GPLUS EDUCATION				
Date : Time : Marks :			CHEMISTRY	
Mai		HEMISTRY		
	Single Correct	Answer Type		
1.	For adsorption of gas on solid surface, the plots of l	og $x/m vs$. log P is linear	with a slope equal to :	
	a) <i>K</i> b) log <i>K</i>	c) l/nK	d) $1/n$ (n being integer)	
2.	Which is not correct for catalyst? It:			
	a) Enhances the rate of reaction in both directions			
	b) Changes enthalpy of reaction			
	c) Reduces activation energy of reaction			
	d) Specific in nature			
3.	The magnitude of colligative properties in all colloi	_		
	a) Higher b) Lower	c) Both (a) and (b)	d) None of these	
4.	Which one is hydrophobic in nature?			
_	a) Gelatin b) Sulphur	c) Starch	d) Protein	
5.	$2SO_2(g)+O_2(g)$ is an example for			
	a) Neutralization reaction	b) Homogeneous cataly	vsis	
	c) Heterogeneous catalysis	d) Irreversible reaction		
6.	Decomposition of urea into NH ₃ and CO ₂ is followe	•		
	a) Urease b) Pepsin	c) Trypsin	d) None of these	
7.	Adsorption is accompanied by the evolution of hear substance adsorbed should		telier principle the amount of	
	a) Increase with decrease in temperature	b) Increase with increa	se in temperature	
	c) Decrease with decrease in temperature	d) Decrease with increa	ase in temperature	
8.	Which one of the following equation represents Fre	eundlich adsorption isothe	erm?	
	a) $\frac{x}{m} = kp$ b) $\frac{x}{m} = kp^n$	c) $\log \frac{x}{m} = kp^n$	$d) \log \frac{x}{m} = kn \log p$	
9.	The number of moles of lead nitrate needed to coag			
	a) 2 b) 1	c) 1/2	d) 2/3	
10.	Surfactant molecules or ions cluster together as mi			
	a) Due to their hydrophilic tails tend to congregate			
	b) Due to their hydrophobic heads provide protecti	ion		
	c) Are colloid sized clusters of molecules			
11	d) None of the above The temperature shave which migalla formation as	anna ia .		
11.	The temperature above which micelle formation of a) Critical temperature	curs is :		
	b) Charles' temperature			
	c) Inversion temperature			
	d) Kraft's temperature			
12.	By dividing the catalyst into fine powder there will	he increase in		
-4.	a) Surface area b) Free valancies	c) Active centres	d) All of these	
13.	Washing soap can be prepared by saponifying alkal	5	aj ini oi mese	
	a) Rose oil b) Paraffin oil	c) Ground nut oil	d) kerosene	
14.	Platinum is used as a catalyst in :	,	,	

	a) Oxidation of ammonia to form nitric acid			
	b) Hardening of oils			
	c) Production of synthetic rubber			
	d) Synthesis of methanol			
15.	A colloidal solution alway	s has at least :		
	a) One phase			
	b) More than two phases			
	c) A true solution			
	d) Two phases			
16.	Milk can be preserved by	adding a few drops of:		
	a) Formic acid solution			
	b) Formaldehyde solution	n		
	c) Acetic acid solution			
	d) Acetaldehyde solution			
17.	Addition of FeCl ₃ to K ₄ [Fe		solution gives :	
	a) Prussian blue sol	b) $Fe_4[Fe(CN)_6]_3$ sol	c) Positive sol	d) All of these
18.	Colloidal solution commo		kin diseases is :	
	a) Colloidal sulphur	b) Colloidal silver	c) Colloidal gold	d) Colloidal antimony
19.	The substance that gets a			
	a) Adsorbate	b) Adsorbent	c) Micelle	d) Absorbent
20.	Which of the following is			
			d to enthalpy of chemical ad	sorption
	b) Milk is an example of e			
		creases with the increase	in temperature	
	d) Smoke is an aerosol	7		
21.	Which of the following ch		t for physical adsorption?	
	a) Adsorption on solids is reversible			
		with increase in temperati	ure	
	c) Adsorption is spontane			
00		ropy of adsorption are neg	gative	
22.	Which of the following sta		1 1 1 1	. 11.
	a) Physical adsorption occurs at very low temperature and chemisorptions occur at all temperature b) The magnitude of chemisorption decreases with rise in temperature and physisorption increases with			
	,	nisorption decreases with	rise in temperature and ph	ysisorption increases with
	rise in temperature	ersible and physisorption	ia navanaihla	
	•		is reversible otion is very low and in cher	nicorntion the activation
	energy of desorption is	-	public is very low and in cher	insorption, the activation
23			oower with ferric hydroxide	sol?
23.	a) Cryolite	b) $K_2C_2O_4$	c) K ₃ [Fe(CN)] ₆	d) $K_4[Fe(CN)_6]$
24	The critical micelle conce		c) K3[rc(GN)]6	u) 14[1 c(G14)6]
2 1.	a) The concentration at w			
	•	which the true solution is f	formed	
			te is present per 1000 g of th	ne solution
	d) The concentration at w		te is present per 1000 g of th	ie solution
25.			haking with charcoal. This is	s due to :
_0.	a) Absorption	b) Adsorption	c) Chemical reaction	d) Both (a) and (b)
26.	Which of the following is	=		, 20 m (m) mm (b)
	a) $2SO_2(g) + O_2(g) \frac{NO(g)}{g}$		22222	
	- 10 - 10 -	0 10 7	c · ·	. 1
	b) Hydrolysis of aqueous	sucrose solution in the pr	resence of aqueous mineral a	acid

	c) $2H_2O_2(l) \xrightarrow{pt(s)} 2H_2O(l) + O_2(g)$		
		inoral acid	
27	d) Hydrolysis of liquid in the presence of aqueous m		
27.	Which of the following is true in respect of adsorption		. 0
	a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$	b) $\Delta G < 0$; $\Delta S < 0$; $\Delta H < 0$	
0.0	c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$	d) $\Delta G < 0$; $\Delta S < 0$; $\Delta H >$	0
28.	Which is a homogeneous system?		
	a) A solution of sugar in water		
	b) Concrete		
	c) Muddy water		
	d) Bread		
29.	Which of the following is the most effective in the co	agulation of gold sol?	
	a) NaNO ₃ b) MgCl ₂	c) Na ₃ PO ₄	d) $K_4[Fe(CN)_6]$
30.	Which of the following is not a characteristic of chem	nisorption?	
	a) ΔH is the order of 400 kJ	b) Adsorption is irrevers	ible
	c) Adsorption may be multimolecular layer	d) Adsorption is specific	
31.	Select wrong statement.		
	If a very small amount of AlCl ₃ is added to gold so	l, coagulation occurs, but it	f a large quantity of AlCl ₃ is
	a) added, there is no coagulation.		
	b) Organic ions are more strongly adsorbed on char	ged surfaces in compariso	n to inorganic ions.
	c) Both emulsifier and peptising agents stabilise coll	loids but their actions are	different.
	d) Colloidal solutions are thermodynamically stable	•	
32.	The size of colloidal particles is in between		
	a) $10^{-7} - 10^{-9}$ cm b) $10^{-9} - 10^{-11}$ cm	c) $10^{-5} - 10^{-7}$ cm	d) $10^{-2} - 10^{-3}$ cm
33.	The Brownian movement occurs in :	•	
	a) Colloidal solution		
	b) True solution		
		LACITAL	
	c) Suspension having size $<$ 500 m μ d) All of the above	AHUN	
34.	Dyeing of fibre involves the process of :		
	a) Adsorption b) Absorption	c) Sorption	d) All of these
35.	Which adsorption takes place at low temperature?	•	
	a) Physical b) Chemical	c) Both (a) and (b)	d) None of these
36.	Term catalyst was given by	, ()	
	a) Rutherford b) Berzilius	c) Wohler	d) Kolbe
37.	The cotterells precipitator is used to:	,	,
	a) Neutralize charge on carbon particles in air in sm	oke	
	b) Coagulate carbon atoms of smoke		
	c) Bring in cataphoresis in carbon particles		
	d) All of the above		
38.	A catalyst is a substance which		
	a) Is always in the same phase as in the reactions		
	b) Alters the equilibrium in a reaction		
	c) Does not participate in the reaction but alters the	rate of reaction	
	d) Participates in the reaction and provide an easier		
39	Multimolecular colloids are present in	padiway for the sume	
5).	a) Soap solution b) Sol of proteins	c) Sol of gold	d) All of these
40	The rate of a certain biochemical reaction catalysed		
TU.	when it carried out in the laboratory. The activation	•	Jouy is to times laster tildi
		chergy of this reaction:	
	a) Is zero		

- b) Is different in two cases
- c) Is the same in both the cases
- d) None of the above
- 41. At CMC (critical micelle concentration), the surfactant molecules undergo
 - a) Dissociation
- b) Micelle formation
- c) Both (a) and (b)
- d) None of these
- 42. Activated charcoal is used to remove colouring matter from pure substances. It works by
 - a) Oxidation
- b) Reduction
- c) Bleaching
- d) Adsorption

- 43. Lyophobic colloids are:
 - a) Reversible colloids
- b) Irreversible colloids
- c) Protective colloids
- d) Gum, proteins

- 44. The size of the colloid particles is:
 - a) > suspension particles
 - b) < suspension particles
 - c) < true solution particles
 - d) None of these
- 45. Emulsions can be destroyed by
 - a) The addition of an emulsifier which tend to form an emulsion of the same type
 - b) Freezing
 - c) Both (a) and (b)
 - d) None of the above
- 46. Which characteristic of adsorption is wrong?
 - a) Physical adsorption in general decreases with temperature
 - b) Physical adsorption in general increases with temperature
 - c) Physical adsorption is a reversible process
 - d) Adsorption is limited to the surface only
- 47. Gelatin is often used as an ingredient in the manufacture of ice-cream. The reason for this is:
 - a) To prevent the formation of a colloid
 - b) To stabilize the colloid and prevent crystal growth
 - c) To cause the mixture to solidify
 - d) To improve the flavour
- 48. Blood contains:
 - a) Positively charged particles
 - b) Negatively charged particles
 - c) Neutral particles
 - d) Negatively as well as positively charged particles
- 49. The curve showing the variation of pressure with temperature for a given amount of adsorption is called

- Pressure -
- a) Adsorption isobar
- b) Adsorption isotherm
- c) Adsorption isostere
- d) Adsorption isochore
- 50. When white light is passed through a colloidal solution containing fine suspended particles of gold, then the scattered light seen in a direction different from that of the incident light is:
 - a) Yellow coloured
- b) Blue coloured
- c) Green coloured
- d) Red coloured

- 51. Emulsions of polyvinylacetate are used in:
 - a) Polishes
- b) Latex paints
- c) Fire works
- d) Rayons

- 52. Peptization denotes
 - a) Digestion of food

- b) Hydrolysis of proteins
- c) Breaking and dispersion into colloidal state
- d) Precipitation of solid from colloidal dispersion

53.	Which characteristic is the most important factor in giving rise to peculiar properties of colloids?			
	a) Large size			
	b) Small size			
	c) High charge density			
- 4	d) High ratio of surface are to the volume			
54.	Alum helps in purifying water by:			
	a) Forming Si complex with clay particles			
	b) Sulphate part which combines with the dirt and removes it			
	c) Aluminium which coagulates the mud particles			
	d) Making mud water soluble			
55.	If the dispersed phase is a liquid and the dispersion medium is a solid, the colloid is known as:			
	a) A sol b) An emulsion c) A gel d) A foam			
56.	In physical adsorption gas molecules are bound on the solid surface by			
	a) Chemical forces b) Electrostatic forces c) Graphical forces d) Van der Waals' forces			
57.	On adding 1 mL solution of 10% NaCl to 10 mL gold solution in the presence of 0.25 g of starch, the			
	coagulation is just prevented. Starch has the gold number equal to :			
	a) 0.25 b) 2.5 c) 250 d) 0.025			
58.	Hardy-Schulze rule states that :			
	a) Non-electrolytes have better coagulating action on colloids than electrolytes			
	b) Sols are coagulated by effective ions whose charge is opposite to that of sol and the ions of higher			
	charge are much more effective than the ions of lower charge			
	c) Charge of the ions has no effect on the coagulation of a sol			
	d) Sols are coagulated only by those ions whose charge is similar to that of the sol			
59.				
	a) Depends upon the concentration of catalyst			
	b) Independent of the concentration of catalyst			
	c) Depends upon the free energy change			
	d) Depends upon physical state of the catalyst			
60.	Catalysts are generally used in finely divided state because			
	a) It avoids wastage of catalyst			
	b) We can see its reaction			
	c) It has more surface			
	d) It has no effect on reaction rate			
61.	Which among the following statements is false?			
	a) Adsorption may be monolayered or multilayered			
	b) Particle size of adsorbent will not effect the amount of adsorption			
	c) Increase of pressure increases the amount of adsorption			
	d) Increase of temperature may decrease the amount of adsorption			
62.	Which of the following processes does not involve a catalyst?			
	a) Ostwald process b) Contact process c) Thermite process d) None of these			
63.	Whipped cream is an example of:			
	Dispersed phase Dispersion medium			
	a) Liquid gas			
	b) Gas liquid			
	c) Liquid liquid			
	d) Solid liquid			
64.	Alloy is an example of			
	a) Gel b) Solidified emulsion c) Solid solution d) Sol			
65	Which of the following statements is correct about Langmuir's adsorption isotherm?			

	a) it forms monolayer	b) It is reversible in nati	ure
	c) It occurs at low temperature	d) None of the above	
66.	Zeolites:		
	a) Are microporous aluminosilicates		
	Have general formula		
	b) $M_{x/n}[(AlO_2)_x(SiO_2)_4] \cdot mH_2O$		
	c) Have pore sizes between 260 pm to 740 pm		
	d) All of the above		
67	Which of the following does not contain hydrophob	sic etructuro?	
07.	a) Linseed oil b) Linolin	c) Glycogen	d) Rubber
60	An increase in the concentration of adsorbate at the		
00.		he surface relative to its c	oncentration in bulk phase is
	called:	a) Abacamtica	d) Name of these
60	a) Adsorption b) Enthalpy	c) Absorption	d) None of these
69.	Which will not form colloidal solution?	1.	
	(Where DP = Dispersion phase and DM = Disper	•	
	a) DP-gas, DM-liq. b) DP-liquid DM-solid	c) DP-gas, DM-gas	d) DP-solid, DM-solid
70.	In Langmuir's model of adsorption of a gas on a soli		
	a) The rate of dissociation of adsorbed molecules fr		_
	b) The adsorption at a single site on the surface ma	-	
	c) The mass of gas striking a given area of surface is		-
	d) The mass of gas striking a given area of surface is		_
71.	The velocity of oxidation of oxalic acid by acidif	ied KMnO ₄ increase as th	e reaction progress. It is an
	example of		
	a) Promoters b) Catalytic poisons	c) Autocatalysis	d) Inhibitors
72.	Which electrolyte is least effective in causing coagu	lation of +ve ferric hydrox	kide sol?
	a) KBr b) K ₂ SO ₄	c) K ₂ CrO ₄	d) $K_2[Fe(CN)_6]$
73.	A colloidal system in which gas bubbles are dispers	ed in a liquid is known as	
	a) Foam b) Aerosol	c) Sol	d) Emulsion
74.	The false statement for hydrophilic sols is:		
	a) They do not require electrolytes for stability		
	b) Coagulation is reversible		
	c) Viscosity is of the order of that of water		
	d) Surface tension is lower than that of dispersion r	nedium	
75.	When a catalyst is added to a system the:		
	a) Equilibrium concentrations are increased		
	b) Equilibrium concentrations are unchanged		
	c) The rate of forward reaction is increased and tha	nt of backward reaction is o	decreased
	d) Value of equilibrium constant is decreased		
76.	The simplest way, to check whether a system is a co	olloid, is by	
	a) Tyndall effect	b) Brownian movement	
	c) Electrodialysis	d) Finding out particle s	
77.	Micelles have)	
	a) Same colligative property as that of common	b) Lower colligative pro	perty as that of common
	colloidal solution	colloidal solution	porty do mae of common
	c) Higher colligative property as that of common	d) None of the above	
	colloidal solution	a) None of the above	
70		alveie?	
/ Ö.	Which of the following represent homogeneous cat	=	
	a) Oil + $H_2 \xrightarrow{\text{Ni}}$ saturated fat	b) $N_2(g) + 3H_2(g) - Fe$	\rightarrow 2NH ₃ (g)

CH₃COOH + C₂H₅OH
$$\xrightarrow{H^+}$$
 CH₃COOC₂H₅ d) All of the above + H₂O

- 79. Detergent action of synthetic detergents is due to their:
 - a) Interfacial area
 - b) High molecular weight
 - c) Ionisation
 - d) Emulsifying properties
- 80. Ultramicroscope works on the principle of:
 - a) Light reflection
- b) Light absorption
- c) Light scattering
- d) Light polarization
- 81. The catalyst iron, employed in the Haber's process, contains molybdenum, the function of which is:
 - a) To increase the rate of combination of gases
 - b) To counterbalance for the presence of impurities in the gases
 - c) To act as a catalyst promoter and increase activity of catalyst
 - d) To make up for the adverse temperature and pressure conditions
- 82. An emulsifier is a substance which
 - a) Stabilises the emulsion

b) Homogenises the emulsion

c) Coagulates the emulsion

- d) Accelerates the dispersion of liquid in liquid
- 83. The example(s) of anionic surfactants is/are

- a) $C_{18}H_{37}NH_3Cl$ b) $C_{15}H_{31}COONa$ c) $R C_6H_4 SO_3Na$ d) $C_6H_{33}N(CH_3)_3Cl$ 84. For adsorption of a gas on a solid, the plot of $\log \frac{x}{m} vs \log p$ is linear with slope equal to (n being whole number) (*n* being whole number)
 - a) *K*

b) $\log k$

- d) $\frac{1}{n}$
- 85. A substance which promotes the activity of a catalyst is known as:
 - a) Initiator
- b) Catalyst
- c) Promoter
- d) Auto-catalyst
- 86. Adsorption of a gas on solid metal surface is spontaneous and exothermic, then:
 - a) *H* increases
- b) *S* increases
- c) G increases
- d) S decreases

87. Freundlich adsorption isotherm is

a)
$$\frac{x}{m} = kp^{1/n}$$

b)
$$x = mkp^{1/n}$$

c)
$$x/m = kp^{-n}$$

- d) All of these
- 88. Which of the following forms cationic micelles above certain concentration?
 - a) Urea

b) Sodium dodecyl sulphate

c) Sodium acetate

d) Cetyltrimethylammonium bromide

- 89. Catalyst in a reaction
 - a) Lowers the activation energy

- b) Increase the rate of reaction
 - d) Initiates the reaction
- c) Both (a) and (b) 90. The average size of the colloids is of the order:
 - a) 10^{-12} m to 10^{-19} m b) 10^{-7} m to 10^{-9} m
- c) 10^{-9} m to 10^{-12} m
- d) 10^{-6} m to 10^{-9} m
- 91. If (x/m) is the mass of adsorbate adsorbed per unit mass of adsorbent. pis the pressure of the adsorbate gas and a and b are constants, which of the following represents "Langmuir adsorption isotherm"?
 - a) $\log\left(\frac{x}{m}\right) = \log\left(\frac{a}{b}\right) + \frac{1}{a}\log p$

b)
$$\frac{x}{m} = \frac{b}{a} + \frac{1}{ap}$$

c) $\frac{x}{m} = \frac{1 + bp}{ap}$

 $d) \frac{1}{(x/m)} = \frac{b}{a} + \frac{1}{ap}$

- 92. Tanning of leather is:
 - a) Colouring of leather by chemicals
 - b) Drying process to make the leather hard
 - c) Polishing of leather to make it look attractive

0.0	d) Coagulative hardening of the leather by chemical	S	
93	. In a chemical reaction, catalyst	13.7	C
	a) Decrease the energy of activation	b) Increases the energy o	factivation
	c) Does not change energy of activation	d) None of the above	
94	. Which one of the following methods is commonly us	sed for destruction of colloi	d?
	a) Dialysis		
	b) Condensation		
	c) Filtration by animal membrane		
	d) By adding electrolyte		
95	. In multimolecular colloidal solutions, atoms or mole		
	a) H-bonding b) van der waals' forces	c) Ionic bonding	d) Covalent bonding
96	. In autocatalysis		
	a) Reactant act as catalyst	b) One of the product act	
	c) Vessel acts as catalyst	d) All of the above are inc	
97	. One of the reasons for greater reactivity of finely div	vided platinum catalyst is th	nat it has :
	a) Particles which are almost atomic in dimensions		
	b) Particle size which can spread easily through who	ole reactants	
	c) Much larger surface area		
	d) A physical state only in which it can react quickly		
98		layer and the diffused layer	er having opposite charge is
	called:		
	a) Zeta potential b) Streaming potential		d) Colloidal potential
99		pressed in terms of :	
	a) Critical miscelle concentration		
	b) Oxidation number		
	c) Coagulation value		
4.0	d) Gold number	MOTTAL	
10	0. Rate of physical adsorption increase with	WITOIA	
	a) Decrease in surface area	b) Decrease in temperatu	
4.0	c) Decrease in pressure	d) Increase in temperatur	re
10	1. Size of colloidal particles is in the range) 0.4	D 40 20
4.0	a) 0.05 mμ-0.1 mμ b) 25 μ – 30 μ	c) 0.1 μ – 1 mμ	d) 10 μ – 20 μ
10	2. Brownian motion of sol particle is theproperty o		D G III
4.0	a) Electrical b) Optical	c) Kinetic	d) Colligative
10	3. Which of the following statements is correct for Tyn		1 11 <i>CC</i> ,
	a) Scattering and polarizing of light by small suspen		тан епест
	b) Tyndall effect of colloidal particles is due to dispe	ersion of fight	
	c) Tyndall effect is due to refraction of light		
10	d) $Zig - zag$ motion of suspended particles		
10	4. Which is an emulsion?	a) Chamana	d) All of these
10	a) Boot polish b) Lipstic	c) Shampoo	d) All of these
10	5. The process which is catalysed by one of the produc	-	
10	a) Autocatalysis b) Anticatalysis C Lyonhillia agla and many stable than by which again h	c) Negative catalysis	d) Acid catalysis
10	6. Lyophilic sols are more stable than lyophobic sols be	_	1
	a) Are positively charged	b) Are negatively charged	1
10	c) Are solvated	d) Repel each other	
10	7. Which is the property of hydrophilic sols?	ile attaina J	
	a) High concentration of dispersed phase can be eas	sily attained	
	b) Coagulation is reversible		

- c) The charge on particles depends on the pH of the medium and it may be positive, negative
- d) All of the above
- 108. Which is not a colloidal solution of a liquid in another liquid?
 - a) Photographic emulsions
 - b) Soap in water
 - c) Homogenised milk
 - d) Latex
- 109. Gold numbers is associated with
 - a) Electrophoresis
- b) Protective colloids
- c) Tyndall effects
- d) Isotonic solutions
- 110. Which of the following will be the most effective in the coagulation of Fe(OH)₃ sol?
 - a) KCN

- b) BaCl₂
- c) NaCl

d) $Mg_3(PO_4)_2$

- 111. Which of the following statement(s) is/are true?
 - a) Gelatin molecules (hydrophilic sol) are attracted to water molecules by London forces and hydrogen bonding
 - b) In hydrophobia sols, there is a lack of attraction between the dispersed phase and the continuous phase
 - c) Hydrophobia sols are basically unstable
 - d) All of the above
- 112. Which can adsorb larger volume of hydrogen gas?
 - a) Colloidal solution of palladium
 - b) Finely divided nickel
 - c) Finely divide platinum
 - d) Colloidal Fe(OH)₃
- 113. Which graph is correct for critical micelle concentration (CMC)?

- 114. A colloidion solution is one which contains:
 - a) Cellulose nitrate in a alcohol-ether
 - b) Cellulose in water
 - c) Sucrose in water
 - d) None of the above
- 115. Which explains the effect of a catalyst on the rate of reversible reaction?
 - a) It provides a new reaction pathway with a lower activation energy
 - b) It moves the equilibrium position to the right
 - c) It increases the kinetic energy of the reacting molecules
 - d) It decreases the rate of the reverse reaction
- 116. Solvent loving colloids are:
 - a) Lyophobic colloid
- b) Lyophilic colloid
- c) Hydrophobic colloid
- d) None of these
- 117. Pd can adsorb 900 times its volume of hydrogen. This is called:
 - a) Absorption
- b) Adsorption
- c) Occlusion
- d) Both (a) and (c)
- 118. Which of the following is a wrong statements for physisorption?
 - a) It is a reversible reaction

- b) Reaction requires an energy of activation
- c) The value of adsorption enthalpy is low
- d) It generally occurs at a low temperature
- 119. The function of negative catalyst is:
 - a) To remove the active intermediate from the reaction
 - b) To terminate the chain reaction

c) Both (a) and (b)		
d) None of the above 120. A liquid which markedly scatters a beam of light	(visible in dark room) but	leaves no residue when nassed
through a filter paper is best described as :	(visible ili dark roolil) but	leaves no residue when passed
a) A suspension b) Sol	c) True solution	d) None of these
121. Modern theory of heterogeneous catalysis is :	c) True solution	d) None of these
a) Intermediate compound formation theory		
b) Adsorption theory		
c) A combination of two theories, <i>i.e.</i> , intermedia	ate compound formation a	ad adsorption theory
d) None of the above	ate compound formation at	id adsorption theory
122. Which of the following acts as a catalyst?		
a) Metals with variable valency	b) Metals with non-va	riable valency
	<u>-</u>	Trable valency
c) Non-metals with fixed valency	d) Inert gases	
123. Silver iodide is used for producing artificial rain l	Jecause Agr :	
a) Is easy to spray at high altitudes		
b) Is easy to synthesize		
c) Has crystal structure similar to iced) Is insoluble in water		
124. Shape selective catalysts are so called because of		
a) The shape of the catalyst		
b) The specificity of the catalyst		
c) The size of the pores of catalyst which can trap	s coloctivo moloculos only	
d) Their use for only some selected reaction	selective inolectules only	
125. Which one of the following is a property of physic	corntion?	
a) None-specific nature b) High specificity	c) Irreversibility	d) All of these
126. Medicines are more effective if they are used in :	c) iffeversibility	u) All of these
a) Colloidal state b) Solid state	c) Solution state	d) None of these
127. Catalyst used in Friedel-Craft's reaction is	c) Solution state	d) None of these
a) Iron	b) Finally divided nick	امر
c) V ₂ O ₅	d) Anhydrous AlCl ₃	KC1
128. Milk contains a protein that is very good for healt	, .	
a) Caffeine b) Calciferol	c) Keratin	d) Casein
129. Which statement is not correct?	c) Keraun	uj casem
a) Physical adsorption is due to van der Waals' fo	arces	
b) Physical adsorption decreases at high tempera		
c) Physical adsorption is reversible	iture and low pressure	
d) Adsorption energy for a chemical adsorption is	s generally lesser than that	of physical adsorption
130. Identify the gas which is readily adsorbed by acti	= -	of physical adsorption
a) N ₂ b) SO ₂	c) H ₂	d) O ₂
131. Which one of the following will have highest coas		
a) Al ³⁺ b) PO ₄ ³⁻	c) SO_4^{2-}	d) Na ⁺
132. The separation of colloidal particles (or purific	•	,
known as:	action of sory from parties	difference of molecular differences is
a) Photolysis b) Dialysis	c) Pyrolysis	d) Peptization
133. Dust storm is:	cj i yroiysis	a) i epuzation
a) Dispersion of solid in gas		
b) Dispersion of a gas in solid		
c) Dispersion of a gas in solid		
d) Dispersion of a gas in liquid		
a) Dispersion of a gas in liquid		

134. The catalyst used in the manufacture of nitric acid by Ostwald's process is :					
a) Mo	b) Pt	c) V ₂ O ₅	d) Fe		
135. Tyndall effect would	be observed in				
a) Solvent	b) Solution	c) Colloidal solution	d) Precipitate		
136. Plot of $\log x/m$ again	st $\log p$ is a straight line inc	lined at an angle of 45°. Whe	en the pressure is 0.5 atm and		
Freundlich paramet	er, k is 10, the amount of	f solute adsorbed per grai	m of adsorbent will be (log		
5=0.6990)					
a) 1 g	b) 2 g	c) 3 g	d) 5 g		
137. On adding few drops	of dil HCl to freshly precipit	ated ferric hydroxide, a red	coloured solution is obtained.		
This phenomenon is	known as				
a) Peptisation	b) Dialysis	c) Protective action	d) Dissolution		
138. At CMC, the surfactar	-				
a) Association	b) Aggregation	c) Micelle formation	d) All of these		
139. A biological catalyst i	S				
a) An amino acid		b) A carbohydrate			
c) The nitrogen mole		d) An enzyme			
140. An example of disper			-		
a) Milk	b) Vegetable oil	c) Foam	d) Mist		
141. Which of the following	9		_		
a) Milk is a naturally		b) Gold sol is a lyophilic			
, ,	on decreases with rise in	d) Chemical adsorption	is unilayered		
temperature	6				
	manufacture of H_2SO_4 , the o		D 0 11 6 11		
a) Iron	b) V ₂ O ₅	c) Chromium	d) Oxides of nitrogen		
	the chamber process of sulpl		1) W 1: 1		
a) Platinum	b) Nitric oxide	c) Nickel	d) Vanadium pentoxide		
	rs to the H ⁺ ion concentration	on at which the colloidal par	ticles:		
a) Coagulate	UPLUS EUU	CHITOIA			
b) Become electrically neutralc) Can move to either electrode when subjected to an electric field					
c) Can move to either electrode when subjected to an electric field d) Reverse their electrical charge					
	otion isotherm is deduced us	ring the assumption :			
-	es are equivalent in their ab	•			
-	otion varies with coverage	inty to adsorb the particles			
-	ecules interact with each oth	ner			
•	kes place in multilayers	101			
146. Sedimentation poten					
a) Electroosmosis	oral is the reverse or	b) Electrophoresis			
c) Electrokinetic pot	ential	d) Dorn potential			
	n of krypton on activated ch				
a) $\Delta H > 0$ and $\Delta S <$		b) $\Delta H < 0$ and $\Delta S < 0$			
c) $\Delta H > 0$ and $\Delta S >$		d) $\Delta H < 0$ and $\Delta S > 0$			
	vided state is more efficient				
a) In has larger activ					
	ne of the reactants more effi	ciently			
c) It has large surfac		·			
d) All of the above					
•	e of natural emulsion is stab	ilised by			
a) Fat	b) Water	c) Casein	d) Mg ²⁺ ions		

150. Identify the correct states	ments regarding enzymes.				
a) Enzymes are specific b $(T \sim 1000 \text{ K})$	piological catalysts that can	normally function at very l	nigh temperatures		
b) Enzymes are normally	b) Enzymes are normally heterogeneous catalysts that are very specific in their action.				
c) Enzyme are specific bi	ological catalysts that cann	ot be poisoned			
d) Enzyme are specific bi	ological catalysts that poss	sess well defined active site	S		
151. BaSO ₄ acts asfor Pd in	Rosenmund's reaction:				
a) Promoter	b) Poison	c) Autocatalyst	d) None of these		
152. Which is not shown by so	ols?				
a) Adsorption	b) Tyndall effect	c) Flocculation	d) Paramagnetism		
153. Bredig arc method canno	t be used to prepare colloi	dal solution of :			
a) Pt	b) Fe	c) Ag	d) Au		
154. The reaction between alk	cali and fat is called:				
a) Saponification	b) Hydrolysis	c) Distillation	d) dehydration		
155. A colloidal system involve	es:				
a) A state of dissolution	b) A state of dispersion	c) A state of suspension	d) None of these		
156. Conversion of milk into c	urd is made by the enzyme	2:			
a) Diastase	b) Invertase	c) Micoderma bacilli	d) Lactic bacilli		
157. Identify the gas which is	readily adsorbed by activat	ted charcoal			
a) H ₂	b) N ₂	c) SO ₂	d) O ₂		
158. Which is not correct for h	eterogeneous catalysis?				
a) The catalyst decreases	the energy of activation				
b) The surface of catalyst	plays an important role	>			
c) The catalyst actually fo	orms a compound with rea	ctants			
d) There is no change in t	the energy of activation				
159. The phenomenon observ	ed when a beam of light is	passed through a colloidal s	solution is		
a) Cataphoresis	b) Delectrophoresis	c) Coagulation	d) Tyndall effect		
160. Isoelectric point is the pl	l at which colloidal particle	es			
a) Become electrically ch	arged	b) Can move towards res	pective electrodes		
c) Coagulate		d) None of the above			
161. In homogeneous catalysis	S				
a) The reactant, catalyst a	and products are in the san	ne phase			
b) The catalyst and reacta	ants are in the same phase				
c) The catalyst and produ	acts are in the same phase				
d) The reactants and pro	ducts are in the same phase	e			
162. The enzyme which can ca	ntalyse the conversion of gl	ucose of ethanol is :			
a) Zymase	b) Invertase	c) Maltase	d) diastase		
163. The addition of alcohol to	o a saturated aqueous solu	tion of calcium acetate first	forms a sol and then sets to		
a gelatinous mass called s	solid alcohol which is a :				
a) Solid sol	b) Aerosol	c) Solid form	d) gel		
164. Colloidal solution commo	only used in treatment of ey	ye disease is :			
a) Colloidal sulphur	b) Colloidal silver	c) Colloidal gold	d) Colloidal antimony		
165. In Zeigler-Natta polymer	isation of ethylene, the acti	ve species is :			
a) AlCl ₃	b) Et ₃ Al	c) CH ₂ CH ₂	d) Ti ^{III}		
166. If liquid is dispersed in so	olid medium, this is called				
a) Sol	b) Emulsion	c) Liquid aerosol	d) gel		
167. In which of these process			- -		
a) Oxidation of ammonia	_	b) Hardening of oils			
c) Protection of synthetic	=	d) Synthesis of methanol			

- 168. Which is the characteristic of catalyst?
 - a) It changes equilibrium point

b) It initiates the reaction

c) It alters the rate of reaction

- d) It increases average KE of molecules
- 169. Which one of the following graphs represents Freundlich adsorption isotherm?

- 170. ZSM-5 is used to convert:
 - a) Alcohol to petrol
- b) Benzene to toluene
- c) Toluene to benzene
- d) Heptane to toluene

- 171. Which acts as inhibitor for knocking in combustion of petrol?
 - a) $(C_2H_5)_4$ Pb
- b) Ni(CO)₄
- c) Both (a) and (b)
- d) None of these
- 172. Which of the following electrolytes is least effective in coagulation ferric hydroxide solution?

- b) K₂SO₄
- c) K₂CrO₄
- d) $K_4[Fe(CN)_6]$

173. Mark the correct statement about given graph

Progress of reaction

- a) X is threshold energy level
- b) Y and Z are energy of activation for forward and backward reaction respectively.
- c) Q is heat of reaction and reaction is exothermic
- d) All of the above
- 174. From the following which is not an emulsifier?
 - a) Agar

b) Milk

c) Gum

- d) Soap
- 175. According to Langmuir adsorption isotherm the amount of gas adsorbed at very high pressure:
 - a) Reaches a constant limiting value
 - b) Goes on increasing with pressure
 - c) Goes on decreasing with pressure
 - d) Increases first and decreases later with pressure
- 176. The enzyme ptyalin used for digestion of food is present in :
 - a) Saliva
- b) Blood
- c) Intestine
- d) Adrenal glands

- 177. Flocculation value is expressed in terms of:
 - a) Millimole per litre
- b) Mole per litre
- c) Gram per litre
- d) Mole per millilitre
- 178. Formation of ammonia from H₂and N₂ by Haber's process using Fe is an example of
 - a) Heterogeneous catalysis

b) Homogeneous catalysis

c) Enzyme catalysis

- d) Non-catalytic process
- 179. Identify the correct statement for the adsorption of a real gas on charcoal at 1 atm and 15°C
 - a) Gases which are small in molecular size are adsorbed more
 - b) Decrease in pressure increases the extent of adsorption

PHONE NO: 8583042324 Page | 14

c) Gases which are easily fiqueflable are ausorbed i		
d) Gas which has a behaviour similar to an inert gas	s is adsorbed more	
180. Which statement about enzymes is not correct?		
a) Enzymes are in colloidal state		
b) Enzymes are catalysts		
c) Enzymes can catalyse any reacion		
d) Urease is an enzyme		
181. Gold number is the index for :		
a) Protective power of lyophilic colloid		
b) Purity of gold		
c) Metallic gold		
d) Electroplated gold		
182. Emulsions are normally prepared by shaking vigoro	ously the two components t	ogether with same kind of
emulsifying agent to stabilize the product. The emu	lsifying agent may be	
a) Soap b) Surfactant	c) Lyophilic solution	d) All of these
183. Choose the incorrect statement		
a) Non-ionic surfactant molecules cluster together	in clumps	
b) Ionic surfactants tend to disrupt by electrostatic	repulsions between head g	roups
c) Micelles look like flattered spherical structure at	CMC	-
d) None of the above		
184. The cementation process is :		
a) Gel formation b) Emulsion formation	c) Either of them	d) None of them
185. In which of the following, Tyndall effect is not obser	rved?	
a) Smoke b) Emulsion	c) Sugar solution	d) Gold sol
186. Enzymes are		
a) Microorganism	b) Proteins	
c) Inorganic compounds	d) Moulds	
187. Adsorption is multilayer in the case of	CATION	
a) Physical adsorption b) Chemisorption	c) Both (a) and (b)	d) None of these
188. There is formation of an electrical double layer of o	pposite charges on the surf	ace of colloidal particles, so
a potential develops which is known as	-	-
a) Electrokinetic potential	b) Zeta potential	
c) Streaming potential	d) Colloidal potential	
189. Which of the following is wrong?		
a) A catalyst remain unchanged at the end of chemi	cal reaction	
b) A catalyst is specific in action		
c) A catalyst does not changes the state of equilibrium	um in a chemical reaction	
d) A catalyst can start a reaction		
190. Which requires catalyst:		
a) $S + O_2 \rightarrow SO_2$ b) $2SO_2 + O_2 \rightarrow 2SO_2$	c) $C + O_2 \rightarrow CO_2$	d) All of these
191. Which of the following impurities present in colloid		
a) Sodium chloride b) Potassium sulphate	c) Urea	d) Calcium chloride
192. The minimum energy level necessary to permit a re	eaction to occur is :	•
a) Internal energy b) Threshold energy	c) Activation energy	d) Free energy
193. The movement of sol particles under an applied ele	-	,
a) Electrodeposition b) Electrodialysis	3 77	d) Electrophoresis
194. The arsenious sulphide sol has negative charge. The	=	
a) $0.1 N \text{ Zn}(\text{NO}_3)_2$ b) $0.1 N \text{ Na}_3 \text{PO}_4$	c) 0.1 <i>N</i> ZnSO ₄	d) 0.1 <i>N</i> AlCl ₃
195. Among the electrolytes Na_2SO_4 , $CaCl_2$, $Al_2(SO_4)_3$ an		-
	-	

WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

GPLUS EDUCATION

	sol is			
	a) Na ₂ SO ₄	b) CaCl ₂	c) $Al_2(SO_4)_3$	d) NH ₄ Cl
196	. An example of solid-solid	· -	7 2 473	, +
	a) Smoke	b) Cake	c) Synthetic gems	d) Pumice stone
197	_		o the volume of a solute par	
	could be		•	J
	a) $\frac{V_C}{V_c} \approx 10^3$	b) $\frac{V_C}{V_S} \approx 10^{-3}$	V_C	d) $\frac{V_C}{V_C} \approx 1$
	$a_{1} \frac{\overline{V_{S}}}{V_{S}} \approx 10$	$V_S \approx 10$	$\frac{c}{V_S} \approx 10$	$u_J \frac{\overline{V_S}}{V_S} \approx 1$
198	. The volume of colloidal p	articles V_{c} as compared to	the volume of solute parti	cles in true solution $\mathit{V}_{\!s}$ could
	be:			
	a) ~1	b) $\sim 10^3$	c) $\sim 10^2$	d) $\sim 10^{-3}$
199	. Mention the type of react	ion to obtain Au(sol).		
	Reaction,			
		$0 \rightarrow 2$ Au(sol) + 3HCOOH +		
	a) Hydrolysis		b) Oxidation	
	c) Reduction		d) Double decomposition	
200		_	old solution in the presence	e of 0.025 g of starch, the
	coagulation is prevented	because starch has the foll	owing gold numbers	
	a) 25	b) 0.025	c) 0.25	d) 2.5
201		al particles towards their r	espective electrodes in the	presence of an electric field
	is known as			
	a) Electrolysis		b) Brownian movement	
	c) Dialysis	The second	d) Electrophoresis	
202	. Lyophilic sols are			
	a) Irreversible sols		b) They are prepared fro	m inorganic compounds
	c) Coagulated by adding of		d) Self-stabilising	
203	. Clouds, mist, fog and aero			
	a) Solid in a gas	b) Gas in a solid	c) Liquid in a gas	d) Gas in a liquid
204	Protons accelerate the hy	•	n example of :	
	a) A heterogeneous cataly	ysis		
	b) An acid-base catalysis			
	c) A promoter			
	d) A negative catalyst			
205				the manganous salt formed
	=	yses the reaction. The man	=	D.M. C.1
006	a) A promoter	b) A positive catalyst	c) An autocatalyst	d) None of these
206	In Freundlich Adsorption	· · · · · · · · · · · · · · · · · · ·	1 IS:	
	a) 1 in case of physical ac	-		
	b) 1 in case of chemisorpt			
	c) Between 0 and 1 in all			
207	d) Between 2 and 4 in all	cases		
207	Purple of cassius is			
	a) Colloidal solution of Au			
	b) Colloidal solution of Pt			
	c) Colloidal solution of Ag	-		
200	d) Colloidal solution of As		. (17.)	
208	_		ount of <i>X g)</i> on a solid(in an	iount of <i>m g</i>)at constant
	temperature can be expre		У 1	
	a) $\log \frac{X}{m} = \log p + \frac{1}{n} \log k$		b) $\log \frac{X}{m} = \log k + \frac{1}{n} \log p$)
	m n		n n	

X		X = 1	
c) $\frac{X}{m} \propto p^n$		$d)\frac{X}{m} = \log p + \frac{1}{n}\log k$	
209. Which acts as poison to	finely divided Fe in Haber's	process for the manufactu	re of NH ₃ ?
a) CO ₂	b) NO	c) CO	d) N ₂
210. The fresh precipitate ca	an be transformed in colloida	al state by	
a) Peptization	b) Coagulation	c) Diffusion	d) None of these
211. The curve showing the	variation of adsorption with	pressure at constant temp	perature is called
a) An isostere	b) Adsorption isotherm	c) Adsorption isobar	d) None of these
212. Tyndall effect shown by			
a) Scattering of light by	•	b) Movement of particle	
c) Reflection of light by	-	d) Coagulation of particl	es
213. Negative catalyst or inh			
a) Which retards the ra			
b) Takes the reaction in			
c) Promotes the side re	eaction		
d) None of the above			
214. Which is not a colloid?	1) 11 11) D 1 1	15 84:11
a) Chlorophyll	b) Egg white	c) Ruby glass	d) Milk
215. Which forms micelles in	n aqueous solution above cel	rtain concentration?	
a) Glucoseb) Dodecyl trimethyl ar	mmanium ahlarida		
c) Urea	iiiioiiiuiii ciiioi iue		
d) Pyridinium chloride			
216. Cod liver oil is:	31		
a) Fat dispersed in wat	er U		
b) Water dispersed in f			
c) Water dispersed in c			
d) Fat dispersed in fat	POLICE FOLL	CATION	
217. Colour of colloids depe	nd on which of the factors?	PETITOIT	
a) Size	b) Mass	c) Charge	d) Nature
218. Colloidal gold is given l	by injection to act as	, 0	·
a) Disinfectant		b) Anticancer agent	
c) Germ killer		d) Tonic to raise vitality	of human systems
219. The outcome of interna	ıl liquid of gels on shear is ca	ılled :	
a) Synerisis	b) Thixotropy	c) Swelling	d) None of these
220. A catalyst in the finely	divided form is most effectiv	e because :	
a) Less surface area is a	available		
b) More active centres			
c) More energy gets sto	ored in the catalyst		
d) None of the above			
221. Gold numbers of protection		re 0.50, 0.01, 0.10, and 0.00)5, respectively. The correct
order of their protectiv	-		
	b) $C < B < D < A$	_	_
222. The coagulation of 10 c		prevented by addition of 0	0.025 g of starch to it. The
gold number of starch i			N of
a) 0.025	b) 0.25	c) 2.55	d) 25
223. 50 mL of 1 M oxalic aci	_		
-	hat is the amount of oxalic ac		
a) 3.15 g	b) 3.45 g	c) 6.30 g	d) None of these

224	Colloidal sol is :						
	a) True solution	b) Suspension	c) Heterogeneous sol	d) Homogeneous sol			
225	The blue colour of the wat	ter of the sea is due to :					
	a) Refraction of the blue light by the impurities in sea water						
	b) Reflection of blue light by sea water						
	c) Scattering of blue light	by sol paricles					
	d) Absorption of other col	lours except the blue colou	r by water molecules				
226	The spontaneous outcome	e of internal liquid from gel	s is called :				
	a) Synerisis	b) Thixotropy	c) Swelling	d) None of these			
227	Solid aerosol is an exampl	le of colloidal system of :					
	a) Liquid dispersed in gas	· · · · · · · · · · · · · · · · · · ·					
	b) Gas dispersed in gas						
	c) Solid dispersed in gas						
	d) Solid dispersed in liqui	d					
228		o coagulate the negative co	lloid?				
	a) ZnSO ₄	b) Na ₃ PO ₄	c) AlCl ₃	d) $K_4[Fe(CN)_6]$			
229	•	to retard the oxidation of cl	hloroform?	7 12 (702			
	a) H ₂ 0	b) C ₂ H ₅ OH	c) Glycerol	d) H ₂ SO ₄			
230	· -	the aggregates formed in so	· ·	, <u> </u>			
	a) Colloidal electrolyte	00 0	b) Colloidal non-electroly	te			
	c) Non associated colloids	5	d) None of the above				
231		istics are changing by the a	-	action at constant			
	temperature?						
	-	quilibrium constant (iii)Rea	action entropy (iv)Reaction	n enthalpy			
	a) (i) only	b) (iii) only	c) (i) and (ii) only	d) All of these			
232	The colour of sky is due to			,			
	a) Transmission of light		b) Wavelength of scattere	d light			
	c) Adsorption of light by a	atmospheric gases	d) All of the above				
233.	Egg albumin is :	annospirotio Bases					
	a) Reversible colloid	b) Lyophilic colloid	c) Protective colloid	d) All of these			
234	-	orbed in chemical adsorption		u) 1 m e1 mese			
201	a) One	b) Two	c) Many	d) Zero			
235	Blood may be purified by	5) 1 110	c) Hally	u) zero			
255	a) Dialysis	b) Electro-osmosis	c) Coagulation	d) Filtration			
236	•	lysis and awarded Nobel Pi	, 0	a) i iid adon			
250	a) Berzelius	b) Kolbe	c) Wholer	d) Rutherford			
237	The sky looks blue due to	b) Roibe	c) wholei	a) Ratheriora			
237	a) Dispersion effect	b) Reflection effect	c) Transmission effect	d) Scattering effect			
238	* *	give alcohol takes place in	•	u) Scattering effect			
230	a) Enzymes	b) CO ₂	c) Air	d) N ₂			
230	Efficiency of catalyst depe	, -	C) All	u) N ₂			
237	a) Concentration	b) Molecular mass	c) Size of particles	d) None of these			
240	•	ed physically on charcoal i	=	u) None of these			
240	a) Temperature and press		iici cases with .				
	b) Temperature and decreases						
	c) Pressure and decreases	s with temperature					
2/1	d) None of the above						
41 1.	Which statement is wrong	g: lter the equilibrium of a rea	action				
	aj The catalyst uoes hot a	ici die equiibituiii oi a lea	action				

- b) Reaction with higher activation energy has higher rate constant
- c) In the endothermic reaction, the activation energy of the reaction is higher than that of heat of reaction
- d) Half-life period of a first order reactions is independent of initial concentration
- 242. During hydrogenation of oils, catalyst commonly used is:
 - a) Pd or CuCl₂
- b) Finely divided Ni

- d) V_2O_5
- 243. Which of the following reactions is an example of heterogeneous catalysis?
 - a) $0_3 + 0 \stackrel{\text{Cl}}{\rightarrow} 20_2 \text{(gas phase)}$
 - b) $2CO(g) + O_2(g) \xrightarrow{NO} 2CO_2(g)$

- d) $CO(g) + 2H_2(g) \xrightarrow{Cu,ZnO-Cr_2O_3} CH_3OH(l)$
- 244. Which is not a macromolecule?
 - a) Palmitate
- c) DNA

d) Insulin

- 245. Physical adsorption increases when
 - a) Temperature increases
 - c) Temperature remains constant

- b) Temperature decreases
- d) Temperature increases above 60°C

- 246. Soap removes grease by:
 - a) Adsorption
- b) Emulsification
- c) Coagulation
- d) None of these
- 247. Which of the following is correct according to adsorption isotherm?
 - a) $\frac{x}{m} \propto p^0$
- b) $\frac{x}{m} \propto p^1$
- c) $\frac{x}{m} \propto p^{1/n}$
- d) All of these
- 248. Which of the following statements is incorrect regarding physisorptions?
 - a) It occurs because of van der Waals' forces
 - b) More easily liquefiable gases are adsorbed readily
 - c) Under high pressure it results into multimolecular layer on adsorbent surface
 - d) Enthalpy of adsorption ($\Delta H_{\rm adsorption}$) is slow and positive
- 249. In which process, a catalyst is not used?
 - a) Deacon's process
- b) Solvay's process
- c) Chamber process
- d) Haber's process

- 250. Hydrolysis of urea is an example of
 - a) Homogeneous catalysis

- b) Heterogeneous catalysis
- c) Biochemical catalysis d) Zeolite catalysis
- 251. Which of the following is a heterogeneous catalysis? a) $2C_2H_5OH \xrightarrow{Conc H_2SO_4} C_2H_5OC_2H_5 + H_2O$ c) $SO_2 + \frac{1}{2}O_2 \xrightarrow{NO_2} SO_3$
- b) $2CO + O_2 \xrightarrow{NO} CO_2$

d) $SO_2 + \frac{1}{2}O_2 \xrightarrow{V_2O_5} SO_3$

- 252. Milk is
 - a) Fat dispersed in water

b) Fat dispersed in milk

c) Fat dispersed in fat

- d) Water dispersed in milk
- 253. Which of the following is the best protective colloid?
 - a) Gelatin (Gold no.=0.005)

b) Gum Arabic (Gold no. =0.15)

c) Egg albumin (Gold no.=0.08)

- d) None of the above
- 254. Which of the following reactions lead to the formation of colloidal solution?
 - a) $Cu + HgCl_2 \rightarrow CuCl_2 + Hg$

- b) $2HNO_3 + 3H_2S \rightarrow 3S + H_2O + 2NO$
- c) $2Mg + CO_2 \rightarrow 2MgO + C$ d) $Cu + CuCl_2 \rightarrow 2CuCl$

255.		rticles or sol destruction m	ay be brought in by :	
	a) Cataphoresis			
	b) Adding oppositively chc) Adding electrolyte	larged soi		
	, ,			
256	d) All of the above	h atawa gan agus gatalwais?		
250.	Which is an example of a	=		
	a) Formation of SO_3 in the	=		
	b) Formation of SO ₃ in the	in the presence of H ⁺ ions		
	,	Cl ₂ in the presence of mo	cturo	
257	-		eds for precipitation the mi	nimum amount of:
237.	a) Aluminium chloride	b) Potassium sulphate	c) Sodium hydroxide	d) Hydrochloric acid
258	The Brownian motion is o		c) Soutum nyuroxiuc	a) Hydrocilloric acid
250.		ons within the liquid phase	1	
		on between charges on the		
	= = = = = = = = = = = = = = = = = = =	-	n on the colloidal particles	
	d) Convective currents	s of the dispersion media	ir on the conordar particles	
259.	•	ch adsorption isotherm eq	uation at high pressure?	
2071				d) None of these
	a) $\frac{x}{m} = k$	b) $\frac{x}{m} = kp^{1/n}$	c) $\frac{x}{m} = kp$,
260.	An example for autocataly	ysis is		
	a) Oxidation of NO to NO ₂		b) Oxidation of SO ₂ to SO	-
	c) Decomposition of KClo	The second of th	d) Oxidation of oxalic acid	d by acidified KMnO ₄
261.	The action of enzymes in			
	a) Supply energy to tissue	es	b) Create immunity	
	c) Circulate oxygen	1	d) Enhance the rate of bio	
262.			speed of the reaction increa	
		eactant molecules at the ac	ctive centres of the catalyst	becomes high due to
	adsorption			
	= = = = = = = = = = = = = = = = = = =	=	y of the molecules becomes	s large
		eat which increases the sp		
	•	activation energy of the re	eaction	
263.	A catalyst :			
	a) Alter the reaction mecl			
	b) Decreases the activation			
	c) Increases collision free			
264	,	kinetic energy of reacting s	species	
264.	The addition of 1% alcohol		a) Dagitirra gatalreat	d) Nagativa astalyat
265	a) Auto-catalyst	b) Bio-catalyst	c) Positive catalyst	d) Negative catalyst
203.		es not form anionic micell		4) C H (NH) Cl
266	a) C ₁₂ H ₂₅ COONa	b) $C_{12}H_{25}SO_4Na$	c) $C_{12}H_{25}SO_3Na$	d) $C_{12}H_{25}(NH_3)_3Cl$
200.		not a method of preparation		
	a) Electrical dispersionc) Coagulation		b) Peptizationd) Mechanical dispersion	
267	, ,	x/cm ³ If 1.0 × 10 ⁻⁴ a of ac		or to give a col having
۷0/.			ld is dispersed in 1 L of wat Imber of gold particles per I	
	a) 1.9×10^{12}	b) 6.3 \times 10^{14}	c) 6.3 \times 10^{10}	d) 2.4×10^6
268			of the following is correct	
200	=	iasor puon isomerin, wille	-	•
	a) $\frac{x}{-} \propto p^1$		b) $\frac{x}{-} \propto p^{1/n}$	

c)
$$\frac{x}{m} \propto p^0$$

d) All of the above are correct for different ranges of pressure

- 269. Catalytic poisoners are usually the same as:
 - a) Poison for human body
 - b) Enzyme for human body
 - c) Vitamins for human body
 - d) None of the above
- 270. The reactions in which catalyst and reactant have one phase are known as:
 - a) Gaseous reactions
 - b) Homogeneous catalytic reactions
 - c) Heterogeneous catalytic reactions
 - d) None of the above
- 271. Mutarotation of glucose is an example of:
 - a) Acid-base catalysis
 - b) Homogeneous catalysis
 - c) Both (a) and (b)
 - d) None of these
- 272. Air can oxidize sodium sulphite in aqueous solution but cannot do so in the case of sodium arsenite. If however, air is passed through a solution containing both sodium sulphite and sodium arsenite then both are oxidized. This is an example of:
 - a) Positive catalysis
- b) Negative catalysis
- c) Induced catalysis
- d) Autocatalysis

- 273. Which statement is not correct?
 - a) All the soaps are detergents
 - b) Detergents possess cleansing action in addition to surface activity
 - c) All the surfactants are detergents
 - d) Surfactants possess surface activity
- 274. Which of the following is mismatched?

Dispersed	Dispersed	Specific	JUALIOI	N	
Phase	medium	name			
a) Liquid	liquid	emulsion	b) Solid	solid	solid sol
c) Liquid	gas	aerosol	d) Gas	solid	foam
Gold number	of few colloids a	re given below,			

275.

Gelatin = 0.005

Starch = 25

Egg albumin = 0.08

Gum Arabic = 0.10

Which is best protective colloid?

- a) Gelatin
- b) Starch
- c) Egg albumin
- d) Gum arabic

- 276. Which gas is adsorbed strongly by charcoal?

b) N_2

c) H_2

d) NH₃

- 277. Non-electrolyte colloidal surfactants is:
 - a) C₁₇H₃₅COONa

b)
$$R$$
—SO₃Na

c) $C_nH_{2n+1}(OCH_2CH_2)_xOH$

278. Which graph is correctly represented the action of catalysts?

$$X + Y \rightleftharpoons A + B$$

d) All of these

- 279. In which of the following reactions colloids are not prepared by the double decomposition method?
 - a) $2H_3AsO_4 + 3H_2S \rightarrow As_2S_3 + 6H_2O$
- b) $3K_4[Fe(CN)_6] + 4FeCl_3 \rightarrow Fe_4[Fe(CN)_6]_3 + 12KCl$

c) $Mg(CN)_2 + H_2S \rightarrow HgS + 2HCN$

d) $Cu + HgCl_2 \rightarrow CuCl_2 + Hg$

280. Which statement is wrong?

- a) Haber's process of NH₃ requires iron as catalyst
- b) Friedel-Crafts reaction requires anhydrous AlCl₃
- c) Hydrogenation of oils requires iron as catalyst
- d) Oxidation of SO₂ to SO₃ requires V₂O₅
- 281. Which of the following cannot form the micelles?
 - a) Sodium benzoate

- b) Sodium lauryl sulphate
- c) Sodium alkyl benzene sulphonate
- d) Sodium oleate

- 282. Which is an emulsifier?
 - a) Soap
- b) Oil

c) NaCl

- d) Water
- 283. Which of the following has maximum value of flocculating power?
 - a) Pb²⁺

b) Pb⁴⁺

c) Sr^{2+}

d) Na⁺

- 284. Which is not lyophilic colloid?
 - a) Milk

b) Gum

c) Fog

d) blood

- 285. Which is not correct?
 - a) Every solid substance can be brought in colloidal state
 - b) Every solid substance can be made to behave like a lyophobic colloid
 - c) Addition of electrolytes coagulates the sol
 - d) Colloidal particles carry charges
- 286. Which of the following types of catalysis can be explained by the adsorption theory?
 - a) Homogeneous catalysis
 - b) Acid-Base catalysis
 - c) Heterogeneous catalysis
 - d) Enzyme catalysis
- 287. Which type of metals form effective catalysts?
 - a) Alkali metals
- b) Transition metals
- c) Alkaline earth metals
- d) Radioactive metals

- 288. Milk is an example of which of the following?
 - a) True solution
- b) Gel

- c) Suspension
- d) Emulsion
- 289. The decomposition of H_2O_2 may be checked by adding a small quantity of phosphoric acid. This is an example of:
- a) Neutralization
- b) Negative catalysis
- c) Positive catalysis
- d) Catalytic poisoning

- 290. Zeolites are:
 - a) Water softener
- b) Catalyst
- c) Both (a) and (b)
- d) None of these

- 291. Which one of the following is a lyophilic colloidal solution?
 - a) Smoke

b) Gold sol

c) Starch aqueous	solution	d) Cloud	
-	oning, catalytic poisons act by	-	
a) Coagulating the			
·	bining with any one of the rea	ctants	
	bining with the catalyst		
-	lly adsorbed on the active cent	tres of the catalyst	
			following relations is related to
adsorption process		,,	
a) $\frac{x}{m} = P \times T$			
b) $x/m = f(P)$ at G			
c) $x/m = f(T)$ at G			
d) $P = f(T)$ at cons	stant (x/m)		
294. Which is adsorbed	into maximum amount by act	ivated charcoal?	
a) N ₂	b) CO ₂	c) Cl ₂	d) O ₂
295. Fog is a colloidal so	olution of		
a) Solid in gas	b) Liquid in gas	c) Gas in liquid	d) Gas in solid
296. A catalyst is a subs	tance which :		
a) Increases equili	brium constant of reaction		
b) Changes the equ	iilibrium conc.of reaction		
c) Shortens the tim	ne to reach equilibrium		
	ergy of the reaction		
	pplied to stop bleeding becaus		
	late negatively charged blood		
b) Fe ³⁺ ions coagu	late positively charged blood	solution	
c) Cl [–] ions coagula	ite positively charged blood so	olution	
d) Cl [–] ions coagula	ite negatively charged blood s	olution	
298. The formation of co	olloid from suspension is	JCATION	
a) Peptisation	b) Condensation	c) Sedimentation	d) Fragmentation
299. Which is not a coll	oidal solution of gas in liquid?		
a) Froths			
b) Foams with tiny	bubbles		
c) Mist			
d) Whipped cream			
300. In chemical reaction	-		
a) Alters the amou	-	b) Lowers the activat	
	<i>H</i> of forward reaction	d) Increases the ΔH o	
			rption is basis of this theory)?
	nere x is amount of gas adsorb	ed on mass m' at pressure	e P
b) $\log \frac{x}{m} = \log K + \frac{1}{2}$	16		
	pressure and $\frac{x}{m} = K$ at high pro-	essure	
d) All of the above			
=	n the contact process of sulph	uric acid is :	
a) Copper			
b) Iron	the production is		
= = =	oxide or Pt (asbestos)		
d) Ni	C 11 11 11 11 11 11 11 11 11 11 11 11 11		
303. When adsorption of	of oxalic acid is carried out on	activated charcoal, the acti	vated charcoal is known as

PHONE NO: 8583042324 P a g e | 23

3	a) Adsorbate 304. The basic principal of co	b) Adsorbent ttrell's precipitator is	c) Adsorber	d) All of these
	a) Le-Chatelier's principl		b) Peptisation	
	c) Neutralisation of char		d) Scattering of light	
3	305. The equation for Freund		, 0 0	
	a) $\frac{x}{m} = kp^{1/n}$	b) $x = mkp^{1/n}$	c) $x/m = kp^{-n}$	d) All of these
3	306. Butter is a colloid form in	n which :		
	a) Fat is dispersed in soli			
	b) Fat globules are dispe			
	c) Water is dispersed in			
	d) Suspension of casein i			
3	307. Peptization involves			
	a) Precipitation of colloid	dal particles		
	b) Disintegration of collo	_		
	c) Evaporation of disper	sion medium		
	d) Impact of molecules o	f the dispersion medium on	the colloidal particles	
3	308. In negative catalysis			
	a) The speed of chemical	reaction slows down		
	b) Speed of the chemical	reaction remain the same		
	c) Speed of the chemical	reaction increases		
	d) None of the above			
3	309. Gold number :	< 1. ·		
	a) May be defined as the	milligram of the dry materi	al of which the hydrophilic	sol is prepared and which
	when added to 10 mL	of red gold sol, will prevent	it from coagulation on the	addition of 1 mL of 10 per
	cent sodium chloride :	solution		
	· ·	milligram of the dry materi		
		f red gold sol will prevent it	from coagulation on the a	ddition of 10 mL of 10 per
	cent sodium chloride :		7112011	
		milligram of the dry materi		
		f red gold sol will prevent it	from coagulation on the a	ddition of 1 mL of 1 per
	cent sodium chloride s	solution		
	d) None of the above			
3	310. Which of the following is	not a property of colloidal :		
	a) Heterogeneity		b) Particle size > 100 mm	1
_	c) Tyndall effect		d) Brownian movement	
3	311. Lyophilic sols are more s		ecause :	
	a) The colloidal particles	_		
	b) The colloidal particles	-		
	c) The colloidal particles			
_	_	rostatic repulsions betweer		_
3	312. On adding 1 mL of solution			J.25g of starch, the
		nted. The gold number of sta		1) 250
-	a) 0.25	b) 0.025	c) 2.5	d) 250
3	313. Associated colloid amon		a) Callada a	J) C- J:tt-
7	a) Enzyme	b) Proteins	c) Cellulose	d) Sodium stearate
3	314. KClO ₃ on heating decom	nposes into NCI and O2. If	some who ₂ is added the	reaction goes much laster
	because:	aiyo oyyaon		
	a) MnO ₂ decomposes to	=		
	b) MnO ₂ provides heat b	y reacting		

WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

GPLUS EDUCATION

- c) Better contact is provided by MnO₂
- d) MnO2 acts as a catalyst
- 315. Which of the following is incorrect for electrophoresis?
 - a) In electrophoresis, solution migrates either to anode or to the cathode depending upon the positively or negatively charged solution
 - b) Electrophoresis is a useful method for finding the charge of a solution
 - c) Electrophoresis with a high potential is helpful in destroying an emulsion
 - d) Colloids are uncharged particles and do not migrate towards the electrodes when electric field is applied
- 316. Blue colour of the sky and red colour of the sunsets are due to
 - a) Scattering of light from the sun
 - b) Scattering of light from particles of dust in the atmosphere
 - c) Refraction of blue light by impurities in sea water
 - d) Scattering of light due to ozone layer
- 317. AlCl₃ in Friedel-Crafts reaction acts as:
 - a) Oxidizing agent
- b) Reducing agent
- c) Acid catalyst
- d) None of these
- 318. Potassium stearate is obtained by the saponification of an oil or fat. It has the formula

$$CH_3 - (CH_2)_{16} - COO^-K^+$$

The molecular has a lyophobic end $[CH_3]$ and a lyophilic end COO^-K^+ .

Potassium stearate is an example for

a) Lyophobic colloid

b) Lyophilic colloid

c) Multimolecular colloid

- d) Associated colloid or micelle
- 319. The coagulating power of an electrolyte for arsenioussulphide decreases in order
 - a) $Na^+ > Al^{3+} > Ba^{2+}$
- b) $PO_4^{3-} > SO_4^{2-} > Cl^-$
- c) $C\bar{l} > SO_4^{2+} > PO_4^{3-}$
- d) $Al^{3+} > Ba^{2+} > Na^{+}$

- 320. A biological catalyst is
 - a) The N₂ molecule
- b) An enzyme
- c) An amino acid
- d)
- 321. Which of the following is most suitable to disperse benzene in water?

- 322. In colloid particles, range of diameter is
 - a) 1 to 100 nm
- b) 1 to 1000 cm
- c) 1 to 1000 mm
- d) 1 to 100 km

- 323. Catalysis is a phenomenon in which
 - a) A substance alters the speed of the chemical reaction
 - b) Heat is evolved in a chemical reaction
 - c) The reaction is induced by light
 - d) None of the above
- 324. Among the following, the surfactant that will form micelles in aqueous solution at the lowest molar concentration at ambient conditions, is
 - a) $CH_3(CH_2)_{15}N^+(CH_3)_3Br^-$

b) $CH_3(CH_2)_{11}OSO_3 Na^+$

c) $CH_3(CH_2)_6COO^-Na^+$

d) $CH_3(CH_2)_{11}N^+(CH_3)_3Br^-$

325. When a sulphur sol is	evaporated sulphur is obt	ained. On mixing with water	sulphur sol is not formed. The
sol is			
a) Lyophilic	b) Reversible	c) Hydrophobic	d) Hydrophilic
326. Which is correct in the	e case of van der Waals' ad	lsorption?	
a) High temperature, l	low pressure	b) Low temperature, hi	gh pressure
c) Low temperature, l	ow pressure	d) All of the above	
327. Sulphur colloid is prep	pared by		
a) Mechanical dispers	ion	b) Oxidation	
c) Electrical dispersio	n	d) Reduction	
328. The precipitate of Fe($OH)_3$ in presence of water	containing some FeCl ₃ beco	nes colloidal on gentle
shaking. This is an exa	imple of		
a) Electroosmosis	b) Coagulation	c) Peptization	d) Electrophoresis
329. Cod liver oil is			
a) An emulsion	b) Solution	c) Colloidal solution	d) Suspension
330. Animal charcoal is use	ed in decolourising colour	of liquids because it is a good	l
a) Adsorbate	b) Adsorbent	c) Oxidising agent	d) Reducing agent
331. Which of the following	g electrolyte will have max	kimum flocculation value for l	Fe(OH) ₃ sol?
a) NaCl	b) Na ₂ S	c) $(NH_4)_3PO_4$	d) K ₂ SO ₄
332. Which of the following	g is a lyophobic colloidal s	olution?	
a) Aqueous starch sol	ution	b) Aqueous protein sol	ution
c) Gold sol		d) Polymer solutions in	some organic solvents
333. Which is an example of	of auto-catalyst?		
a) Hydrolysis of meth	yl acetate	>	
b) Decomposition of T	'NG		
c) Oxidation of oxalic	acid by KMnO ₄		
d) All of the above			
334. Pd can adsorb in the s	pace between its atoms, 9	00 times its volume of hydro	gen. This process is called
a) Absorption	b) Desorption	c) Adsorption	d) Chemisorptions
335. The gold number of ge	elatin, haemoglobin and sc	odium acetate are 0.005, 0.05	and 0.7 respectively. The
protective actions will	l be in order		
a) Gelatin < haemoglo	obin < sodium acetate	b) Gelatin > haemoglob	oin > sodium acetate
c) Haemoglobin > gel	atin > sodium acetate	d) Sodium acetate > ge	latin > haemoglobin
336. A catalyst is a substan	ce which		
a) Increases the equili	ibrium constant of the rea	ction	
b) Increases equilibriu	um concentration of produ	ıcts	
c) Does not alter the r	eaction mechanism		
d) Changes the activat	tion energy of the reaction	L	
337. The extent of adsorpti	on of a gas on a solid depe	ends on	
a) Nature of the gas		b) Pressure of the gas	
c) Temperature of the	gas	d) All of these	
338. Which of the following	g statements is false for en	zyme?	
a) pH affects their wo	rk	b) Temperature affect t	heir work
c) They always increa	se E_a	d) Their reactivity is sp	ecific
339. Fog is a colloidal solut	ion of		
a) Liquid particles dis	persed in gas	b) Gaseous particles dis	spersed in a liquid
c) Solid particles disp	ersed in liquid	d) Solid particles dispe	rsed in gas
340. The activity and select	tivity of zeolites as catalys	t is based on :	
a) Their pore size			
b) Size of their cavities	s on the surface		

c) Both (a) and (b)	
d) None of the above	
341. Gold number gives	
a) The amount of gold present in the colloid	
b) The amount of gold required to protect the colloid	
c) The amount of gold required to break the colloid	
d) None of the above	
342. Amongst the following chemical reaction, the one representing homogeneous catalysis is	
a) $N_2(g) + 3H_2(g) \xrightarrow{Fe} 2NH_3(g)$ b) $2SO_2(g) + O_2(g) \xrightarrow{2NO} 2SO_3(g) + 2NO(g)$	(g)
c) $CO(g) + 3H_2(g) \xrightarrow{Ni} CH_4(g) + H_2O$ d) $2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3(g)$	
343. Which of the following represents the phenomenon of syneresis?	
a) Formation of a sol from a gel b) Migration of colloid in an electric field	
c) Separation of the dispersed phase from the gel d) Process of converting gel into true solution	on
344. Silica get is commonly used as:	711
a) Wetting agent b) Drying agent c) Solvent d) catalyst	
345. Which has least gold number?	
a) Gelatin b) Starch c) Albumin d) Blood	
346. The disperse phase in colloidal iron (III) hydroxide and colloidal gold is positively and negatively	charged,
respectively. Which of the following statements is not correct?	J
a) Coagulation in both sols can be brought about by electrophoresis	
b) Mixing the sols has no effect	
c) Sodium sulphate solution causes coagulation in both sols	
d) Magnesium chloride solution coagulates the gold sol more readily than the iron (III) hydroxide	sol
347. Which is not correct regarding the adsorption of a gas on surface of a solid?	. 501
a) Enthalpy and entropy change is negative	
b) Adsorption is more for some specific substance	
Z	
c) On increasing temperature, adsorption increase progressivelyd) It is a reversible reaction	
348. Efficiency of a catalyst depends on its:	
a) Particle size b) Solubility c) Molecular weight d) None of these	
349. Choose the incorrect statement	
 a) If the mutual affinity between the dispersed phase and the dispersion medium is small, the system be lyophobic 	tem will
b) If the mutual affinity between the dispersed phase and dispersion medium is great, the system	will be
lyophilic	
c) In a system, when water is the dispersion medium, the system may be hydrophobic or hydroph	nilic
d) Ionic surfactant molecules cluster together in clumps	
350. The colloidal system of a solid dispersed in liquid medium, is called	
a) Aerosol b) Sol c) Gel d) Foam	
351. Which of the following statements is incorrect?	
a) Emulsions are prepared by shaking two liquid components, say oil and water and adding some	.
emulsifying agent	
b) Water-in-oil emulsions are formed when the emulsifying agent at the interface is chiefly in the	water
phase	water
c) Water-in-oil emulsions are formed when the emulsifying agent at the interface is chiefly in the	oil phace
	on phase
d) Gems and gels mixed together to give emulsion	
352. Hydrolysis of cane sugar is catalysed by : a) H ⁺ b) Mineral acids c) Enzymes d) All of these	

353. When a catalyst inc	reases the rate of a chemical r	eaction, the rate constant :	
a) Increases	b) Decreases	c) Remains constant	d) Becomes infinite
354. The charge on As ₂ S	S_3 sol is due to the adsorption G_3	of:	
a) H ⁺	b) OH ⁻	c) 0 -	d) S ²⁻
355. Platinum is not use	d as a catalyst in the:	-	-
a) Oxidation of CH ₃	OH to HCHO		
b) Oxidation of SO ₂			
	H_2 and I_2 to form HI		
d) Synthesis of NH ₃			
356. A catalyst alter the			
a) Altering enthalp		b) Altering internal ener	gy
c) Altering energy		d) All of the above	
357. The name aquadag		,	
a) Cu in water sol	b) Pt in water sol	c) Graphite in water sol	d) None of these
358. Active charcoal is a			,
a) Made up of carbo		b) Is very reactive	
c) Has more adsorp		d) Has inert nature towa	ard reagent
359. An aerosol is a	•	,	8
	olid or liquid in a gas	b) Dispersion of a solid i	n a liquid
c) Dispersion of a l		d) Solid solution	•
	ring reaction is an example for		
a) $2H_2O_2(l) \frac{MnO_2(s)}{l}$		b) $2SO_2(g) + O_2(g) \frac{V_2O_5}{}$	(s) 250 (m)
		$\frac{3}{230_2(g) + 0_2(g)} = \frac{8}{3}$ Ni (s)	$\rightarrow 250_3(g)$
c) $2CO(g) + O_2(g)$		d) $H_2(g) + C_2 H_4(g) \stackrel{\text{Ni} (s)}{\longrightarrow}$	$C_2H_6(g)$
361. The correct statem	ent in case of milk :		
a) Milk is an emuls			
b) Milk is an emuls	ion of protein in water	CATION	
c) Milk is stabilized	l by protein	ICAHON	
d) Milk is stabilized	l by fat		
	ving acts as protective colloid?		
a) Silica gel	b) Gelatin	c) Sodium acetate	d) None of these
	ous solution of AgNO ₃ (excess)) is added to KI solution, po	sitively charged sol of AgI is
formed due to adso			
a) NO ₃	b) 0 -	c) Ag ⁺	d) K ⁺
	f arsenious sulphide can be pr	repared by :	
a) Electrodispersio	n method		
b) Peptization			
c) Double decompo	osition		
d) hydrolysis			
365. Chemisorption is:			
a) Multimolecular i	n nature		
b) Reversible			
	cific and directional		
d) Not very specific			
	llowing statements is incorrec	-	
•	naturated by ultraviolet rays a		
	st reactive at optimum temper	rature	
c) Enzymes mostly	proteinous in nature		
d) Enzyme action is	specific		

367. Alum purify muddy wat	er bv		
a) Dialysis		b) Adsorption	
c) Coagulation		d) Forming a true soluti	on
368. The continuous phase c	ontains the dispersed phase		
a) Water in milk		b) Fat in milk	
c) Water droplets in mi	st	d) Oil in water	
369. A catalyst is used		,	
a) To balance the reacti	on	b) To vaporise the comp	oound
c) To alter the velocity (d) To kill the enzymes	
370. In the formation of SO_3		•	n of NO is evidenced by :
a) Green vapours	b) Violet vapours	c) Brown vapours	d) None of these
371. A catalytic poison is			
a) Heterogeneous cataly	/st	b) Autocatalyst	
c) Induced catalyst		d) An inhibitor	
372. Which does not show T	yndall effect?	•	
a) Emulsion	b) Blood	c) Milk	d) Sugar solution
373. Catalytic poisoners act l	by:		, G
a) Coagulating the catal			
b) Getting adsorbed on	the active centres on the su	rface of catalyst	
c) Chemical combinatio	n with any one of the react	ants	
d) None of the above			
374. Peptization is a process	of:		
 a) Precipitating colloida 	l particles	>	
b) Purifying colloidal pa	rticles		
c) Dispersing the precip	oitate into colloidal state		
d) None of the above			
375. Gas masks containing a	ctivated charcoal to remove	e poisonous gases from atm	nosphere acts on the principle
of:	CIPLUS EDU	CAHON	
a) Adsorption	b) Absorption	c) Sorption	d) All of these
376. Pick out the statement v	which is not relevant in the	discussion of colloids.	
a) Sodium aluminium si	licate is used in the softeni	ng of hard water	
b) Potash alum is used i	n shaving rounds and as a s	styptic in medicine	
c) Artificial rain is cause	ed by throwing electrified s	and on the clouds from an	aeroplane
-	place where the river pour		
		hereby changing into sols.	The sols on standing changes
back into gel. The proce			
a) Synerisis	b) Thixotropy	c) Peptisation	d) Imbibition
378. Which is an example of		_	
a) $2H_2O_2 \xrightarrow{Pt} 2H_2O +$	02	b) $N_2 + 3H_2 \xrightarrow{Fe} 2NH_3$	
c) $2KClO_3 \xrightarrow{MnO_2} 2KC$	-		$\xrightarrow{OH} 4COCl_2 + 2Cl_2 + 2H_2O$
379. The decomposition of h	-		
a) Detainer	b) Stopper	c) Promoter	d) Inhibitor
380. Catalyst :	b) Stopper	c) i romotei	u) illinbitoi
a) Lowers activation en	orm		
b) Increase activation e			
	decrease activation energy	•	
d) Brings out equilibriu			
381. If dispersion medium is		is called ·	
a) Sol	b) Aerosol	c) Organosol	d) Aquasol
a) 501	D) 11C1 0301	of Organiosof	aj riquasti

382. The phenomenon in which adsorption and absorpt	ion takes place simultaneou	sly is called:
a) Desorption		
b) Sorption		
c) Both (a) and (b)		
d) None of these		
383. Adsorption is accompanied by		
a) ΔS of system is negative	b) Decrease in enthalpy o	of system
c) $T\Delta S$ for the process is negative	d) All of the above	•
384. Which is not a property of hydrophilic sols?		
a) High concentrations of dispersed phase can be e	asily attained	
b) Coagulation is reversible	5	
c) Viscosity and surface tension are about the same	e as of dispersion medium	
d) The charge of the particle depends on the pH val	_	m: it may be positive.
negative	1	, , ,
385. Which one of the following does not involve coagul	ation?	
a) Formation of delta regions	b) Peptization	
c) Treatment of drinking water by potash alum	d) Clotting of blood by the	e use of ferric chloride
386. Which is the wrong pair?	a, distang of brood by an	
(i) Starch solution : sol (ii) Aq. NaCl : true solution	(iii) milk : emulsion (iv) Aa	BaSO. true solution
a) (i) b) (iii)	c) (iv)	d) (ii)
387. Which reaction gives colloidal solution?	c) (1V)	u) (II)
a) $Cu + HgCl_2 \rightarrow CuCl_2 + Hg$		
b) $2HNO_3 + 3H_2S \rightarrow 3S + 4H_2O + 2NO$	>	
c) $2Mg + CO_2 \rightarrow 2MgO + C$		
d) $Cu + CuCl_2 \rightarrow Cu_2Cl_2$		
388. Which is universally correct for catalyst?		
a) A catalyst remains unchanged chemically at the	and of chamical reaction	
b) A catalyst takes part in a chemical reaction	end of chemical reaction	
c) All kinds of catalysts undergo catalytic poisoning	PATITOIA	
d) A catalyst physically changes at the end of reacti	Oli	
389. A catalyst	b) Changes the water const	
a) Lowers the activation energy	b) Changes the rate const	
c) Changes the product	d) Itself destroys in the re	eaction
390. Hydrolysis of maltose $(C_{12}H_{22}O_{11})$ by maltase give		J) M C + l
a) Glucose b) Fructose	c) Both (a) and (b)	d) None of these
391. Platinized asbestos used as a catalyst in the manufa	$_{2}$ or $_{12}$ $_{30}$ is an example	ie of:
a) Heterogeneous catalyst		
b) Autocatalyst		
c) Homocatalyst		
d) Induced catalyst		
392. In Haber's process for manufacture of ammonia, th	e reaction is usually carried	at about 500°C. If a
temperature of about 250°C was used then		
a) A catalyst would be of no use at all at this tempe		
b) The rate of formation of ammonia would be too	slow	
c) No ammonia would be formed at all		
d) The percentage of ammonia in the equilibrium n	nixture would be too low	
393. Solvent hating colloids are :		
a) Lyophobic b) Hydrophilic	c) Lyophilic	d) None of these
394 The gold numbers of some colloidal solutions are g	iven helow	

Colloidal	Gold
solution	number
A	0.01
В	2.5
С	20

The protective nature of these colloidal solutions follow the order

a)	C	>	R	>	Α

b)
$$A > B > C$$

c)
$$A = B = C$$

d) B > A > C

395. A catalyst increases the rate of reaction because it:

- a) Increases the activation energy
- b) Decrease the energy barrier for reaction
- c) Decreases the collision diameter
- d) Increase the temperature coefficient
- 396. Pick out the wrong statement.
 - a) Micelles are formed by surfactant molecules above the Critical Micelle Concentration (CMC)
 - b) The conductivity of a solution having surfactant molecules decreases sharply at the (CMC)
 - c) Lower is the CMC of detergent, more is its detergency
 - d) Cleansing action is not related to micelles
- 397. Catalyst only

a) Decreases activation energy

b) Increases activation energy

c) Bring about equilibrium

d) None of the above

398. A precipitate is changed to colloidal solution by the following process

a) Dialysis

b) Ultrafiltration

c) Peptization

d) Electrophoresis

- 399. The Brownian movement is due to
 - a) Enthalpy change during the formation of colloids
 - b) Attractive forces between the colloidal particles and the molecules of dispersion medium
 - c) The impact of molecules of the dispersion medium on the colloidal particles
 - d) The movement of positively charged colloidal particle to negatively charged particle
- 400. Catalyst used in Haber's process is

a) Nickel powder

b) Iron and molybdenum powder

c) Black lead

d) Iodine

401. The capacity of an ion to coagulate a colloidal solution depends on :

- a) Its shape
- b) Amount of its charge
- c) The sign of charge
- d) Both amount and sign of the charge
- 402. The ion that is more effective for the coagulation of As₂S₃ sol is
 - a) Ba²⁺

b) Na⁺

c) PO_4^{3}

d) Al^{3+}

403. The reaction rate at a given temperature is slower when:

- a) The energy of activation is higher
- b) The energy of activation is lower
- c) Entropy changes
- d) Initial concentration of the reactants remains constant
- 404. Hardy-Schulze law states that
 - a) Higher the charge of the coagulating ions, greater its coagulating power, having opposite sign of solution
 - b) Solution must have zero gold number
 - c) Disperse phase and dispersion medium must be of the same sign
 - d) Micelles coagulate in presence of surfactants
- 405. Choose the intrinsic colloids among the following
 - a) Sulphur
- b) Arsenic sulphide
- c) Egg albumen
- d) Ferric hydroxide

406. Enzymes are :					
a) Substances made by chemists to activate washing	r novedor				
	g powder				
b) Very active vegetable catalysts					
c) Catalysts found in organisms					
d) Synthetic catalysts					
407. Whenever, gels are placed with their dispersed phase	se, they :				
a) Swells up					
b) Show intake of the dispersed phase					
c) Develops imbibition					
d) All of the above					
408. Which forms multi molecular layers during adsorption?					
a) Physical adsorption					
b) van der Waals' adsorption					
c) Freundlich adsorption					
d) All of the above					
409. Enzyme catalysts are :					
a) Highly specific in nature					
b) Non-specific					
c) Solids					
d) Always liquid					
410. A catalyst:					
a) Increases the average kinetic energy of the reacti	ng molecules				
b) Increases the activation energy					
c) Alters the reaction mechanism					
d) Increases the frequency of collisions of the reacti	nσ snecies				
411. Micelle systems are used in					
a) Gums b) Magnetic separation process					
c) Petroleum recovery d) All of the above					
412. Enzymes are known to increase the rate of reaction by :					
a) 10^2 times b) 10^{-2} times	c) 10 ⁵ times	d) 10 ¹² times			
413. A catalyst promoter	c) 10 tilles	d) 10 times			
· -	b) Activates the action o	f a catalyst			
a) Increases the speed of the reaction	,	i a catalyst			
c) Starts a chemical reaction	d) None of the above				
414. Soaking of water by a sponze is an example of:	-)	J) N C 4			
a) Physical adsorption b) Chemical adsorption	c) Absorption	d) None of these			
415. Indicate the correct statement		1			
a) In chemisorptions, there is no disruption of bonding in an adsorbed molecule					
b) The rate of decomposition of the substance adsorbed on a surface depends on the surface coverage					
c) In heterogeneous catalytic reaction no surface rea					
d) Increase in surface area of catalyst reduces the surface phase reactions					
416. Cellulose dispersed in ethanol is called					
a) Emulsion b) Collodion	c) Micelle	d) Hydrophilic sol			
417. A liquid aerosol is a colloidal system of :					
a) A liquid dispersed in a solid					
b) A liquid dispersed in a gas					
c) A gas dispersed in a liquid					
d) A solid dispersed in a gas					
418. The disperse phase, dispersion medium and nature	of colloidal solution (lyop)	hilic or lyophobic) of 'gold			
sol' respectively are					

- a) Solid, Solid, lyophobic
- c) Solid, Liquid, Lyophobic
- 419. An emulsion is a colloidal dispersion of
 - a) A liquid in a gas
- b) A liquid in a liquid
- c) A solid in a liquid

b) Liquid, Liquid, Lyophobic

b) Refraction of blue sky by water

d) Solid, Liquid, Lyophilic

d) A gas in a solid

- 420. Blue colour of water in sea is due to
 - a) Refraction of blue light by impurities
 - c) Scattering of light by water

- d) None of the above
- 421. Which of the following is an example of biochemical catalyst?
 - a) Platinium gauze

b) Oxides of Nitrogen

c) Zymase

- d) V_2O_5
- 422. Which one of the following statements is incorrect?
 - a) Adsorption always leads to a decrease in enthalpy and entropy of the system
 - b) Adsorption arises due to unsaturation of valence forces of atoms or molecules on the surface
 - c) Adsorption increases with rise in the temperature
 - d) Adsorption decreases the surface energy
- 423. In emulsion the dispersed phase and dispersion medium are:
 - a) Both solids
- b) Both liquids
- c) A solid and liquid
- d) A liquid and solid

424. Which graph represents auto catalysis?

- 425. The Rubin number which was proposed by Ostwald as an alternative to the Gold number in order to measure the protective efficiency of a lyophilic colloid may be defined as the
 - a) Mass in milligrams of a colloid per 100 cc of solution which just prevents the colour change of standard sol of dye Congo-Rubin from red to violet when 0.16 g eq. KCl is added to it
 - b) Mass in grams of a colloid per 100 cc of solution which just prevents the colour change of standard sol of dye Congo-Rubin from red to violet when 0.1 M KCl is added to it
 - c) Mass in grams of a colloid per 100 cc of solution which just prevents the colour change of standard sol of dye Congo-Rubin from red to violet when 0.2 M KCl is added to it
 - d) Mass in grams of a colloid per 100 cc of solution which just prevents the colour change of standard sol of dye Congo-Rubin from red to violet when 1 M KCl is added to it
- 426. Which of the following is applicable to chemisorption?
 - a) It occurs at high temperature
 - b) There is formation monomolecular layer
 - c) It involves the formation of chemical bonds between adsorbent and adsorbate
 - d) All of the above
- 427. Which of the following is used to provide smoke screens:
 - a) Calcium phosphide
- b) Zinc sulphate
- c) Sodium carbonate
- d) Zinc phosphide
- 428. The process of froth floatation and chromatography are based on :
 - a) Emulsification
- b) Adsorption
- c) Absorption
- d) Either of them

- 429. The efficiency of enzyme catalysis is due to its capacity to
 - a) From a strong enzyme-substrate complex
 - b) Change the shape of the substrate
 - c) Lower the activation energy of the reaction
 - d) Form a colloidal solution in water
- 430. Which acts as a promoter for nickel in the hydrogenation of oils?

	a) Cu	b) Mo	c) Fe	d) Pt			
43	1. In Langmuir's model o	f adsorption of a gas on a s	solid surface				
	=			depend on the surface covered			
		-	may involve multiple molect				
	c) The mass of gas striking a given area of surface is proportional to the pressure of the gas						
	-	king a given area of surfac	e is independent of the pres	ssure of the gas			
43	22. Cloud bursts due to :						
	=	the electrical charges on th	ne earth				
		ter present in the cloud					
		esent in the upper atmosp					
40			s resulting in the coagulation				
43				he laboratory. This is due to			
				ively charged blood particles			
	c) Reaction taking place between ferric ions and the haemoglobin forming a complex d) Common element, iron, in both FeCl ₃ amd haemoglobin						
43	4. Surface tension of lyop	-					
	a) Lower than H ₂ O	b) More than H ₂ O	c) Equal to H ₂ O	d) None of these			
43	5. Which is used in the H	aber's process for the man	ufacture of NH ₃ ?				
	a) Al_2O_3	b) Fe + Mo	c) CuO	d) Pt			
43	66. Tails of comets are vis	ible due to :					
	a) Tyndall effect	b) Reflection	c) Brownian motion	d) None of these			
43		tion power of KCl, MgCl ₂ , (${ m CrCl_3}$ and ${ m SnCl_4}$ for a positiv	ely charged sol are in the			
	order of		<i></i>	2			
	a) $KCl < MgCl_2 < CrCl$		b) $KCl = MgCl_2 = CrCl$				
40	c) $MgCl_2 < KCl < CrC$	-	d) $SnCl_4 < CrCl_3 < Mg$	$SCI_2 < KCI$			
438. Smoke (a negatively charged colloid) is an example of : a) Gas dispersed in liquid							
	b) Gas dispersed in solid						
	c) Solid dispersed in g						
d) Solid dispersed in solid 439. Which one of the following is an example for homogeneous catalysis?							
a) Manufacture of sulphuric acid by Contact process							
	b) Manufacture of ammonia by Haber's process						
	-	se in presence of dilute hy	drochloric acid				
	d) Hydrogenation of o	-					
44	0. Which is not true in ca	se of catalyst?					
	a) The catalyst is unch	anged chemically at the er	nd of a reaction				
	b) The catalyst acceler	ates the reaction					
	c) In a reversible react	tion, the catalyst alters the	equilibrium position				
	d) A small amount of c	atalyst is often sufficient to	o bring about a large change	e in reaction			
44		is not the property of hyd	_				
	a) Coagulation is reve	rsible	b) Viscosity and surfact water	e tension are equal to that of			
	c) Charge on the partic	cle depends upon pH of the	e d) Dispersed phase acc	quires higher concentration			
	medium. It may be	positive, negative or zero	easily				
44	2. Point out the false stat	ement					
	_	lloidal particles is 10 – 20					
	b) Colloidal solutions a	are homogeneous systems					

- c) Colloids carry charge
- d) Colloids show Tyndall effect
- 443. Soaps are generally prepared from:
 - a) Linseed oil
- b) Coconut oil
- c) Groundnut oil
- d) Mustard oil

444. Which of the following is not a surfactant:

- b) CH₃(CH₂)₁₄CH₂NH₂
- c) $CH_3(CH_2)_{16}CH_2OSO_2^-Na^+$
- d) Decyl pyridinium chloride
- 445. A catalyst for a reversible reaction is a substance that:
 - a) Supplies energy to the reaction
 - b) Decreases the time to reach equilibrium
 - c) Increases the equilibrium concentration of the products
 - d) Change the equilibrium constant of the reaction
- 446. In a reversible reaction, a catalyst
 - a) Increases the rate of forward reaction only
 - b) Increases the rate of forward reaction and decreases that of backward reaction
 - c) Increases the rate of forward and backward reaction equally
 - d) Increases the rate of forward reaction to great extent than that of backward reaction
- 447. The concentration of electrolyte required to coagulate a given amount of As_2S_3 sol is minimum in the case of
- a) Magnesium nitrate
- b) Potassium nitrate
- c) Potassium sulphate
- d) Aluminium nitrate

- 448. Paste is
 - a) Suspension of solid in a liquid
- b) Mechanical dispersion of a solid in liquid d) None of the above
- c) Colloidal solution of a solid in solid
- 449. Which of the following is not an emulsion?
 - a) Butter
- b) Ice cream
- c) Milk

d) Clouds

- 450. Emulsifying agents generally used are:
 - a) Ions with negative charge
 - b) Surface active agents
 - c) Ions with a positive charge
 - d) Lyophobic substances
- 451. The catalyst used in lead chamber process of H₂SO₄ manufacture is
 - a) Platinum

b) Oxides of nitrogen

c) Nickel

- d) Vanadium compounds
- 452. Hydrolysis of sucrose $(C_{12}H_{22}O_{11})$ by invertase gives :
 - a) Glucose
- b) Fructose
- c) Both(a) and (b)
- d) None of these
- 453. Which one of the following characteristics is not correct for physical adsorption?
 - a) Adsorption on solids is reversible
 - b) Adsorption increases with increase in temperature
 - c) Adsorption is spontaneous
 - d) Both enthalpy and entropy of adsorption are negative
- 454. Which of the following curves do not correspond to adsorption isotherms?

- a) Increases the activation energy of the backward reaction
- b) Increases the activation energy of the forward reaction
- c) Decreases the activation energy of both forward and backward reaction
- d) Decreases the activation energy of forward reaction
- 456. Which acts as poison to platinum (a catalyst) in the manufacture of H₂SO₄ by contact process?
 - a) Arsenious oxide
- b) CO₂

c) CO

- d) Sodium sulphide
- 457. Which among the following statements are correct with respect to adsorption of gases on a solid?
 - (i) The extent of adsorption is equal to Kp^n according to Freundlich isotherm.
 - (ii) The extent of adsorption is equal to $Kp^{1/n}$ according to Freundlich isotherm.
 - (iii) The extent of adsorption is equal to (1 + bp)/ap according to Langmuir isotherm.
 - (iv) The extent of adsorption is equal to ap/(1+bp) according to Langmuir isotherm.
 - (v) Freundlich adsorption isotherm fails at low pressure, where k, a and b are constant and p is pressure
 - a) (i) and (iii)
- b) (i) and (iv)
- c) (ii) and (iii)
- d) (ii) and (iv)
- 458. Which of the following is adsorbed greatly by activated charcoal?

b) CO₂

d) Water vapours

- 459. Choose macromolecular colloids among the following
 - a) Soap

b) Detergent

c) Starch and cellulose

- d) All of these
- 460. In aerosol, the dispersion medium is
 - a) Solid

- b) Liquid
- c) Gas

d) Any of these

- 461. Which acts as poison for Pd-charcoal in Lindlar's catalyst?
 - a) BaSO₄
- b) Quinoline
- c) Both (a) and (b)
- d) None of these

- 462. Which acts as negative catalyst?
 - a) Lead tetraethyl as antiknock compound
 - b) Glycerol in decomposition of H₂O₂
 - c) Ethanol in oxidation of chloroform
 - d) All of the above
- 463. From the following which is not a surface phenomenon?
 - a) Corrosion

b) Crystallisation

c) Heterogenous catalysis

- d) None of the above
- 464. Hydrolysis of protein in stomach and in intestine takes place due to action of enzyme:
 - a) Pepsin in stomach, trypsin in intestine
 - b) Trypsin in stomach, pepsin in intestine
 - c) Both (a) and (b)
 - d) None of the above
- 465. Which of the following is less than zero during adsorption?
 - a) ∆*G*

b) ΔS

c) ΔH

d) All of these

466. Which one of the following methods, does not give the sol?

- a) Electrophoresis
- b) Peptization
- c) Electrodispersion
- d) Solvent exchange

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 36