g of i	ts chloride. The same amount
of metal can displace	e 2 g of hydrogen from an aci	d. The atomic weight of the	metal is:
a) 40	b) 20	c) 80	d) None of these
503. Equivalent weight of	f anhydrous oxalic acid is:		
a) 45	b) 63	c) 126	d) 90
504. Molarity is expresse	d as:		
a) Litre mol ^{–1}	b) Mol litre ⁻¹	c) Mol kg ⁻¹	d) G litre ⁻¹
505. H ₃ PO ₄ is a tribasic a	cid and one of its salts is NaH	1_2 PO ₄ . What volume of 1 M	NaOH should be added to 12 g
	20) to exactly convert it into		_
a) 100 mL	b) 300 mL	c) 200 mL	d) 80 mL
506. How many atoms ar	e contained in one mole of su	crose $(C_{12}H_{22}O_{11})$?	-
a) $45 \times 6.02 \times 10^{23}$		(12	
b) $20 \times 6.02 \times 10^{23}$	•		
c) $5 \times 6.02 \times 10^{23}$ a	•		
d) None of the above			
•	(in litres) of oxygen required	at STP to completely conve	ert 1.5 moles of sulphur into
sulphur dioxide?	, , ,	<i>*</i>	•
a) 11.2	b) 22.4	c) 33.6	d) 44.8
•	of moles of $Fe(OH)_3(s)$ that of	can be produced by allowin	g 1 mole of Fe ₂ S ₃ , 2 moles of
H ₂ O and 3 moles of	and the same of th	CATION	2 5
	$O_2 \rightarrow 4 \text{Fe}(\text{OH})_3 + 6 \text{S}?$	CHITOIA	
a) 1 mol	b) 1.84 mol	c) 1.34 mol	d) 1.29 mol
	cules of CO ₂ present in 44 g o	,	,
a) 6.0×10^{23}	b) 3×10^{23}	c) 12×10^{23}	d) 3×10^{10}
510. 1 L oxygen gas at ST	•	,	,
a) 1.43 _g	b) 2.24 _g	c) 11.2 _g	d) 22.4 _g
511. Which has maximun	, 0	e) g) g
a) 24 g of C	b) 56 g of Fe	c) 26 g of Al	d) 108 g of Ag
· · ·			e as that in the quantity with .
_	r of significant figures.	res of answer mast be sam	e as that in the quantity with .
a) Maximum	b) 3	c) 2	d) Minimum
•	normality is diluted to two ti	=	-
a) Equivalent of solu		ines: winen of the followin	g changes during anddon.
b) Moles of solute			
c) Volume of 1 g solu	ution		
d) None of the above			
•	s of oxygen in one litre of air	containing 21% ovvgen by	volume in standard
conditions, is	3 of oxygen in one nere of an	containing 21 /0 oxygen by	voidine, in standard
a) 0.186 mol	b) 0.21 mol	c) 2.10 mol	d) 0.0093 mol
-	gas at NTP occupies 22.4 L. T.	_	a) 0.0025 moi
a) Law of gaseous vo		b) Avogadro's hypothe	eje
c) Berzelius hypothe		d) Dalton's atomic the	
c, berzenus nypoun	-010	a parcon s atomic the	OI Y

		_ /	,	
Gpi	us	Ea	uca	ition

				-				
	What is the equivalent we $SnCl_2 + Cl_2 \rightarrow SnCl_4$?	eight of SnCl ₂ in the followi	ng reaction,					
	a) 95	b) 45	c) 60	d) 30				
517.	The standard adopted for	the determination of atom	ic weight of elements is ba	sed on				
ä	a) H ¹	b) C ¹²	c) 0 ¹⁶	d) S ³²				
518. V	What amount of bromine	will be required to conver	t 2 g of phenol into 2, 4, 6-t	ribromo phenol?				
ć	a) 20.44 g	b) 6.00 g	c) 4.00 g	d) 10.22 g				
	Equivalent weight of an a							
	a) Depends on the reaction involved with a base							
	b) Depends on the number of oxygen atoms present							
	c) Is always constant							
	d) None of the above							
520. The highest mass corresponds to which of the following?								
	a) 1 molecule of O ₂							
	b) 1 \times 10 ⁻²³ g mole of O ₂							
	c) An 0^{2-} ion							
	d) 1 mole of O_2	. 405 6	1					
		s in 4.25 g of ammonia is ap		D 0 F 4023				
	a) 3.5×10^{23}	b) 1.5×10^{23}	c) 0.5×10^{23}	d) 2.5×10^{23}				
522. If V mL of the vapours of substance at NTP weight W g. Mol. wt. of substance is:								
á	a) $(W/V) \times 22400$	b) $V/W = 22400$	c) $(W - V) \times 22400$	d) $\frac{W \times 1}{V \times 22400}$				
523.9	Sodium hicarhonate on h	eating decomposes to form	sodium carbonate CO ₂ an					
		mpletely decomposed, how	_					
	a) 0.1	b) 0.2	c) 0.05	d) 0.025				
	,	vith water is represented by	•	u) 010 2 0				
	$Ca + 2H_2O \rightarrow Ca(OH)_2 +$		ATION					
	_	P would be liberated when	8 g of calcium completely i	reacts with water?				
	a) $4480 \ cm^3$	b) 2240 <i>cm</i> ³	c) $1120 \ cm^3$	d) $0.4 cm^3$				
		of C-12 and C-14 is 98% and						
	isotope in 12 g carbon sai		1 3					
	a) 1.032×10^{22}	b) 3.01×10^{23}	c) 5.88×10^{23}	d) 6.02×10^{23}				
	•	-	•	•				