
GPLUS EDUCATION				
Dat Tim Mar				PHYSICS
		NU	ICLEI	
		Single Corre	ct Answer Type	
1.	During the β – decay			
	a) An atomic electron is b) An electron, already	s ejected present within the nucleu	s. is eiected.	
	•	eus decays emitting an ele	•	
	d) A neutron in the nu	cleus decays emitting an e	lectron	
2.		particles are constituents	of the nucleus	
	a) Protons and electron		b) Protons and neutron	
_	c) Neutrons and electro		d) Neutrons and positro	
3.		-	y two different processes w	hich have decay constant
		decay constant of the nucl		
	a) $\lambda = \lambda_1 + \lambda_2$	b) $\lambda = 2(\lambda_1 + \lambda)$	c) $\frac{1}{\lambda} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$	d) $\lambda = \sqrt{\lambda_1 \lambda_2}$
4.	The element used for ra	adioactive carbon dating fo	or more than 56000 yr is	
	a) C-14	b) U - 234	c) U-238	d) Po - 94
5.		The second secon	by $(7/8)^{th}$ part of the samp	
_	a) 3.4 days	b) 10 days	c) 15 days	d) 64 days
6.		_	he nucleus with velocity 2.1	$8 \times 10^{6} m/s$ in an orbit of
		eleration of the electron is	-) 0 1 10=22 1 2	J) 0 v 1012 /-2
7.	a) $9 \times 10^{18} m/s^2$ The ratio of the wavele	$0) 9 \times 10^{-2} m/s^{-2}$ ingths for 2 \rightarrow 1 transition	c) $9 \times 10^{-22} m/s^2$ on Li^{++} , He^+ and H is	d) $9 \times 10^{12} m/s^2$
	a) 1:2:3	b) 1 : 4 : 9	c) 4:9:36	d) 3:2:1
8.	Which is the correct exp	pression for half-life		
	a) $(t)_{1/2} = \log 2$	b) (t) , $t_0 = \frac{\lambda}{1-\lambda}$	c) $(t)_{t/2} = \frac{\lambda}{2}$ (2.303)) d) $(t)_{1/2} = \frac{2.303 \log 2}{\lambda}$
9.		with atomic mass number	r 7 is 2fermi. Find the radius	s of nucleus with atomic
	number 189.	10.46	-) F (:	D 6 C
10	a) 3 fermi	b) 4 fermi	c) 5 fermi	d) 6 fermi
10.				by a distance r . If we calculate tion, its energy will be given
	by $(n \text{ is an integer})$	applying bom 3 rule of all	iguiai momentum quantizat	non, its energy will be given
	• • • • • • • • • • • • • • • • • • • •	n^2h^2	$2n^{2}h^{2}$	$(m_1 + m_2) n^2 h^2$
	a) $\frac{1}{2m_1^2m_2^2r^2}$	b) $\frac{1}{2(m_1+m_2)r^2}$	c) $\frac{2n^2h^2}{(m_1+m_2)r^2}$	d) $\frac{(m_1 m_2)^{4}}{2m_1 m_2 r^2}$
11.			lioactive disintegration we	
		2, then the number of emit	_	•
	a) $\alpha = 4, \beta = 6$	b) $\alpha = 5, \beta = 5$	c) $\alpha = 6, \beta = 4$	d) $\alpha = 6$, $\beta = 6$
12.	Energy of electron in ar	n orbit of <i>H-</i> atom is		
	a) Positive	b) Negative	,	d) Nothing can be said
13.		re 3.4 g sample of ⁶⁷ Ga, a	n isotope that has a half-life	of 78 h. What is its initial
	decay rate?	13 4 0 7 4 2 1 4 - 1	3 5 5 6 6 16 -1	12.0 = 0 4.01 = 1
	a) $8.00 \times 10^{16} \text{s}^{-1}$	b) $6.27 \times 10^{16} \text{s}^{-1}$	c) $7.53 \times 10^{16} \text{s}^{-1}$	d) $8.53 \times 10^{15} \text{s}^{-1}$

14. To determine the half-life of radioactive element, a student plots graph of $\ln \left| \frac{dN(t)}{dt} \right|$ versus t. Here $\frac{dN(t)}{dt}$ is the rate of radioactive decay at time t. If the number of radioactive nuclei of this element decreases by a factor of p after 4.16 yr, the value of p is

a) 8

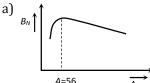
b) 7

c) 4

- d) 8.5
- 15. The radius of the first (lowest) orbit of the hydrogen atom is a_0 . The radius of the second (next higher) orbit will be

a) $4a_0$

b) $6a_0$


c) $8a_0$

d) $10a_0$

16. The correct order of ionizing capacity of α , β and γ —rays is

a) $\alpha > \gamma > \beta$

- b) $\alpha > \beta > \gamma$
- c) $\alpha < \beta < \gamma$
- d) $\gamma > \alpha > \beta$
- 17. The dependence of binding energy per nucleon, B_N on the mass number, A, is represented by

_

 $B_N \uparrow$ $A=96 \qquad \overrightarrow{A}$

- 18. Pick out the unmatched pair from the following
 - a) Moderator Heavy water
 - b) Nuclear fuel $_{92}U^{235}$
 - c) Pressurized water reactor water as the heat exchange system
 - d) Safety rods Carbon
- 19. A count rate metre shows a count of 240 per minute from a given radioactive source later the metre shows a count rate 0f 30 min . The half-life of the source is

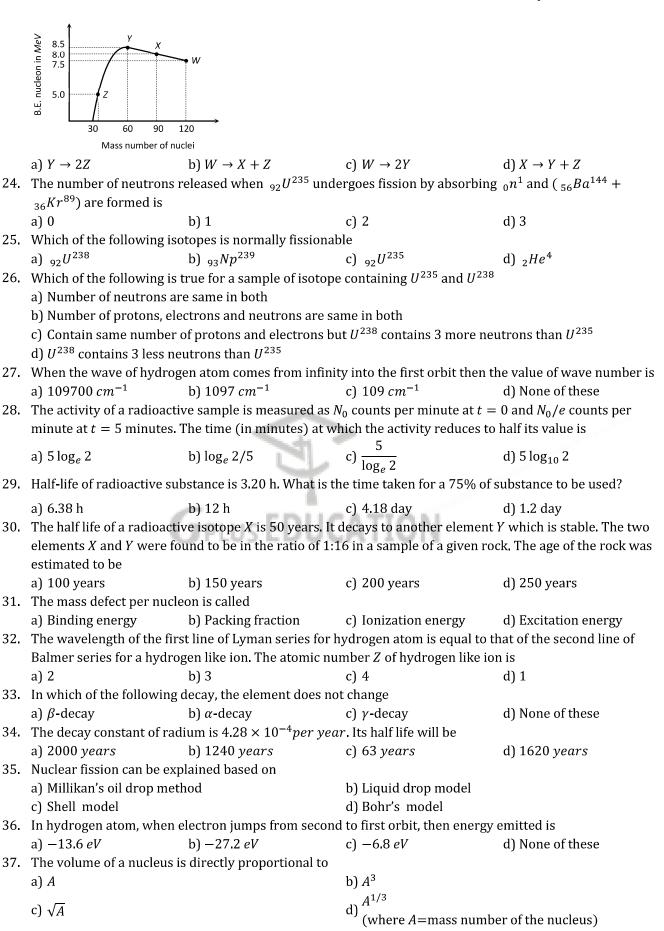
a) 80 min

- b) 120 min
- c) 20 min
- d) 30 min
- 20. A nucleus $_{z}X^{A}$ emits an α -particle. The resultant nucleus emits a β^{+} particle. The respective atomic and mass numbers of the final nucleus will be

a) Z - 3, A - 4

- b) Z 1, A 4
- c) Z 2, A 4
- d) Z, A 2
- 21. The nucleus $_{92}U^{234}$ splits exactly in half in a fission reaction in which two neutrons are released. The resultant nuclei are

a) $_{46}Pd^{116}$


- b) ₄₅Rh¹¹⁷
- c) ₄₅Rh¹¹⁶
- d) $_{46}Pd^{117}$
- 22. A mixture consists of two radioactive materials A_1 and A_2 with half lives of 20 s and 10 s respectively. Initially the mixture has 40 g of A_1 and 160 g of A_2 . The amount of the two in the mixture will become equal after

a) 60 s

b) 80 s

c) 20 s

- d) 40 s
- 23. Binding energy per nucleon verses mass number curve for nuclei is shown in the figure. W, X, Y and Z are four nuclei indicated on the curve. The process that would release energy is

38.	In the nuclear reaction: $X(n, a)$	$(2)_3 Li^7$ the term X will	be			
	a) $_{5}B^{10}$ b)	$_{5}B^{9}$	c) $_{5}B^{11}$	d) $_2He^4$		
39.	Solar energy is mainly cause of	lue to				
	a) Fission of uranium present in the sun					
	b) Fusion of protons during sy	nthesis of heavier eler	nents			
	c) Gravitational contraction					
	d) Burning of hydrogen in the	oxygen				
40.	The ratio of minimum to maxi	mum wavelength in Ba	almer series is			
		5 : 36	c) 1:4	d) 3:4		
41.	\mathbf{F}_{pe} represents electrical force	on proton due to elec	tron and \mathbf{F}_{en} on electron due	e to proton in a hydrogen		
	atom. Similarly \mathbf{F}_{pe} represents					
	force on electron due to proton. Which of the followi					
	a) $\mathbf{F}_{Pe} + \mathbf{F}_{ep} = 0$	in vinion of the follows	b) $\mathbf{F'}_{Pe} + \mathbf{F'}_{ep} = 0$			
	c) $\mathbf{F}_{Pe} + \mathbf{F}'_{Pe} + \mathbf{F}_{ep} + \mathbf{F}'_{ep}$	- 0	d) $\mathbf{F}_{Pe} + \mathbf{F'}_{Pe} = 0$			
12				shan 2m. It can amit a		
42.	A hydrogen like atom of atom maximum energy photon of 2		-			
			nsition to quantum state <i>n</i> ,	a photon of energy 40.8 ev		
	is emitted. The value of n will		c) 3	d) 4		
42	a) 1 b) !		,	d) 4		
43.	In a material medium, when a	_		_		
	emission of two gamma ray pl	notons. This process io	orms the basis of an importa	ant diagnostic procedure		
		DET	-a) CAT	d) CDECT		
11	-	PET	c) CAT	d) SPECT		
44.	Half life of a radioactive eleme	ent is 10 days. The time	e during which quantity ref	nams 1/10 of mitial mass		
	will be	FO d	a) 22 dassa	d) 16 dans		
4 -	-	50 days	c) 33 days	d) 16 days		
45.	The power obtained in a react					
1.0		10 microgram		d) 40 microgram		
46.	What is the ground state ener			D 1 0 - W		
47		27.2 <i>eV</i>	c) 5.4 <i>eV</i>	d) 1.8 <i>eV</i>		
47.	In beta decay	1 • 1	C			
		a) The parent and daughter nuclei have same number of protons				
	b) The daughter nucleus has o	*	*			
	c) The daughter nucleus has o	-	=			
40	d) The daughter nucleus has o		-			
48.	The half-life for the α -decay of the α -decay of the half-life for the half-life for the α -decay of the α -decay of the half-life for the α -decay of the half-life for the α -decay of the half-life for the α -decay of the α -decay			ns sixty percent of its		
	original ₉₂ U ²³⁸ atoms, its age			D.E.A407		
40		6.6 × 10 ⁹ yr	c) $1.2 \times 10^8 \text{yr}$	d) $5.4 \times 10^7 \text{yr}$		
49.	o		1) 0 040 14 00			
	a) $0.365 \mu m$ and $0.565 \mu m$		b) 0.818μm and 1.89μm			
- 0	c) $1.45 \mu m$ and $0.04 \mu m$	1	d) $2.27 \mu m$ and $7.43 \mu m$			
50.	If a radioactive substance red	uces to $\frac{1}{16}$ of its origina	l mass in 40 <i>days,</i> what is i	ts half life		
	a) 10 <i>days</i> b) :	20 days	c) 40 <i>days</i>	d) None of these		
51.	The graph between the instan	taneous concentration	(N) of a radioactive eleme	nt and time (t) is		
	a) <i>N</i> ↑ b)	<i>N</i> ↑	c) <i>N</i> ↑	d) <i>N</i> ↑		
			/			
	ľ		/			
	$\downarrow \qquad \qquad t$	$\longrightarrow t$	$\longrightarrow t$	$\longrightarrow t$		

52.	The decay constant λ	of the radioactive sam	ple is the probability of decay	y of an atom in unit time, then	
	a) λ decreases as atom	ms become older			
	b) λ increases as the age of atoms increases				
	c) λ is independent o	=			
		time depends on the n	ature of the activity		
53.	-	_	2 fm and it has charge of 1.28	8×10^{-17} C. The number of	
	neutrons inside the n				
	a) 136	b) 142	c) 140	d) 132	
54.	•	,	= 0. If the rate of disintegrati		
		I, then the ratio R/N va		on accord on a constant	
	R	R	_ R 1	$_{R}$ \uparrow	
	a) \overline{N}	b) ***	c) $\frac{K}{N}$	d) N	
	")		9		
	$o \xrightarrow{t}$	0 1	\overrightarrow{t} 0 \overrightarrow{t}	O t	
55.	If T is the half life of a	a radioactive material, t	then the fraction that would i	remain after a time $\frac{T}{2}$ is	
	a) $\frac{1}{2}$	b) $\frac{3}{4}$	c) $\frac{1}{\sqrt{2}}$	d) $\frac{\sqrt{2}-1}{\sqrt{2}}$	
	2 2	4	$\sqrt{2}$	$\frac{1}{\sqrt{2}}$	
56.	The half-life of radioa	active Radon is 3.8 days	s. The time at the end of whic	h (1/20)th of the Radon sample	
		ed is (given $\log_{10}e = 0$.			
	a) 13.8 days	b) 16.5 days	c) 33 days	d) 76 days	
57.	-	fter two successive β^-	decays will give		
	a) $^{115}_{46}Pa$	b) ¹¹⁴ ₄₉ <i>In</i>	c) $^{113}_{50}Sn$	d) $_{50}^{115}Sn$	
58.	In the following react	, ,,	30 30	-9 30 - 11	
00.	$_{12}Mg^{24} + _{2}He^{4} \rightarrow _{1}$				
	a) 28	b) 27	c) 26	d) 22	
59		,	_	time $t_2(t_2 > t_1)$. If its mean life is	
57.	T, then	sie of a radioactive mat	eriaris 71 at time t ₁ and 71 ₂ at		
	a) $A_1 t_1 = A_2 t_2$	b) $4 - 4 - t_1$	$-t_1$ c) $A_2 = A_1 e^{(t_1 - t_2)/2}$	T d) $A = A a(t_1/t_2)/T$	
60			$A_1 = C_1 A_2 = A_1 e^{-C_1 A_2}$ and α -particle is emitted. The	, , ,	
00.				d) $_{7}N^{14}$	
<i>(</i> 1	a) $_{7}N^{13}$	b) $_5B^{10}$	c) $_4Bc^9$	a) ₇ /v	
01.		g radiations has the lea	_	d) or marra	
()	a) X-rays	b) γ-rays	c) β-rays	d) α -rays	
02.		cle experiment showed		J) Elt	
(2	a) Proton	b) Nucleus	c) Neutron	d) Electrons	
63.			gaipna particle into 2	e speeds of the alpha particle and	
	the thorium nucleus		3.4.70	D = 0.4	
	a) 3:58	b) 58:3	c) 1:58	d) 58:1	
64.		n atom emits a photon	in the Balmer series		
	a) It may not emit any more photons				
	b) It may emit another photon in the Paschen series				
		er photon in the Lymai			
		er photon in the Balmer			
65.		ne decay of ₉₀ Th ²³² is	$_{82}$ Pb 208 . The number of $lpha$ an	d eta -particles emitted are	
	respectively				
	a) 6,4	b) 3,3	c) 4,6	d) 6,0	
66.	A nucleus disintegrat nuclear sizes will be	es into two nuclear par	ts which have their velocitie	s in the ratio 2:1. The ratio of their	
	a) $2^{1/3}$: 1	b) 1: 3 ^{1/2}	c) 3 ^{1/2} :1	d) 1: 2 ^{1/3}	
	-	•	•	-	

67.	The ratio of the energies of the hydrogen atom in its a) 1/4 b) 4/9	first to second excited stat	e is d) 4
68.	Radio carbon dating is done by estimating in specim		uj 1
00.	a) Amount of ordinary carbon still present	b) Amount of radio carbo	n ctill procent
	c) Ratio of amount of ¹⁴ C ₆ to ¹² C ₆ still present		
60			
69.	•	vnich fly off with velocities	in the ratio 8:1. The ratio of
	radii of the fragments is)	D 0 4
	a) 1:2 b) 1:4	c) 4:1	d) 2:1
70.	16 g sample of a radioactive element is taken from I		and it was found that $1 g$ of
	the element remained (undisintegrated). Half life of		
	a) 2 hour b) 1 hour	c) 1/2 hour	d) 1/4 <i>hour</i>
71.	If the distance between nuclei is 2×10^{-13} cm, the d		3
	a) $3.21 \times 10^{-12} \text{kgm}^{-3}$	b) $1.6 \times 10^{-3} \text{kgm}^{-3}$	
	c) $2 \times 10^9 \text{kgm}^{-3}$	d) $4 \times 10^{17} \text{kgm}^{-3}$	
72.	The wavelength of the first spectral line in the Balm	er series of hydrogen atom	is 6561 Å. The wavelength
	of the second spectral line in the Balmer series of sin	ngly ionized helium atom is	
	a) 1215 Å b) 1640 Å	c) 2430 Å	d) 4687 Å
73.	Which of the following is suitable for the fusion production		
	a) Heavy nuclei b) Light nuclei	c) Atom bomb	d) Radioactive decay
74	An observer <i>A</i> sees an asteroid with a radioactive el	=	•
, ,,	radioactivity decay time to be T_A . Another observer		
	time as T_B . Then T_A and T_B are related as below	b is moving with the astere	nd and measures its decay
		>	
	a) $T_B < T_A$		
	b) $T_B = T_A$		
	c) $T_B > T_A$		C 4
7-	d) Either (a) or (c) depending on whether the astero	old is approaching or movir	ig away irom A
/5.	The ratio between Bohr radii are	c) 1:4:9	D 4 2 F
-	a) 1:2:3 b) 2:4:6		d) 1:3:5
76.	Decay constant of radium is λ . By a suitable process	its compound radium bron	ilde is obtained. The decay
	constant of radium bromide will be		
		c) Less than λ	d) Zero
77.	An electron has a mass of $9.1 \times 10^{-31} kg$. It revolves		
	$0.529 \times 10^{-10} metre$ at a speed of $2.2 \times 10^6 m/s$. Th	C	
	a) $1.1 \times 10^{-34} kg - m/s$ b) $2.0 \times 10^{-24} kg - m/s$		
78.	The rest mass of an electron as well as that of positr	on is 0.51 <i>MeV</i> . When an el	ectron and positron are
	annihilate, they produce gamma-rays of wavelength	u(s)	
	a) 0.012 Å b) 0.024 Å	c) 0.012 Å to ∞	d) 0.024 Å to ∞
79.	The possible quantum numbers for $3d$ electrons are		
	2) 2 / 1 1	b) 21 2 12	1
	a) $n = 3, l = 1, m_l = +1, m_s = -\frac{1}{2}$	b) $n = 3, l = 2, m_l = +2,$	$m_s \equiv -\frac{1}{2}$
	c) $n = 3, l = 1, m_l = -1, m_s = +\frac{1}{2}$	d) $n = 3, l = 0, m_l = +1,$	_ 1
	L		4
80.	Hydrogen atom emits blue light when it changes fro		
	of light would the atom emit when it changes from t	he $n = 5$ level to the $n = 2$	level
	a) Red b) Yellow	c) Green	d) Violet
81.	Neutron decay in free space is given as follows		
	$_0n^1 \rightarrow {}_1\mathrm{H}^1 + -{}_1e^0 + [\;]$ Then the parenthesis repre	esents a	
	a) Neutrino b) Photon	c) Antineutrino	d) Graviton
Ω2	During a nuclear fusion reaction		

	a) A heavy nucleus breaks into two fragments by itself				
	b) A light nucleus bombarded by thermal neutrons break up				
	-	arded by thermal neutrons	-		
	_	ne to give a heavier nucleu	_	cts	
83.		nore than protons in $_{92}$ U 23			
	a) 54	b) 49	c) 51	d) 143	
84.		shortest wavelengths in B			
	a) $\frac{25}{9}$	b) $\frac{17}{6}$	c) $\frac{9}{5}$	d) $\frac{4}{3}$	
QΓ		O	5	3	
05.	=	es of the long wavelength li	innits of Lyman and Danner	series of flydrogen	
	spectrum is a) 27 : 5	b) 5 : 27	c) 4:1	d) 1:4	
86	-	•		He^+ ion in the first excited	
00.	state will be	atom in the ground state is	s -15.0 ev. The energy of a	The foll in the mist excited	
	a) -6.8 <i>eV</i>	b) -13.6 <i>eV</i>	c) -27.2 <i>eV</i>	d) -54.4 <i>eV</i>	
87.	If $_{92}U^{238}$ emits 8α -part	ticles and 6 β –particles, th	en the resulting nucleus is		
	a) ₈₂ U ²⁰⁶	b) ₈₂ Pb ²⁰⁶	c) ₈₂ U ²¹⁰	d) ₈₂ U ²¹⁴	
88.	If <i>R</i> is the Rydberg's cons	tant for hydrogen the wave		the Lyman series will be	
	a) $\frac{R}{4}$	b) $\frac{3R}{4}$		d) 2 <i>R</i>	
89.	A radioactive decay chain	starts from 92Np ²³⁷ produ	$\frac{2}{100}$ Lices $\frac{2}{100}$ Th ²²⁹ by successive	emissions. The emitted	
	particles can be				
	a) Two α -particles and or	ne β -particle	b) Three β^+ particles d) One α -particle and two		
	c) One α -particle and two	β^+ particles	d) One α -particle and two	β^- particles	
90.	Consider a radioactive ma	aterial of half-life 1.0 <i>minut</i>	e. If one of the nuclei decay	s now, the next one will	
	decay	2			
	a) After 1 minute	c colle	0.000.000.00		
		PLUS EDUC			
	c) After $\frac{1}{N}$ minute, where	N is the number of nuclei p	resent at that moment		
	d) After any time				
91.		iu in free state decays to en	=	ergy of the $lpha$ -particle	
		ecoil energy (in <i>MeV</i>) of the			
	a) 1.0	b) 0.5	c) 0.25	d) 0.125	
92.	•	ogen as compared to deuter			
	a) Hydrogen is lighter tha	in deuterium	b) Atomic number of hydr deuterium	ogen is lesser than	
	c) Hydrogen is a diatomic	1 GOC	d) The statements is wror	ng.	
02		an energetic neutron and e		0	
73.	a) $_{7}N^{14}$	b) ₅ B ¹³	c) $_{7}N^{13}$	d) ₆ C ¹³	
Q./l.	, ,	, ,		u) ₆ C	
74.		th orbit of hydrogen atom i	,0,		
	a) $-\frac{2\pi^2k^2me^4}{n^2h^2}$	b) $-\frac{4\pi^2 m k e^2}{n^2 h^2}$	c) $-\frac{n^2h^2}{2\pi k ma^4}$	d) $-\frac{n^2h^2}{4\pi^2k \ me^2}$	
95.		e half-life of radioactive sul		110 10 1100	
	a) $1.5 s^{-1}$	b) 2.21 s ⁻¹	c) $0.01 \mathrm{s}^{-1}$	d) $3.01 s^{-1}$	
96.	Three fourth of the active	decays in a radioactive sar		-	
	a) $\frac{1}{2}s$	b) 1s	c) $\frac{3}{8}s$	d) $\frac{3}{4}s$	
	2	~, * ~	, 8	4	

				Opius Luucutio
97.	$\lambda_1, \lambda_2, \lambda_3$ are the waveleng		g to increasing values of end ading to the transitions <i>C</i> to rrect	
	λ_1 C			
	β			
	λ_2 λ_3			
	A			
	a) $\lambda_3 = \lambda_1 + \lambda_2$	b) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$	c) $\lambda_1 + \lambda_2 + \lambda_3 = 0$	d) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$
98.	Half-life of radio-active su	ıbstance is 140 days. Initia	lly, is 16 g. Calculate the tim	ne for this substance when
	it reduces to 1 g			
	a) 140 days	b) 280 days	c) 420 days	d) 560 days
99.	An electron with kinetic e	energy 5 <i>eV</i> is incident on a	H-atom in its ground state	. The collision
	a) Must be elastic		b) May be partially elastic	
	c) Must be completely ela	istic	d) May be completely inel	lastic
100	. If scattering particles are	56 for 90° angle, then at ar	n angle 60° it will be	
	a) 224	b) 256	c) 98	d) 108
101	. A nuclear transformation	is denoted by $X(n,\alpha) \rightarrow \frac{7}{3}$	Li. Which of the following is	the nucleus of element X?
	a) ¹² ₆ C	b) ¹⁰ ₅ B	c) ₅ ⁹ B	d) ¹¹ ₄ Be
102	. When a $_4Be^9$ atom is bor	nbarded with α –particles,	one of the products of nuc	lear transmutation is $_6{\cal C}^{12}$
	The other is			
	a) $_{-1}e^{0}$	b) ₁ H ¹	c) $_{1}D^{2}$	d) $_{0}n^{1}$
103	. What will be the angular i	momentum of an electron,	if energy of this electron in	H-atom is $-1.5eV$ (in J - s)
	a) 1.05×10^{-34}	b) 2.1×10^{-34}	c) 3.15×10^{-34}	d) -2.1×10^{-34}
104	. Some radioactive nucleus	may emit		
	a) Only one α , β or γ at a	time	b) All the three α , β and γ	one after another
	c) All the three α , β and γ	simultaneously	d) Only α and β simultane	eously
105	. The number of beta parti	cles emitted by a radioactiv	ve substance is twice the nu	mber of alpha particles
	emitted by it. The resulting	ng daughter is an		
	a) Isobar of parent	b) Isomer of parent	c) Isotone of parent	d) Isotope of parent
106	. A π^0 at rest decays into 2	γ rays, $\pi^0 o \gamma + \gamma$. Then w	hich of the following can ha	appen
	a) The two γ 's move in sa	me direction	b) The two γ 's move in op	posite direction
	c) Both repel each other		d) Both attract each other	•
107	. What fraction of a radioad	ctive material will get disin	tegrated in a period of two	half-lives
	a) Whole	b) Half	c) One-fourth	d) Three-fourth
108	. Mass spectrometric analy	rsis of potassium and argon	atoms in a Moon rock sam	ple shows that the ratio of
			ımber of (radioactive) 40 K	
	all the argon atoms were	produced by the decay of p	otassium atoms, with a hal	f-life of 1.25 $ imes$ 10 9 yr. How
	old is the rock?			
	a) $2.95 \times 10^{11} \text{yr}$	b) $2.95 \times 10^9 \text{yr}$	c) $437 \times 10^9 \text{yr}$	d) $437 \times 10^{11} yr$
109	. The number of revolution	is per second made by an e	lectron in the first Bohr orb	oit of hydrogen atom is of
	the order of			
	a) 10^{20}	b) 10 ¹⁹	c) 10 ¹⁷	d) 10 ¹⁵
110	. As mass number increase	s ,surface area		
	a) Decreases		b) Increases	
	c) Remains the same		d) Remains the same and	Increases
111	. Mark the correct stateme	nt		

- a) Nuclei of different elements can have the same number of neutrons
- b) Every element has only two stable isotopes

	c) Only one isotope of eac	ch element is stable		
	d) All isotopes of every ele	ement are radioactive		
112.	A radioactive nucleus of n	nass M emits a photon of fr	equency v and the nucleus	recoils. The recoil energy
	will be			
	a) hv	b) $Mc^2 - hv$	c) $\frac{h^2v^2}{2Mc^2}$	d) Zero
			$\frac{2Mc^2}{}$	
113.	The S.I. unit of radioactivi	•		
	a) Roentgen	b) Rutherford	c) Curie	d) Becquerel
114.		on annihilate ,the energy re		
		•	•	d) $9 \times 10 - 10 \text{ J}$
115.			4 days. At noon on January	1, the activity of a certain
	-	ivity at noon on January 24		J) 150 D
116	a) 75 <i>Bq</i>	•	c) More than 75 <i>Bq</i>	•
116.	radioactive material is	s an initial amount 16 <i>g</i> . Aft	er 120 <i>days</i> it reduces to 1	g, then the haif-life of
	a) 60 <i>days</i>	b) 30 <i>days</i>	c) 40 <i>days</i>	d) 240 <i>days</i>
117.	The binding energy per n	ucleon of O^{16} is $7.97 MeV$ as	nd that of O^{17} is 7.75 MeV .	The energy (in MeV)
	required to remove a neu-	tron from O^{17} is		
	a) 3.52	b) 3.64	c) 4.23	d) 7.86
118	Starting with a sample of	pure 66Cu, 7/8 of it decays	into Zn in 15 min. The cor	responding half-life is
	a) 10 min	b) 15 min	c) 5 min	d) $7\frac{1}{2}$ min
119	What is the ratio of wavel	ength of radiations emitted	d when an electron in hydro	4
117.		oit and from third orbit to s	•	ogen atom jumps nom
	a) 27 : 25	b) 20 : 27	c) 20:25	d) 25 : 27
120			rgy is released. If the powe	
120.	is 1.6 MW, then the rate o		igy is released. If the powe	i output of atomic reactor
	a) $5 \times 10^{22} \mathrm{s}^{-1}$		c) $8 \times 10^{16} \mathrm{s}^{-1}$	d) $20 \times 10^{16} \text{s}^{-1}$
121	,		ctron is doubled. The energ	
121,	the first orbit will be (a_0)		ed on is doubled. The energ	sy L ₀ and the radius r ₀ or
	a) $E_0 = -27.2 \text{ eV}$; $r_0 = a_0$		b) $E_0 = -27.2 \text{ eV}$; $r_0 = a_0$	
	c) $E_0 = -13.6 \text{ eV}; r_0 = a_0$	•	d) $E_0 = -13.6 \text{ eV}$; $r_0 = a_0$	
122		: <u>-</u>	(e 2 hours), the intensity of	
122	-	•	th work can be done safely	
	a) 6 hours	b) 12 hours	c) 24 hours	d) 128 hours
123.	•	α and one β -particle. The r	•	u) 120 110 til. 0
120.	a) $_{n}X^{m-4}$	b) $_{n-2}X^{m-4}$	c) $_{n-4}Z^{m-4}$	d) $_{n-1}Z^{m-4}$
124.				He are respectively a,b and
		gy (in <i>MeV</i>) released in this		is and respectively with and
	a) $c + a - b$	b) $c - a - b$	c) $a+b+c$	d) $a + b - c$
125.	•	•	electron in Rutherford ator	•
120.	a) Spiral	b) Circular	c) Parabolic	d) Straight line
126.		•	ts half-life period is 20 days	
120.	present at the end of 10 d		is han me period is 20 days	or the number of mucies
	a) 7070	b) 9000	c) 8000	d) 7500
127.			rated by 2.3 <i>eV</i> . The freque	
		rom higher to the lower lev		j
	a) $6.95 \times 10^{14} Hz$	b) $3.68 \times 10^{15} Hz$	c) $5.6 \times 10^{14} Hz$	d) $9.11 \times 10^{15} Hz$
128	•	•	eries of hydrogen spectrun	•
	a) 13.6 eV	b) 3.4 <i>eV</i>	c) 1.5 <i>eV</i>	d) 0.85 <i>eV</i>
	-	-	· ·	·

129. A hydrogen atom emits a	nhoton corresponding to a	n electron transition from	n = 5 to $n = 1$ The recoil
	s almost (mass of proton =		n = 3 to $n = 1$. The recon
a) $10 ms^{-1}$	b) $2 \times 10^{-2} \ ms^{-1}$	c) $4 ms^{-1}$	d) $8 \times 10^2 ms^{-1}$
130. Nuclear forces are	5) 2 × 10 1113	c) This	ay o × 10 ms
	e and charge independent		
b) Short ranged attractive	•		
c) Long ranged repulsive	• •		
d) Long ranged repulsive	- -		
, , ,	g .	h a time a h atrus an 200/ and	000/ dagaill ba
131. Half life of a radio-active			
a) 20 minutes	b) 40 minutes	c) 30 minutes	d) 25 <i>minutes</i>
132. Two samples X and Y cor			of the sample X and $\frac{1}{256}$ th of
-	r 8 hours, then the ratio of	-	
a) 2:1	b) 1:2	c) 1:4	d) 1:16
133. Number of spectral lines			
a) 3	b) 6	c) 15	d) Infinite
134. In gamma ray emission fr	om a nucleus		
a) Both the neutron num	ber and the proton number	change	
b) There is no change in t	the proton number and the	neutron number	
c) Only the neutron num	ber changes		
d) Only the proton number	er changes		
135. Nuclear fusion is commo	n to the pair		
a) Thermonuclear reacto	r, uranium based nuclear re	eactor	
b) Energy production in s	sun, uranium based nuclear	reactor	
c) Energy production in s	sun, hydrogen bomb		
d) Disintegration of heavy	y nuclei, hydrogen bomb		
136. The colour of the second			
a) Blue	b) Yellow	c) Red	d) Violet
137. In the Bohr model of a hy			coulomb attraction
	the electron. If a_0 is the radi		
	d $arepsilon_0$ is the vacuum permitti		
a) 0	0	0	
	b) $\frac{\epsilon}{\sqrt{\epsilon_0 a_0 m}}$	c) $\sqrt{4\pi\varepsilon_0 a_0 m}$	d) $\frac{\sqrt{4\pi\varepsilon_0 a_0 m}}{c}$
138. The mass defect in a part			nergy liberated in kilowatt
hours is		o g. umo ma umo umo on on	
(Velocity of light = 3×10^{-3}	$0^8 m/s$		
a) 1.5×10^6	b) 2.5×10^6	c) 3×10^6	d) 7.5×10^6
139. The nuclei of which of the	-	-	u) 7.5 × 10
a) $_{34}Se^{74}$, $_{31}Ca^{71}$	b) $_{42}Mo^{92}$, $_{40}Zr^{92}$	c) $_{38}Sr^{81}$, $_{38}Sr^{86}$	d) Ca^{40} c32
140. The electron in a hydroge		from an excited state to the	e ground state. Which of the
following statements is tr		. 1	
-	eases and its potential and t	-	
	eases, potential energy incr		remains the same
	ergies decrease and its pote	ential energy increases	
-	nd total energies decrease		
141. 1 curie represents	_		
a) 1 disintegration per se		b) 10 ⁶ disintegration per	
c) 3.7×10^{10} disintegrate	-	d) 3.7×10^7 disintegration	on per second
142. The mass number of a nu			
a) Electrons it contains	b) Protons it contains	c) Neutrons it contains	d) Nucleons it contains

	the reaction $N^{14} + \alpha \rightarrow {}_{8}X^{17} + {}_{1}p$,1		
	entify X.			
	O_2	b) N ₂	c) He	d) Ar
144. Tł	_	in the second orbit of sodi		
a)			c) $\frac{5}{2}v$	d) $\frac{2}{5}v$
145. Ar	n element A decays into	element C by a two step pr	ocess	v
	$\rightarrow B +_2 He^4$			
	$\rightarrow C + 2_{-1}e^{0}$			
	nen			
a)	A and C are isotopes	b) A and C are isobars	c) A and B are isotopes	d) A and B are isobars
-	-	does its mass vary with vo	=	
	$m \propto V$		c) $m \propto \sqrt{V}$	d) $m \propto V^2$
_		e of radioactive substance (,
	eek will be about		(-1/2 ==)	
	1 curie	b) 120 micro curie	c) 60 micro curie	d) 8 mili curie
-		to takeout the only one ele		•
	13.6 <i>eV</i>	b) 54.4 <i>eV</i>	c) 27.2 <i>eV</i>	d) 6.8 <i>eV</i>
-		ve element which has only -		
			J.L	
-	12 days	b) 32 days	c) 60 days	d) 64 days
	eutron is a particle, whic	h is	1) (1)	
-	Charged and has spin		b) Charged and has no spi	
_	Charge less and has spin		d) Charge less and has no	spin
	nergy of $1g$ uranium is e		2 0 2 4 0 16 4	12.0.0
-		b) $9.0 \times 10^{19} J$		d) $3.0 \times 10^{17} J$
	=	n the Lyman series of hydr		responding to a photon
		ortest wavelength in the Ba	_	0
-	3648 Å	b) 8208 Å	c) 1228 Å	d) 6566 Å
	_	not conserved in nuclear re		
-	rotar energy		b) Mass number	
-	Charge number		d) Number of fundamenta	_
	·	drogen atom, the ratio of k	•••	••
-	1/2	b) 2	c) $-1/2$	d) -2
-	•	clear forces between proto	n-proton, neutron-neutror	and neutron-proton
	spectively. Then relation			
a)	$F_{pp} = F_{nn} \neq F_{np}$	b) $F_{pp} \neq F_{nn} = F_{np}$	c) $F_{pp} = F_{nn} = F_{np}$	d) $F_{pp} \neq F_{nn} \neq F_{np}$
156. Tł	ne half life period of a rac	dioactive substance is 5 <i>mi</i>	n. The amount of substance	e decayed in 20 <i>min</i> will be
a)	93.75%	b) 75%	c) 25%	d) 6.25%
157. Tł	ne radius of electron's se	cond stationary orbit in Bo	hr's atom is R. The radius	of the third orbit will be
a)	3 R	b) 2.25 R	c) 9 R	d) $\frac{R}{3}$
158. _{Ar}	n alpha nucleus of energ	$y \frac{1}{2} m v^2$ bombards a heavy	nuclear target of charge Ze	. Then the distance of
		pha nucleus will be propor		
	1/m	b) $1/v^4$	c) 1/Ze	d) v^2
-	•	, ,		,
'- Ha	an-me of a substance is I	to <i>years</i> . III what time, it b	ecomes $\frac{1}{4}th$ part of the init	iai ailluulli

a) 5 <i>years</i>	b) 10 years	c) 20 <i>years</i>	d) None of these	
160. Which of the following	statements is true			
a) ₇₈ Pt ¹⁹² has 78 neu	a) $_{78}Pt^{192}$ has 78 neutrons		+ β ⁻	
c) $_{92}U^{238} \rightarrow _{90}Th^{234}$	$+ {}_{2}He^{4}$	d) $_{90}Th^{234} \rightarrow _{91}Pa^{234}$ -	d) $_{90}Th^{234} \rightarrow _{91}Pa^{234} + _{2}He^{4}$	
	required to excite a hydroger			
a) 13.6 <i>eV</i>	b) -13.6 <i>eV</i>	c) 3.4 <i>eV</i>	d) 10.2 <i>eV</i>	
-	phenomena suggests the pro	•	•	
a) Radio active decay		c) Spectral lines	d) α-particles scattering	
	us of mass number 3 is R , the		, 1	
a) $3R$	b) 9 <i>R</i>	c) $(27)^{1/2}R$	d) 27 <i>R</i>	
•	wing nuclear reaction is a sou	, , ,	u) 27 K	
a) $_4\text{Be}^9 + _2\text{He}^4 \rightarrow _6\text{C}$	_	b) $_2\text{He}^3 + _2\text{He}^3 \rightarrow _2\text{He}^4$. 11 111	
	· ·	·		
c) $_{56}Ba^{144} + _{36}Kr^{92} -$		d) $_{26}\text{Fe}^{50} + _{48}\text{Ca}^{112} \rightarrow$	$W^{101} + {}_0n^1$	
•	carry energy was established	•	1) 7:55	
a) Doppler's effect		c) Bohr's theory	., 2	
	uited for determining the ago			
a) 10^3	b) 10 ⁴	c) 10 ⁵	d) 10 ⁶	
	to 1 mg of matter in MeV is			
a) 56.25×10^{22}	-	c) 56.25×10^{26}	d) 56.25×10^{28}	
	hrough a dilute solution of po	otassium permanganate. Th	ne spectrum produced by the	
emergent light is				
a) Band emission spec	trum	b) Line emission spectru		
c) Band absorption sp		d) Line absorption spect		
169. If $_{92}U^{238}$ undergoes su	accessively 8 $lpha$ -decays and 6	β -decays, then resulting n	ucleus is	
a) $_{82}U^{206}$	b) $_{82}Pb^{206}$	c) $_{82}U^{210}$	d) $_{82}U^{214}$	
170. The energy of an electi	con in n th orbit of hydrogen $lpha$	atom is $-13.6/n^2$ eV. Energ	y required to excite the	
electron from the first	orbit to the third orbit is	CATION		
a) 10.2 J	b) 12.09 J	c) 12.09 eV	d) 13.6 eV	
171. In terms of Rydberg's o	constant R , the wave number			
a) <i>R</i>	b) 3 <i>R</i>	c) $\frac{5R}{36}$	d) $\frac{8R}{\Omega}$	
aj K	b) 3h	$\frac{c}{36}$	u) <u>—</u>	
172. The following diagram	indicates the energy levels o	of a certain atom when the	system moves from $2E$ level	
to E , emitting a photor	of wavelength λ . The wavel	ength of photon produced (during its transition from $\frac{4E}{2}$	
2E			3	
4/3E				
level to E is	13.2274	2.42.72	D 21	
a) $\lambda/3$	b) 3λ/4	c) 4λ/3	d) 3λ	
173. In the reaction identify				
$_{7}N^{14} + \alpha \rightarrow _{8}X^{17} + _{1}$				
a) An oxygen nucleus v		b) An oxygen nucleus wi		
c) A nitrogen nucleus		d) A nitrogen nucleus w		
174 . The half-life of 215 At is	s 100 μs. The time taken for t	he radioactivity of a sampl	e of 215 At to decay to $\frac{1}{16}$ th of	
its initial value is			10	
a) 400 µs	b) 6.3 μs	c) 40 µs	d) 300 μs	
	in a series by emission of 3α·		•	
a) $_{83}X^{224}$	b) ₈₄ <i>X</i> ²¹⁸	c) $_{84}X^{220}$	d) $_{82}X^{223}$	
, 03) U T	, UT	, UL	

176	The wavelength of the first line of Balmer series is 6	5563 Å. The Rydberg consta	ant for hydrogen is about	
	a) $1.09 \times 10^7 per m$ b) $1.09 \times 10^8 per m$	c) $1.09 \times 10^9 per m$	d) $1.09 \times 10^5 per m$	
177	The absorption transitions between the first and the	e fourth energy states of hy	drogen atom are 3. The	
	emission transitions between these states will be			
	a) 3 b) 4	c) 5	d) 6	
178	The fussion process is possible at high temperature	s, because at higher tempe	ratures	
	a) The nucleus disintegrates			
	b) The molecules disintegrates			
	c) Atom become ionized			
	d) The nucleus get sufficient energy to overcome th	-		
179	An electron jumps from 5 th orbit of 4 th orbit of hydr	-	berg constant as	
	10 ⁷ per metre what will be the frequency of radiation			
	a) $6.75 \times 10^{12} Hz$ b) $6.75 \times 10^{14} Hz$	c) $6.75 \times 10^{13} Hz$	d) None of these	
180	In a radioactive disintegration, the ratio of initial nu	umber of atoms to the num	ber of atoms present at an	
	instant of time equal to its mean life is			
	a) $\frac{1}{e^2}$ b) $\frac{1}{e}$	c) e	d) e^2	
101	e. The half life period of a radioactive element <i>X</i> is san	no as the mean life time of	another radioactive element	
101	Y. Initially both them have the same number of ator		another radioactive element	
	a) X and Y have the same decay rate initially			
	b) <i>X</i> and <i>Y</i> decay at the same rate always			
	c) <i>Y</i> will decay at the same rate than <i>X</i>			
	d) X will decay at a faster rate than Y	>		
182	On the bombardment of neutron with Boron. α -part	ticle is emitted and produc	t nuclei formed is	
102	a) $_{6}C^{12}$ b) $_{3}Li^{6}$	c) ₃ Li ⁷	d) $_4Be^9$	
183	Cadmium rods are used in a nuclear reactor for	-, 3=0) 4	
	a) Slowing down fast neutrons	b) Speeding up slow neu	trons	
	c) Absorbing neutrons	d) Regulating the power		
184	Which shows radioactivity?			
	a) Protium b) Deuterium	c) Tritium	d) None of these	
185	A nucleus of an element $_{84}X^{202}$ emits an α -particle	first, a β -particle next and	then a gamma photon. The	
	final nucleus formed has an atomic number			
	a) 200 b) 199	c) 83	d) 198	
186	Which of these is a fusion reaction			
	a) ${}_{1}^{3}H + {}_{1}^{2}H = {}_{2}^{4}He + {}_{0}^{1}n$	b) $^{238}_{92}U \rightarrow ^{206}_{82}Pb + 8(^{4}_{24})$	$He) + 6(\frac{0}{-1}\beta)$	
	c) $\frac{12}{7}C \to \frac{12}{6}C + \beta^+ + \gamma$	d) None of these		
187	When a sample of solid lithium is placed in a flask o	f hydrogen gas then follow	ing reaction happened	
	${}_{1}^{1}H + {}_{3}Li^{7} \rightarrow {}_{2}He^{4} + {}_{2}He^{4}$			
	This statement is			
	H ₂			

188. Hydrogen atom from excited state comes to the ground state by emitting a photon of wavelength λ . If R is the Rydberg constant, the principal quantum number n of the excited state is

c) May be true at a particular pressure

d) None of these

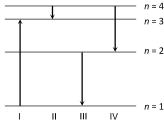
b) False

a) True

b)
$$\sqrt{\frac{\lambda}{\lambda R - 1}}$$

c)
$$\sqrt{\frac{\lambda R^2}{\lambda R - 1}}$$

d)
$$\sqrt{\frac{\lambda R}{\lambda - 1}}$$


- 189. If the atom $_{100}Fm^{257}$ follows the Bohr model and the radius of $_{100}Fm^{257}$ is n times the Bohr radius, then find n
 - a) 100

b) 200

c) 4

- d) 1/4
- 190. The process by which a heavy nucleus splits into light nuclei is known as
 - a) Fission
- b) α -decay
- c) Fusion
- d) Chain reaction
- 191. The energy of electron in first excited state of H-atom is $-3.4 \, eV$ its kinetic energy is
 - a) $-3.4 \, eV$
- b) +3.4 *eV*
- c) $-6.8 \, eV$
- d) 6.8 eV

- 192. The binding energy of nucleus is a measure of its
 - a) Charge
- b) Mass
- c) Momentum
- d) Stability
- 193. The energy required to excite an electron from the ground state of hydrogen atom to the first excited state, is
 - a) $1.602 \times 10^{-14} J$
- b) $1.619 \times 10^{-16}I$
- c) $1.632 \times 10^{-18} J$
- d) $1.656 \times 10^{-20}I$
- 194. The diagram shows the energy levels for an electron in a certain atom. Which transition shown represents the emission of a photon with the most energy

a) I

b) II

c) III

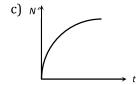
d) IV

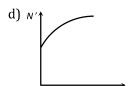
- 195. The spectral series of the hydrogen spectrum that lies in the ultraviolet region is the
 - a) Balmer series
- b) Pfund series
- c) Paschen series
- d) Lyman series
- 196. Hydrogen atom is excited from ground state to another state with principal quantum number equal to 4. Then the number of spectral lines in the emission spectra will be
 - a) 2

b) 3

c) 5

- d) 6
- 197. Activity of a radioactive sample decreases to $(1/3)^{rd}$ of its original value in 3 days. Then, in 9 days its activity will become
 - a) (1/27) of the original value


b) (1/9) of the original value


c) (1/18) of the original value

- d) (1/3) of the original value
- 198. If 20 g of a radioactive substance due to radioactive decay reduces to 10 g in 4 minutes, then in what time 80 g of the same substance will reduce to 10 g
 - a) In 8 minutes
- b) In 12 minutes
- c) In 16 minutes
- d) In 20 minutes
- 199. The graph between number of decayed atoms N' of a radioactive element and time t is

b) *N*↑

- 200. Consider a hydrogen like atom whose energy in $n^{\rm th}$ excited state is given by $E_n = -\frac{13.6Z^2}{n^2}$. When this excited atom makes a transition from excited state to ground state, most energetic photons have energy $E_{\rm max} = 52.224~eV$ and least energetic photons have energy $E_{\rm min} = 1.224~eV$. The atomic number of atom is
 - a) 2

b) 5

c) 4

- None of these
- 201. If radius of the $^{27}_{13}Al$ nucleus is estimated to be 3.6 fermi then the radius of $^{125}_{52}Te$ nucleus be nearly

	a) 4 Fermi	b) 5 <i>Fermi</i>	c) 6 Fermi	d) 8 Fermi		
202.			the orbit $n=2$ of an atom.	The wavelength of the		
	emitted radiation is $(R = 1)$					
	a) $\frac{16}{R}$	b) $\frac{16}{3R}$	c) $\frac{16}{70}$	d) $\frac{16}{7R}$		
	Tt.	J.K	JN	/ IX		
203.	a) 1 mg	b) 2 mg	rill be left out of 1024 mg at c) 3 mg	d) 4 mg		
204	The α -particle is the nucle	, ,	c) 3 mg	u) 4 mg		
204.	a) Neon	b) Hydrogen	c) Helium	d) Deuterium		
205	,	, ,	:3. The ratio of their nucle			
203.	a) 1:3	b) 3:1	c) $(3)^{1/3}:1$	d) 1:1		
206			and at a later time t_2 , it is R			
200.	the material is λ , then	ne detivity at time of 13 mg	and at a later timetz, it is h	2. If the decay constant of		
		$h) R_1 = R_2 \rho^{\lambda(t_1 - t_2)}$	c) $R_1 = R_2 (t_2/t_1)$	d) $R_1 = R_2$		
207			n = 5 to n = 1, its recoil spin			
207.	a) 10^{-4} ms^{-1}		c) $2 \times 10^{-2} \text{ ms}^{-1}$			
208	,	,	teron = $2.0141 a.m.u.$ and	,		
200.	4.0024 a. m. u.) is					
	a) Fusion reaction releasing 24 <i>MeV</i> energy					
	b) Fusion reaction absorb					
	c) Fission reaction releasi					
	d) Fission reaction absorb					
209.	If an electron jumps from	1st orbital to 3rd orbital, tl	hen it will			
	a) Absorb energy	b) Release energy	c) No gain of energy	d) None of these		
210.	A radioactive nucleus emi	ts 3α-particles and 5β-part	ticles. The ratio of number	of neutrons to that of		
	protons will be					
	a) $\frac{A-Z-12}{Z-6}$	$\frac{A-Z}{A}$	(c) $\frac{A-Z-11}{Z}$	d) $\frac{A-Z-11}{Z-1}$		
044	2 0	b) $\frac{A-Z}{Z-1}$	Z-6	Z-1		
211.	Isobars are formed by	1) 0 1) 1	13.7		
212	a) α – decay	,,	c) γ –deacy	d) <i>h</i> –decay		
212.		number of radioactive nucl	ei which remain undecaye	a after haif of a haif-life of		
	the radioactive sample is	1	1	1		
	a) $\frac{1}{\sqrt{2}}$	b) $\frac{1}{2}$	c) $\frac{1}{2\sqrt{2}}$	d) $\frac{1}{4}$		
	V Z	vdrogen atom is 13.6 eV. F	2 V 2	e energy corresponding to a		
	transition between the 3rd	· =		e emergy corresponding to a		
	a) 3.40 <i>eV</i>	b) 1.51 <i>eV</i>	c) 0.85 <i>eV</i>	d) 0.66 <i>eV</i>		
214.	A radioactive substance ha	•	•	.,		
	a) Half of the active nuclei	=	b) Less than half of the ac	tive nuclei decay		
	c) More than half of the ac	•	d) All active nuclei decay	·		
215.	=	-	tons, neutrons and electron	ns is $14 \mathrm{g}$ of $_6 \mathrm{C}^{14}$ are		
	respectively					
	a) 36×10^{23} , 48×10^{23} , 3	6×10^{23}	b) 36×10^{23} , 36×10^{23} , 3	6×10^{23}		
	c) 48×10^{23} , 36×10^{23} , 4	8×10^{23}	d) 48×10^{23} , 48×10^{23} , 3	6×10^{23}		
216.	If the binding energy per r	nucleon of deutron is 1.115	MeV, its mass defect in ato	omic mass unit is		
	a) 0.0048	b) 0.0024	c) 0.0012	d) 0.0006		
217.	The Rutherford α -particle	experiment shows that me	ost of the $lpha$ -particles pass t	chrough almost unscattered		
	while some are scattered	through the large angles. W	Vhat information does it giv	ve about the structure of the		

atom

	a) Atom is hollow				
	b) The whole mass of the atom is concentrated in a small centre called nucleus				
	c) Nucleus is positively ch	narged			
	d) All the above				
218.	-	238 nucleons. It decays by			
	a) ²³⁴ ₉₂ U	b) ²³⁴ Th	c) ²³⁵ ₉₂ U	d) ²³⁷ ₉₃ Np	
219.		he electron in the first Boh	r orbit of hydrogen and the	speed of light is equal to	
	(where e , h and c have the			_	
	a) $2\pi hc/e^2$,	c) $e^2 c / 2\pi h$	d) $2\pi e^2/hc$	
220.		separation of 40 Å. F_{n} is th	ie nuclear force and F_e is the	e electrostatic force	
	between them. Then				
		b) $F_n = F_e$			
221.		234 nucleons total in the n	ucleus. It decays by emittin	g an alpha particle. After	
	the decay it becomes				
	a) ^{232}U	b) ²³² Pa	c) ²³⁰ Th	d) ²³⁰ Ra	
222.	Sun maintains its shining	because of the			
	a) Fission of helium		b) chemical reaction		
	c) Fusion of hydrogen nu		d) Burning of carbon		
223.	The neutron was discover	•			
	a) Marie Curie	b) Pierre Curie	- ·	d) Rutherford	
224.		cipal quantum number, the	energy difference between	the two successive energy	
	levels		the second second		
	a) Increases		b) Decreases		
	c) Remains constant		d) Sometimes increases a		
225.		r the following fission proce			
	a) $_{50}$ Xe ¹⁴³ + 3 $_{0}$ n^{1}	b) ₅₄ Xe ¹⁴⁵	c) ₅₇ Xe ¹⁴²	d) $_{54}$ Xe $^{142} + _{0}n^{1}$	
226.	Unit of radioactivity is <i>Ru</i>	therford. Its value is	'ATION .	,	
		tions/s			
	c) 1.0×10^{10} disintegrat		d) 1.0×10^6 disintegrati	•	
227.		element is 3 <i>hours</i> , after 9			
220	a) $1/9$	b) 1/27	c) 1/6	d) 1/8	
228.		number of atoms decayed o			
	a) $N_{t_1} = N_{t_2} = N_o[e^{-\lambda t_1} - e^{-\lambda t_2}]$		b) $N_{t_2} = N_{t_1} = N_o [e^{-\lambda t_2} -$	$-e^{-\lambda \iota_1}$	
	c) $N_{t_2} - N_{t_1} = N_o[e^{\lambda t}2 -$	$e^{-\lambda t_1}$	d) None of the above		
229.	The ratio of ionization en	ergy of Bohr's hydrogen ato	om and Bohr's hydrogen lik	e lithium atom is	
	a) 1:1	b) 1:3	c) 1:9	d) None of these	
230.		shortest wavelengths in L			
	a) $\frac{25}{9}$	b) $\frac{17}{6}$	c) $\frac{9}{5}$	d) $\frac{4}{3}$	
224	,	U	[*] 5	3	
	The Rydberg constant R f	_	. 1 > 2-24		
	a) $R = -\left(\frac{1}{4\pi\epsilon_0}\right) \cdot \frac{2\pi^2 me^2}{ch^2}$	_	b) $R = \left(\frac{1}{4\pi\epsilon_0}\right) \cdot \frac{2\pi^2 m e^4}{ch^2}$		
	(1,000)		(17,00)		
	c) $R = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \cdot \frac{2\pi^2 me^4}{c^2h^2}$		d) $R = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \cdot \frac{2\pi^2 me^4}{ch^3}$		
	0		v		
232.		2/3 of its present value, the	e energy released in a given	atomic explosion will be	
	decreased by a fraction	1.3 4 /0	-> 2.44	1) 5 (0	
222	a) 2/3	b) 4/9	c) 3/4	d) 5/9	
<i>233</i> .		orbit of hydrogen atom is bo			
	a) 13.6 <i>eV</i>	b) 6.53 <i>eV</i>	c) 5.4 <i>eV</i>	d) 1.51 <i>eV</i>	

234. In an atomic bomb, the en	ergy is released due to		
a) Chain reaction of neutr	ons and $_{92}U^{235}$	b) Chain reaction of neutr	cons and ₉₂ U ²³⁸
c) Chain reaction of neutr	ons and $_{92}U^{240}$	d) Chain reaction of neutr	cons and $_{92}U^{236}$
235. The radioactivity isotope	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		tio 1: 7. What is the age of	
a) 2 × 10 ⁹ yr	b) $3 \times 10^{9} yr$	c) 6 × 10 ⁹ yr	d) 7 × 1 ⁹ yr
236. Two radioactive nuclides	-		ly the samples have equal
	h the ratio of the numbers		D 4
a) $\frac{1}{2}$	b) 2	c) $\frac{1}{4}$	d) 1
237. A nucleus with $Z = 92em$	its the following in a seque	T	$\beta^-, \beta^-, \alpha, \beta^+, \beta^+, \alpha$. The Z of
the resulting nucleus is	O I	, ,, ,, , , , ,	71 71 71 7
a) 76	b) 78	c) 82	d) 74
238. An electron makes a trans	sition from orbit $n=4$ to the	he orbit $n=2$ of a hydroge	n atom. The wave number
of the emitted radiations	(R = Rydberg's constant)	will be	
a) $\frac{16}{3R}$	b) $\frac{2R}{16}$	c) $\frac{3R}{16}$	d) $\frac{4R}{16}$
	10		16
239. Fusion reaction take place		use	
a) Atoms are ionised at hi	· .		
b) Molecules break up at l			
c) Nuclei break up at high	nough to overcome repuls	rion hotwoon nucloi	
240. Plutonium decays with ha			the fraction of it that
remains is	m-me of 24000 yr. if placo.	inum is stored for 7200 yr,	the fraction of it that
a) 1/8	b) 1/3	c) 1/4	d) 1/2
241. Activity of a radioactive el		* *	
activity will be		5 , 0	
a) <i>I</i> ₀	b) $\frac{2}{3}I_0$	c) I /9	d) $I_0/3$
	J	c) 1 ₀ / 5	u) 1 ₀ / 5
242. In the above figure <i>D</i> and			
-	ner series and the ionizatio		
		gth lesser than lowest of th	
		vavelength of Lyman series	
series	series and the absorption (of greater wavelength of lin	mung value of Paschen
243. The equation $_{Z}X^{A} \rightarrow _{Z+1}$	$V^A + \rho^0 + \bar{n}$ is		
a) β -emission	b) α -emission	c) e ⁻ capture	d) Fission
244. In $_{88}Ra^{226}$ nucleus, there	-	ej e captare	u) 1 1551011
a) 138 protons and 88 ne		b) 138 neutrons and 88 p	rotons
c) 226 protons and 88 ele		d) 226 neutrons and 138	
245. The half life (T) and the d		•	
a) $\lambda T = 1$	b) $\lambda T = 0.693$	c) $\frac{T}{\lambda} = 0.693$	
		π	1
246. In Bohr's model of hydrog	gen atom, let <i>PE</i> represents	s potential energy and TE t	he total energy. In going to
a higher level			
a) <i>PE</i> decreases, <i>TE</i> incre		b) <i>PE</i> increases, <i>TE</i> incre	
c) PE decreases, TE decre		d) PE increases, TE decre	
247. A hydrogen atom and a Li			e their respective electronic
	and E_{Li} their respective en		I
a) $l_{ m H} > l_{ m Li}$ and $ E_{ m H} > > l $	² Li I	b) $L_{\rm H} = L_{\rm i}$ and $ E_{\rm H} < E_{\rm Li}$	1

c)
$$l_{\rm H} > l_{\rm Li}$$
 and $|E_{\rm H}| > E_{\rm Li}$

d)
$$l_{\rm H} > l_{\rm Li}$$
and $|E_{\rm H}| << E_{\rm Li}$ |

- 248. The atoms of same element having different masses but same chemical properties, are called
 - a) Isotones
- b) Isotopes
- c) Isobars
- d) Isomers

- 249. The mass equivalent at 931 MeV energy is
 - a) $1.66 \times 10^{-27} kg$
- b) $6.02 \times 10^{-24} kg$
- c) $1.66 \times 10^{-20} kg$
- d) $6.02 \times 10^{-27} kg$
- 250. Atomic weight of boron is 10.81 and it has two isotopes $_5B^{10}$ and $_5B^{11}$. Then ratio of $_5B^{10}$: $_5B^{11}$ in nature would be
 - a) 19:81
- b) 10:11
- c) 15:16
- d) 81:19
- 251. A freshly prepared radioactive source of half-life 2 h emits radiation of intensity which is 64 times the permissible safe level. Calculate the minimum time after which it would be possible to work safely with this source.
 - a) 12 h

b) 24 h

c) 6 h

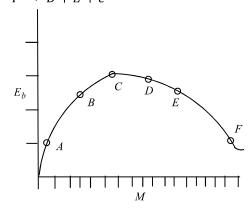
- d) 130 l
- 252. The energy liberated on complete fission of 1 kg of $_{92}U^{235}$ is (Assume 200 MeV energy is liberated on fission of 1 nucleus)
 - a) $8.2 \times 10^{10} I$
- b) $8.2 \times 10^9 I$
- c) $8.2 \times 10^{13} I$
- d) $8.2 \times 10^{16} I$

- 253. In Raman effect, Stoke's lines are spectral lines having
 - a) Frequency greater than that of the original line
 - b) Wavelength equal to that of the original line
 - c) Wavelength less than that of the original line
 - d) Wavelength greater than that of the original line
- 254. The ionization energy of Li^{++} is equal to
 - a) 9*hcR*

b) 6*hcR*

c) 2hcR

d) hcR


- 255. Which of the following is true
 - a) Lyman series is a continuous spectrum
 - b) Paschen series is a line spectrum in the infrared
 - c) Balmer series is a line spectrum in the ultraviolet
 - d) The spectral series formula can be derived from the Rutherford model of the hydrogen atom
- 256. The above is a plot of binding energy per nucleon E_b , against the nuclear mass M; A, B, C, D, E, F correspond to different nuclei. Consider four reactions

$$A + B \rightarrow C + \varepsilon$$

$$C \rightarrow A + B + \varepsilon$$

$$D + E \rightarrow F + \varepsilon$$

$$F \rightarrow D + E + \varepsilon$$

where ε is the energy released? In which reaction is ε positive?

- a) (i) and (iv)
- b) (i) and (iii)
- c) (ii) and (iv)
- d) (ii) and (iii)
- 257. Ratio of the wavelengths of first line of Lyman series and first time of Balmer series is
 - a) 1 · 3

- b) 27 : 5
- c) 5:27

- d) 4 · 9
- 258. Radioactive $^{60}_{27}Co$ is transformed into stable $^{60}_{28}Ni$ by emitting two γ -rays of energies

	a) 1.33 MeV and 1.17 Me	eV in succession	b) 1.17 MeV and 1.33 Me	eV in succession
	c) 1.37 MeV and 1.13 Me		d) 1.13 MeV and 1.37 Me	
259	9. ₉₂ U ²³⁸ on absorbing a n	eutron goes over to ₉₂ U ²³⁹ .	. This nucleus emits an elec	ctron to go over electron
	goes over to Plutonium.	The resulting Plutonium ca	n be expressed as	
	a) ₉₄ U ²³⁹	b) ₉₂ U ²³⁹	c) ₉₃ U ²⁴⁰	d) ₉₂ U ²⁴⁰
260). In artificial radioactivity	r, 1.414 $ imes$ 10^6 nuclei are di	sintegrated into 10 ⁶ nuclei	in 10 min. The half-life in
	minutes must be			
	a) 5	b) 20	c) 15	d) 30
263	1. If $\lambda_{ m max}$ is 6563 Å, then w	vavelength of second line fo	r Balmer series will be	
			c) $\lambda = \frac{4}{3R}$	d) None of the above
	011	011	JII.	
262		from a level $n = 4$ to $n = 1$		
	a) $6.8 \times 10^{-27} \text{kg} - \text{ms}^{-1}$		b) 12.75×10^{-19} kg – ms	-1
	c) $136 \times 10^{-19} \text{kg} - \text{ms}^-$		d) zero	
263	3. Two radioactive sample	s have decay constant $15x$	and $3x$. If they have the san	ne number of nuclei initially,
	the ratio of number of n	uclei after a time $\frac{1}{6x}$ is		
		-	, 1	., 1
	a) $\frac{1}{e}$	b) $\frac{e}{2}$	c) $\frac{1}{e^4}$	d) $\frac{1}{e^2}$
264	4. Carbon – 14 decays with	n half-life of about 5,800 yea	ars. In a sample of bone, the	e ratio of carbon – 14 to
	carbon – 12 is found to b	be $\frac{1}{2}$ of what it is in free air.	This bone may belong to a	period about x centuries ago,
	where <i>x</i> is nearest to	4	, ,	
	a) 2×58	b) 58	c) 58/2	d) 3 × 58
261	-	of electron in n^{th} orbit is g		u) 5 × 50
20.	7. The angular momentum			h
	a) nh	b) $\frac{h}{2\pi n}$	c) $n\frac{h}{2\pi}$	d) $n^2 \frac{h}{2\pi}$
266	5. When 92U ²³⁵ is bombar	27676	-,,,	are three neutrons, $_{36}$ Kr 94 ,
	and	Carrier EDIII	CATION	, 30 ,
	a) ₅₆ Ba ¹⁴¹	b) ₅₄ Xe ¹³⁹	c) ₅₆ Ba ¹³⁹	d) ₅₈ I ¹⁴²
267		el of hydrogen atom, the ele		3 00
	a) π/h	b) h/π	c) $h/2\pi$	d) $2\pi/h$
268	• •	ing is a possible nuclear rea		,
	a) ${}^{10}_{5}B + {}^{4}_{2}He \rightarrow {}^{13}_{7}N + {}^{3}_{2}N$	-	b) $^{23}_{11}$ Na + $^{1}_{1}$ H $\rightarrow ^{20}_{10}$ Ne +	- ⁴ He
	c) $^{239}_{93}\text{Np} \rightarrow ^{239}_{94}\text{Pu} + \beta^{-}$	•	d) ${}^{11}_{7}N + {}^{1}_{1}H \rightarrow {}^{12}_{6}C + \beta^{-}$	_
269	. ,, . ,		, .	inges. Which of the following
	would be emitted in the			
	a) Proton	b) Neutron	c) Electron	d) Photon
270				ength of the first member of
	Lyman series	orres mus man eremgen es es		
	a) 1215.4 Å	b) 2500 Å	c) 7500 Å	d) 600 Å
27	•	s not conserved in nuclear i	•	,
	a) Total energy		b) Mass number	
	c) Charge Number		d) Number of fundamen	tal particles
272	· -	ttracted towards the origin		-
		from the origin. By applying		
		tound to be 'r _n ' and the kin	netic energy of the electron	to be 'T _n '. Then which of the
	following is true		1	
	a) T_n independent of n, r	$r_{\rm n} \propto {\rm n}$	b) $T_n \propto \frac{1}{n}$, $r_n \propto n$	
			n	

c) $T_n \propto \frac{1}{n}$, $r_n \propto n^2$		d) $T_n \propto \frac{1}{n^2}$, $r_n \propto n^2$	
273. The kinetic energy of an ele	ectron revolving around a	nucleus will be	
	b) Double of P.E.	c) Equal to P.E.	d) Half of its P.E.
274. The half-life of a radioactiv	ve substance is 40 years. H	low long will it take to redu	ice to one fourth of its
original amount and what i	•	· ·	
a) 40 year, 0.9173/year	-	c) 80 year, 0.0173/year	d) None of these
275. In Bohr model of hydrogen			-
is	•		
a) 2:1	b) 4:1	c) 8:1	d) 16:1
276. The counting rate observed	d from a radioactive sourd	t = 0 was 1600 count	
100 counts $^{-1}$. The counting			
	b) 300	c) 250	d) 200
277. Ionization power and pene	•	•	,
a) γ, β, α and γ, β, α respect	_	b) γ , β , α and α , β , γ respec	
c) α , β , γ and α , β , γ respecti		d) α , β , γ and γ , β , α respec	
278. The half life period of radiu			-
6400 <i>years</i> is	·	•	
-	b) 1/2	c) 1/8	d) 1/16
279. The sun radiates energy in			- ·
sun is 1.4 $kilowatt/m^2$. Th			
day is $(1 day = 86400 sec$			•
		c) $3.8 \times 10^{12} kg$	d) $3.8 \times 10^{14} kg$
280. A nuclear bomb exploded 2	The state of the s		
a) Will be heard before the		b) Will be heard at the sa	
•	-	-	
c) Will be heard after explo	osion	d) Will not be heard at all	
c) Will be heard after explo 281. The phenomena in which p		d) Will not be heard at all	
281. The phenomena in which p	proton flips is	d) Will not be heard at all b) Lasers	
	proton flips is	LA TITAL NI	
281. The phenomena in which page 3. Nuclear magnetic resonations.	proton flips is ance	b) Lasers d) Nuclear fusion	
281. The phenomena in which pa) Nuclear magnetic resonationc) Radioactivity282. One milligram of matter co	proton flips is ance	b) Lasers d) Nuclear fusion	d) $9 \times 10^5 J$
281. The phenomena in which pa) Nuclear magnetic resonancec) Radioactivity282. One milligram of matter co	oroton flips is ance onverted into energy will g b) 9 × 10 ³ <i>J</i>	b) Lasers d) Nuclear fusion give c) 9 × 10 ¹⁰ J	
281. The phenomena in which p a) Nuclear magnetic resons c) Radioactivity 282. One milligram of matter co a) 90 J	proton flips is ance onverted into energy will ξ b) $9 \times 10^3 J$ succear reactions is a sou	b) Lasers d) Nuclear fusion give c) 9 × 10 ¹⁰ J	d) $9 \times 10^5 J$
 281. The phenomena in which p a) Nuclear magnetic resonance c) Radioactivity 282. One milligram of matter co a) 90 J 283. Which one of the following 	proton flips is ance onverted into energy will g b) $9 \times 10^3 J$ g nuclear reactions is a sound g in g nuclear reactions g is a sound g in	b) Lasers d) Nuclear fusion give c) 9 × 10 ¹⁰ J urce of energy in the sun	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$
 281. The phenomena in which panels a) Nuclear magnetic resonance of Radioactivity 282. One milligram of matter consumption a) 90 J 283. Which one of the following a) 4Be + 4He → 6C + 01 	proton flips is ance onverted into energy will g b) $9 \times 10^3 J$ g nuclear reactions is a south $\frac{1}{0}n + \frac{1}{0}n$	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ arce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + {}_{4}^{3}He \rightarrow {}_{2}^{167}Me$ d) ${}_{26}^{56}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Me$	d) $9 \times 10^5 J$ $\frac{1}{1}H + \frac{1}{1}H$ $J + \frac{1}{0}^{1}n$
 281. The phenomena in which panels are also as a Nuclear magnetic resonance. c) Radioactivity 282. One milligram of matter consumption and an an	proton flips is ance onverted into energy will go by $9 \times 10^3 J$ go nuclear reactions is a south n	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ arce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + {}_{4}^{3}He \rightarrow {}_{2}^{167}Me$ d) ${}_{26}^{56}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Me$	d) $9 \times 10^5 J$ $\frac{1}{1}H + \frac{1}{1}H$ $J + \frac{1}{0}^{1}n$
 281. The phenomena in which panels a) Nuclear magnetic resonance of Radioactivity 282. One milligram of matter coansiders and an end of the following and end of the following and	proton flips is ance onverted into energy will go by $9 \times 10^3 J$ go nuclear reactions is a south n	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ arce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + {}_{4}^{3}He \rightarrow {}_{2}^{167}Me$ d) ${}_{26}^{56}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Me$	d) $9 \times 10^5 J$ $\frac{1}{1}H + \frac{1}{1}H$ $J + \frac{1}{0}^{1}n$
 281. The phenomena in which panels a) Nuclear magnetic resonance of Radioactivity 282. One milligram of matter coansiders and an end of the following and end of the following and	proton flips is ance proverted into energy will go b) $9 \times 10^3 J$ go nuclear reactions is a sound n $+ \frac{1}{0}n$ be an element for which that swill be b) 32	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ arce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He +$ d) ${}_{26}^{56}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Ne$ the principle quantum number c) 4	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$ $V + {}_{0}^{-1}n$ ther $n > 4$, then the total
 281. The phenomena in which panels a) Nuclear magnetic resonance of Radioactivity 282. One milligram of matter coansiders and an end of the following and end of the following	proton flips is ance proverted into energy will go b) $9 \times 10^3 J$ go nuclear reactions is a sound n $+ \frac{1}{0}n$ be an element for which that swill be b) 32	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ arce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He +$ d) ${}_{26}^{56}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Me$ the principle quantum number c) 4	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$ $V + {}_{0}^{-1}n$ ther $n > 4$, then the total
 281. The phenomena in which panels a) Nuclear magnetic resonance of Radioactivity 282. One milligram of matter coansiders and an end of the following and end of the following	proton flips is ance provented into energy will g b) $9 \times 10^3 J$ g nuclear reactions is a sound n has an element for which that g will be g b) g particles g the steel g b) g particles	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ arce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He +$ d) ${}_{26}^{6}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Ne$ the principle quantum number c) 4 c) γ —rays	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$ $V + {}_{0}^{-1}n$ ber $n > 4$, then the total d) 64 d) Ultraviolet rays
 281. The phenomena in which panels a) Nuclear magnetic resonance of Radioactivity 282. One milligram of matter coansiders and an end of the following specific and end of the follow	proton flips is ance provented into energy will g b) $9 \times 10^3 J$ g nuclear reactions is a sound n has an element for which that g will be g b) g particles g the steel g b) g particles	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ arce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He +$ d) ${}_{26}^{6}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Ne$ the principle quantum number c) 4 c) γ —rays	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$ $V + {}_{0}^{-1}n$ ber $n > 4$, then the total d) 64 d) Ultraviolet rays
 281. The phenomena in which panels a) Nuclear magnetic resonance of Radioactivity 282. One milligram of matter coansiders and an end of the following specific and end of the follow	proton flips is ance I ance I ance I onverted into energy will g b) $9 \times 10^3 J$ g nuclear reactions is a south I I and I I be an element for which thats will be I b) I	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ urce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He +$ d) ${}_{26}^{56}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Ne$ he principle quantum numb c) 4 c) γ —rays tom give spectral line of 48 c) Paschen	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$ $J + {}_{0}^{-1}n$ oer $n > 4$, then the total d) 64 d) Ultraviolet rays 60 Å d) Brackett
 281. The phenomena in which panels a) Nuclear magnetic resonance of Radioactivity 282. One milligram of matter coans a) 90 J 283. Which one of the following a) ⁹/₄Be + ⁴/₂He → ¹²/₆C + ⁻¹/₀C of ¹⁴⁴/₅₆Ba + ⁹²/₅₆Kr → ²³⁵/₉₂U of 284. If in nature there may not be possible number of elemental a) 60 285. Which can pass through 20 a) α − particles 286. Which of the following spenal Lyman 	proton flips is ance I ance I b) $9 \times 10^3 J$ s nuclear reactions is a south n be an element for which that will be I b) I b) I b) I comparable I b) I comparable I b) I comparable I comparabl	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ arce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He +$ d) ${}_{26}^{6}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Ne$ the principle quantum numbers c) 4 c) γ —rays tom give spectral line of 48 c) Paschen approximate time interval	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$ $J + {}_{0}^{-1}n$ oer $n > 4$, then the total d) 64 d) Ultraviolet rays 60 Å d) Brackett
281. The phenomena in which parallel and a Nuclear magnetic resonance of Radioactivity 282. One milligram of matter coal and an end of the following and $^{9}_{4}Be + ^{4}_{2}He \rightarrow ^{12}_{6}C + ^{-1}_{0}C$ by $^{14}_{56}Ba + ^{92}_{56}Kr \rightarrow ^{235}_{92}U$. 284. If in nature there may not be possible number of elemental and $^{9}_{60}$. 285. Which can pass through $^{20}_{60}$ and $^{20}_{60}$	proton flips is ance I ance I b) $9 \times 10^3 J$ s nuclear reactions is a south n be an element for which that will be I b) I b) I b) I comparable I b) I comparable I b) I comparable I comparabl	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ arce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He +$ d) ${}_{26}^{6}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Ne$ the principle quantum numbers c) 4 c) γ —rays tom give spectral line of 48 c) Paschen approximate time interval	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$ $J + {}_{0}^{-1}n$ oer $n > 4$, then the total d) 64 d) Ultraviolet rays 60 Å d) Brackett
 281. The phenomena in which panels a) Nuclear magnetic resonations of Radioactivity 282. One milligram of matter coansiders and an end of the following special following special by the following special by th	proton flips is ance I onverted into energy will g b) $9 \times 10^3 J$ g nuclear reactions is a south I	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ arce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + {}_{3}^{2}He \rightarrow {}_{1}^{6}Fe + {}_{1}^{112}Ca \rightarrow {}_{74}^{167}Me$ the principle quantum number c) 4 c) 4 c) γ —rays tom give spectral line of 48 c) Paschen approximate time interval and decayed is c) 28 min d be	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$ $J + {}_{0}^{-1}n$ oer $n > 4$, then the total d) 64 d) Ultraviolet rays 60 Å d) Brackett $(t_2 - t_1) \text{ between the time}$ d) 7 min
 281. The phenomena in which panels a) Nuclear magnetic resonations of Radioactivity 282. One milligram of matter coange and an end of the following and an end of the following and an end of the following and and an end of the following and an end of the following and an end of the following special based on the followin	proton flips is ance I ance I b) $9 \times 10^3 J$ so nuclear reactions is a south n has an element for which that will be n b) n has an element for which that will be n b) n has a comparable n has an element for which that will be n b) n has an element for which that will be n b) n has an element for which that will be n b) n has an element for which that n has an element for which that n has an element for which that n has a constant	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ arce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He +$ d) ${}_{26}^{6}Fe + {}_{18}^{12}Ca \rightarrow {}_{74}^{167}Ne$ the principle quantum numbers c) 4 c) γ —rays tom give spectral line of 48 c) Paschen approximate time interval and decayed is c) 28 min d be c) 10^{-15} m	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$ $V + {}_{0}^{-1}n$ ber $n > 4$, then the total d) 64 d) Ultraviolet rays 60 Å d) Brackett $(t_2 - t_1)$ between the time d) 7 min d) 10^{-20} m
 281. The phenomena in which panels a) Nuclear magnetic resonate. C) Radioactivity 282. One milligram of matter coansiders and an electron in the following a) ⁹/₄Be + ⁴/₂He → ¹²/₆C + ³/₀C c) ¹⁴⁴/₅₆Ba + ⁹²/₅₆Kr → ²³⁵/₉₂U coansiders an electron in the following special points and the following special points are special points. 284. If in nature there may not be possible number of elemental a) 60 285. Which can pass through 20 a) α -particles 286. Which of the following special Lyman 287. The half-life of Radioactive to the effect of the following special points. 288. For nuclear forces to be effect on the following an electron in the special points. 	proton flips is ance I onverted into energy will g b) $9 \times 10^3 J$ g nuclear reactions is a social I	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ urce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + {}_{3}^{2}He \rightarrow {}_{2}^{6}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Me$ the principle quantum numbers of 48 c) γ —rays tom give spectral line of 48 c) Paschen approximate time interval and decayed is c) 28 min d be c) 10^{-15} m tom in the Bohr model. The	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$ $V + {}_{0}^{-1}n$ ber $n > 4$, then the total d) 64 d) Ultraviolet rays 60 Å d) Brackett $(t_2 - t_1)$ between the time d) 7 min d) 10^{-20} m
 281. The phenomena in which panels a) Nuclear magnetic resonate. C) Radioactivity 282. One milligram of matter coansider and an electron in the can be expressed in terms. 283. Which one of the following a) ⁹/₄Be + ⁴/₂He → ¹²/₆C + ⁻¹/₀C c) ¹⁴⁴/₅₆Ba + ⁹²/₅₆Kr → ²³⁵/₉₂U · 284. If in nature there may not be possible number of elemental a) 60 285. Which can pass through 20 a) α - particles 286. Which of the following spenal Lyman 287. The half-life of Radioactive t₂ when ²/₃ of it has decayed a) 14 min 288. For nuclear forces to be effall 10⁻¹⁰ m 289. Consider an electron in the can be expressed in terms. 	proton flips is ance I onverted into energy will g b) $9 \times 10^3 J$ g nuclear reactions is a social I	b) Lasers d) Nuclear fusion give c) $9 \times 10^{10} J$ urce of energy in the sun b) ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + {}_{3}^{2}He \rightarrow {}_{2}^{6}Fe + {}_{48}^{112}Ca \rightarrow {}_{74}^{167}Me$ the principle quantum numbers of 48 c) γ —rays tom give spectral line of 48 c) Paschen approximate time interval and decayed is c) 28 min d be c) 10^{-15} m tom in the Bohr model. The	d) $9 \times 10^5 J$ ${}_{1}^{1}H + {}_{1}^{1}H$ $V + {}_{0}^{-1}n$ ber $n > 4$, then the total d) 64 d) Ultraviolet rays 60 Å d) Brackett $(t_2 - t_1)$ between the time d) 7 min d) 10^{-20} m

290. The mass number of <i>He</i>	is 4 and that for sulphur is 3	32. The radius of sulphur nu	acleus is larger than that of
helium, by times	•	•	o .
a) √8	b) 4	c) 2	d) 8
291. A small quantity of solut blood of a person. A sam disintegration per minut that the radioactive solu	ion containing Na^{24} radio nple of the blood of volume 1 te. What will be the total volution mixes uniformly in the 0^{10} disintegration per secon	cm^3 taken after 5 hours shume of the blood in the book blood of the person	lows an activity of 296 ly of the person. Assume
•	o alsintegration per secon	id and $e^{-m} = 0.7927$; when	$e \lambda = \text{disintegration}$
constant) a) 5.94 <i>litre</i>	b) 2 <i>litre</i>	c) 317 litre	d) 1 litre
292. If a proton and anti-prot	-	•	-
a) $1.5 \times 10^{-10} J$	b) $3 \times 10^{-10} J$	c) $4.5 \times 10^{-10} J$	d) None of these
293. Two lithium nuclei in a l	ithium vapour at room temp	perature do not combine to	form a carbon nucleus
because			
a) Carbon nucleus is an	-		
b) It is not energetically			
-	ery close due to Coulombic r	=	
	ore tightly bound than a cark		1 100 5 11 11
294. The binding energy of tv			iy. If $2x > y$, then the
	eaction $P^n + P^n = Q^{2n}$ will $ P^n - Q^{2n} $		d) (
a) $2x + y$	b) $2x - y$	c) <i>xy</i>	d) x + y
295. Atomic reactor is based		h) un controlled chain rea	ation
a) Controlled chain reac	uon	b) uncontrolled chain rea	CUOII
c) Nuclear fission 296. A radioactive sample is a	y amittan with half life 120 (d) Nuclear fussion	lant to have 2000
	mber of radioactive nuclei f		ient to have 2000
a) 3.45×10^{10}		_	d) 2.75×10^{11}
297. A radio-isotope has a ha	b) 1×10^{10}		,
15 <i>years</i> will be	n-me of 5 years. The fraction	on of the atoms of this mate	riai tiiat would decay iii
a) 1/8	b) 2/3	c) 7/8	d) 5/8
298. The number of α -particle	· ·	, ,	
a) 8 and 8	b) 8 and 6	c) 6 and 8	d) 6 and 6
299. π mesons can be		e, e ama e	a) o ana o
a) π^+ or π^-	b) π^+ or π^0	c) π^- or π^0	d) π^{+} , π^{-} or π^{0}
300. How much work must be	•	tron and the proton that m	•
if the atom is initially in		•	
a) $13.6 \times 1.6 \times 10^{-19} J$	b) $3.4 \times 1.6 \times 10^{-19} J$	c) $1.51 \times 1.6 \times 10^{-19} J$	d) 0
301. If in Rutherford's experi	ment, the number of particle	es scattered at 90° angle ar	e 28 per <i>min</i> , then number
of scattered particles at	an angle 60° and 120° will b	e	
a) 112/min, 12.5/min	b) 100/min, 200/min	c) 50/min, 125.5/min	d) 117/min, 25/min
302. When a slow neutron go	es sufficiently close to a U^{23}	³⁵ nucleus, then the process	that takes place is
a) Fission of U^{235}	b) Fusion of neutron	c) Fusion of U^{235}	d) First (a) then (b)
303. The number of neutrons	released during the fission	reaction is ${}_0^1n + {}_{92}^{235}U \rightarrow {}_{52}^{133}$	$^{3}_{1}Sb + ^{99}_{41}Nb + neutrons$
a) 1	b) 92	c) 3	d) 4
304. A radioactive element A	decays into B with a half-life	e of 2 days. A fresh prepare	d sample of A has a mass of
_	${ m d}B$ are there in the sample a	•	
	b) $A = 6g$, $B = 6g$	c) $A = 12g$, $B = 0g$	d) $A = 9g$, $B = 3g$
305. Pick out the correct state	_		
a) Energy released per u	init mass of the reactant is le	ess in case of fusion reaction	on

- b) Packing fraction may be positive or may be negative c) Pu²³⁹ is not suitable for a fission reaction d) For stable nucleus, the specific binding energy is low 306. For a nuclear to be in critical condition, the value of neutron multiplication factor (k) must be a) k > 1b) k < 1c) k = 1
- 307. Two nucleons are at a separation of one fermi. Protons have a charge of + 1.6 \times 10⁻¹⁹ C. The net nuclear force between them is F_1 , if both are neutrons, F_2 if both are protons and F_3 if one is proton and the other is neutron. Then
 - a) $F_1 = F_2 > F_3$
- b) $F_1 = F_2 = F_3$
- c) $F_1 < F_2 < F_3$

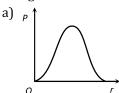
d) k = 0

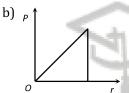
- 308. In a beryllium atom, if a_0 be the radius of the first orbit, then the radius of the second orbit will be will be in general
 - a) na_0

b) a_0

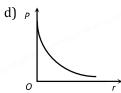
c) n^2a_0

- d) $\frac{a_0}{n^2}$
- 309. For a nucleus to be stable, the correct relation between neutron number N and proton number Z is
- b) N = Z
- c) N < Z
- d) $N \geq Z$
- 310. In β^+ decay process, the following changes take place inside the nucleus


a)
$$\frac{A}{Z}X \rightarrow \frac{A}{Z_{-1}}Y + e^+ + \gamma$$


b)
$$_{Z}^{A}X \rightarrow _{Z+_{1}}^{A}Y + e^{-} + \overline{r}$$


c)
$${}_Z^A X \rightarrow {}_Z^A Y + e^- + \gamma$$


d)
$${}_Z^A X \rightarrow {}_Z^A Y + e^- + \bar{\gamma}$$

311. The change density in a nucleus varies with distance from the centre of the nucleus according to the curve in Fig.

- 312. The ratio of the nuclear radii of elements with mass numbers 216 and 125 is
 - a) 216:125
- b) $\sqrt{216}$: $\sqrt{125}$ c) 6:5

d) None of these

- 313. A free neutron decays spontaneously into
 - a) A proton, an electron and antineutrino
 - b) A proton, an electron and aneutrino
 - c) A proton and electron
 - d) A proton, and electron, a neutrino and an antineutrino
- 314. Hydrogen atom excites energy level from fundamental state to n = 3. Number of spectrum lines according to Bohr, is

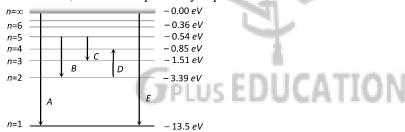
c) 1

- 315. A hydrogen atom in its ground state absorbs 10.2 eV of energy. The orbital angular momentum is increased by
 - (Given Planck's constant $h = 6.6 \times 10^{-34} I s$)
 - a) $1.05 \times 10^{-34} I$ -s
- b) 3.16×10^{-34} *I-s*
- c) $2.11 \times 10^{-34} J$ -s
- d) $4.22 \times 10^{-34} I$ -s
- 316. A double charged lithium atom is equivalent to hydrogen whose atomic number is 3. The wavelength of required radiation for emitting electron from first to third Bohr orbit in Li^{++} will be (Ionisation energy of hydrogen atom is 13.6eV)
 - a) 182.51 Å
- b) 177.17 Å
- c) 142.25 Å
- d) 113.74 Å
- 317. A radioactive sample at any instant has its disintegration rate 5000 disintegrations per minute. After 5 min, the rate becomes 1250 disintegration per minute. Then ,its decay constant (per minute) is
 - a) 0.8 log_e 2
- b) 0.4 log_e 2
- c) $0.2 \log_{e} 2$
- d) 0.1 log_e 2
- 318. If the radioactive decay constant of radium is 1.07×10^{-4} per year, then its half life period is approximately equal to

a) 8,900 <i>years</i> b)) 7,000 years	c) 6,476 <i>years</i>	d) 2,520 <i>years</i>
319. What is the Q -value of the re	eaction		
$P + {}^{7}\text{Li} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$			
The atomic masses of ¹ H, ⁴ H	He and^{-7} Li are 1.007825	5 u, 4.002603 u and 7.0160	04 u respectively
a) 17.35 MeV b) 18.06 MeV	c) 177.35 MeV	d) 170.35 MeV
320. In hydrogen atom, electron r			
will be			
a) $3.4 \times 10^{-27} N - s$ b	$16.8 \times 10^{-27} N - s$	c) $3.4 \times 10^{-24} N - s$	d) $6.8 \times 10^{-24} N - s$
321. The functions of moderators	•	0, 0,17.120 11 0	a) 5.6 × 10 × 1
a) Decrease the speed of neu		b) Increase the speed of n	autrons
c) Decrease the speed of elec		d) Increase the speed of e	
322. Which of the following trans		-	iceti ons
_	-	-	d) = - [to = - 2
-	=	c) $n = 2$ to $n = 5$	u) n = 5 to n = 2
323. Hydrogen bomb is based on			D.M. 6.1
-	•	c) Radioactive decay	
324. If N_0 is the original mass of t	the substance of half life p	period $T_{1/2} = 5$ years, then	the amount of substance
left after 15 <i>years</i> is			
a) $N_0/8$ b)	$N_0/16$	c) $N_0/2$	d) $N_0/4$
325. The nuclear fusion reaction	is given $_1H^2 + _1H^2 \rightarrow$	$_0$ He ³ + $_0$ n ¹ + Q (energy)). If 2 mole of deuterium
are fused the total released ϵ	energy is		
a) 2 <i>Q</i> b) $4Q$	c) $Q \times 6.02 \times 10^{23}$	d) $Q \times 2 \times 6 \times 10^{23}$
326. When hydrogen atom is in it	ts first excited level, its ra	adius is its ground state	e radius
) Same		d) Four times
327. What is the disintegration co			
a) $2.1 \times 10^{-3} \mathrm{s}^{-1}$ b)			
328. In the uranium radioactive s			
uranium nucleus decays to le			
		c) 6α , 8β	
			d) 4α, 3β
329. Which of the relation is corre	ect between time period	and number of orbits will	e an electron is revolving in
an orbit	1		1
a) n^2 b)	$(\frac{1}{2})$	c) n^3	d) $\frac{1}{1}$
220 Which anargy state of the tri	n² inluionizad hazullium ha	s the came electron orbital	n
330. Which energy state of the tri		is the same electron orbital	radius as that of ground
state of hydrogen? Given Z fo			12 4
	n = 3	c) $n = 2$	d) $n = 1$
331. In hydrogen atom which qua	antity is integral multiple	$e \circ f \frac{h}{2\pi}$	
a) Angular momentum b) Angular velocity	c) Angular acceleration	d) Momentum
332. Boron rods in nuclear reacto		, ,	
) Control rods	c) Coolants	d) Protective shield
333. Select the true statement fro	•		,
a) Strong, short range and cl	•		
b) charge independent, attra	= =		
c) Strong, charge dependent			
	_		
d) Long range, charge depen			ashtan muslai is E. Than
334. The binding energy per nucl			
	$) E_1 > E_2$	c) $E_2 > E_1$	d) $E_1 = 2E_2$
335. One Becquerel is defined as		12406 1:	
a) 1 disintegration per sec		b) 10 ⁶ disintegration per	
c) 3.7×10^{10} disintegration	n per sec	d) 10 ³ disintegration per	sec

- 336. When the number of nucleons in nuclei increase, the binding energy per nucleon
 - a) Increases continuously with mass number
 - b) Decreases continuously with mass number
 - c) Remains constant with mass number
 - d) First increases and then decreases with increases of mass number
- 337. The decay constant of a radioactive sample is λ . The half-life and mean life of the sample are respectively given by
- a) $\frac{1}{\lambda}$ and $\frac{\log_e 2}{\lambda}$ b) $\frac{\log_e 2}{\lambda}$ and $\frac{1}{\lambda}$ c) $\lambda(\log_e 2)$ and $\frac{1}{\lambda}$ d) $\frac{\lambda}{\log_e 2}$ and $\frac{1}{\lambda}$
- 338. If λ is decay constant and N the number of radioactive nuclei of an element, then the decay rate (R) of that element is
 - a) λN^2

b) λN


- d) $\lambda^2 N$
- 339. If the decay constant of a radioactive substance is λ , then its half-life is
 - a) $\frac{1}{2}\log_e 2$

- c) $\lambda \log_e 2$

- 340. What is the mass of one curie of U^{234} ?
 - a) 3.7×10^{10} g
- b) 3.7×10^{-10} g
- c) 6.25×10^{-34} g
- d) 1.438×10^{-11} g

- 341. A chain reaction is continuous due to
 - a) Large mass defect

- b) Large energy
- c) Production of more neutrons in fission
- d) None of these
- 342. The energy levels of the hydrogen spectrum is shown in figure. There are some transition A, B, C, D and E. Transition *A*, *B* and *C* respectively represent

- a) First member of Lyman series, third spectral line of Balmer series and the second spectral line of Paschen series
- b) Ionization potential of hydrogen, second spectral line of Balmer series and third spectral line of Paschen
- c) Series limit of Lyman series, third spectral line of Balmer series and second spectral line of Paschen
- d) Series limit of Lyman series, second spectral line of Balmer series and third spectral line of Paschen
- 343. As the electron in Bohr orbit of Hydrogen atom passes from state n=2 to n=1, the kinetic energy K and potential energy U change as
 - a) K two-fold, U four-fold

b) K four-fold, U two-fold

c) *K* four-fold, *U* also four-fold

- d) K two-fold, U also two-fold
- 344. The radius of the Bohr orbit in the ground state of hydrogen atom is 0.5 Å. The radius of the orbit of the electron in the third excited state of He^+ will be

b) 4 Å

c) 0.5 Å

- d) 0.25 Å
- 345. The wavelength of radiation emitted is λ_0 when an electron jumps from the third to second orbit of hydrogen atom. For the electron jump from fourth to the second orbit of the hydrogen atom, the wavelength of radiation emitted will be
 - a) $(16/25)\lambda_0$
- b) $(20/27)\lambda_0$
- c) $(27/20)\lambda_0$
- d) $(25/16)\lambda_0$

	a) Less than the sum of masses of two protons and two neutrons				
	b) Equal to mass of four protons				
	c) Equal to mass of four neutrons				
247		of two protons and two no		Vicens After frontless O	
347.	years, its activity will be	ment decreased to one thir	d of original activity R_0 in Ω	years. After further 9	
		2.			
	a) R_0	b) $\frac{2}{3}R_0$	c) $R_0/9$	d) $R_0/6$	
348.	The ratio of longest wavel	ength and the shortest wa	velength observed in the fiv	e spectral series of	
	emission spectrum of hyd	rogen is	_	_	
	a) $\frac{4}{3}$	b) $\frac{525}{376}$	c) 25	d) $\frac{900}{11}$	
	· ·			$\frac{11}{11}$	
349.	The example of nuclear fu				
	a) Formation of barium an				
	b) Formation of helium from	• •			
	c) Formation of plutoniumd) Formation of water from				
350	Age of a tree is determined				
550.	a) Carbon	b) Cobalt	c) Iodine	d) Phosphorus	
351.	•	•	ong will it take the activity		
	original value			20 1 2 3 3 3 2 7 0 2 1 3 2	
	a) 3.2 <i>T</i> year	b) 4.6 <i>T</i> year	c) 6.6 <i>T</i> year	d) 9.2 <i>T</i> year	
352.	= = = = = = = = = = = = = = = = = = = =		A is the mass number and Z	-	
	a) \sqrt{A}	b) $A^{1/3}$	c) \sqrt{Z}	d) $Z^{1/3}$	
353.	The radioactivity of a cert	ain material drops to $\frac{1}{}$ of	the initial value in 2h. The l	nalf-life of this radio	
	nuclide is				
	a) 10 min	b) 20 min	c) 30 min	d) 40 min	
354.	•		is excited from ground stat		
	•		will be (according to Bohr's	•	
	a) 10	b) 8	c) 6	d) 4	
355.	•	•	s $3 days$. The activity will b	•	
	a) 12 days	b) 7 days	c) 18 <i>days</i>	d) 21 <i>days</i>	
356.	The example of nuclear fu	sion is			
	a) Formation of <i>Ba</i> and <i>K</i> ?	r from U ²³⁵	b) Formation of <i>He</i> from <i>I</i>	Н	
	c) Formation of $Pu - 235$	from $U - 235$	d) Formation of water fro	m hydrogen and oxygen	
357.			lium are 1.1MeV and 7.0Me	eV. The energy released	
		to form a helium nucleus i			
	a) 23.6MeV	b) 2.2MeV	c) 30.2MeV	d) 3.6MeV	
358.	The figure shows a graph	between $\ln \left \frac{A_n}{A_1} \right $ and $\ln n $,	where A_n is the area enclos	ed by the n th orbit in a	
	hydrogen like atom. The c	orrect curve is			
	$A_n \mid A_n \mid A$				
	$ A_1 $ $ A_2 $				
	4 1				
	2				
	$O \xrightarrow{1} \frac{1}{\ln n }$				
		h) 3	c) 2	d) 1	
	a) 4	b) 3	C) 2	d) 1	

346. The mass of an α -particle is

359. An atom of mass number			then emits a proton. The
	number of the resulting pr	• •	
a) 14 and 2	b) 15 and 3	c) 16 and 4	d) 18 and 8
360. The relationship between			
$a) \lambda = \frac{\log_{10} 2}{\log_{10} 2}$	b) $\lambda = \frac{\log_e 2}{T_{1/2}}$	c) $\lambda = \frac{\log_2 10}{\log_2 10}$	d) $\lambda = \frac{\log_2 e}{T_{1/2}}$
$T_{1/2}$	$T_{1/2}$	$T_{1/2}$	$T_{1/2}$
361. When two deuterium nucl	lei fuse together to form a t	critium nuclei, we get a	
a) Neutron	b) Deuteron	c) α –particle	d) Proton
362. Nuclear reactions are give	en as		
(i) \Box $(n,p)_{15}p^{32}$ (ii) \Box	$(p,\alpha)_8 O^{16}$ (iii) $_7 N^{14}$ (iv) $_6$	$_{5}C^{14}$	
Missing narticle or nuclide	e (in box \square) in these reac	tions are respectively	
	b) F^{19} , S^{32} , $_0n^1$		d) None of these
363. Two nucleons are at a sep	-		
	proton and the other is a n		on neutrons, 1 2 ii both are
	b) $F_2 > F_1 > F_3$		d) $F_4 = F_2 > F_2$
364. The fossil bone has a ¹⁴ C		that in a living animal bon	e. If the half-life of 11C is
5730 yr, then the age of th			
a) 11460 yr	b) 17190 yr	c) 22920 yr	d) 45840yr
365. The half-life of a radioacti	ve substance is 3.6 days. H	ow much of $20mg$ of this r	adioactive substance will
remain after 36 days			
,	b) 1.019 mg	c) 1.109 mg	d) 0.019 mg
366. Half-life of a radio active s			
a) $\frac{1}{4}$	b) $\frac{3}{4}$	c) $\frac{1}{z}$	d) 1
7	4	4	mualai will mamain
367. In a sample of radioactive			e nuclei win remain
undisintegrated after han	of a half-life of the sample	'ATION	
a) $\frac{1}{4}$	b) $\frac{1}{2\sqrt{2}}$ US ED 1	c) $\frac{1}{\sqrt{2}}$	d) $2\sqrt{2}$
368. Assume that a neutron bro	2 4 2	v -	ed during this process is
	$5 \times 10^{-27} kg$, Mass of prote		
$10^{-31}kg$)	5 × 10 kg, Mass of proce	$3\Pi = 1.0723 \times 10^{\circ}$ kg, Π	ass of electron – 5 A
a) 0.73 <i>MeV</i>	b) 7.10 <i>MeV</i>	c) 6.30 <i>MeV</i>	d) 5.4 <i>MeV</i>
369. In radioactive decay proce		-	aj sii mev
a) The electrons present i		emitted p particles are	
_	d as a result of the decay of	neutrons inside the nuclei	15
	d as a result of collisions be		
d) The electrons orbiting a		ew cen atomor	
370. A radioactive material deca		n of two particles with half-l	ives 1620 vr and 810 vr
	ear after which one-fourth o		ives 1020 yr ama 010 yr
a) 4860 yr	b) 3240 yr	c) 2340 yr	d) 1080yr
371. The binding energy per nu	•	•	•
	action of deuterium and he atom, the energy released		7.0 Mev in two dedictions
a) 19.2 <i>MeV</i>	b) 23.6 <i>MeV</i>	c) 26.9 <i>MeV</i>	d) 13.9 <i>MeV</i>
372. Out of the following which			
according to Bohr's atomi		b) for a photon to be either	sa sy nyarogen atom
a) 13.6 <i>eV</i>	b) 0.65 <i>eV</i>	c) 1.9 <i>eV</i>	d) 11.1 <i>eV</i>
373. What is used as a moderat	-	0, 112 01	aj zziz or
a) Water	b) Graphite	c) Cadmium	d) Steel

	-	ive sample is measured as sutes. The decay constant is	9750 counts <i>per minute</i> at a	t = 0 and as 975 counts
-	per minute	b) 0.461 <i>per minute</i> es half integral spin as	c) 0.691 per minute	d) 0.922 per minute
a) Phot	-	b) Pion	c) Proton	d) K-meson
•			at a time t_2 . If the half-life of	,
		we disintegrated in the time r_1	$t_2 - t_1$ is proportional to	t the sumple 13.1 _{1/2} , then the
a) $I_1 t_2$ -	I_2t_1	b) $I_1 - I_2$	c) $\frac{I_1 - I_2}{\tau_{1/2}}$	d) $(I_1 - I_2)\tau_{1/2}$
377. The rad in Ge ar	_	ı (Ge) nuclide is measured t	to be twice the radius of ${}_4^9\mathrm{Be}$	e. The number of nucleons
a) 73		b) 74	c) 75	d) 72
378. The rad	oactivity of a cer	tain radioactive element dr	ops to 1/64 of its initial val	ue in 30 <i>seconds</i> . Its half
a) 2 <i>sec</i>	onds	b) 4 seconds	c) 5 seconds	d) 6 seconds
379 Hydrog	en (H), deuteriun		(He^+) and doubly ionized	lithium (Li^{++}) all have one
			1 transition. The wavelengt	
		ectively. Then approximatel	-	
	$\lambda_2 = 4\lambda_3 = 9\lambda_4$	**	b) $4\lambda_1 = 2\lambda_2 = 2\lambda_3 = \lambda_4$	
	$2\lambda_2 = 2\sqrt{2}\lambda_3 = 3$	$3\sqrt{2}\lambda_{A}$	d) $\lambda_1 = \lambda_2 = 2\lambda_3 = 3\sqrt{2}\lambda_3$	4
-	e of neutron is ab	•	,	*
a) 100 s		b) 1000 seconds	c) 10 seconds	d) 1 seconds
-		-	alues of orbital quantum nu	
a) 1, 2,		b) 0, 1, 2, 3	c) 0, 1, 2	d) -1, 0, +1
-	in his theory, Bo		0) 0, 1, 1	4) 1) 0) 1 1
_	ervation of linear		b) Conservation of angula	r momentum
-	ervation of quant		d) Conservation of energy	
383. During	negative β -decay	OPEUS EDUC	ALION	
	on converts into	-	b) Proton converts into ne	eutron
	on proton ratio i		d) None of these	.11 1
			s. Three-fourth of the subst	
-			c) 8 months	
	ng to Bohr's theo n atom will be	ry, the moment of momenti	ım of an electron revolving	in second orbit of
nyurog	ii atom win be		h	2h
a) 2π <i>h</i>		b) πh	c) $\frac{h}{\pi}$	$d)\frac{2h}{\pi}$
386. oz U ²³⁵	and ₉₂ U ²³⁸ differ	as	ıt	ıt
	³⁵ has 2 protons l		b) ₉₂ U ²³⁸ has 3 protons n	nore
	³⁸ has 3 neutrons		d) None of the above	
			l lines in going from Lyman	series to P-fund series
a) Incre	-	true for number of spectra	b) Decreases	series to raina series
c) Unch			d) May decrease and incre	2260
-	f the following pa	nire ie an ieobar	a) may accrease and mere	Lasc
	and ₁ H ²	b) $_1H^2$ and $_1H^3$	c) $_{6}C^{12}$ and $_{6}C^{13}$	d) P^{30} and S^{30}
	_		us r in hydrogen atom is (e	
	the energy of the			
a) $\frac{e^2}{r^2}$		b) $\frac{e^2}{2r}$	c) $\frac{e^2}{r}$	d) $\frac{e^2}{2r^2}$
-	nding energy per	_,	lei are 5.60 MeV and 7.06 M	41

the reaction

 $p + {}^{7}_{3}\text{Li} \rightarrow 2 {}^{4}_{2}\text{He}$

energy of proton must be

- a) 28.24MeV
- b) 17.28MeV
- c) 1.46MeV
- d) 39.2MeV

391. In the Bohr's hydrogen atom model, the radius of the stationary orbit is directly proportional to (n =principle quantum number)

a) n^{-1}

b) n

c) n^{-2}

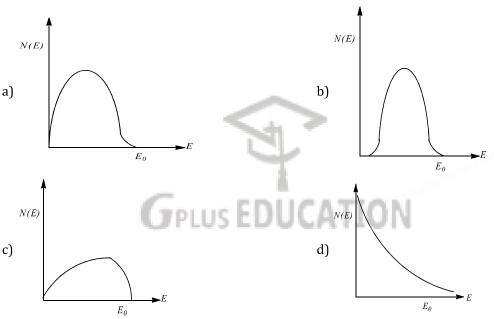
d) n^2

392. When a radioactive substance emits an α -particle, its position in the periodic table is lowered by

- a) One place
- b) Two places
- c) Three places
- d) Four places

393. The half life of radium is 1620 years and its atomic weight is 226 kg per kilomol. The number of atoms that will decay from its 1 g sample per second will be

(Avogadro's number $N = 6.02 \times 10^{26} atom/kilomol$)


- a) 3.61×10^{10}
- b) 3.6×10^{12}
- c) 3.11×10^{15}
- d) 31.1×10^{15}

394. r_1 and r_2 are the radii of atomic nuclei of mass numbers 64 and 27 respectively. The ratio (r_1/r_2) is

- a) 64/27
- b) 27/64
- c) 4/3

d) 1

395. The energy spectrum of β – particles [number N(E) as a function of β –energy E] emitted from a radioactive source is

396. 80 kg of a radioactive material reduces to 10 kg in 1 h. The decay constant of the material is

- a) $5.80 \times 10^{-4} \,\mathrm{s}^{-1}$
- b) $1.16 \times 10^{-3} \,\mathrm{s}^{-1}$
- c) $2.32 \times 10^{-3} \text{ s}^{-1}$
- d) $4.64 \times 10^{-3} \text{ s}^{-1}$

397. A radioactive sample S_1 having the activity A_1 has twice the number of nuclei as another sample S_2 of activity A_2 . If $A_2 = 2A_1$, then the ratio of half-life of S_1 to the half-life of S_2 is

a) 4

b) 2

c) 0.25

d) 0.75

398. The intensity of gamma radiation from a given source is I_o . On passing through 37.5 mm of lead it is reduced to $I_0/8$. The thickness of lead which will reduce it to $I_0/2$ is

- a) $(37.7)^{1/3}$ mm
- b) $(37.5)^{1/4}$ mm
- c) 37.5/3 mm
- d) (37.5/4) mm

399. The average binding energy per nucleon is maximum for the nucleus

- a) $_{2}He^{4}$
- b) $_{9}0^{16}$

- c) $_{26}Fe^{56}$
- d) $_{92}He^{238}$

400. If half life of radium is 77 days. Its decay constant in day will be

- a) $3 \times 10^{-13} / day$
- b) $9 \times 10^{-3} / day$
- c) $1 \times 10^{-3} / day$
- d) $6 \times 10^{-3} / day$

401. The radius of a nucleus of a mass number *A* is directly proportional to

a) A^3

b) A

c) $A^{2/3}$

d) $A^{1/3}$

402. We have seen that a gamma-ray dose of 3Gy is lethal to half the people exposed to it. If the equivalent energy were absorbed as heat, what rise in body temperature would result?

a) 300 µ	K	b) 700 μK	c) 455 µK	d) 390 μK
403. Which of	ne is correct abo	ut fission?		
a) Appro	ox 0.1 % mass co	nverts into energy		
b) Most	of energy of fissi	on is in the form of heat		
		out 200 eV energy is releas	ed	
•		utron is released per fissio		
=	_	•	th a projectile. Which of the	e following suits the best
a) Slow		b) Fast neutron	c) Slow neutron	d) None of these
,	•	•	ntify the correct answer giv	•
	ar density is sam		<i>g</i>	
	-		A are related as $\sqrt{A} \propto R^{1/6}$	
	A and B are true	and its mass the number	b) Both A and B are false	
-	rue but B is false		d) A is false but B is true	
		$+ {}^{235}_{92}U \rightarrow {}^{144}_{56}Ba + \dots + 3a$	•	
		b) $_{36}^{90}Kr$	c) $^{91}_{36}Kr$	d) $_{36}^{92}Kr$
a) $^{89}_{36}Kr$, 50		- 00
			2	eam containing photons of
			, five dark lines, are observe	
	ne emission spec		t all transitions takes place)	
a) 5		b) 10	c) 15	d) None of these
		-	e from a given radioactive s	source, one nour later the
		e of 30 per minute. The hal		d) 20
a) 120 <i>n</i>		b) 80 min	c) 30 min	d) 20 min
-		4 700	ctor. The function of the mo	derator is
-		released in the reactor		
		nd stop chain reaction		
•	ol the reactor fas	and the second s		
		trons to thermal energies	:- 2 4 aV Iba an malan maan	
		an excited hydrogen atom	is – 3.4 ev . its angular mon	nentum will be ($h = 6.626 \times$
$10^{-34}J$ -		L) 1 F1 10=31 t -	-3.2.44 - 4.0=341 -	1) 2 72 10=341
-			c) $2.11 \times 10^{-34} J s$	
		rms its own isotope after 3		s. The particles emitted are
a) 3 β - pa		• 1	b) 2 β-particles - 1 α-par	
	articles - 1 γ-part		d) 2 α-particles - 1 β-par	
	•		nodel of the hydrogen atom	is false
=		on in $n = 2$ orbit is less that		
			more than that in $n = 1$ or	oit
		from in $n = 2$ orbit is less that		
		ectron in $n = 2$ orbit is less		
-		ed into <i>Cvia</i> following rea	ction.	
	$3 + {}_{2}\text{He}^{4}$			
	$7 + 2e^{-}$			
Then		13.4.1.6		2.4.15
=	Care isobars	b) A and Care isotopes	c) A and B are isobars	d) A and B are isotopes
		ement depends upon	1.) m	
	int of element pro	esent	b) Temperature	
c) Press			d) Nature of element	
	r the following st		C 1	
S1 · The	nuclear torce is i	ndependent of the charge	of nucleons	

S2: The number of nucleons in the nucleus of an atom is equal to the number of electrons in the atom

	S3 : All nuclei have masses that are less than the sum of the masses of constituent nucleons				
	S4: Nucleons belong to the family of leptons while electrons are members of the family of hadrons				
	Choose the correct staten	` '		D a	
	a) S1 only	b) S1 and S4	c) S2, S3 and S4	d) S1 and S3	
416		neutrons and protons in a	species are equal to 10, 8 a	nd 8 respectively. The	
	proper symbol of the spe		4.0	46.0	
	a) $^{16}O_8$	b) ¹⁸ 0 ₈	c) $^{18}Ne_{10}$	d) ${}^{16}O_8^{2-}$	
417		days,its decay constant wil			
		b) 9×10^{-3} - day ⁻¹			
418				y such that the end product	
		of αandβ particles emitted a			
	a) 4 and 3 respectively	b) 2 and 1 respectively	c) 3 and 4 respectively	d) 3 and 8 respectively	
419	. A nucleus of ₈₄ Po ²¹⁰ orig	inally at rest emits an α-pai	rticle with speed \emph{v} . What w	ill be recoil speed of the	
	daughter nucleus?				
	a) 4 <i>v</i> /206	b) 4 <i>v</i> /214	c) v/206	d) v/214	
420	. A nucleus with mass num	iber 220 initially at rest em	its an α -particle. If the Q va	llue of the reaction is	
	5.5 MeV, calculate the kin	netic energy of the $lpha$ -particl	le		
	a) 10 ⁹ K	b) 10 ⁷ K	c) $10^5 K$	d) 10 ³ <i>K</i>	
421	. The ratio of molecular ma	ass of two radioactive subst	tances is 3/2 and the ratio	of their decay constants is	
		eir initial activity per mole v		J	
	•		_	1) 0 (0	
	a) 2	b) 4/3	c) 8	d) 9/8	
422	. In half life of a radio isoto	pe is 2 seconds and numbe	er of atoms are only 4, then	after one half life remaining	
	(without decay) atoms ar	re probably			
	a) 1	b) 2	c) 3	d) All the above	
423	. When a radioactive isoto	pe 88R ²²⁸ decay in series by	y the emission of 3α -particl	es and β-particle, the	
	isotope finally formed is				
	a) ₈₄ X ²²⁸	b) ₈₆ X ²²²	c) $_{83}X^{216}$	d) $_{83}X^{215}$	
424		has a half-life of 1 $year$. The		- 00	
	5 <i>years</i> will be	•			
		1	, 1	4	
	a) $\frac{1}{32}$	b) $\frac{1}{5}$	c) $\frac{1}{2}$	d) $\frac{4}{5}$	
425	. Which one of the followin	ng statements about uraniu	m is correct		
	a) ^{235}U is fissionable by	thermal neutrons			
	b) Fast neutrons trigger t	the fission process in ^{235}U			
	c) ^{235}U breaks up into fr	agments when bombarded	by slow neutrons		
		otope and undergoes sponta	-		
426		ntial of Bohr's first orbit in			
	a) 13.6 <i>V</i>	b) 3.4 <i>V</i>	c) 10.2 <i>V</i>	d) 3.6 <i>V</i>	
427		eus is Z and atomic mass is	,		
12,	a) <i>M</i> – <i>Z</i>	b) M	c) Z	d) $M + Z$	
428		ron annihilate, then the ene	•	uj M + L	
720	a) $3.2 \times 10^{-13} J$	b) $1.6 \times 10^{-13} J$	c) $4.8 \times 10^{-13} J$	d) 6.4×10^{-13} J	
120				u) 0.4 × 10	
423	· In any fission process the	eratio $\frac{\text{mass of fission products}}{\text{mass of parent nucleus}}$ i	S		
	a) Less than 1		b) greater than 1		
	c) Equal to 1		d) Depends on the mass of	of parent nucleus	
430	. A common example of eta -	decay is			
	$_{15}P^{32} \rightarrow {}_{16}P^{32} + x + y$				
	Then <i>x</i> and <i>y</i> stand for				

a) Electron and neutrino	b) Positron and neutrino	
c) Electron and antineutrino	d) Positron and antineut	rino
431. The radioactive nucleus $_7N^{13}$ decays to $_6C^{13}$ through		
a) Neutron b) Proton	c) Electron	d) Positron
432. Radioactive element decays to form a stable nuclid	e, then the rate of decay of r	eactant $\left(\frac{dN}{dt}\right)$ will vary with
time (t) as shown in figure		(ui)
dy the shown in figure	Δ1. Δ	dN 🛧
a) $\frac{dv}{dt}$ b) $\frac{dv}{dt}$	c) $\frac{\frac{dN}{dt}}{dt}$	$d) \qquad \qquad \int$
	t	
433. The ionisation energy of 10 times ionised sodium a	tom is	, •
a) 13.6 eV b) 13.6 × 11 eV	c) $\frac{13.6}{11}$ eV	d) $13.6 \times (11)^2 eV$
434. Calculate the energy released when three α – parti	cles combined to from a 120	C nucleus , the mass defect is
(atomic mass of $_2$ He 4 is 4.002603 u)		
a) 0.007809 u b) 0.002603 u	c) 4.002603 u	d) 0.5 u
435. The density of uranium is of the order of	,	
a) 10^{20} kgm^{-3} b) 10^{17} kgm^{-3}	c) 10^{14} kgm^{-3}	d) 10^{11} kgm^{-3}
436. The half-life period of radium is 1600 <i>years</i> . Its ave	, ,	, .
a) 3200 years b) 4800 years	c) 2319 years	d) 4217 <i>years</i>
437. Radioactive substances do not emit	, ,	
a) Electron b) Helium nucleus	c) Positron	d) Proton
438. In nuclear reaction $_2He^4 + _zX^A \rightarrow _{z+2}Y^{A+3} + A$, A	-	,
a) Electron b) Positron	c) Proton	d) Neutron
439. The rest energy of an electron is 0.511 MeV. The el	ectron is accelerated from r	est to a velocity 0.5 c. The
change in its energy will be	CATTONI	,
a) 0.026 <i>MeV</i> b) 0.051 <i>MeV</i>	c) 0.079 <i>MeV</i>	d) 0.105 <i>MeV</i>
440. Neutrino emission in β – decay was predicted the	oretically by	
a) Planck b) Heisenberg	c) Laue	d) Pauli
441. The masses of neutron and proton are 1.0087 a.m.	<i>u</i> . and 1.0073 <i>a</i> . <i>m</i> . <i>u</i> . respe	ectively. If the neutrons and
protons combine to form a helium nucleus (alpha p		-
the helium nucleus will be $(1 a.m.u. = 931 MeV)$		
a) 28.4 <i>MeV</i> b) 20.8 <i>MeV</i>	c) 27.3 <i>MeV</i>	d) 14.2 <i>MeV</i>
442. Most suitable element for nuclear fission is the element	-	-
a) 11 b) 21	c) 52	d) 92
443. The energy released in a typical nuclear fusion read	ction is approximately	-
a) 25 <i>MeV</i> b) 200 <i>MeV</i>	c) 800 <i>MeV</i>	d) 1050 <i>MeV</i>
444. Energy generation in stars is mainly due to	•	,
a) Chemical reactions	b) Fission of heavy nucle	i
c) Fusion of light nuclei	d) Fusion of heavy nuclei	
445. The radioactive decay of uranium into thorium is e	-	
is		
a) An electron b) A proton	c) A deuteron	d) An alpha particle
446. In the nuclear reaction		·
$^{14}_{7}\mathrm{N} + X ightarrow ^{14}_{6}\mathrm{C} + ^{1}_{1}\mathrm{H}$, the X will be		
a) _0e b) 1H	c) ² H	d) ${}_{0}^{1}n$
447. After 280 days, the activity of a radioactive sample		
another 140 days. The initial activity of the sample	-	

a) 6000	b) 9000	c) 3000	d) 24000
448. What will be ratio of	radii of Li ⁷ nucleus to Fe ⁵⁶ r	nucleus?	
a) 1:3	b) 1:2	c) 1:8	d) 2:6
449. If the energy released	d in the fission of one nucleu	us is 200 <i>MeV</i> then the numb	er of nuclei required per
second in a power pla	ant of 16 <i>kW</i> will be		
a) 0.5×10^{14}	b) 0.5×10^{12}	c) 5×10^{12}	d) 5×10^{14}
450. Ionization energy of l	hydrogen is 13.6 eV. If $h = 6$	$6.6 \times 10^{-34} J - s$, the value o	f R will be of the order of
a) $10^{10}m^{-1}$	b) $10^7 m^{-1}$	c) $10^4 m^{-1}$	d) $10^{-7}m^{-1}$
451. Nucleus of an atom w	hose atomic mass is 24 con	sists of	,
	rotons and 13 neutrons	b) 11 electrons, 13 prot	tons and 11 neutrons
c) 11 protons and 13		d) 11 protons and 13 el	
452. The control rod in a r		7	
a) Uranium	b) Cadmium	c) Graphite	d) Plutonium
•		gy, the energy produced will	
a) 1 <i>MeV</i>	b) 938 <i>MeV</i>	c) 9.38 <i>MeV</i>	d) 238 <i>MeV</i>
454. A radioactive substar	•	.,	.,
a) α-rays	b) β -rays	c) γ-rays	d) All of these
	* * *	nount of a certain radioactive	-
undecayed. The half l	_		
a) 15 minutes	b) 30 minutes	c) 45 minutes	d) 1 <i>hour</i>
	sion of $1 kg$ of deuterium n	_	u) 1 110 til
a) $8 \times 10^{13} I$	b) $6 \times 10^{27} J$		d) $8 \times 10^{23} MeV$
		s from the fifth energy level	,
	n acquired as a result of pho		to the ground level The
a) 24hR/25m	b) 25 <i>hR</i> /24 <i>m</i>	c) 25m/24hR	d) 24 <i>m/</i> 25 <i>hR</i>
,	· ·	0.3 g. The amount of energy	-
(Velocity of light= 3	$\times 10^8 \text{ms}^{-1}$		inderaced in knowate nour is
a) 1.5×10^6	b) 2.5×10^6	(3×10^6)	d) 7.5×10^6
•	om a radioactive substance		u) 7.5 × 10
a) Negatively charge		arc	
b) Ionized hydrogen			
c) Doubly ionized he			
, ,	es having the mass equal to	proton	
	-	-	num frequency of photon will
be emitted	in transits from n_1 to n_2 . In	which of the following maxin	num frequency of photon win
	b) $n = 2 + 0 = 1$	c) $n_1 = 2$ to $n_2 = 6$	d) n = 6 to n = 2
	$n_1 - 2$ to $n_2 - 1$ ag statements are true regar		$u_1 n_1 = 0 \text{ to } n_2 = 2$
	•	•	
	ments decay exponentially		nadia astiva atoma to
	radioactive element is time	e required for one half of the	radioactive atoms to
disintegrate		- af wadi a atiwa datiwa	
, , -	be determined with the help	•	
	a radioactive element is 50%	= = =	
	r using the codes given belo	W	
Codes:	1) 1 111 1 111)	D. W L. W.
a) I and II	b) I, III and IV	c) I, II and III	d) II and III
		a photon of lowest frequence	
a) $n = 2$ to $n = 1$	b) $n = 4$ to $n = 3$	c) $n = 3$ to $n = 1$	d) $n = 4$ to $n = 2$
	veen proton and proton insi		
a) Coulombic	b) Nuclear	c) Both	d) None of these

- 464. The rest energy of an electron is b) 931 KeV c) 510 MeV a) 510 KeV d) 931 MeV 465. The count rate of 10g of radioactive material was measured at different times and this has been shown in the figure. The half life of material and the total counts (approximately) in the first half life period, respectively are 100 Count rate per minute 80 60 40 20 Time (hours) a) 4h, 9000 b) 3h, 14000 c) 3h, 235d) 3h, 50466. In a radioactive reaction $_{92}X^{232} \rightarrow _{82}X^{204}$ the number of α -particles emitted is a) 7 b) 6 c) 5 d) 4 467. In a sample of radioactive material, what percentage of the initial number of active nuclei will decay during one mean life a) 69.3% b) 63% c) 50% d) 37% 468. β -decay means emission of electron from b) A stable nucleus a) Innermost electron orbit c) Outermost electron orbit d) Radioactive nucleus 469. If in hydrogen atom, radius of n^{th} Bohr orbit is r_n , frequency of revolution of electron in n^{th} orbit is f_n , choose the correct option a) r. d) Both (a) and (b) c) log n log 470. The de Broglie wave present in fifth Bohr orbit is c) d) 471. A and B are two radioactive substances whose half-lives are 1 and 2 yr respectively. Initially 10 g of A and 1 g of B is taken. The time (approximate) after which they will have same quantity remaining is a) 6.62 yr b) 5 yr d) 7yr 472. The electric potential between a proton and an electron is given by $V = V_0 \ln \frac{r}{r_0}$, where r_0 is a constant. Assuming Bohr's model to be applicable, write variation of r_n with n, n being the principal quantum number c) $r_n \propto n^2$ d) $r_n \propto 1/n^2$ b) $r_n \propto 1/n$ a) $r_n \propto n$
- 473. Energy released in the fission of a single nucleus is 200MeV. The fission rate of a $^{235}_{92}$ U filled reactor operating at a power level of 5W is
 - a) $1.56 \times 10^{-10} \text{s}^{-1}$
- b) $1.56 \times 10^{11} \text{s}^{-1}$
- c) $1.56 \times 10^{-16} \text{s}^{-1}$
- d) $1.56 \times 10^{-17} \text{s}^{-1}$
- 474. The ratio of the kinetic energy to the total energy of an electron in a Bohr orbit is
 - a) -1
- b) 2

c) 1:2

d) None of these

475.	A radioactive element a) 4	$_{90}X^{238}$ decays into $_{83}$	Y^{222} . The number of β —particle c) 2	les emitted are d) 1
476		•	wn in the figure. The number of	
470.	be	veis of <i>II</i> -atom are sno	will in the figure. The number of	possible emission mies would
		n = 4		
		n = 3		
		n = 2		
		11 – 2		
		n = 1		
	a) 3	b) 4	c) 5	d) 6
477.		_	ne second Bohr's orbit of hydro	_
	a) 54.4 eV	b) 13.6 eV	c) 1.5 eV	d) 3.4 eV
478.		_	ns is left after five half lives	
	a) 0.3%	b) 1%	c) 31%	d) 3.125%
479.			the rate of 1 mgs $^{-1}$. The power	
	a) 9×10^4	b) 9 $\times 10^7$	c) 9×10^8	d) 9×10^{12}
480.		-	rence of 4.9 V collides with a m	•
		9	h of a photon corresponding to	the transition of the mercury
	atom to its normal sta		2	
	a) 2050 Å	b) 2240 Å	c) 2525 Å	d) 2935 Å
481.		nucleus is 216. The size	ze of an atom without changing	its chemical properties are
	called		4 >	
			c) 7.2×10^{-10} cm	
482.		-	neutrons emits an $lpha$ -particle, 2 μ	
			nucleus left after the decay resp	-
	a) $Z - 3$, $N - 1$		c) $Z - 1, N - 3$	d) $Z, N-4$
483.		g of a radioactive mate material left in the sar	rial, the half life of which is two nple is	days. After 32 days, the
	a) Less than 1 mg	b) $\frac{1}{4}g$	c) $\frac{1}{2}g$	d) 1 <i>g</i>
484.		-	he parent and daughter nuclei	
	a) Isotopes	b) Isotones	c) Isomers	d) Isobars
485.			om excited state $(n = 3)$ to its g	
	=	=	tive material. If the work function	
	stopping potential is e	estimated to be (the en	ergy of the electron in n^{th} state	$E_n = -\frac{13.6}{n^2}eV)$
	a) 5.1 V	b) 12.1 V	c) 17.2 V	d) 7 V
486.	Nucleus produced due	e to α -decay of the nucl	eus $_{Z}X^{A}$ is	
	a) $_{Z+2}Y^{A+4}$	b) $_{Z}Y^{A}$	c) $_{Z-2}Y^{A-4}$	d) $_{Z-4}Y^{A-2}$
487.	Hydrogen bomb is bas	sed upon		
	a) Fission	b) fusion	c) Chemical reaction	d) Transmutation
488.	Radius of the first orb	it of the electron in a h	ydrogen atom is 0.53 Å. So, the	radius of the third orbit will be
	a) 2.12 Å	b) 4.77 Å	c) 1.06 Å	d) 1.59 Å
489.	C ¹⁴ has half-life 5700	year. At the end of 114	00 years, the actual amount left	is
	a) 0.5 of original amou		b) 0.25 of original amo	
	c) 0.125 of original an		d) 0.0625 of original a	
490.	· -		tient collect at certain sites witl	
1701	radioactive decay and emitting electromagnetic radiation. These radiations can then be recorded by a			
	detector. This procedure provides an important diagnostic tool called			

	a) Gamma camera		b) CAT scan	
	c) Radiotracer technique		d) Gamma ray spectrosco	ру
491	. According to the Rutherfo	ord's atomic model, the elec	trons inside the atom are	
	a) Stationary	b) Not stationary	c) Centralized	d) None of these
492	. The frequency of $1^{ m st}$ line c	of Balmer series in H_2 atom	is v_0 . The frequency of line	e emitted by singly ionized
	He atom is			
	a) $2v_0$	b) $4v_0$	c) $v_0/2$	d) $v_0/4$
493		nts the correct variation of		
	A B C C D time t			
	a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>
494	. A nucleus is bombarded v	vith a high speed neutron s	o that resulting nucleus is a	radioactive one. This
	phenomenon is called			
	a) Artificial radioactivity		b) Fusion	
	c) Fission		d) Radioactivity	
495	. For a radioactive nucleus,	the mean life is T , If the nu	ımber of decays per unit tir	t = 0, the number
	of decays between time 0	and t, is		
	a) $nTe^{-t/T}$	b) $n(1 - e^{-t/T})$	c) $nT(1 - e^{-t/T})$	d) $ne^{-t/T}$
496	Sun energy is due to			
	a) Fission of hydrogen	731	b) Fusion of hydrogen	
	c) Both fission and fusion		d) Neither fusion nor fissi	on
497	. Mass of the nucleons toge			
	a) Greater than mass of n	The second secon	b) Equal to mass of nucleu	ıs
	c) Same as mass of nucle		d) None of the above	
498	. The mass of a neutron is t	Control of the Park Control of the C	PALLOTA	
	a) A proton	b) A meson	c) An epsilon	d) An electron
499	•	hydrogen atom that lies in		
	a) Paschen	b) Balmer	c) Lyman	d) Brackett
500.	. Size of nucleus is of the or	•	-, -,	,
	a) $10^{-10}m$	b) $10^{-15}m$	c) $10^{-12}m$	d) $10^{-19}m$
501.	•	d in the spectrum of deuter	•	•
	spectrum, because	an in open an or acater.	tum (12) are originally armor	one in our under or my an ogon
	-	n the electron and the nucle	ous is different in the two ca	ases
	b) The size of the two nuc			
	c) The nuclear forces are			
	d) The masses of the two			
502	-	experiment, what will be the	e correct angle for α scatte	ring for an impact
502	parameter $b = 0$	experiment, what win be the	e correct angle for a scatte	ing for an impact
	a) 90°	b) 270°	c) 0°	d) 180°
503	•	lergoes α -emission to form	,	,
303		is the velocity of α -emission		
	_	-		
	a) $\frac{4V}{A-4}$	b) $\frac{2V}{A-4}$	c) $\frac{4V}{A+4}$	d) $\frac{2V}{A+4}$
504		he electrons in the ground		
	a) 1/2	b) 2/137	c) 1/137	d) 1/237
	- •	- •	- •	- •

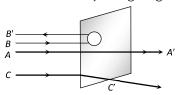
505.	The sodium nucleus $^{23}_{11}Nc$	a contains		
	a) 11 electrons	b) 12 protons	c) 23 protons	d) 12 neutrons
506.	If a star can convert all th	e He nuclei completely into	oxygen nuclei, the energy	released per oxygen nuclei
	is (Mass of the nucleus is	4.0026 amu and mass of o	xygen nucleus is 15.9994 a	mu)
	a) 7.6MeV	b) 56.12MeV	c) 10.24MeV	d) 23.9MeV
507.	The decay constant of a ra	adio isotope is λ . If A_1 and A_2	${ m A_2}$ are its activities at times	t_1 and t_2 respectively, the
	number of nuclei which h	ave decayed during the tim	ne $(t_1 - t_2)$	
	a) $A_1t_1 - A_2t_2$	b) $A_1 - A_2$	c) $(A_1 - A_2)/\lambda$	d) $\lambda(A_1 - A_2)$
508.	Half life of Bi^{210} is 5 days	s. If we start with 50,000 at	oms of this isotope, the nur	nber of atoms left over
	after 10 days is		•	
	a) 5,000	b) 25,000	c) 12,500	d) 20,000
509.	•	on plot against the mass nu		
	curve is correct	1 0		Ü
	†			
	ygra no			
	Binding energy			
	ng n			
	${\longrightarrow}$			
	Mass number			
	a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>
510.	Two radioactive nuclei ${\it P}$	and Q , in a given sample de	ecay into a stable nucleus <i>R</i>	. At time $t = 0$, number of P
	= -	of Q are N_0 . Half-life of P (for	The state of the s	
	minutes. Initially there ar	e no nuclei of R present in	the sample. When number	of nuclei of P and Q are
	equal, the number of nucl	ei of R present in the samp	le would be	
	5 N .	71 .		
	a) 5140	b) 2 <i>N</i> .	c) $3M_{\odot}$	$^{4)}_{9N_0}$
	a) $\frac{5N_0}{2}$	b) 2 <i>N</i> ₀	c) 3N ₀	d) $\frac{9N_0}{2}$
	In which of the following	b) $2N_0$ systems will the radius of t	he first orbit $(n = 1)$ be mi	4
	In which of the following a) Single ionized helium	- 1	he first orbit $(n = 1)$ be mib) Deuterium atom	nimum
511.	In which of the following a) Single ionized helium c) Hydrogen atom	systems will the radius of t	he first orbit $(n = 1)$ be mi b) Deuterium atom d) Doubly ionized lithium	nimum
511.	In which of the following a) Single ionized helium c) Hydrogen atom	- 1	he first orbit $(n = 1)$ be mi b) Deuterium atom d) Doubly ionized lithium	nimum
511.	In which of the following a) Single ionized helium c) Hydrogen atom	systems will the radius of t	he first orbit $(n = 1)$ be mi b) Deuterium atom d) Doubly ionized lithium	nimum
511. 512.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of no	systems will the radius of t ucleus and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$	he first orbit $(n = 1)$ be mib) Deuterium atomd) Doubly ionized lithium atom respectively are	nimum
511. 512.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of nu a) $10^{-14}m$, $10^{-10}m$	systems will the radius of the radius of the property of a succession of the contraction	he first orbit $(n = 1)$ be mib) Deuterium atomd) Doubly ionized lithium atom respectively are	nimum
511. 512.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of not a) $10^{-14}m$, $10^{-10}m$ Who discovered spin qua	systems will the radius of the radius of the property of a succession of the contraction	he first orbit $(n = 1)$ be mit b) Deuterium atom d) Doubly ionized lithium atom respectively are c) $10^{-20}m$, $10^{-16}m$	nimum
511.512.513.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of not a) $10^{-14}m$, $10^{-10}m$ Who discovered spin qua a) Uhlenbeck & Goudsmit c) Zeeman	systems will the radius of to the radius of the radius of a success and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$ and the radius of a system of the radius of the radius of a system of the radius	he first orbit $(n = 1)$ be mib) Deuterium atomd) Doubly ionized lithium atom respectively are c) $10^{-20}m$, $10^{-16}m$	nimum
511.512.513.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of m a) $10^{-14}m$, $10^{-10}m$ Who discovered spin qua a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any nu	systems will the radius of the public of the public of a success and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$ on the number the public of a science of the public of t	he first orbit $(n = 1)$ be mib) Deuterium atomd) Doubly ionized lithium natom respectively arec) $10^{-20}m$, $10^{-16}m$ b) Niels's Bohrd) Sommerfeld	nimum d) $10^{-8}m$, $10^{-6}m$
511.512.513.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of nu a) $10^{-14}m$, $10^{-10}m$ Who discovered spin qua a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any nu a) Binding energy per nuce	systems will the radius of to the systems will the radius of a cucleus and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$ intum number to cleus cucleus cucleon will be more	he first orbit (n = 1) be mi b) Deuterium atom d) Doubly ionized lithium n atom respectively are c) 10 ⁻²⁰ m, 10 ⁻¹⁶ m b) Niels's Bohr d) Sommerfeld b) Binding energy per nuc	nimum d) $10^{-8}m$, $10^{-6}m$
511.512.513.514.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of m a) $10^{-14}m$, $10^{-10}m$ Who discovered spin qua a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any nu a) Binding energy per nu c) Number of electrons w	systems will the radius of the public of the public of the public of a system and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$ on the number of the public o	he first orbit $(n = 1)$ be mib) Deuterium atomd) Doubly ionized lithium natom respectively are c) $10^{-20}m$, $10^{-16}m$ b) Niels's Bohrd) Sommerfeldb) Binding energy per nuclei of the above	nimum d) $10^{-8}m$, $10^{-6}m$ cleon will be less
511.512.513.514.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of m a) $10^{-14}m$, $10^{-10}m$ Who discovered spin qua a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any nu a) Binding energy per nu c) Number of electrons w Energy required for the e	systems will the radius of the public L success and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$ in turn number the cleus cleon will be more will be more lectron excitation in Li^{++} for the public Li^{++} for Li^{++} for the public Li^{++} for the public Li^{++} for Li^{++} for the public Li^{++} for the public Li^{++} for Li^{++} for the public Li^{++} for $Li^{$	he first orbit (n = 1) be mi b) Deuterium atom d) Doubly ionized lithium n atom respectively are c) 10 ⁻²⁰ m, 10 ⁻¹⁶ m b) Niels's Bohr d) Sommerfeld b) Binding energy per nuc d) None of the above rom the first to the third Bo	nimum d) $10^{-8}m$, $10^{-6}m$ cleon will be less
511.512.513.514.515.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of notation a) $10^{-14}m$, $10^{-10}m$ Who discovered spin quata a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any notation a) Binding energy per notation. Number of electrons we have great the energy required for	systems will the radius of the public of th	he first orbit $(n = 1)$ be mit b) Deuterium atom d) Doubly ionized lithium natom respectively are c) $10^{-20}m$, $10^{-16}m$ b) Niels's Bohr d) Sommerfeld b) Binding energy per nucled None of the above rom the first to the third Bot c) $108.8 eV$	nimum d) $10^{-8}m$, $10^{-6}m$ cleon will be less ohr orbit is d) $122.4 \ eV$
511.512.513.514.515.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of ma) $10^{-14}m$, $10^{-10}m$ Who discovered spin qua a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any nua a) Binding energy per nua c) Number of electrons we Energy required for the ea a) $12.1 \ eV$ The curve of binding energy	systems will the radius of the public E success and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$ in turn number the cleus are lectron excitation in Li^{++} for b) $36.3 \ eV$ rgy per nucleon as a function	he first orbit $(n = 1)$ be mit b) Deuterium atom d) Doubly ionized lithium natom respectively are c) $10^{-20}m$, $10^{-16}m$ b) Niels's Bohr d) Sommerfeld b) Binding energy per nucled None of the above rom the first to the third Bot c) $108.8 eV$	nimum d) $10^{-8}m$, $10^{-6}m$ cleon will be less ohr orbit is d) $122.4 \ eV$
511.512.513.514.515.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of ma a) $10^{-14}m$, $10^{-10}m$ Who discovered spin qua a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any nua a) Binding energy per nua c) Number of electrons we Energy required for the ea a) $12.1 eV$ The curve of binding energhelium nucleus. This implies	systems will the radius of the pure E and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$ and number the cleus cleon will be more electron excitation in Li^{++} for b) $36.3 \ eV$ and regy per nucleon as a function lies that helium	he first orbit (n = 1) be mi b) Deuterium atom d) Doubly ionized lithium n atom respectively are c) 10 ⁻²⁰ m, 10 ⁻¹⁶ m b) Niels's Bohr d) Sommerfeld b) Binding energy per nuc d) None of the above rom the first to the third Bo c) 108.8 eV on of a atomic mass number	nimum d) $10^{-8}m$, $10^{-6}m$ cleon will be less ohr orbit is d) $122.4 \ eV$
511.512.513.514.515.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of notation a) $10^{-14}m$, $10^{-10}m$ Who discovered spin quatation a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any notation a) Binding energy per notation of electrons we have a significant of the etation and the control of the etation and the	systems will the radius of the public of th	he first orbit (n = 1) be mi b) Deuterium atom d) Doubly ionized lithium n atom respectively are c) 10 ⁻²⁰ m, 10 ⁻¹⁶ m b) Niels's Bohr d) Sommerfeld b) Binding energy per nuc d) None of the above rom the first to the third Bo c) 108.8 eV on of a atomic mass number b) Is very stable	nimum d) $10^{-8}m$, $10^{-6}m$ cleon will be less ohr orbit is d) $122.4 \ eV$
511.512.513.514.515.516.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of ma 10 ⁻¹⁴ m, 10 ⁻¹⁰ m Who discovered spin qua a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any mua Binding energy per muc c) Number of electrons we Energy required for the ea 12.1 eV The curve of binding enerhelium nucleus. This impla a) Can easily be broken uc c) Can be used as fissional	systems will the radius of the public E success and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$ in turn number the cleus are lectron excitation in Li^{++} for E b) E and E regy per nucleon as a function lies that helium public material	he first orbit (n = 1) be mi b) Deuterium atom d) Doubly ionized lithium n atom respectively are c) 10 ⁻²⁰ m, 10 ⁻¹⁶ m b) Niels's Bohr d) Sommerfeld b) Binding energy per nuc d) None of the above rom the first to the third Bo c) 108.8 eV on of a atomic mass number b) Is very stable d) Is radioactive	nimum d) $10^{-8}m$, $10^{-6}m$ cleon will be less thr orbit is d) $122.4 \ eV$ has a sharp peak for
511.512.513.514.515.516.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of m a) $10^{-14}m$, $10^{-10}m$ Who discovered spin qua a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any m a) Binding energy per mu c) Number of electrons w Energy required for the e a) 12.1 eV The curve of binding enerhelium nucleus. This impl a) Can easily be broken u c) Can be used as fissional	systems will the radius of the plant E and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$ and E and E and E are cleus cleon will be more lectron excitation in E and E are formula by E and E are formula be that helium puble material sets E and E have decay constants.	he first orbit $(n = 1)$ be mit b) Deuterium atom d) Doubly ionized lithium n atom respectively are c) $10^{-20}m$, $10^{-16}m$ b) Niels's Bohr d) Sommerfeld b) Binding energy per nucled None of the above rom the first to the third Boto c) $108.8 \ eV$ on of a atomic mass number b) Is very stable d) Is radioactive stants 5λ and λ respectively	nimum d) $10^{-8}m$, $10^{-6}m$ cleon will be less thr orbit is d) $122.4 eV$ has a sharp peak for
511.512.513.514.515.516.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of ma a) $10^{-14}m$, $10^{-10}m$ Who discovered spin qua a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any mua a) Binding energy per muc c) Number of electrons we Energy required for the ea a) 12.1 eV The curve of binding enerhelium nucleus. This implia) Can easily be broken u c) Can be used as fissional Two radioactive substances ame number of nuclei. The	systems will the radius of the public E success and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$ in turn number the cleus are lectron excitation in Li^{++} for E b) E and E regy per nucleon as a function lies that helium public material	he first orbit $(n = 1)$ be mit b) Deuterium atom d) Doubly ionized lithium n atom respectively are c) $10^{-20}m$, $10^{-16}m$ b) Niels's Bohr d) Sommerfeld b) Binding energy per nucled None of the above rom the first to the third Boto c) $108.8 \ eV$ on of a atomic mass number b) Is very stable d) Is radioactive stants 5λ and λ respectively	nimum d) $10^{-8}m$, $10^{-6}m$ cleon will be less thr orbit is d) $122.4 eV$ has a sharp peak for
511.512.513.514.515.516.	In which of the following a) Single ionized helium c) Hydrogen atom The order of the size of m a) $10^{-14}m$, $10^{-10}m$ Who discovered spin qua a) Uhlenbeck & Goudsmit c) Zeeman For the stability of any m a) Binding energy per mu c) Number of electrons w Energy required for the e a) 12.1 eV The curve of binding enerhelium nucleus. This impl a) Can easily be broken u c) Can be used as fissional	systems will the radius of the plant E and Bohr radius of a b) $10^{-10}m$, $10^{-8}m$ and E and E and E are cleus cleon will be more lectron excitation in E and E are formula by E and E are formula be that helium puble material sets E and E have decay constants.	he first orbit $(n = 1)$ be mit b) Deuterium atom d) Doubly ionized lithium n atom respectively are c) $10^{-20}m$, $10^{-16}m$ b) Niels's Bohr d) Sommerfeld b) Binding energy per nucled None of the above rom the first to the third Boto c) $108.8 \ eV$ on of a atomic mass number b) Is very stable d) Is radioactive stants 5λ and λ respectively	nimum d) $10^{-8}m$, $10^{-6}m$ cleon will be less thr orbit is d) $122.4 eV$ has a sharp peak for

518.	numbers of the two states	n atom makes a transition <i>n</i> . Assume the Bohr model to final state. The possible va	be valid. The time period	
		b) $n_1 = 8, n_2 = 2$		d) $n_1 = 8$, $n_2 = 1$
519.		yr. The probability of deca		
	a) 50 %	b) 75%	c) 100%	d) 60%
520.	The ratio between total ac (both in ground state) is	cceleration of the electron in	n singly ionized helium ato	m and hydrogen atom
	a) 1	b) 8	c) 4	d) 16
521.	•	of helium atom is 24.6 <i>volt</i>		
	a) 24.6 <i>eV</i>	b) 24.6 <i>V</i>	c) 13.6 V	d) 13.6 <i>eV</i>
522.	-	om with principal quantum	-	
	a) 1.5 <i>eV</i>	electron jumps from $n = 3$: b) 0.85 eV	c) 3.4 eV	d) 1.9 eV
523.	•	l chain reaction, the followi	•	
	a) Protons	b) electrons	c) neutrons	d) positons
524.		e nuclei $_{13}$ Al 27 and $_{52}$ Te 129		
	a) 6:10	b) 13:52	c) 40:17	d) 14: 73
525.		velengths of Lyman and Bal		
	a) 5	b) 10	c) 1.25	d) 0.25
526.		a half life of 10 days. What		
	a) 0.5		c) 0.125	d) 0.33
527.		ial mass number A and ator		particles and 2 positrons.
		utrons to that of protons in		4 7 4
	a) $\frac{A-Z-8}{Z-4}$	b) $\frac{A-Z-4}{Z-8}$	c) $\frac{A-Z-1Z}{Z-A}$	d) $\frac{A-Z-4}{Z-2}$
528	Z = 4 Complete the equation for	Z — 8 the following fission proce	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Z − Z ⁰ ⊥
		the following fission process b) $_{54}Xe^{145}$		
529.	_	e 25% undecayed radioact	ive nuclei. After 10 s the nu	imber of undecayed nuclei
	reduces to 6.25%, the mea		\	12.40
520	a) 14.43 <i>s</i>	b) 7.21 s		d) 10 s
530.		ogen atom is excited, from i		it, the change in angular
		(Planck's constant: $h = 6.6$		1) 0 00 40-341
5 24	a) $4.16 \times 10^{-34} J$ -s	b) $3.32 \times 10^{-34} J$ -s		
531.	remove both the electrons		•	The energy required to
	a) 49.2 eV	b) 24.6 eV	c) 38.2 eV	d) 79.0 eV
532.		$^{+}$) is 2.5 $ imes$ 10 $^{-8}$ s. In a bean		speed of 0.9 c, the pion, in
	•	travel a maximum distance		
	a) 6.75 m	b) 15.49 m	c) 7.50 m	d) 17.10 m
533.		f the states labeled 'Lowest		
		akes a transition back to a g	ground state. What is the u	ncertainty in energy of that
	excited state	_		_
	a) $6.56 \times 10^{-8} eV$		c) $10^{-8}eV$	d) $8 \times 10^{-8} eV$
534.			ıclei are respectively 5.60 l	MeV and 7.06 MeV, then the
	-	action $_3\text{Li} + p \rightarrow 2_2\text{He}^4$ is		
	a) 19.6 MeV	b) 2.4 MeV	c) 8.4 MeV	d) 17.3 MeV

- 535. A radioactive isotope X with a half-life of 1.37×10^9 years decays to Y which is stable. A sample of rock from the moon was found to contain both the elements X and Y which were in the ratio 1:7. The age of the rock is a) $1.96 \times 10^8 years$ b) $3.85 \times 10^9 years$ c) 4.11×10^{9} years d) $9.59 \times 10^9 years$ 536. In which radioactive disintegration, neutron dissociates into proton and electron
 - a) He^{+1} emission b) β –emission c) γ –emission d) Positron emission
- 537. The half-life period of a radioactive element *X* is same as the mean life time of another radioactive element *Y.* Initially they have the same number of atoms. Then
 - a) *X* will decay faster than *Y*

- b) Y will decay faster than X
- c) *Y* and *X* have same decay rate initially
- d) X and Y decay at same rate always.

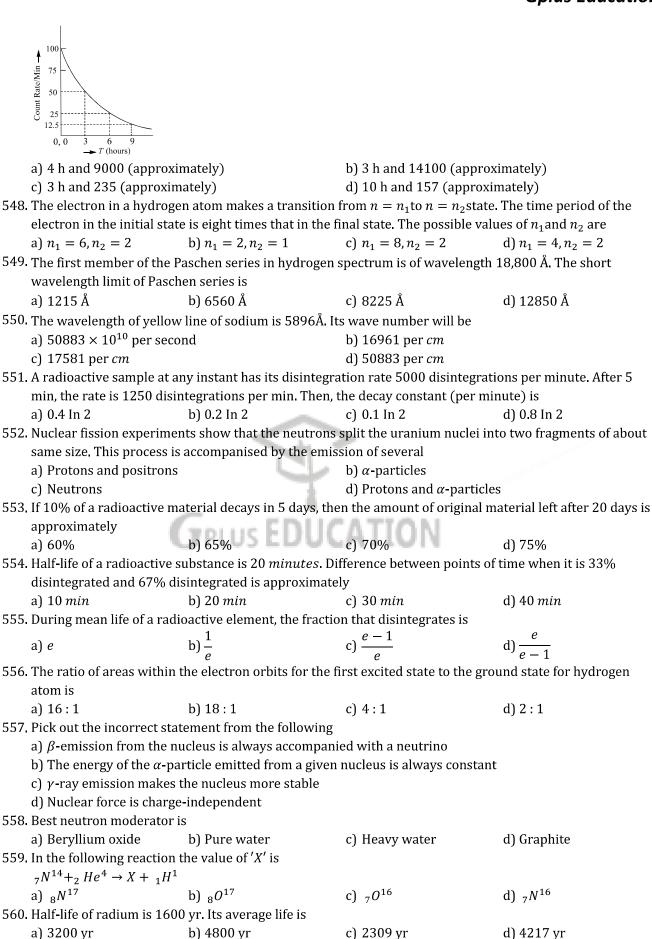
538. Using the following data


Mass hydrogen atom = 1.00783 u

Mass of neutron = 1.00867 u

Mass of nitrogen atom ($_7N^{14}$)= 14.00307 u

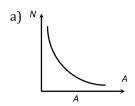
The calculated value of the binding energy of the nucleus of the nitrogen atom ($_7N^{14}$) is close to

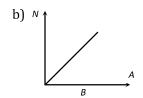

- a) 56 MeV
- b) 98 MeV
- c) 104 MeV
- d) 112 MeV
- 539. Consider an electron ($m = 9.1 \times 10^{-31} kg$) confined by electrical forces to move between two rigid walls separated by 1.0×10^{-9} metre, which is about five atomic diameters. The quantized energy value for the lowest stationary state is
 - a) 12×10^{-20} joule
- b) 6.0×10^{-20} joule
- c) 6.0×10^{-18} joule
- d) 6 joule
- 540. v_1 is the frequency of the series limit of Lyman series, v_2 is the frequency of the first line of Lyman series and v_3 is the frequency of the series limit of the Balmer series. Then
 - a) $v_1 v_2 = v_3$
- b) $v_1 = v_2 v_3$ c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$
- d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$
- 541. The splitting of line into groups under the effect of magnetic field is called
 - a) Zeeman's effect
- b) Bohr's effect
- c) Heisenberg's effect
- d) Magnetic effect
- 542. Mean life of a radioactive sample is 100 s. Then its half-life(in minutes) is
 - a) 0.693
- b) 1 c) 10⁻⁴
- d) 1.155
- 543. A beam of fast moving alpha particles were directed towards a thin film of gold. The parts A', B' and C' of the transmitted and reflected beams corresponding to the incident parts A, B and C of the beam, are shown in the adjoining diagram. The number of alpha particles in

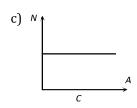
- a) B' will be minimum and in C' maximum
- b) A' will be maximum and in B' minimum
- c) A' will be minimum and in B' maximum
- d) C' will be minimum and in B' maximum
- 544. In a fission reaction $_{92}U^{236} = X^{117} + Y^{117} + n + n$, the binding energy per nucleon of X and Y is 8.5 MeV, whereas of U²³⁶is 7.6 MeV. The total energy liberated will be about
 - a) 200 keV
- b) 2 MeV
- c) 200 MeV
- d) 2000 MeV
- 545. The half-life of a radioactive element is 3.8 days. The fraction left after 19 days will be
 - a) 0.124
- b) 0.062
- c) 0.093
- 546. A neutron with velocity V strikes a stationary deuterium atom, its kinetic energy changes by a factor of
- b) 1/2

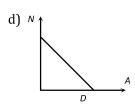
c) 2/1

- d) None of these
- 547. The count rate for 10g of radioactive material was measured at different times and this has been shown in figure with scale given. The half-life of the material and the total count in the first half value period, respectively are




561. Ionisation potentia	l of hydrogen atom is 13.6	eV. Hydrogen atoms in the g	round state are excited by
-		2.1eV. The spectral lines emi	
according to Bohr's	theory will be		
a) One	b) Two	c) Three	d) Four
562. If the nuclear radiu	s of ^{27}Al is 3.6 Fermi, the	approximate nuclear radius	of ⁶⁴ Cu in Fermi is
a) 2.4	b) 1.2	c) 4.8	d) 3.6
563. 3.8 days is the half-	life period of a sample. Aft	er how many days, the samp	ole will become 1/8th of the
original substance			
a) 11.4	b) 3.8	c) 3	d) None of these
		und state to an excited state	
a) P.E. increases an			
b) P.E. decreases ar			
=	rgy and potential energy in	ncrease	
d) Both K.E. and P.I			
	_	n value to that of the positror	1
$(1 \ a.m. \ u = 931 \ M_{\odot})$	•) PI	22.22
a) Proton	b) Electron	c) Photon	d) Neutrino
-			nary at an scattering angle of
		cicle reaches the nucleus will	
a) 1 Å	b) $10^{-10}cm$	c) $10^{-12}cm$	d) $10^{-15}cm$
567. Orbital acceleration		4 212	4 212
a) $\frac{n^2h^2}{4\pi^2m^2r^3}$	b) $\frac{n^2h^2}{2n^2r^3}$	c) $\frac{4n^2h^2}{\pi^2m^2n^3}$	d) $\frac{4n^2h^2}{4\pi^2m^2r^3}$
110 110 1	270	10 110 10	$4\pi^2 m^2 r^3$ when its half life period is 1445
_	number of particles are	10 disintegrations per sec	when its han me period is 1445
a) 8.9×10^{27}	b) 6.6×10^{27}	c) 1.4×10^{16}	d) 1.2×10^{17}
	-	tive sample and the number	
a) $_{A}$ \uparrow	b) A \	c) $A \uparrow$	d) A 1
			a) ^
	→ N	$\rightarrow N$	N N
570. Atom bomb consist	es of two pieces of $_{92}U^{235}$ a	and a source of	
a) Proton	b) Neutron	c) Meson	d) Electron
	• •	as wavelength equal to $1/4\mathrm{G}$	of the wavelength of hydrogen
lines. The ion will b			
a) <i>He</i> ⁺	b) <i>Li</i> ⁺⁺	c) <i>Ne</i> ⁹⁺	d) Na^{10+}
-	·	-	s. The disintegrated material is
a) 12.5 <i>g</i>	b) 10.5 <i>g</i>	c) 6.03 <i>g</i>	d) 4.03 <i>g</i>
	_		eaction. The energy released is
a) $63 \times 10^7 J$	b) $63 \times 10^{10} J$	c) $63 \times 10^{14} J$	d) $63 \times 10^{20} J$
	$\rightarrow X + {}_{+1}e^0 + \text{energy. The}$		
a) Neutron	b) Proton	c) α -particle	d) Neutrino
	ving particle has similar ma		D.M.
a) Proton	b) Neutron	c) Positron	d) Neutrino
576. Isotopes are atoms	•	how of mout	
	protons but different num		
•	neutrons but different nu protons and neutrons	mber of brotons	
c) same number or	protons and neutrons		


d) None of the above		
577. Select the wrong statement		
a) Radioactivity is a statistical process.		
b) Radioactivity is a spontaneous process.		
c) Radioactivity is neutral characteristic of few ele	ements.	
d) Radioactive elements cannot be produced in th	e laboratory.	
578. The principle of controlled chain reaction is used	in	
a) Atomic energy reactor	b) Atom bomb	
c) In the core of sun	d) Artificial radioactivit	y
579. Imagine an atom made up of a proton and a hypot	hetical particle of double th	e mass of the electron but
having the same charge as the electron. Apply the	Bohr's atom model and con	sider all possible transitions
of this hypothetical particle to the first excited lev	el. The longest wavelength	photon that will be emitted
has wavelength λ (given in terms of the Rydberg α	onstant R for the hydrogen	atom) is equal to
a) $9/(5R)$ b) $36/(5R)$	c) $18/(5R)$	d) 4/R
580. Excitation energy of a hydrogen like ion in its first	excitation state is 40.8 eV.	Energy needed to remove the
electron from the ion in ground state is		
a) 54.4 <i>eV</i> b) 13.6 <i>eV</i>	c) 40.8 <i>eV</i>	d) 27.2 <i>eV</i>
581. Radon (Rn) decays into Polonium (Po) by emitting		
contains 6.4×10^{10} atoms of $\it Rn$. After 12 days, th	e number of atoms of Rn lef	t in the sample will be
a) 3.2×10^{10} b) 0.53×10^{10}	c) 2.1×10^{10}	d) 0.8×10^{10}
582. The radius of an electron orbit in a hydrogen aton	n is of the order of	
a) $10^{-8}m$ b) $10^{-9}m$	c) $10^{-11}m$	d) $10^{-13}m$
583. Which of the following is a fusion reaction?	2	
a) $_1\text{H}^2 + _1\text{H}^2 \rightarrow _2\text{He}^4$	b) $_{1}H^{2} + _{1}H^{2} \rightarrow 2(_{1}H^{2})$	•
c) $_{1}H^{1} + _{1}H^{1} \rightarrow _{2}H^{4}$	d) $_{1}H^{1} + _{1}H^{2} \rightarrow _{2}H^{4} -$	$\vdash n$
584. 1 atomic mass unit is equal to		
a) $\frac{1}{25}$ (mass of F_2 molecule) c) $\frac{1}{12}$ (mass of one C -atom)	b) $\frac{1}{14}$ (mass of N_2 molec d) $\frac{1}{16}$ (mass of O_2 molec	ule)
c) $\frac{1}{2}$ (mass of one C-atom)	d) $\frac{1}{2}$ (mass of θ_0 molec	ule)
585. An atomic power nuclear reactor can deliver 300		
of uranium atom U ²³⁸ is 170 MeV. The number of		
a) 30×10^{25} b) 4×10^{22}	c) 10×10^{20}	d) 5×10^{15}
586. K_{α} and K_{β} X-rays are emitted when there is a tran	sition of electron between t	ine levels
a) $n = 2$ to $n = 1$ and $n = 3$ to $n = 1$ respectively		
b) $n = 2$ to $n = 1$ and $n = 3$ to $n = 2$ respectively		
c) $n = 3$ to $n = 2$ and $n = 4$ to $n = 2$ respectively		
d) $n = 3$ to $n = 2$ and $n = 4$ to $n = 3$ respectively	4 1 - 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 11 1 6
587. Given a sample of <i>Radium</i> -226 having half-life of	4 days. Find the probability	, a nucleus disintegrates after
2 half lives	-) 1 F	42.2.74
a) 1 b) 1/2	c) 1.5	d) 3/4
588. In Bohr's model of hydrogen atom, which of the fo		
a) Energy and linear momentum	b) Linear and angular n	iomentum
c) Energy and angular momentum	d) None of the above	and the second s
589. If r_1 and r_2 are the radii of the atomic nuclei of mas	ss numbers 64 and 125 resp	bectively, then the ratio
(r_1/r_2) is		
a) $\frac{64}{125}$ b) $\sqrt{\frac{64}{125}}$	c) 5	d) $\frac{4}{5}$
$125 \qquad \qquad \sqrt{125}$	$\frac{\sqrt{3}}{4}$	") 5
7		


590. Thermal neutrons can cause fission in

a) <i>U</i>	235	b) <i>U</i> ²³⁸	c) <i>Pu</i> ²³⁸	d) Th^{232}			
591. For	591. For electron moving in n^{th} orbit of H -atom the angular velocity is proportional to						
a) <i>n</i>		b) 1/n	c) n^3	d) $1/n^3$			
592. The	operation of a nuclea	ar reactor is said to be critic	cal, if the multiplication fact	for (k) has a value			
a) 1		b) 1.5	c) 2.1	d) 2.5			
593. The	mass number of nuc	leus is					
a) S	ometimes equal to its	s atomic number					
-		nd sometimes more than it	s atomic number				
=	lways less than its at						
-	lways more than its a						
		proton and neutron fall und					
-	lesons	b) Photons	c) Leptons	d) Baryons			
		radioactive substance is 3 d		-			
-	days	b) 6 days	c) 9 days	d) 12 days			
		nodel, it is possible to build	_	,			
=	quarks and 3 antiqu		b) 3 quarks and 2 antiqua				
	quarks and 3 antiqu		d) 2 quarks and 2 antiqua				
		² He ⁴ . The resulting nucleu					
,	eutrino	b) Antineutrino	c) Proton	d) Neutron			
has	ectron in a nydrogen	atom has moved from $n =$	T to $n = 10$ orbit, the poter	itial energy of the system			
	ıcreased	b) Decreased	c) Remained unchanged	d) Pagama zara			
-		the electron in the hydroge		-			
		levels to emit radiations of	•				
		the transition between	o wavelengths. Maximum v	vavelength of emitted			
	-	b) $n = 3$ to $n = 1$ states	c) $n = 2$ to $n = 1$ states	d) $n = 4$ to $n = 3$ states			
-	ch of the following is			a) it is it is states			
	lectrons	b) Protons	c) Neutrons	d) α-particle			
-		ydrogen atom, the energy r		, ,			
	little less then 13.6	b) 13.6	c) More than 13.6	d) 3.4 or less			
602 Firs	t Bohr radius of an at	zcom with $Z = 82$ is R . Radiu	s of its third orbit is				
a) 9	R	b) 6 <i>R</i>	c) 3 <i>R</i>	d) <i>R</i>			
603. The	fraction f of radioac	tive material that has decay	red in time t , varies with tir	ne t . The correct variation is			
give	n by the curve						
f	A						
7	\searrow B						
\	\swarrow						
	D						
0	t						
a) <i>A</i>		b) <i>B</i>	c) <i>C</i>	d) <i>D</i>			
604. The	energy of electron in	the n th orbit of hydrogen $lpha$	atom is expressed as $E_n = \frac{1}{2}$	$\frac{-13.6}{m^2}$ eV. The shortest and			
	est wavelength of Ly		- "	n-			
_	10Å, 1213Å	b) 5463Å, 7858Å	c) 1315Å, 1530Å	d) None of these			
-		N) of decayed atoms versus	-				

606. The ratio of half-life times of two elements A and B is $\frac{T_A}{T_B}$. The ratio of respectively decay constants $\frac{\lambda_A}{\lambda_B}$ is

a)
$$\frac{T_B}{T_A}$$

b)
$$\frac{T_A}{T_B}$$

c)
$$\frac{T_A + T_B}{T_A}$$

$$\mathrm{d})\,\frac{T_A-T_B}{T_A}$$

607. The wavelength of Lyman series is

a)
$$\frac{4}{3 \times 10967} cm$$

$$b) \frac{3}{4 \times 10967} cm$$

b)
$$\frac{3}{4 \times 10967} cm$$
 c) $\frac{4 \times 10967}{3} cm$ d) $\frac{3}{4} \times 10967 cm$

d)
$$\frac{3}{4} \times 10967cm$$

608. Fusion reaction takes place at high temperature because

a) KE is high enough to overcome repulsion between nuclei

b) nuclei are most stable at this temperature

c) nuclei are unstable at this temperature

d) None of the above

609. A radioactive sample of U^{238} decays to Pb through a process for which half life is $4.5 \times 10^9 years$. The ratio of number of nuclei of Pb to U^{238} after a time of $1.5 \times 10^9 years$ (given $2^{1/3} = 1.26$)

610. The mass defect for the nucleus of helium is 0.0303 a.m.u. What is the binding energy per nucleon for helium in MeV

611. The energy in MeV is released due to transformation of 1 kg mass completely into energy ($c=3\times$ $10^{8}m/s$)

a) $7.625 \times 10 \, MeV$

b)
$$10.5 \times 10^{29} \, MeV$$

c)
$$2.8 \times 10^{-28} MeV$$

d)
$$5.625 \times 10^{29} MeV$$

612. Which of the following statements are true regarding Bohr's model of hydrogen atom

(I) Orbiting speed of electron decreases as it shifts to discrete orbits away from the nucleus

(II) Radii of allowed orbits of electron are proportional to the principal quantum number

(III) Frequency with which electrons orbit around the nucleus is discrete orbits is inversely proportional to the cube of principal quantum number

(IV) Binding force with which the electron is bound to the nucleus increases as it shifts to outer orbits Select correct answer using the codes given below

a) I and III

613. As compound ^{12}C atom, ^{14}C atom has

a) Two extra protons and two extra electrons

b) Two extra protons but no extra electrons

c) Two extra neutrons and no extra electrons

d) Two extra neutrons and two extra electrons

614. Consider a hypothetical annihilation of a stationary electron with a stationary positron. What is the wavelength of resulting radiation

 $(h = Planck's constant, c = speed of light, m_0 = rest mass)$

a)
$$\frac{h}{2m_0c}$$

b)
$$\frac{h}{m_0 c}$$

c)
$$\frac{2h}{m_0c}$$

d)
$$\frac{h}{m_0c^2}$$

615. A radioactive substance of half-life 6 min is placed near a Geiger counter which is found to resister 1024 particles per minute. How many particles per minute will it register after 42 min?

a) 4 per min

b) 8 per min

c) 5 per min

d) 7 per min

	active substances A and B.	Decay constant of \boldsymbol{B} is two	times that of A. Initially, both
	of nuclei. After n half lives $\mathfrak c$	of A, rate of disintegration o	of both are equal. The value of n
is			
a) 4	b) 2	c) 1	d) 5
617. Nuclear fission was o	•		
a) Ottohann and F. S	trassmann	b) Fermi	
c) Bethe		d) Rutherford	
	-	· · · · · · · · · · · · · · · · · · ·	wavelength of $108.5\ nm$. The
-	of an electron of this ion w		
a) 3.4 <i>eV</i>	b) 13.6 <i>eV</i>	c) 54.4 <i>eV</i>	d) 122.4 <i>eV</i>
		s. Mass of lithium nucleus is 665 amu. Mass defect for lit	7.016005 amu. Mass of proton
a) 0.04048 amu	b) 0.04050 amu	c) 0.04052 amu	d) 0.04055 amu
	•	nucleus of an atom is appro	•
a) 8 eV	b) 8 KeV	c) 8 MeV	d) 8 <i>J</i>
621. ${}_{2}^{4}\text{He} + {}_{4}^{9}\text{Be} \rightarrow {}_{0}^{1}n + ?$	b) o Nev	cj o Mev	u) o j
	ne above nuclear reaction:	ic	
a) proton	b) Oxygen-12	c) Carbon-12	d) Nitragan 12
, .	· · · · ·	-	d) Nitrogen-12
			ength. The spectral series which
	wavelength equal to 1875		
	$= 1.097 \times 10^7 \ per \ metre$		D.D.C. I
a) Balmer series	b) Lyman series	c) Paschen series	d) Pfund series
-			scattered by the nucleus of an
atom simultaneously	v. Which of these are/is no	t physically possible	
1 —	1	1	
2			
	1		
3 4	Tanue FD	LICATION	
4	GPLUS ED		
a) 3 and 4	b) 2 and 3	c) 1 and 4	d) 4 only
a) 3 and 4 624. The binding energy of	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M	c) 1 and 4 eV per nucleon and an $lpha$ -pa	article ${}_{2}^{4}He$ has a binding energy
a) 3 and 4 624. The binding energy of	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M	c) 1 and 4 eV per nucleon and an $lpha$ -pa	-
a) 3 and 4 624. The binding energy of	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M	c) 1 and 4 eV per nucleon and an $lpha$ -pa	article ${}_{2}^{4}He$ has a binding energy
a) 3 and 4 624. The binding energy of 7.047 MeV per nu a) 1 MeV	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M cleon. Then in the fusion reb) 11.9 MeV	c) 1 and 4 eV per nucleon and an α -pa eaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He +$ c) 23.8 MeV	article ${}_{2}^{4}He$ has a binding energy Q , the energy Q released is
a) 3 and 4 624. The binding energy of 7.047 MeV per nu a) 1 MeV	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M cleon. Then in the fusion reb) 11.9 MeV	c) 1 and 4 eV per nucleon and an α -pa eaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He +$ c) 23.8 MeV	article ${}_{2}^{4}He$ has a binding energy Q , the energy Q released is d) 931 MeV
a) 3 and 4 624. The binding energy of of 7.047 MeV per nu a) 1 MeV 625. The ground state energy	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M cleon. Then in the fusion reb) 11.9 MeV	c) 1 and 4 eV per nucleon and an α -pa eaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He +$ c) 23.8 MeV	article ${}_{2}^{4}He$ has a binding energy Q , the energy Q released is d) 931 MeV
a) 3 and 4 624. The binding energy of 7.047 MeV per nu a) 1 MeV 625. The ground state energy of the state a) 0 eV	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M cleon. Then in the fusion reb) 11.9 MeV ergy of hydrogen atom is $-$	c) 1 and 4 eV per nucleon and an α -pa eaction ${}_1^2H + {}_1^2H \rightarrow {}_2^4He +$ c) 23.8 MeV -13.6 eV. What is the poten c) 1 eV	article ${}_{2}^{4}He$ has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this
a) 3 and 4 624. The binding energy of 7.047 MeV per nu a) 1 MeV 625. The ground state energy of the state a) 0 eV	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M cleon. Then in the fusion re b) 11.9 MeV ergy of hydrogen atom is –	c) 1 and 4 eV per nucleon and an α -pa eaction ${}_1^2H + {}_1^2H \rightarrow {}_2^4He +$ c) 23.8 MeV -13.6 eV. What is the poten c) 1 eV	article ${}_{2}^{4}He$ has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this
 a) 3 and 4 624. The binding energy of 7.047 MeV per nu a) 1 MeV 625. The ground state energy of the state a) 0 eV 626. The penetrating power a) γ, α, β 	b) 2 and 3 of deuteron ${}_1^2H$ is 1.112 M 0 cleon. Then in the fusion response b) 11.9 MeV 1.9 ergy of hydrogen atom is $-$ b) $-27.2 \ eV$ 1 vers of α , β and γ radiations b) γ , β , α	c) 1 and 4 eV per nucleon and an α -paraeaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He +$ c) 23.8 MeV -13.6 eV. What is the potential of the potential o	article 4_2He has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this d) 2 eV
 a) 3 and 4 624. The binding energy of 7.047 MeV per nual 1 MeV 625. The ground state energy of the state along along	b) 2 and 3 of deuteron ${}_1^2H$ is 1.112 M 0 cleon. Then in the fusion response b) 11.9 MeV 1.9 ergy of hydrogen atom is $-$ b) $-27.2 \ eV$ 1 vers of α , β and γ radiations b) γ , β , α	c) 1 and 4 eV per nucleon and an α -paraeaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He +$ c) 23.8 MeV -13.6 eV. What is the potential of the constant of the constant of the constant of α , β , γ a hydrogen like atom resul	article 4_2He has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this d) 2 eV
 a) 3 and 4 624. The binding energy of 7.047 MeV per nual 1 MeV 625. The ground state energy of the state along along	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M cleon. Then in the fusion response b) 11.9 MeV ergy of hydrogen atom is — b) $-27.2 \ eV$ vers of α , β and γ radiations b) γ , β , α the state $n=4$ to $n=3$ in	c) 1 and 4 eV per nucleon and an α -paraeaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He +$ c) 23.8 MeV -13.6 eV. What is the potential of the constant of the constant of the constant of α , β , γ a hydrogen like atom resul	article 4_2He has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this d) 2 eV
 a) 3 and 4 624. The binding energy of 7.047 MeV per nual 1 MeV 625. The ground state energy of the state along along	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M cleon. Then in the fusion response b) 11.9 MeV ergy of hydrogen atom is — b) $-27.2 \ eV$ vers of α , β and γ radiations b) γ , β , α the state $n=4$ to $n=3$ in ill be obtained in the trans b) $3 \rightarrow 2$	c) 1 and 4 eV per nucleon and an α -pareaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He +$ c) 23.8 MeV -13.6 eV. What is the potential of the condition of the condition of the condition of the condition from	article 4_2He has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this d) 2 eV d) β , γ , α t in ultraviolet radiation.
 a) 3 and 4 624. The binding energy of 7.047 MeV per nual 1 MeV 625. The ground state energy at the state along alon	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M cleon. Then in the fusion response b) 11.9 MeV ergy of hydrogen atom is — b) $-27.2 \ eV$ vers of α , β and γ radiations b) γ , β , α the state $n=4$ to $n=3$ in ill be obtained in the trans b) $3 \rightarrow 2$	c) 1 and 4 eV per nucleon and an α -parameter per nucleon and an α -parameter c) 23.8 MeV -13.6 eV. What is the potential c) 1 eV s, in decreasing order are c) α , β , γ a hydrogen like atom resulition from c) $4 \rightarrow 2$	article 4_2He has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this d) 2 eV d) β , γ , α t in ultraviolet radiation.
 a) 3 and 4 624. The binding energy of 7.047 MeV per nual 1 MeV 625. The ground state energy of 2.00 eV 626. The penetrating power a) γ, α, β 627. The transition from the 1 Infrared radiation was a) 2 → 1 628. The Bohr model of at a) Assumes that the 1 	b) 2 and 3 of deuteron ${}_1^2H$ is 1.112 M 0 cleon. Then in the fusion response b) 11.9 MeV 2 ergy of hydrogen atom is — b) $-27.2 \ eV$ 2 ers of α , β and γ radiations b) γ , β , α 2 the state $n=4$ to $n=3$ in ill be obtained in the trans b) $3 \rightarrow 2$	c) 1 and 4 eV per nucleon and an α -parameter per nucleon and an α -parameter c) 23.8 MeV -13.6 eV. What is the potential c) 1 eV s, in decreasing order are c) α , β , γ a hydrogen like atom resulition from c) $4 \rightarrow 2$	article 4_2He has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this d) 2 eV d) β , γ , α t in ultraviolet radiation.
 a) 3 and 4 624. The binding energy of 7.047 MeV per nual 1 MeV 625. The ground state energy of 8.25. The ground state energy of 9.25. The penetrating power along γ, α, β 626. The penetrating power along γ, α, β 627. The transition from the 1.25 Infrared radiation was along 2 → 1 628. The Bohr model of along along the 3.25 Assumes that the blown of 1.25 Uses Einstein's phonormal periods. 	b) 2 and 3 of deuteron ${}_1^2H$ is 1.112 M cleon. Then in the fusion response b) 11.9 MeV ergy of hydrogen atom is — b) $-27.2 \ eV$ vers of α , β and γ radiations b) γ , β , α the state $n=4$ to $n=3$ in ill be obtained in the trans b) $3 \rightarrow 2$ tom angular momentum of electric states and α in the state α in the trans b) α i	c) 1 and 4 eV per nucleon and an α -pareaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He +$ c) 23.8 MeV -13.6 eV. What is the poten c) 1 eV s, in decreasing order are c) α , β , γ a hydrogen like atom resulition from c) $4 \rightarrow 2$	article 4_2He has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this d) 2 eV d) β , γ , α t in ultraviolet radiation.
 a) 3 and 4 624. The binding energy of 7.047 MeV per nual 1 MeV 625. The ground state energy and all a state and a state a	b) 2 and 3 of deuteron ${}_1^2H$ is 1.112 M cleon. Then in the fusion response b) 11.9 MeV ergy of hydrogen atom is — b) $-27.2 \ eV$ vers of α , β and γ radiations b) γ , β , α the state $n=4$ to $n=3$ in ill be obtained in the trans b) $3 \rightarrow 2$ tom angular momentum of electrocelectric equation	c) 1 and 4 eV per nucleon and an α -paragraph per nucleon and an α -paragraph per nucleon and an α -paragraph per nucleon 23.8 MeV -13.6 eV. What is the potential of α and α are c) 1 eV s, in decreasing order are c) α , β , γ a hydrogen like atom resulation from c) 4 \rightarrow 2 extremal ctrons is quantized	article 4_2He has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this d) 2 eV d) β , γ , α t in ultraviolet radiation.
a) 3 and 4 624. The binding energy of 7.047 <i>MeV</i> per nu a) 1 <i>MeV</i> 625. The ground state energy of a state a) 0 <i>eV</i> 626. The penetrating pow a) γ, α, β 627. The transition from the state and a s	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M cleon. Then in the fusion responsible by 11.9 MeV ergy of hydrogen atom is — b) $-27.2 \ eV$ vers of α , β and γ radiations b) γ , β , α the state $n=4$ to $n=3$ in ill be obtained in the trans b) $3 \rightarrow 2$ tom angular momentum of electroelectric equation us emission spectra for atom	c) 1 and 4 eV per nucleon and an α -pareaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He +$ c) 23.8 MeV -13.6 eV. What is the potential of	article 4_2He has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this d) 2 eV d) β , γ , α t in ultraviolet radiation.
a) 3 and 4 624. The binding energy of 7.047 <i>MeV</i> per nu a) 1 <i>MeV</i> 625. The ground state energy of a state a) 0 <i>eV</i> 626. The penetrating pow a) γ, α, β 627. The transition from the state and a s	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M cleon. Then in the fusion residue. The fusion $(\alpha, \beta) = (\alpha, \beta) = ($	c) 1 and 4 eV per nucleon and an α -pareaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He +$ c) 23.8 MeV -13.6 eV. What is the potential of	article 4_2He has a binding energy Q , the energy Q released is d) 931 MeV tial energy of the electron in this d) 2 eV d) β , γ , α t in ultraviolet radiation.
a) 3 and 4 624. The binding energy of 7.047 <i>MeV</i> per nu a) 1 <i>MeV</i> 625. The ground state energy and an	b) 2 and 3 of deuteron ${}_{1}^{2}H$ is 1.112 M cleon. Then in the fusion residue. The fusion is $-27.2 \ eV$ for sof α , β and γ radiations b) γ , β , α the state $n=4$ to $n=3$ in ill be obtained in the trans b) $3 \rightarrow 2$ tom angular momentum of electrorelectric equation us emission spectral for all ty dioactive sample is $10 \ how$	c) 1 and 4 eV per nucleon and an α -paragraph per nucleon 23.8 MeV -13.6 eV. What is the potential of eV and the potent	article 4_2He has a binding energy Q , the energy Q released is d) $931~MeV$ tial energy of the electron in this d) $2~eV$ d) β, γ, α t in ultraviolet radiation.

- b) Equal to half the circumference of the first orbit
- c) Equal to twice the circumference of the first orbit
- d) Equal to the circumference of the first orbit
- 631. A particle moving with a velocity of $\frac{1}{100}$ th of that of light will cross a nucleus on about

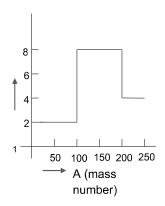
- a) 10^{-8} s b) 10^{-12} s c) 6×10^{-15} s d) 10^{-12} s 32. In the nuclear reaction $_{85}X^{297} \rightarrow Y + 4\alpha, Y$ is a) $_{76}Y^{287}$ b) $_{77}Y^{285}$ c) $_{77}Y^{281}$ d) $_{77}Y^{285}$ 633. The energy released in the fission of 1Kg of $_{92}U^{235}$ is (energy per fission = 200 MeV)
 - a) $5.1 \times 10^{26} \text{eV}$
- b) 5.1×10^{26} J
- c) 8.2×10^{13} J
- d) $8.2 \times 10^{13} \text{ MeV}$
- 634. A radioactive sample S1 having an activity of $5\mu Ci$ has twice the number of nuclei as another sample S2 which has an activity of $10\mu Ci$. The half lives of S1 and S2 can be
 - a) 20 years and 5 years, respectively
- b) 20 years and 10 years, respectively

c) 10 years each

- d) 5 years each
- 635. If M is the atomic mass and A is the mass number, packing fraction is given by
 - a) $\frac{M}{M-A}$
- b) $\frac{M-A}{A}$
- d) $\frac{A-M}{A}$
- 636. The radius of hydrogen atom in its ground state is $5.3 \times 10^{-11} m$. After collision with an electron it is found to have a radius of $21.2 \times 10^{-11} m$. What is the principal quantum number n of the final state of the atom
- b) n = 2
- c) n = 16
- d) n = 3
- 637. If half-life of a radioactive atom is 2.3 *days*, then its decay constant would be

b) 0.2

c) 0.3

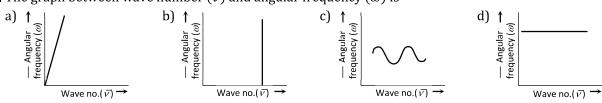

- d) 2.3
- 638. Consider an initially pure M'g sample of AX, an isotope that has a half life of AX hour. What is it's initial decay rate (N_A = Avogrado No.) b) $\frac{0.693MN_A}{T}$ c) $\frac{0.693MN_A}{AT}$ d) $\frac{2.303MN_A}{AT}$
 - a) $\frac{MN_A}{T}$

- 639. The binding energies per nucleon for a deuteron and an α particle are x_1 and x_2 respectively. What will be the energy Q released in the reaction $_1H^2 + _1H^2 \rightarrow _2He^4 + Q$
- b) $4(x_2 x_1)$ c) $2(x_1 + x_2)$
- d) $2(x_2 x_1)$
- 640. In Bohr model of the hydrogen atom, the lowest orbit corresponds to
 - a) Infinite energy

b) The maximum energy

c) The minimum energy

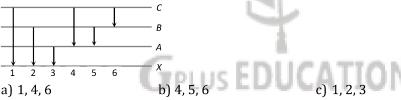
- d) Zero energy
- 641. Assume the graph of specific binding energy verses mass number is as shown in the figure. Using this graph, select the correct choice from the following.



- Fusion of two nuclei of mass number lying in the range of 100 < A < 200 will release energy.
- b) Fusion of two nuclei of mass number lying in the range of 51 < A < 100 will release energy.

Fusion of the nucleus of mass number lying in the

Fusion of two nuclei of mass number lying in the range of $1 < A < 50$ will release energy.		of mass number lying in the 00 will release energy when ents.		
642. When a neutron is disintegrated to give $a\beta$ particle,				
a) A neutrino alone is emitted	b) A proton and neutrino	are emitted		
c) A proton alone is emitted	d) A proton and an antine	eutrino are emitted		
643. α —particles of energy 400 KeV are bombarded on r	nucleus of ₈₂ Pb. In scatteri	ng of α —particles, its		
minimum distance from nucleus will be				
a) 0.59 <i>nm</i> b) 0.59 Å	c) 5.9 pm	d) 0.59 <i>pm</i>		
644. Half-life of radioactive sample, when activity of mater	•	•		
count, is	,			
a) 2h b) 1h	c) 3h	d) 4h		
645. An artificial radioactive decay series begins with uns				
α —decays and five β —decays is	stable 94 Tu. The stable he	ichide obtained after eight		
	c) $^{205}_{82}Ti$	d) $201 \mu_{\rm d}$		
646. The activity of a radioactive element decreases to one	e-third of the original activity	A_0 in a period of 9 yr. After		
a further lapes of 9 yr, its activity will be	4	4		
a) A_0 b) $\frac{2}{3}A_0$	c) $\frac{A_0}{\Omega}$	d) $\frac{A_0}{6}$		
3	7	6		
647. The set which represents the isotope, isobar and isotone respectively is a) $(_1H^2, _1H^3)$, $(_{79}Au^{197}, _{80}Hg^{198})$ and $(_2He^3, _1H^2)$ b) $(_2He^3, _1H^1)$, $(_{79}Au^{197}, _{80}Hg^{198})$ and $(_1H^1, _1H^3)$ c) $(_2He^3, _1H^3)$, $(_1H^2, _1H^3)$ and $(_{79}Au^{197}, _{80}Hg^{198})$ d) $(_1H^2, _1H^3)$, $(_2He^3, _1H^3)$ and $(_{79}Au^{197}, _{80}Hg^{198})$ 648. Nuclear fusion is common to the pair				
a) Thermonuclear reactor, uranium based nuclear re	eactor			
b) Energy production in sun, uranium based nuclear				
c) Energy production in sun, hydrogen bomb				
d) Disintegration of heavy nuclei, hydrogen bomb	ATTONI			
649. $\frac{232}{90}$ Th an isotope of thorium decays in ten stages em	nitting six α -particles and for	our β -particles in all. The		
end product of the decay is	F			
a) $\frac{20^{9}}{82}Pb$ b) $\frac{20^{9}}{82}Pb$	c) $^{208}_{82}Pb$	d) $^{209}_{83}Br$		
650. An electron is	c) 82 1 b	a) 83 <i>D</i> 1		
a) Hadron b) Baryon	c) A nucleon	d) A lepton		
651. The energy released in the explosion of an atom bon	-	d) A lepton		
a) nuclear fusion	b) nuclear fission			
c) Controlled nuclear chain reaction	d) None of the above			
	-	life in accordancill be		
652. The decay constant of a radioactive element is $1.5 \times 1.5 \times 1.08$				
a) 1.5×10^9 b) 4.62×10^8	c) 6.67×10^8	d) 10.35×10^8		
653. A nucleus ${}_Z^AX$ has mass represented by $M(A,Z)$. If M		of proton and neutron		
respectively and B.E the binding energy in <i>MeV</i> , then		2.2		
a) $B.E. = [M(A, Z) - ZM_P - (A - Z)M_n]C^2$	b) $B.E. = [ZM_P + (A - Z)]$	$M_n - M(A.Z)C^2$		
c) $B.E. = [ZM_P + AM_n - M(A.Z)]C^2$	d) $B.E. = M(A, Z) - ZM_P$	$-(A-Z)M_n$		
654. Consider the nuclear reaction $X^{200} \rightarrow A^{110} + B^{80}$. If				
MeV, 8.2 MeV and 8.1MeV respectively, then the ene	rgy released in the reaction	n is		
a) 70 MeV b) 200 MeV	c) 190 MeV	d) 10 MeV		
655. The time of revolution of an electron around a nucle	us of charge $\it Ze$ in $\it n^{th}$ Bohr	orbit is directly		
proportional to				
a) n b) $\frac{n^3}{7^2}$	c) $\frac{n^2}{7}$	Z		
$\frac{a_{j}}{Z^{2}}$	$\frac{C}{Z}$	d) $\frac{Z}{n}$		


- 656. Which sample contains greater number of nuclei : a $5.00 \mu Ci$ sample of ^{240}Pu (half-life 6560y) or a 4.45 – μCi sample of ²⁴³ Am (half-life 7370y) a) ^{240}Pu b) ²⁴³Am c) Equal in both d) None of these 657. Heavy water is a) Water is 4°C b) Compound of deuterium and oxygen c) Compound of heavy oxygen and heavy hydrogen
- 658. The graph between wave number (\bar{v}) and angular frequency (ω) is

- 659. In a mean life of a radioactive sample
 - a) About 1/3 of substance disintegrates

d) Water, in which soap does not lather

- b) About 2/3 of the substance disintegrates
- c) About 90% of the substance disintegrates
- d) Almost all the substance disintegrates
- 660. The half-life of a radioactive substance against α -decay is $1.2 \times 10^7 s$. What is the decay rate for 4×10^{15} atoms of the substance
 - a) $4.6 \times 10^{12} atoms/s$
- b) $2.3 \times 10^{11} atoms/s$
- c) $4.6 \times 10^{10} atoms/s$
- d) $2.3 \times 10^8 atoms/s$
- 661. The figure indicates the energy level diagram of an atom and the origin of six spectral lines in emission (e. g. line no. 5 arises from the transition from level B to A). Which of the following spectral lines will also occur in the absorption spectra

d) 1, 2, 3, 4, 5, 6

662. The mass and energy equivalent to 1 amu are respectively

a)
$$1.67 \times 10^{-27} gm$$
, $9.30 MeV$

b)
$$1.67 \times 10^{-27} kg$$
, 930 MeV

c)
$$1.67 \times 10^{-27} kg$$
, $1 MeV$

d)
$$1.67 \times 10^{-34} kg$$
, 1 MeV

- 663. Nuclear binding energy is equivalent to
 - a) Mass of proton

b) Mass of neutron

c) Mass of nucleus

- d) Mass defect of nucleus
- 664. The difference between U²³⁵ and U²³⁸ atom is that
 - a) U²³⁸contains 3 more protons
 - b) U²³⁸contains 3 protons and 3 more electrons
 - c) U²³⁸contains 3 more neutrons and 3 more electrons
 - d) U²³⁸contains 3 more neutrons
- 665. The kinetic energy of electron in the first Bohr orbit of the hydrogen atom is
 - a) $-6.5 \, eV$
- b) $-27.2 \, eV$
- c) 13.6 eV
- d) $-13.6 \, eV$
- 666. If the wavelength of the first line of the Balmer series of hydrogen is 6561 Å, the wavelength of the second line of the series should be
 - a) 13122 Å
- b) 3280 Å
- c) 4860 Å
- d) 2187 Å

667. What is the particle x in the following nuclear reaction

$${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{12}_{6}C + x$$

- a) Electron
- b) Proton
- c) Photon
- d) Neutron

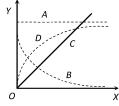
668	In the options given bel	ow, let E denote the rest m	ass energy of a nucleus and	d n a neutron. the correct
	a) $E(^{236}_{92}U) > E(^{137}_{53}I)$	$+ E(_{39}^{97}Y) + 2E(n)$ + $E(_{36}^{94}Kr) + 2E(n)$	b) $E(_{92}^{236}U) < E(_{53}^{137}I)$	$+ E(^{97}_{39}Y) + 2E(n)$
669		emitted from second orbit		
	- -	b) $1.215 \times 10^{-5} m$		-
670		m for an hydrogen like ato	m is shown in the figure. Tl	ne radius of its first Bohr orbit
	is			
	0 eV			
	-6.04 eV			
	– 13.6 eV	n = 2		
	– 54.4 eV		•	
	a) 0.265 Å		c) 0.132 Å	d) None of these
671		ement will decay between		
	,	•	c) 8 and 9 half lives	-
672		the electron in a hydrogen	atom is 13.6 eV, the energ	y required to remove the
	electron from the first e			
	a) 122.4 <i>eV</i>		c) 13.6 <i>eV</i>	d) 3.4 <i>eV</i>
673	A radioactive sample S_1 l	having an activity of 5 μ Ci ha	s twice the number of nucle	i as another sample S_2 which
	has an activity of 10 μ C	i. The half lives of S_1 and S_2	can be	
	a) 20 yr and 5 yr ,respe	ctively	b) 20 yr and 10 yr ,resp	ectively
	c) 10 yr each	4	d) 5 yr each	
674		ger-Muller counter for the r		aterial of half life of
		to 5 s^{-1} after 2 hours. The i		
	a) $25 s^{-1}$	b) $80 s^{-1}$	c) $625 s^{-1}$	d) $20 s^{-1}$
675	The speed of daughter i	nuclei is	CATION	
	$_{ au}$ Δm	b) $c \frac{2\Delta m}{M}$	Δm	Δm
	a) $c \frac{\Delta m}{M + \Delta m}$	b) $c \mid \frac{-M}{M}$	c) $c \mid \frac{M}{M}$	d) $c \sqrt{\frac{\Delta m}{M + \Delta m}}$
676	The musleus of stamics	vaca 4 and atomia numban	7 amits a 0 martiala. The at	v
0/0	number of the resulting	nass A and atomic number	z emits a p-particle. The at	tollic mass and atomic
	_		a) 17 1	d) $A - 4, Z - 2$
677	a) A, Z	b) $A + 1, Z$	c) $A, Z + 1$	a) A - 4, Z - Z
0//		ive nucleus decays according	ng to the following series	
	$_{72}A^{180} \xrightarrow{\alpha} A_1 \xrightarrow{\beta^-} A_2$			
	If the mass number and	l atomic number of A are re	spectively 180 and72. The	n to atomic number and mass
	number of A will respec	ctively be		
	a) 69,171	b) 70,172	c) 68,172	d) 69,172
678	The transition from the	state $n = 4$ to $n = 3$ in a h	ydrogen, like atom results	in ultraviolet radiation.
	Infrared radiation will be	oe obtained in the transitio		
	a) $2 \to 1$	b) $3 \rightarrow 2$	c) $4 \rightarrow 2$	d) $5 \rightarrow 4$
		t will be the fraction of init		_
	a) $\left(\frac{1}{2}\right)^{10}$	b) $\left(\frac{1}{2}\right)^5$	c) $(\frac{1}{-})^4$	d) $(\frac{1}{2})^3$
		(2)	(2)	\4/
680		$X^A \to {}_{Z+1}Y^A \to {}_{Z-1}K^{A-4} -$	$\rightarrow Z_{-1}K^{n-1}$ radioactive rad	iation are emitted in the
	sequence	1.) 0	-3	1) 0
CO1	a) α, β, γ	b) β , α , γ	c) γ, α, β	d) β, γ, α
681		es fission, 0.1% of its origin	ai mass is changed into ene	ergy. How much energy is
	released if $1kg$ of $_{92}U^2$	" undergoes fission		

a) $9 \times 10^{10} I$	b) $9 \times 10^{11} J$	c) $9 \times 10^{12} J$	d) $9 \times 10^{13} I$			
682. Antiparticle of elec	•	c)	u)			
a) $_0n^1$	b) ₁ H ¹	c) Positron	d) Neutrino			
- -	, <u>.</u>	•	-			
683. The ratio of speed of an electron in ground state in Bohrs first orbit of hydrogen atom to velocity of light in air is						
	$2e^2\varepsilon_0$	e^3	$2\varepsilon_0 hc$			
a) $\frac{e^2}{2\varepsilon_0 hc}$	b) $\frac{2e^2\varepsilon_0}{hc}$	c) $\frac{e^3}{2\varepsilon_0 hc}$	d) $\frac{-600}{e^2}$			
U	bstance at $t = 0$, the number	U	half life period is 3 <i>years</i> . The			
	1×10^4 will remain after int					
a) 9 years	b) 8 years	c) 6 years	d) 24 <i>years</i>			
685. Which of the follow	ving processes represents a		,			
a) $_{Z}X^{A} + \gamma \longrightarrow_{(Z-1)}$	X^{A+a+b}	b) $_{Z}X^{A}+_{0}n^{1}\longrightarrow_{(Z}$	$_{(-2)}X^{(A-3)}+C$			
c) $_{Z}X^{A} \rightarrow_{Z} X^{A} + 1$		d) $_{Z}X^{A} + _{-1}e^{0} -$	$\rightarrow A - 1 X^{A+g}$			
, , , , ,	ed in a nuclear reactor to) <u>Z</u> · <u>-1</u>	M-1 -			
a) Absorb the neut		b) Slow down the	neutrons			
c) Act as coolant		d) None of the abo				
687. What is the radius	of iodine atom (at. no. 53, r	nass number 126)				
a) $2.5 \times 10^{-11} m$	b) $2.5 \times 10^{-9} m$	c) $7 \times 10^{-9} m$	d) $7 \times 10^{-6} m$			
688. As per Bohr model	l, the minimum energy (in $\it e$	V) required to remove an	electron from the ground state of			
doubly ionized Li	atom $(Z=3)$ is					
a) 1.51	b) 13.6	c) 40.8	d) 122.4			
			the first line in Balmer series is			
a) $\frac{2}{9}\lambda$	b) - λ	c) $\frac{5}{27}\lambda$	d) $\frac{27}{\lambda}$			
,	4	4/	olonium atoms, the number of			
disintegration in 2		30.0 days. For terriakir F	olonium atoms, the number of			
		c) 4000	d) 5000			
691 A reaction betwee	b) 3000 n a proton and ${}_8{\it O}^{18}$ that pi	oduces aF ¹⁸ must also lib	nerate			
a) $_0n^1$	b) $_1e^0$	c) $_1n^0$	d) $_0e^1$			
- 0	, 1	, <u>,</u>	a nucleus of mass <i>M</i> breaks into			
			e de-Broglie wavelength of the			
	m_1 is λ , then de-Broglie v					
a) 25λ	b) 5 <i>λ</i>	c) $\frac{\lambda}{5}$	d) λ			
-	•	J	•			
	eus A finally transforms into					
a) Isobars	b) Isotones	c) Isotopes	d) None of these			
-	struction, that would be cau					
a) Nuclear holocat		b) Thermo-nuclea	ar reaction			
c) Neutron reprod		d) None of these	ha in avagad by			
a) Increasing the t	gration of fixed quantity of					
c) Chemical reacti	•	b) Increasing thed) It is not possible	_			
696. In the nuclear fusion		d) it is not possible				
$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He + ^{4}_{1}He$						
		zeen the two nuclei is 7.7	$ imes 10^{-14}$ J, the temperature at			
-			nann's constant $k = 1.38 \times$			
10^{-23} JK^{-1}	ast so heated to illitiate the	Toda don to ficulty [Bottz]	TIOU A			
a) 10 ⁷ K	b) 10 ⁵ K	c) 10 ³ K	d) 10 ⁹ K			
•	•	*	•			

697 A radioactive sample with a half life of 1 month has a	the label: "Activity = 2 mic	ro curies on 181991"			
697. A radioactive sample with a half life of 1 month has the label: "Activity = 2 <i>micro curies</i> on 1.8.1991." What will be its activity two months later					
a) 1.0 micro curies b) 0.5 micro curies	c) 4 micro curies	d) 8 micro curies			
698. Neutrons are used in nuclear fission, because	ej inicio curtes	a) o miero eur tes			
a) Neutrons are attracted by nucleus					
b) Mass of neutrons is greater than protons					
c) Neutrons are neutral and hence are not repelled l	w the nucleus				
d) Neutrons could be accelerated to a greater energy	•				
699. In the following transitions, which one has higher fr					
a) $3-2$ b) $4-3$	c) 4 – 2	d) 3 – 1			
700. In the nuclear reaction $_{92}U^{238} \rightarrow _{z}Th^{A} + _{2}He^{4}$, the	C) 4 - 2	u) 5 – 1			
700. In the nuclear reaction $_{92}U^{-1} \rightarrow _{z}Ih^{z} + _{2}He^{z}$, the	values of A and Z are	1) 4 220 7 00			
a) $A = 234, Z = 94$ b) $A = 234, Z = 90$	CJA = 238, Z = 94	a) $A = 238, Z = 90$			
701. Curie is a unit of	1211 16146				
a) Energy of gamma-rays	b) Half-life				
c) Radioactivity	d) Intensity of gamma-ray				
702. The radioactive nucleus of mass number <i>A</i> , initially	at rest, emits an $lpha$ – particl	e with a speedv. The recoil			
speed of the daughter nucleus will be					
a) $\frac{2v}{A-4}$ b) $\frac{2v}{A+4}$	c) $\frac{4v}{4-4}$	d) $\frac{4v}{4+4}$			
71 1 71 1	11 1	71 1			
703. What was the fissionable material used in bomb dro					
a) Uranium b) Nepturium	c) Berkelium	d) Plutonium			
704. Which of the following atoms has the lowest ionization and the second seco		40			
a) $_{8}^{16}O$ b) $_{7}^{14}N$	c) $^{133}_{55}Cs$	d) $^{40}_{18}Ar$			
705. Consider the following two statements					
A. Energy spectrum of $lpha$ -particles emitted in radioac					
B. Energy spectrum of eta -particles emitted in radioac	ctive decay is continuous				
a) Only A is correct	b) Only <i>B</i> is correct				
c) A is correct but B is wrong	d) Both A and B are corre	ect			
706. In a hydrogen atom, which of the following electron	c transitions would involve	e the maximum energy			
change					
a) From $n = 2$ to $n = 1$ b) From $n = 3$ to $n = 1$	c) From $n = 4$ to $n = 2$	d) From $n = 3$ to $n = 2$			
707. Two protons exert a nuclear force on each other, the	distance between them is				
a) $10^{-14}m$ b) $10^{-10}m$	c) $10^{-12}m$	d) $10^{-8}m$			
708. The energy of a hydrogen atom in its ground state is	-13.6 eV. The energy of the	e level corresponding to			
the quantum number $n = 2$ (first excited state) in the	ie hydrogen atom is				
a) $-2.72 eV$ b) $-0.85 eV$	c) −0.54 <i>eV</i>	d) −3.4 <i>eV</i>			
709. M_p denotes the mass of a proton and M_n that of a ne	utron. A given nucleus, of b	oinding energy B , contains Z			
protons and N neutrons. The mass $M(N,Z)$ of the nu	icleus is given by (c is the v	relocity of light)			
a) $M(N,Z) = NM_n + ZM_p - Bc^2$	b) $M(N,Z) = NM_n + ZM_n$				
c) $M(N,Z) = NM_n + ZM_p - B/c^2$	d) $M(N,Z) = NM_n + ZM_n$				
•	-				
710. In a Rutherford scattering experiment when a project					
nucleus of charge z_2 and mass M_2 , the distance of clo					
a) Directly proportional to $M_1 \times M_2$	b) Directly proportional t				
c) Inversely proportional to z_1	d) Directly proportional t				
711. A radioactive sample has 4×10^{10} nuclei at a certain	n time. The number of activ	e nuclei still remaining			
after 4 half lives is					
a) 1×10^{10} b) 5×10^9	c) 25×10^8	d) 5×10^8			
712. The most stable particle in Baryon group is					
a) Proton b) Lamda-particle	c) Neutron	d) Omega-particle			

713. The average number of p	prompt neutrons produced	per fission of U^{235} is	
a) More than 5	b) 3 to 5	c) 2 to 3	d) 1 to 2
714. A gamma ray photon cre			of an electron is 0.5 <i>MeV</i> The gamma ray photon must
be	rection-position pair is 0.7	o mer, then the energy of t	ne gamma ray photon must
a) 0.78 <i>MeV</i>	b) 1.78 <i>MeV</i>	c) 1.28 <i>MeV</i>	d) 0.28 <i>MeV</i>
715. Fission of nuclei is possib			u) 0.20 MeV
-	-		
	umber at high mass numbe		
-	number at high mass numb		
•	umber at low mass number		
•	number at low mass numbe		
716. The largest wavelength i	-		
	ed region of the hydrogen s		= '
a) 802 <i>nm</i>	b) 823 nm	c) 1882 nm	d) 1648 nm
717. Electrons in a certain end			
$n=n_2$. They can emit 6 s	spectral lines. The orbital s _l	peed of the electrons in the	two orbits are in the ratio
a) 4:3	b) 3:4	c) 2:1	d) 1 : 2
718. Consider α — Particles, β penetrating powers, the		ach having an energy of 0.5	MeV. In increasing order of
a) α, β, γ	b) α, γ, β	c) β, γ, α	d) γ, β, α
719. In Bohr's model, if the at	, , ,		
a) r_0	b) $4r_0$	c) $r_0/16$	d) $16r_0$
720. Two radioactive materia	,		, ,
	hen the ratio of the number		
_			
a) $\frac{1}{10\lambda}$	b) $\frac{1}{11\lambda}$	c) $\frac{10\lambda}{10\lambda}$	d) $\frac{1}{9\lambda}$
721. If half-life of a substance	is 3.8 days and its quantity	is $10.38 g$. Then substance	quantity remaining left
after 19 days will be	(JPLUS EDU)	ΊΔΤΙΩΝ	
a) 0.151 <i>g</i>	b) 0.32 <i>g</i>	c) 1.51 <i>g</i>	d) 0.16 <i>g</i>
722. The composition of an α -	, 0	, ,	,
a) $1P + 1N$	b) $1P + 2N$	c) $2P + 1N$	d) $2P + 2N$
723. The ionization potential	•	•	,
-	gy $12.75eV$. How many diff	_	
make a downward transi		erene spectral lines can one	expect when the election
a) 1	b) 4	c) 2	d) 6
724. The nucleus ${}_{6}C^{12}$ absorb	•	,	
a) $_7N^{14}$	b) ₇ N ¹³	c) $_5B^{13}$	d) $_{6}C^{13}$
- ,	· ·	, ,	3 0
725. The counting rate observ			is $t = 8$ sit was 100
-	rate observed as counts pe		D 000
a) 400	b) 300	c) 250	d) 200
726. The size of an atom is of		4.0	4.4
a) $10^{-8}m$	b) $10^{-10}m$	c) $10^{-12}m$	d) $10^{-14}m$
727. The half-life of At^{215} is 1			of the sample initially is
a) 10 ² Bq	b) 3 $\times 10^{10}$ Bq	c) $4.17 \times 10^{24} \text{Bq}$	d) $1.16 \times 10^5 \text{ Bq}$
728. If the energy of a hydrog	en atom in n th orbit is E_n , t	hen energy in the \emph{n} th orbit	of a singly ionized helium
atom will be			
a) $4E_n$	b) $E_n/4$	c) $2E_n$	d) $E_n/2$
729. For a substance the average			
	material remains after $lpha$ a	•	•

	a) 1500 <i>years</i>	b) 300 <i>years</i>	c) 449 <i>years</i>	d) 810 <i>years</i>
730.	_		atom where G is the groun	
	emission spectrum of the obtained by following ene		n energy level change from	Q to S. A blue line can be
		ergy lever change		
	q			
	s			
	a) <i>P</i> to <i>Q</i>	b) <i>Q</i> to <i>R</i>	c) <i>R</i> to <i>S</i>	d) <i>R</i> to <i>G</i>
731	•		tron pair. In this process of	
, 51.	energy cannot be less tha		from pairs in this process of	pair production, y rays
	a) 5.0 <i>MeV</i>	b) 4.02 <i>MeV</i>	c) 15.0 <i>MeV</i>	d) 1.02 <i>MeV</i>
732.	According to Bohr's mode	el, the radius of the second	orbit of helium atom is	
	a) 0.53 Å	b) 1.06 Å	c) 2.12 Å	d) 0.265 Å
733.	The shortest wavelength	in hydrogen spectrum of L	yman series when $R_H = 10$	$9678 cm^{-1}$ is
	a) 1002.7 Å	b) 1215.67 Å	c) 1127.30 Å	d) 911.7 Å
734.	Bohr's atom model assum	•	,	,
	a) The nucleus is of infini			
		ed orbit will not radiate ene	ergv	
	c) Mass of electron remai		87	
	d) All the above condition			
735.	-		the same orbital radius as	that of the ground state of
, 55.	hydrogen			
	a) $n = 4$	b) $n = 3$	c) $n = 2$	d) $n = 1$
736.	Which of the following is	in the increasing order for	penetrating power	
	a) α, β, γ		c) γ, α, β	d) γ, β, α
737.	When ₃ Li ⁷ nuclei are bon	nbarded by protons, and th	ne resultant nuclei are 4Be ⁸	the emitted particles will
	be			
	a) alpha particles	b) beta particles	c) gamma photons	d) neutrons
738.	Consider two nuclei of the	e same radioactive nuclide.	One of the nuclei was crea	ted in a supernova
	explosion 5 billion years a	ago. The probability of deca	ay during the next time is	
	a) Different for each nucle	ei	b) Nuclei created in explo	sion decays first
	c) Nuclei created in the re	eactor decays first	d) Independent of the tim	e of creation
739.	A radio isotope has a half	life of 75 <i>years</i> . The fraction	on of the atoms of this mate	erial that would decay in
	150 <i>years</i> will be			
	a) 66.6%	b) 85.5%	c) 62.5%	d) 75%
740.	Which of the following tra	ansition in Balmer series fo	or hydrogen atom will have	longest wavelength
	a) $n = 2$ to $n = 1$	b) $n = 6$ to $n = 1$	c) $n = 3$ to $n = 2$	d) $n = 6$ to $n = 2$
741.	•	proton and neutron respec	tively. An element of mass	M has Z protons and N
	neutrons then			
	a) $M > Zm_p + Nm_n$			
	b) $M = Zm_p + Nm_n$			
	c) $M < Zm_p + Nm_n$			
	d) M may be greater than	less than or equal to Zm_p	+ Nm_n , depending on natu	ire of element
742.	A nuclear reaction given h	ру		
	$_{Z}X^{A} \rightarrow _{Z+1}Y^{A} + _{-1}e^{0} +$	$ar{p}$ represents		
	a) γ-decays	b) Fusion	c) Fission	d) β -decay


743. A sample of an element is of element remains?	10.38 g. If half-life of elemo	ent is 3.8 days, then after 1	9 days, how much quantity
a) 0.151 g	b) 0.32 g	c) 1.51 g	d) 0.16 g
744. The distance of closest app	proach of an $lpha$ -particle fire	d towards a nucleus with n	nomentum p , is r . If the
momentum of the α -partic	cle is $2p$, the corresponding	g distance of closest approa	ich is
a) <i>r</i> /2	b) 2r	c) 4r	d) r/4
745. A free neutron decays into	a proton, an electron and		, ,
a) A neutrino	b) An antineutrino	c) An alpha particle	d) A beta particle
746. In nuclear reactions, we have	ave the conservation of		•
a) Mass only		b) Energy only	
c) Momentum only		d) Mass, energy and mom	entum
747. Electrons in the atom are	held to the nucleus by		
	b) Nuclear forces	c) Vander waal's forces	d) Gravitational forces
748. The half-life of radium is a	_	-	-
after	g		<i>3</i> ···
	b) 3200 years	c) 4800 years	d) 6400 years
749. U^{238} decays into Th^{234} by			, ,
			ed and after that, no further
		stable nuclides is the end p	
radioactive decay is possii	ole. Which of the following	stable fluctions is the char	roduct of the o
a) Pb^{206}	b) <i>Pb</i> ²⁰⁷	c) Pb ²⁰⁸	d) <i>Pb</i> ²⁰⁹
750. In a fission process, nuclei	,	,	,
respectively. Then	S. Jul 3		
$a) E_b + E_c = E_a$	b) $E_b + E_c > E_a$	c) $E_b + E_c < E_a$	$d) E_b. E_c = E_a$
751. The half-life of a radioactive	ve substance is 48 hours. H	low much time will it take t	to disintegrate to its $\frac{1}{16}th$
part			- 16
	b) 16 h	c) 48 h	d) 192 <i>h</i>
a) 12 <i>h</i> 752. If the decay or disintegrat	ion constant of a radioactiv	ve substance is λ then its h	alf life and mean life are
respectively	ion constant of a radioactiv	to substance is h, then its in	an me and mean me are
• •	, log _e 2 , 1	. 11 0 11	, λ , 1
a) $\frac{1}{\lambda}$ and $\frac{\log_e 2}{\lambda}$	b) $\frac{\log_e 2}{\lambda}$ and $\frac{1}{\lambda}$	c) $\lambda \log_e 2$ and $\frac{1}{\lambda}$	d) $\frac{\lambda}{\log_e 2}$ and $\frac{1}{\lambda}$
753. In the following nuclear re	eaction		
$_{6}C^{11} \rightarrow _{5}B^{11} + \beta^{+} + X$			
What does X stand for?			
a) A neutron	b) A neutrino	c) An electron	d) A proton
754. The radioactivity of a give	n sample of whisky due to	tritium (half life 12.3 years	s) was found to be only 3%
of that measured in a rece	ntly purchased bottle marl	ked "7 years old". The samp	ole must have been
prepared about			
a) 220 years back	b) 300 years back	c) 400 years back	d) 70 years back
755. If 200 MeV energy is relea	sed in the fission of a singl	e nucleus of 92 U ²³⁵ . How r	nany fissions must occur
per second to produce a p	-	72	·
a) 3.125×10^{13}	b) 6.250×10^{13}	c) 1.525×10^{13}	d) None of these
756. Which of these is non-divi	*	-,	,
a) Nucleus	b) Photon	c) Proton	d) Atom
757. The fission of ^{235}U can be		•	,
proton can also be used. T		ni oi siow nead ons by a nu	cicas, similarly a slow
a) Correct	mo statement is	b) Wrong	
c) Information is insufficion	ant	d) None of these	
758. Which one of the following		-	ce is 1 month?
, SSI TTIMEN ONE OF CHE TOHOWIN	5 Statement is true, ii man-i	or a radioactive substan	

	a) 7/8th part of the substance will disintegrate in 3 months						
	b) 1/8th part of the substance will remain undecayed at the end of 4 months.						
	c) The substance will disintegrate completely in 4 months.						
	d) 1.16th part of the substance will remain undecayed at the end of 3 months						
759.	59. M_n and M_p represent mass of neutron and proton respectively. If an element having atomic mass M has N -						
	neutrons and Z-protons,	then the correct relation w	ill be				
	a) $M < [NM_n + ZM_P]$	b) $M > [NM_n + ZM_P]$	c) $M = [NM_n + ZM_P]$	d) $M = N[M_n + M_P]$			
760.	An electron jumps from t	he 4 th orbit to the 2 nd orbit	t of hydrogen atom. Given t	the Rydberg's constant $R =$			
	$10^5 cm^{-1}$. The frequency	in Hz of the emitted radiati	ion will be				
		b) $\frac{3}{16} \times 10^{15}$		d) $\frac{3}{4} \times 10^{15}$			
	= =	==	= =	*			
761.		radioactive decay are defle	_	_			
	a) Protons and α –partic		b) Electrons, protons and	•			
	c) Electrons, protons and neutrons		d) Electrons and α —particles				
762.		sive disintegrations with th	ie end product of ₈₂ Pb ²⁰³ . '	The number of $lpha$ and eta -			
	particles emitted are						
		b) $\alpha = 6$, $\beta = 0$					
763.) of a revolving electron ar	ound the nucleus varies wi	th principal quantum			
	number <i>n</i> as						
	a) $\mu \propto n$	b) $\mu \propto 1/n$	· ·	d) $\mu \propto 1/n^2$			
764.			ron configuration is $1s^2$, $2s$	2 , $2p^{6}$, $3s^{2}$, $3p^{6}$, the number			
	of neutrons and protons i						
	a) 22, 18	b) 18, 22		d) 18, 18			
765.		nydrogen atom is 10.2 <i>eV</i> a	bove its ground state. The t	temperature is needed to			
	excite hydrogen atoms to						
			c) $5.8 \times 10^4 K$				
766.		lifference in the energy of t		= 3 orbits is E , the			
		ogen atom is					
	a) 13.2 <i>E</i>	b) 7.2 <i>E</i>	c) 5.6 <i>E</i>	d) 3.2 <i>E</i>			
767.	-			o second orbit in hydrogen			
		ngth of energy for the same		1) 04 000 -1			
7.00		b) 20.497 <i>cm</i> ⁻¹					
768.		ased in the fission of a sing		er of fissions required per			
		watt power shall be (Given		D 0 405 · · 4016			
5 .00	a) 3.125×10^{13}	b) 3.125×10^{14}	c) 3.125×10^{15}	d) 3.125×10^{16}			
769.		nas half-life of 60 min. Durii	ng 3 h, the fraction of the si	ibstance that has to be			
	decayed, will be	1) 5 2 5 0/) 25 50/	D 0 50/			
770	a) 87.5 %	b) 52.5%	c) 25.5%	d) 8.5%			
//0.	Half-life is measured by		1) (1 1 4				
	a) Geiger-Muller counter		b) Carbon dating	_			
771	c) Spectroscopic method	a ativitar ia	d) Wilson-Cloud chamber	ſ			
//1.	The phenomenon of radio	•	with tomorous				
	,	nich increases or decreases	with temperature				
	b) Increases on applied p		· o na				
	d) None of the above	not depend on external fact	.015				
772	_	the wood in a probietoric	structure and finds that C14	4 (Half life — 5700 wagne) +a			
772. An archaeologist analysis the wood in a prehistoric structure and finds that C^{14} (Half life = 5700 <i>years</i>) to C^{12} is only one-fourth of that found in the cells of buried plants. The age of the wood is about							
	a) 5700 <i>years</i>	b) 2850 <i>years</i>	c) 11,400 years				
	a, b, bb y build	~ , = 000 V CULI D	U, XX,100 YUM10	~, , , , _ , _ , _ , _ , _ , _ ,			

773.	Following process is know	wn as $hv \rightarrow e^+ + e^-$			
	a) Pair production	b) Photoelectric effect	c) Compton effect	d) Zeeman effect	
774.	Half lives of two radioact	ive substances A and B are	respectively 20 minutes ar	nd 40 <i>minutes</i> . Initially the	
	sample of <i>A</i> and <i>B</i> have e	qual number of nuclei. Afte	r 80 minutes, the ratio of re	emaining number of A and	
	B nuclei is				
	a) 1:16	b) 4:1	c) 1:4	d) 1:1	
775.	Which of the following ca	nnot cause fission in a heav	y nucleus		
	a) α -particle	b) Proton	c) Deutron	d) Laser rays	
776.	If in a nuclear fusion production m_3 , then	cess, the masses of the fusin	ig nuclei be m_1 and m_2 and t	the mass of the resultant	
777.		b) $m_3 = m_1 m_2 $ uclear reactors in order to	c) $m_3 < (m_1 + m_2)$	d) $m_3 > (m_1 + m_2)$	
	a) Slow down the speed of	of the neutrons	b) Accelerate the neutron	S	
	c) Increase the number of neutrons		d) Decrease the number of neutrons		
778.	Rest mass energy of an el	ectron is 0.54 <i>MeV</i> . If veloc	city of the electron is $0.8c$, t	hen $K.E.$ of the electron is	
	a) 0.36 <i>MeV</i>	b) 0.41 <i>MeV</i>	c) 0.48 <i>MeV</i>	d) 1.32 <i>MeV</i>	
779.	If the binding energies of	a deuteron and an alpha pa	article are 1.125MeV and 7.	2MeV, respectively , then	
	the more stable of the two				
	a) deuteron				
	b) Alpha-particle				
	c) Both (a) and (b)				
	d) Sometimes deuteron a	and Sometimes Alpha-part	icle		
780.	The following diagram in	dicates the energy levels of	a certain atom when the sy	stem moves from 4 <i>E</i> level	
	to E. A photon of waveler	igth λ_1 is emitted. The wave	elength of photon produced	l during it's transition from	
	$\frac{7}{3}E$ level to E is λ_2 . The ra	tio $\frac{\lambda_1}{\lambda_1}$ will be			
	3 4 E	λ_2			
		C FRIIA	ATTONI		
	7 GPLUS EDUCATION				
	1 1				
	E .	4	2	7	
	9 a) -	b) $\frac{4}{9}$	c) $\frac{3}{2}$	d) $\frac{7}{3}$	
701	In a working nuclear reac	,	4	3	
701.	a) Speed up neutrons	ctor, cadmium rods (contro	b) Slow down neutrons		
			d) Absorb all neutrons		
702	c) Absorb some neutrons				
702.	a) -0.0024	ne deutrium is 2.23 <i>MeV</i> . Tl b) =0.0012	c) 0.0012	d) 0.0024	
702	•	*	*	u) 0.0024	
703.	a) Pfund series	ron from $n_2 = 5,6, \dots$ to $n_2 = 5,6,\dots$ to $n_2 = 5,6,\dots$	c) Paschen series	d) Dynalrott gariog	
701	,	b) Lyman series	•	d) Brackett series	
704.		t used to report the measur			
	a) The ability of a beam of gamma ray photons to produce ions in a target b) The energy delivered by radiation to a target				
	 -				
	c) The biological effect of				
705	d) The rate of decay of a i		at of an alamont containing	20 noutrons The ratio of	
700.		s are bombarded on a targe	_		
		Helium nucleus is $14^{1/3}$. The second se			
707	a) 25	b) 26	c) 56	d) 30	
/ öb.				mass numbers of the parent	
	-	ectively, the corresponding	_	= = = = = = = = = = = = = = = = = = = =	
	a) $Z-1$ and $A-1$	b) <i>Z</i> + 1 and <i>A</i>	c) Z — 1 and A	d) <i>Z</i> + 1 and <i>A</i> − 1	

787. What is the respective number of α and β particles emitted in the following radioactive decay $_{90}X^{200} \rightarrow _{80}Y^{168}$						
	8 and 8	c) 6 and 6	d) 8 and 6			
	788. In the following atoms and molecules for the transition from $n=2$ to $n=1$, the spectral line of minimum					
	=	c) Uni-ionized helium	d) De-ionized lithium			
789. Taking Rydberg's constant R_H		-				
spectrum is						
		c) 6529 Å, 4280 Å				
790. In the Bohr model of the hydr	ogen atom, let R , v and	E represent the radius of t	he orbit, the speed of			
electron and the total energy	of the electron respecti	vely. Which of the followin	g quantity is proportional			
to the quantum number n						
a) <i>R/E</i> b) .	E/v	c) RE	d) uR			
791. The masses of two radioactive	e substances are same a	nd their half-lives are 1 y	r and 2 yr respectively. The			
ratio of their activities after 4	yr will be					
a) 1:4 b)	1:2	c) 1:3	d) 1:6			
792. In the given nuclear reaction 2	A. B. C. D. E represents	$_{02}U^{238} \xrightarrow{\alpha}_{P} Th^{A} \xrightarrow{\beta}_{P} Pa^{C}$	\xrightarrow{e} 02 U^{234}			
a) $A = 234$, $B = 90$, $C = 234$,		b) $A = 234, B = 90, C = 2$				
c) $A = 238, B = 93, C = 234,$	•	d) $A = 234$, $B = 90$, $C = 2$				
	,- p	.,,, .				
$793.235 \atop 92 X \rightarrow \frac{231}{91} Y$						
Number of particles emitted is	n the reaction is					
a) One electron and one neutr	ron	b) One neutron and one e	electron			
c) One α and one neutron		d) One α and one electron				
794. For effective nuclear forces, th	ne distance should be					
a) $10^{-10}m$ b)	$10^{-13}m$	c) $10^{-15}m$	d) $10^{-20}m$			
795. Two radioactive sources <i>A</i> an radioactive atoms. At the end						
	1:3	c) 1:2	d) 1: 1			
796. The energy equivalent of the a		o, 1. -	w) 1. 1			
		c) 931 J	d) 931 MeV			
797. If M_0 is the mass of an oxygen			•			
respectively, the nuclear bind	•		on and a nead on,			
a) $(M_o - 8M_p)c^2$ b)	0 0,		d) $(M_o - 17 M_n)c^2$			
• •	•					
798. The binding energies per nucl	leon of Li' and He' are !	5.6 Mev and 7.06 Mev resp	bectively, then the energy of			
${\rm Li}^7 + p = 2[_2{\rm He}^4]$ will be						
	39.2 MeV	c) 28.24 MeV	d) 1.46 MeV			
799. An energy of 24.6 eV is requir			nelium atom. The energy			
(in <i>eV</i>) required to remove be	oth the electrons from a	neutral helium atom is				
a) 79.0 b)	51.8	c) 49.2	d) 38.2			
800. Which of the following rays ar	re not electromagnetic v	waves				
a) γ -rays b) γ	β - rays	c) Heat rays	d) X-rays			
801. If the mass of a radioactive sa	mple is doubled, the act	tivity of the sample and the	e disintegration constant of			
the sample are respectively						
a) Increases, remains the sam	ie	b) Decreases, increases				
c) Decreases, remains same		d) Increases, decreases				
802. The ratio of the radii of the nu	iclei ₁₀ Al ²⁷ and ₅ ,Te ¹²⁵	is				

a) $\sqrt{13}$: $\sqrt{52}$	b) $2\sqrt{13}$: $3\sqrt{52}$	c) $3\sqrt{3}:5\sqrt{5}$	d) 3:5			
803. Outside a nucleus						
a) Neutron is stable		b) Proton and neutro	b) Proton and neutron both are stable			
c) Neutron is unstab	le	•	d) Neither neutron nor proton is stable			
			oms are present at $t = 0$, then			
the number of atoms	decayed in the duration $t =$	= 2 hour to t = 4 hour will	be			
a) 2×10^{10}	b) 1.5×10^{10}	c) Zero	d) Infinity			
	nary orbits was proposed by	•	,			
a) Neil Bohr	b) J.J. Thomson	c) Rutherford	d) I. Newton			
	$_{92}X^{235}$ decays to $_{91}Y^{231}$. V					
a) One alpha and one		b) Two deuterons and				
c) One alpha and one		d) One proton and for	-			
•	Lymen series for Hydrogen a	*				
	then atomic number of this l	=				
a) 1	b) 2	c) 3	d) 4			
808. In helium nucleus, th	•	c) 5	uj i			
		h) 2 neutrons 2 prote	ons and 2 electrons			
	a) 2 protons and 2 electronsc) 2 protons and 2 neutrons		b) 2 neutrons, 2 protons and 2 electronsd) 2 positrons and 2 protons			
809. Light energy emitted		uj z positions and z j	protons			
a) Breaking of nuclei	-	b) Joining of nuclei				
c) Burning of nuclei		d) Reflection of solar	light			
	as radius one-third of the ra	-	ligiit			
		c) F^{19}	d) <i>C</i> ¹²			
a) Be^9	b) <i>Li</i> ⁷	C) F	a) t 12			
811. Equivalent energy of) 004 M W	D 0 24 M W			
a) 931 <i>KeV</i>	b) 931 <i>eV</i>	c) 931 <i>MeV</i>	d) 9.31 <i>MeV</i>			
		-	e of A is available. In this sample			
variation in number	of nuclei of B with time is sh	own by	1			
	OLIO2 FDE	CHILDI]			
a) N_0	b) N_0	c) N_0	d) N_0			
u)			u) /			
\overline{t}	\overline{t}	t	t			
813. The average kinetic e	energy of the thermal neutro	ons is of the order of				
a) 0.03 <i>eV</i>	b) 3 <i>eV</i>	c) 3 KeV	d) 3 <i>MeV</i>			
814. In a hydrogen atom,	the distance between the ele	ectron and proton is 2.5 ×	$10^{-11}m$. The electrical force of			
attraction between tl		•				
a) $2.8 \times 10^{-7} N$	b) $3.7 \times 10^{-7} N$	c) $6.2 \times 10^{-7} N$	d) $9.1 \times 10^{-7} N$			
•	nt to a kilogram of matter is					
a) 10 ²⁰ J	b) 10 ¹⁷ J	c) 10 ¹⁴ J	d) 10 ¹¹ J			
• •	, ,	•				
816. According to Bohr's theory the radius of electron in an orbit described by principle quantum number n and atomic number Z is proportional to						
		Z^2	n^2			
a) Z^2n^2	b) $\frac{Z^2}{n^2}$	c) $\frac{Z^2}{n}$	d) $\frac{n^2}{Z}$			
817. In Fig. <i>X</i> represents t	ime and Y represents activity		Then the activity of sample.			
varies with time according to the curve						

a) A

b) B

c) C

d) D

818. If m, m_n and m_p are the masses of ${}_ZX^A$ nucleus, neutron and proton respectively, then

a)
$$m < (A - Z)m_n + Zm_p$$

b) $m = (A - Z)m_n + Zm_p$

c)
$$m = (A - Z)m_n + Zm_n$$

d) $m > (A - Z)m_n + Zm_n$

819. The binding energy per nucleon of deuteron $\binom{2}{1}H$) and helium nucleus $\binom{4}{2}He$) is 1:1MeV and 7MeV respectively. If two deuteron nuclei react to form a single helium nucleus, then the energy released is

a) 13.9MeV

b) 26.9MeV

c) 23.6MeV

d) 19.2MeV

820. Which of the following transitions in a hydrogen atom emits photon of the highest frequency

a) n = 1 to n = 2

b) n = 2 to n = 1

c) n = 2 to n = 6

d) n = 6 to n = 2

821. A photon creates a pair of electron positron with equal kinetic energy. Let kinetic energy of each particle is 0.29 MeV. Then what should be energy of the photon?

a) 160 MeV

b) 1.63 MeV

c) 2.0 MeV

d) 1.90 MeV

822. A radioactive material has a half-life of 8 years. The activity of the material will decrease to about 1/8 of its original value in

a) 256 years

b) 128 years

c) 64 years

d) 24 years

823. Which of the following cannot be emitted by radioactive substances during their decay?

a) Protons

b) Neutrinos

c) Helium nuclei

d) Electrons

824. The nuclear reactor at Kaiga is a

a) Research reactor

b) Fusion reactor

c) Breeder reactor

d) Power reactor

825. The mass of a ${}_{3}^{7}Li$ nucleus is 0.042u less than the sum of the masses of all its nucleons. The binding energy per nucleon of ${}_{3}^{7}Li$ nucleus is nearly

a) 23 MeV

b) 46 *MeV*

c) 5.6 *MeV*

d) 3.9 MeV

826. Which one of the series of hydrogen spectrum is in the visible region

a) Lyman series

b) Balmer series

c) Paschen series

d) Bracket series

827. The radius of nucleus is

a) Proportional to its mass number

b) Inversely Proportional to its mass number

c) Proportional to the cube root of its mass number

d) Not related to its mass number

828. Electron in hydrogen atom first jumps from third excited state to second excited state and then from second excited to the first excited state. The ratio of the wavelengths $\lambda_1:\lambda_2$ emitted in the two cases is

a) 7/5

b) 27/20

c) 27/5

d) 20/7